Zero-Valent Iron Reactive Materials for Hazardous Waste and Inorganics Removal

Size: px
Start display at page:

Download "Zero-Valent Iron Reactive Materials for Hazardous Waste and Inorganics Removal"

Transcription

1 Zero-Valent Iron Reactive Materials for Hazardous Waste and Inorganics Removal Table of Contents Chapter 1 Introduction Historical Development of Zero-Valent Iron for Hazardous Waste Removal Groundwater and Surface Water Standards Comparison of the Fe 0 -Based Permeable Reactive Barriers and Pump-and-Treat Systems in Hazardous Waste Removal References 6 Section I Removals of Chlorinated Aliphatic Hydrocarbons and Hexavalent Chromium Using Zero-Valent Iron Chapter 2 Removals of Chlorinated Aliphatic Hydrocarbons by Fe 0 : Full-Scale PRB vs Column Study Introduction Experimental Section Full-scale Fe 0 PRB Installed at Vapokon Site, Denmark Laboratory Column Experiment Groundwater Sample Measurements Data Analysis Determination of Longitudinal Dispersivity Calculation of the Observed First-order Dechlorination Rate Constant Results and Discussion 19 i

2 2.4.1 Longitudinal Dispersivity of the Fe 0 Packed Media Influence of the Longitudinal Dispersivity on the CAH Concentration along Fe 0 Packed Media The Performance on CAH Dechlorination A Factor of Safety for the Designed Fe 0 PRB Thickness Conclusions References 30 Chapter 3 Zero-Valent Iron and Organo-Clay for Chromate Removal in the Presence of Trichloroethylene Introduction Experimental Section Materials and Their Characterization Methods Preparation of Organo-bentonite Column Experiments Data Analysis Results and Discussion Conclusions References 45 Chapter 4 Competitive Effects on the Dechlorination of Chlorinated Aliphatic Hydrocarbons by Zero-Valent Iron Introduction Materials and Methods Materials Experimental Methods Data Analysis Results and Discussion Dechlorination of CAHs by Fe Competition between TCE and 1,1,1-TCA Competition among TCE, 1,1,1-TCA and TCM at Various Temperatures Competition between TCE and Cr(VI) 55 ii

3 4.4 Conclusions References 58 Chapter 5 Removal of Hexavalent Chromium from Groundwater Using Zero-Valent Iron Media Introduction Removal Mechanisms Reaction Kinetics Other In Situ Cr(VI) Removal Methods Case Studies Elizabeth City, North Carolina Kolding, Denmark Conclusions References 73 Section II Removals of Nitrate and Arsenic using Zero-valent Iron Chapter 6 Aqueous Nitrate Reduction by Zero-Valent Iron Powder Introduction Experimental Section Material and Reagents Reaction Systems and Operation Instrumental Analyses Results and Discussion Fe 0 /H 2 SO 4 System Effect of ph Effect of Fe 0 Dosage Effect of Species with Hydroxyl Group Fe 0 /CO 2 System Effect of CO 2 Bubbling Effect of Initial Nitrate Concentration Effect of Humic Acid Effect of Cations and Anions 87 iii

4 Effect of Operating Modes Issue of Undesired Byproducts and its Resolution Conclusions and Recommendations References 93 Chapter 7 Removal of Nitrate from Water by a Combination of Metallic Iron Reduction and Clinoptilolite Ion Exchange Process Introduction Materials and Methods Chemicals Nitrate Reduction Experiments Ion Exchange Experiments Results and Discussions Effect of ph Effect of Nitrate Loading Overall Nitrate Reduction Efficiency Removal of Ammonia in the Presence of Fe(II) Ions Summary References 107 Chapter 8 Utilization of Zero-Valent Iron for Arsenic Removal from Groundwater and Wastewater Introduction Batch Tests with Non Mine-Impacted Waters Batch Test with Acid Mine Drainage Effects of Competing Inorganic Anions on Arsenic Removal by Zero-Valent Iron Column Tests and Field Applications Mechanisms of Arsenic Removal by Zero-Valent Iron Alternative Materials of Iron and Aluminum Oxides for Arsenic Removal Knowledge Gaps and Research Needs Conclusions References 143 iv

5 Chapter 9 Removal of Arsenic from Groundwater Mechanisms, Kinetics, Field/Pilot and Modeling Studies Introduction Mechanism of Removal and Competing Ion Effects Field/Pilot Studies and Modeling Design Considerations Conclusions References 164 Section III Innovative Iron-based Reactive Materials Chapter 10 The Performance of Palladized Granular Iron: Enhancement and Deactivation Introduction Experimental Section Chemicals and Materials Column Tests Chemical Analyses Auger Electron Spectroscopy (AES) X-Ray Photoelectron Spectroscopy (XPS) Results and Discussion Pd Plating Efficiency Column Tests Surface Analysis Conclusions References 185 Chapter 11 Nanoscale Bimetallic Pd/Fe Particles for Remediation of Halogenated Methanes Introduction Experimental Section Batch Experiments Headspace Analysis 191 v

6 Kinetic Analysis Materials and Chemicals Results Product Distributions and Reaction Rates Correlation Analysis Kinetic Simulation Discussion Conclusions References 203 Chapter 12 Reduction by Bimetallic Reactive Materials Containing Zero-Valent Iron Introduction Noble Metals as Reduction Catalysts Preparation of Bimetallic Reductants Reduction Reactions of Bimetallic Materials Direct Adsorption of Atomic Hydrogen Dissociative Adsorption of Diatomic Hydrogen Roles of Iron as the Primary Metal Factors Affecting Reaction of Bimetallic Reductants Effect of the Type of Noble Metal Effect of Noble Metal Content and Surface Area Effect of Solution Chemistry Deactivation of Bimetallic Reductants Nano-sized Bimetallic Reductants Conclusions References 218 Section IV Zero-Valent Iron Reactive Barrier: Configuration, Construction, Design Methodology, and Hydraulic Performance Chapter 13 Configuration and Construction of Zero-Valent Iron Reactive Barriers 224 vi

7 13.1 Introduction Permeable Reactive Barrier Configurations Continuous Permeable Reactive Barriers Funnel-and-gate Permeable Reactive Barriers Caisson Permeable Reactive Barriers Trench Permeable Reactive Barriers GeoSiphon TM /GeoFlow Emplacement Techniques for Permeable Reactive Barriers Emplacement Techniques for Permeable Treatment Zone Trench Excavation Caisson-Based Emplacement Mandrel-Based Emplacement Continuous Trenching Emplacement Techniques for Impermeable Funnels Steel Sheet Piling Slurry Wall Innovative Technologies for the Emplacement of Permeable Treatment Zone and Impermeable Funnels Jetting Hydraulic Fracturing Deep Soil Mixing Case Studies Configuration and Construction of a Permeable Reactive Barrier at Vapokon Site, Denmark Configuration and Construction of a Permeable Reactive Barrier at United States Coast Guard (USCG) Support Centre in Elizabeth City, North Carolina Configuration and Construction of a Permeable Reactive Barrier at an Industrial Site in Belfast, Northern Ireland Summary References 239 Chapter 14 Design Methodology for the Application of a Permeable vii

8 Reactive Barrier for Groundwater Remediation Introduction Preliminary Assessment Site Characterization Reactive Media Selection Treatability Testing Hydrogeologic and Geochemical Modelings Monitoring Plan Permeable Reactive Barrier Economics Summary References 261 Chapter 15 Hydraulic Issues Related to Granular Iron Permeable Reactive Barriers Introduction Hydraulic Characteristics of Granular Iron and Impact on PRB Design Influence of Inadequate Characterization of Plume Hydrogeology on Hydraulic Performance Influence of Construction Methods on Hydraulic Performance Influence of Long-Term Geochemical Changes on Hydraulic Performance Summary References 278 Chapter 16 Tracer Experiments in Zero-Valent Iron Permeable Reactive Barriers Introduction Tracer Experiments in Laboratory Columns Tracer Experiments at PRB Sites Rheine Site PRB Tübingen Site PRB Conclusions 300 viii

9 16.5 References 301 Chapter 17 Hydraulic Studies of Zero-Valent Iron in Permeable Reactive Barriers Using Tracer Experiment Introduction Vapokon Site Description and Fe 0 PRB Emplacement Natural Gradient Tracer Experiment for the Hydraulic Performance Monitoring of the Fe 0 PRB at Vapokon Site Selection of Suitable Tracer Materials Groundwater Modeling Design Parameters for the Tracer Injection System Design Parameters for the Groundwater Sampling System Groundwater Flow Model and Solute Transport Program Injection Wells and System Groundwater Sampling Network and Systems Collection of Groundwater Samples and Chemical Analysis of Tracers Data Analysis Spatial Moments Analysis for the Lithium Plume Results and Discussion Flow Pattern of the Lithium Plume Breakthrough Curves of Bromide Mass of Lithium Flowing through the Fe 0 Reactive Medium Groundwater Velocity Conclusions References 332 Appendix 337 Subject Index 339 ix

Overview of Permeable Reactive Barriers. Presented To: Dr. Norman Jones Civil Engineering Dept., BYU

Overview of Permeable Reactive Barriers. Presented To: Dr. Norman Jones Civil Engineering Dept., BYU Overview of Permeable Reactive Barriers Presented To: Dr. Norman Jones Civil Engineering Dept., BYU By: David H. Snow April 5, 1999 Abstract Permeable reactive barriers are a practical, low cost alternative

More information

Zero-Valent Iron for Groundwater Remediation Lessons Learned over 20 years of Technology Use. Andrzej Przepiora and Jeff Roberts

Zero-Valent Iron for Groundwater Remediation Lessons Learned over 20 years of Technology Use. Andrzej Przepiora and Jeff Roberts Zero-Valent Iron for Groundwater Remediation Lessons Learned over 20 years of Technology Use Andrzej Przepiora and Jeff Roberts RemTech 2016 Oct. 12-14, 2016 ZVI-Based Remediation Milestones Extensive

More information

NanoFe. Supported Zero-Valent Nanoiron. An Innovative Remediation Technology for Soils and Groundwater. PARS Environmental Inc.

NanoFe. Supported Zero-Valent Nanoiron. An Innovative Remediation Technology for Soils and Groundwater. PARS Environmental Inc. NanoFe Supported Zero-Valent Nanoiron An Innovative Remediation Technology for Soils and Groundwater PARS Environmental Inc. H.S. Gill Ph.D. Tel: 609-890-7277 Introduction NanoFe will remediate recalcitrant

More information

Permeable Reactive Barrier Treatment for Groundwater Exiting a NAPL Contaminated Area. Donald Pope IPEC 2015 Conference

Permeable Reactive Barrier Treatment for Groundwater Exiting a NAPL Contaminated Area. Donald Pope IPEC 2015 Conference Permeable Reactive Barrier Treatment for Groundwater Exiting a NAPL Contaminated Area Donald Pope IPEC 2015 Conference Agenda Site Description Description of Non-aqueous phase liquid (NAPL) Description

More information

REMEDIATION OF CHROMATE-CONTAMINATED GROUND WATER USING ZERO-VALENT IRON: FIELD TEST AT USCG SUPPORT CENTER, ELIZABETH CITY, NORTH CAROLINA

REMEDIATION OF CHROMATE-CONTAMINATED GROUND WATER USING ZERO-VALENT IRON: FIELD TEST AT USCG SUPPORT CENTER, ELIZABETH CITY, NORTH CAROLINA REMEDIATION OF CHROMATE-CONTAMINATED GROUND WATER USING ZERO-VALENT IRON: FIELD TEST AT USCG SUPPORT CENTER, ELIZABETH CITY, NORTH CAROLINA R.W. Puls 1, C.J. Paul 1, and R.M. Powell 2, 1 Robert S. Kerr

More information

Nanoscale Zero Valent Iron for Groundwater Remediation. Christian Macé INTERSOL Mars 2007, Paris

Nanoscale Zero Valent Iron for Groundwater Remediation. Christian Macé INTERSOL Mars 2007, Paris Nanoscale Zero Valent Iron for Groundwater Remediation. Christian Macé cmace@golder.com INTERSOL 2007 29 Mars 2007, Paris Iron Nanoparticles Chemically precipitated (bottom up) or Mechanically grinded

More information

Field-proven remediation technologies for the most challenging sites.

Field-proven remediation technologies for the most challenging sites. Field-proven remediation technologies for the most challenging sites. Field-Proven Remediation Technologies The PeroxyChem Environmental Solutions team provides a portfolio of field-proven products and

More information

Mixed Plume Remediation using EHC In-Situ Chemical Reduction and Oxidation Technologies

Mixed Plume Remediation using EHC In-Situ Chemical Reduction and Oxidation Technologies Mixed Plume Remediation using EHC In-Situ Chemical Reduction and Oxidation Technologies Innovative Solutions for Federal Contaminated Sites in Pacific and Northern Regions October 15, 2008 John Vogan,

More information

Injection of Stabilized Zero-Valent Iron Nanoparticles for Treatment of Solvents in Source Zones

Injection of Stabilized Zero-Valent Iron Nanoparticles for Treatment of Solvents in Source Zones Injection of Stabilized Zero-Valent Iron Nanoparticles for Treatment of Solvents in Source Zones Zhong (John) Xiong, PhD, PE; Peter Bennett, PG; Dawn Kaback, PhD, AMEC Geomatrix, Inc. Dongye (Don) Zhao,

More information

Technology Overview KLOZUR PERSULFATE

Technology Overview KLOZUR PERSULFATE KLOZUR PERSULFATE Klozur persulfate is a high purity environmental grade product used as an in situ chemical oxidation (ISCO) technology to treat a wide variety of contaminants of concern in soil and groundwater

More information

Comparison of EHC, EOS, and Solid Potassium Permanganate Pilot Studies for Reducing Residual TCE Contaminant Mass

Comparison of EHC, EOS, and Solid Potassium Permanganate Pilot Studies for Reducing Residual TCE Contaminant Mass Comparison of EHC, EOS, and Solid Potassium Permanganate Pilot Studies for Reducing Residual TCE Contaminant Mass Defense Distribution Depot San Joaquin-Sharpe Site Lathrop, California Corinne Marks, PE

More information

Zero-Valent Iron Treatment of Chlorinated Solvent Contaminated Groundwater. D. Reinhart C. Clausen C. Geigner

Zero-Valent Iron Treatment of Chlorinated Solvent Contaminated Groundwater. D. Reinhart C. Clausen C. Geigner Zero-Valent Iron Treatment of Chlorinated Solvent Contaminated Groundwater D. Reinhart C. Clausen C. Geigner Zero-Valent Iron Chemistry Fe 0 2e - + Fe +2 RX + 2e - + H + RH + X - Fe 0 + RX+ H + Fe +2 +

More information

Nanotechnology for Site Remediation: Fate and Transport of Nanoparticles in Soil and Water Systems

Nanotechnology for Site Remediation: Fate and Transport of Nanoparticles in Soil and Water Systems Nanotechnology for Site Remediation: Fate and Transport of Nanoparticles in Soil and Water Systems August 2006 Prepared by: Beshoy Latif, ECOS Student University of Arizona Prepared for: U.S. Environmental

More information

Treatability Testing--Fate of Chromium During Oxidation of Chlorinated Solvents

Treatability Testing--Fate of Chromium During Oxidation of Chlorinated Solvents Treatability Testing--Fate of Chromium During Oxidation of Chlorinated Solvents Jane Chambers, Alan Leavitt, Caryl Walti (Northgate Environmental Management, Oakland, California, USA) Cindy G. Schreier

More information

In-Situ Chemical Oxidation DOUG HAMILTON, PRINCIPAL HYDROGEOLOGIST ACV ENVIRO

In-Situ Chemical Oxidation DOUG HAMILTON, PRINCIPAL HYDROGEOLOGIST ACV ENVIRO In-Situ Chemical Oxidation DOUG HAMILTON, PRINCIPAL HYDROGEOLOGIST ACV ENVIRO Who am I (or where did I come from)? BS-Geology, BA-Geography Water Resources, MS-Geochemistry Handex mid-1980 s to 1990 hey

More information

Sections 5 & 6. Site Characterization and Lines of Evidence. Steve Posten

Sections 5 & 6. Site Characterization and Lines of Evidence. Steve Posten Sections 5 & 6 Site Characterization and Lines of Evidence Steve Posten Overview Section 5 Site Characterization Conceptual site model Aquifer characteristics Hydraulic conductivity/gradient Porosity Organic

More information

Subsurface Distribution of ZVI/EHC Slurry Validating Radius of Influence. Josephine Molin, PeroxyChem October

Subsurface Distribution of ZVI/EHC Slurry Validating Radius of Influence. Josephine Molin, PeroxyChem October Subsurface Distribution of ZVI/EHC Slurry Validating Radius of Influence Josephine Molin, PeroxyChem October 2 2014 Presentation Objective / Outline To empirically summarize our experience from a range

More information

Optimization of ZVI Technology for In-Situ Remediation of Chlorinated Contaminants. Dr. John Freim OnMaterials, LLC Escondido, CA

Optimization of ZVI Technology for In-Situ Remediation of Chlorinated Contaminants. Dr. John Freim OnMaterials, LLC Escondido, CA Dr. John Freim OnMaterials, LLC Escondido, CA Chlorinated Solvent Contamination - Background Dry cleaners PCE used as cleaning agent Many dry cleaning facilities had leaks, spills, improper disposal Former

More information

Conceptual Groundwater Remedial Alternatives at Coal Combustion Residuals (CCR) Sites

Conceptual Groundwater Remedial Alternatives at Coal Combustion Residuals (CCR) Sites 2017 World of Coal Ash (WOCA) Conference in Lexington, KY - May 9-11, 2017 http://www.flyash.info/ Conceptual Groundwater Remedial Alternatives at Coal Combustion Residuals (CCR) Sites Herwig Goldemund

More information

Nano-Scale Zero-Valent Iron State of the Technology. Lessons Learned from R&D, Production, and Global Field Implementations

Nano-Scale Zero-Valent Iron State of the Technology. Lessons Learned from R&D, Production, and Global Field Implementations Nano-Scale Zero-Valent Iron State of the Technology Lessons Learned from R&D, Production, and Global Field Implementations Presentation Outline 1. Timeline of Significant IP Developments 2. Production

More information

Impacts of a Zero Valent Iron PRB on Downgradient Biodegradation Processes. John E. Vidumsky DuPont Corporate Remediation Group

Impacts of a Zero Valent Iron PRB on Downgradient Biodegradation Processes. John E. Vidumsky DuPont Corporate Remediation Group Impacts of a Zero Valent Iron PRB on Downgradient Biodegradation Processes John E. Vidumsky DuPont Corporate Remediation Group Why is Downgradient Biodegradation Important? Significant contaminant mass

More information

The Use of Nano Zero Valent Iron in Remediation of Contaminated Soil and Groundwater

The Use of Nano Zero Valent Iron in Remediation of Contaminated Soil and Groundwater International Journal of Scientific Research in Environmental Sciences (IJSRES), 1(7), pp. 152-157, 2013 Available online at http://www.ijsrpub.com/ijsres ISSN: 2322-4983; 2013 IJSRPUB http://dx.doi.org/10.12983/ijsres-2013-p152-157

More information

Bioremediation Product Series

Bioremediation Product Series No. PREX-GEN101007 In-situ Remediation of Contaminated Soil and Groundwater using the Power of Mother Nature Bioremediation Product Series 694-2, Akada, Toyama 939-8064 Japan Phone: +81-76-420-3122 Fax:

More information

Micron-Size Zero-Valent Iron Emplacement in Porous Media Using Polymer Additives: Column and Flow Cell Experiments

Micron-Size Zero-Valent Iron Emplacement in Porous Media Using Polymer Additives: Column and Flow Cell Experiments Hydrology Days 2006 Micron-Size Zero-Valent Iron Emplacement in Porous Media Using Polymer Additives: Column and Flow Cell Experiments M. Oostrom 1 Environmental Technology Division, Pacific Northwest

More information

Advancing the Science of In Situ Groundwater Remediation Petroleum Hydrocarbon Remediation Technologies

Advancing the Science of In Situ Groundwater Remediation Petroleum Hydrocarbon Remediation Technologies Advancing the Science of In Situ Groundwater Remediation Petroleum Hydrocarbon Remediation Technologies RemBind Vadose Zone Treatment Tersus is the exclusive North American distributor for RemBind (US

More information

Antimethanogenic EZVI

Antimethanogenic EZVI ADVANCED EZVI FORMULATIONS FOR THE REMEDIATION INDUSTRY Provectus Environmental Products, Inc. offers the most advanced, cost efficient formulations of the NASA patented Emulsified Zero Valent Iron (EZVI)

More information

May Solutions for Air, Water, Waste and Remediation. Oxidants & Reductants. Work Together

May Solutions for Air, Water, Waste and Remediation. Oxidants & Reductants. Work Together May 2013 Solutions for Air, Water, Waste and Remediation Oxidants & Reductants Work Together COVER STORY 20 Pollution Engineering FEBRUARY 2013 While oxidants and reductants do not mix, they can be used

More information

Use of Zero-Valent Iron for Groundwater Remediation: Three Case Studies

Use of Zero-Valent Iron for Groundwater Remediation: Three Case Studies Use of Zero-Valent Iron for Groundwater Remediation: Three Case Studies Richard Mach and Joseph M. Saenz Naval Facilities Engineering Command 26 October 04 Nanoscale Particle Treatment of Groundwater Naval

More information

Kentucky and Beyond BOS 200 Success Story. The RPI Group Approach to In-situ Petroleum Hydrocarbon Remediation

Kentucky and Beyond BOS 200 Success Story. The RPI Group Approach to In-situ Petroleum Hydrocarbon Remediation Kentucky and Beyond BOS 200 Success Story The RPI Group Approach to In-situ Petroleum Hydrocarbon Remediation 20 Years Serving the Environmental Industry Health and Safety is the number one priority at

More information

THE LONG-TERM VIABILITY OF A ZERO-VALENT IRON PERMEABLE REACTIVE BARRIER STUART COWBURN

THE LONG-TERM VIABILITY OF A ZERO-VALENT IRON PERMEABLE REACTIVE BARRIER STUART COWBURN THE LONG-TERM VIABILITY OF A ZERO-VALENT IRON PERMEABLE REACTIVE BARRIER by STUART COWBURN A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in GEOLOGY Portland

More information

Electrolytic Methods. By: Lindsey Douglass, Ryan Fiorillo, Hongli Lin, Daniel Mangieri, Nicole Miller, Richard Reube, and Luis Vergara Intriago

Electrolytic Methods. By: Lindsey Douglass, Ryan Fiorillo, Hongli Lin, Daniel Mangieri, Nicole Miller, Richard Reube, and Luis Vergara Intriago Electrolytic Methods By: Lindsey Douglass, Ryan Fiorillo, Hongli Lin, Daniel Mangieri, Nicole Miller, Richard Reube, and Luis Vergara Intriago Electrolytic Processes Electrolytic soil decontamination methods:

More information

Waste Green Sands as Reactive Media for PRBs

Waste Green Sands as Reactive Media for PRBs Waste Green Sands as Reactive Media for PRBs Craig H. Benson Geo Engineering, University of Wisconsin-Madison Taeyoon Lee Korean Research Institute and Industrial Science & Technology Gerald Eykholt Eykholt

More information

Appendix C1: Batch Kinetics Tests

Appendix C1: Batch Kinetics Tests Appendix C1: Batch Kinetics Tests This appendix contains the entire data set for the batch kinetics tests for the potential biofilter components. These tests were performed to provide estimates of optimal

More information

Remediation of trichloroethylene by zero-valent iron permeable reactive barriers

Remediation of trichloroethylene by zero-valent iron permeable reactive barriers Remediation of trichloroethylene by zero-valent iron permeable reactive barriers M. C. Zanetti, S. Fiore & G. Genon Department of Georesources and Territory, Polytechnic of Turin, Italy Abstract Trichloroethylene

More information

WM 03 Conference, February 23-27, 2003, Tucson, AZ IN-SITU CHEMICAL OXIDATION OF CHLORINATED HYDROCARBONS IN THE PRESENCE OF RADIONUCLIDES

WM 03 Conference, February 23-27, 2003, Tucson, AZ IN-SITU CHEMICAL OXIDATION OF CHLORINATED HYDROCARBONS IN THE PRESENCE OF RADIONUCLIDES IN-SITU CHEMICAL OXIDATION OF CHLORINATED HYDROCARBONS IN THE PRESENCE OF RADIONUCLIDES ABSTRACT Duane K. Root, Shaw Environmental & Infrastructure Treatability testing for In Situ Chemical Oxidation was

More information

Chlorinated Solvent Remediation Technologies

Chlorinated Solvent Remediation Technologies Advancing the Science of In Situ Groundwater Remediation Chlorinated Solvent Remediation Technologies TFE CFC-1113 CFC-123a CFC-113 Other, Dhc, Dhb PCE 1,1,2-TCA Other, Dhc, Dhb TCE Other, Dhb Dhc cdce

More information

Advancing the Science of In Situ Groundwater Remediation Petroleum Hydrocarbon Remediation Technologies

Advancing the Science of In Situ Groundwater Remediation Petroleum Hydrocarbon Remediation Technologies Advancing the Science of In Situ Groundwater Remediation Petroleum Hydrocarbon Remediation Technologies TASK Tersus Advanced Surface Kinetics NAPL Surfactants Tersus is the worldwide distributor of the

More information

Coal Combustion Residuals and Groundwater: It s Complicated

Coal Combustion Residuals and Groundwater: It s Complicated 2017 World of Coal Ash (WOCA) Conference in Lexington, KY - May 9-11, 2017 http://www.flyash.info/ Coal Combustion Residuals and Groundwater: It s Complicated Bob Kleinmann, Ph.D., HDR 11 Stanwix Street,

More information

E-Redox AET. Sustainable Remediation Tool. Advanced Environmental Technologies LLC

E-Redox AET. Sustainable Remediation Tool. Advanced Environmental Technologies LLC E-Redox Sustainable Remediation Tool Advanced Environmental Technologies LLC AET E-Redox Innovative and customizable technologies that kickstart and enhance bioelectrochemical reductive and oxidative reactions

More information

Establishing Contact

Establishing Contact ENHANCED IN-SITU BIOREMEDIATION Implementation Design & System Operation CONTACT!!! Impacts of Geology / Contaminant Distribution Delivery system Design / Selection Mike Marley : ~ 1:45 to 3:00pm Establishing

More information

Terra Systems Capabilities Document Research Product Development Manufacturing Distribution

Terra Systems Capabilities Document Research Product Development Manufacturing Distribution Terra Systems Capabilities Document Research Product Development Manufacturing Distribution Core Competencies 1. Operates its own U.S. manufacturing plant with a full time U.S. production staff 2. Flexible

More information

Emulsified Zero-Valent Iron (EZVI): A Combination Technology for ISCR Source Zone Remediation

Emulsified Zero-Valent Iron (EZVI): A Combination Technology for ISCR Source Zone Remediation Emulsified Zero-Valent Iron (EZVI): A Combination Technology for ISCR Source Zone Remediation Presented by: J. Greg Booth, Ph.D. EZVI - Introduction HISTORY Invention of EZVI Scientists at NASA (KSC) and

More information

Lecture 1: Introduction to Soil Remediation Engineering

Lecture 1: Introduction to Soil Remediation Engineering ENGI 9621 Soil Remediation Engineering Lecture 1: Introduction to Soil Remediation Engineering Spring 2012 Faculty of Engineering & Applied Science 1 1.1 Definition of soil remediation engineering a sub-discipline

More information

STEAM ENHANCED EXTRACTION (SEE) AS INNOVATIVE APPROACH FOR TCE REMOVAL

STEAM ENHANCED EXTRACTION (SEE) AS INNOVATIVE APPROACH FOR TCE REMOVAL STEAM ENHANCED (SEE) AS INNOVATIVE APPROACH FOR TCE REMOVAL Pavel Dusílek 1, Petr Kvapil 2, Kent S. Udell 3, Craig M. Hampson 4 1 AQUATEST a.s, Prague, Czech Republic, Phone: 420 234 607 151, Fax: 420

More information

DEEP REACTIVE BARRIERS FOR REMEDIATION OF VOCs AND HEAVY METALS. Grant Hocking, Samuel L. Wells and Rafael I. Ospina GeoSierra LLC, Atlanta, GA, USA.

DEEP REACTIVE BARRIERS FOR REMEDIATION OF VOCs AND HEAVY METALS. Grant Hocking, Samuel L. Wells and Rafael I. Ospina GeoSierra LLC, Atlanta, GA, USA. DEEP REACTIVE BARRIERS FOR REMEDIATION OF VOCs AND HEAVY METALS Grant Hocking, Samuel L. Wells and Rafael I. Ospina GeoSierra LLC, Atlanta, GA, USA. ABSTRACT: Azimuth controlled vertical hydraulic fracturing

More information

Mitigation of the Contaminated Groundwater Plume at the West Valley Demonstration Project, New York, USA 10409

Mitigation of the Contaminated Groundwater Plume at the West Valley Demonstration Project, New York, USA 10409 Mitigation of the Contaminated Groundwater Plume at the West Valley Demonstration Project, New York, USA 10409 Mark S. Bellis, U. S. Department of Energy; John D. Chamberlain, Linda M. Michalczak and Cynthia

More information

In-Situ Remediation of Chlorinated Solvent Source Zone using ZVI-Clay Treatment Technology

In-Situ Remediation of Chlorinated Solvent Source Zone using ZVI-Clay Treatment Technology In-Situ Remediation of Chlorinated Solvent Source Zone using ZVI-Clay Treatment Technology Detailed site assessment work at a manufacturing facility in South Carolina indicated that a former French drain

More information

Zero-valent iron s effectiveness at dehalogenating chlorobenzenes and its feasibility as a reactive cap

Zero-valent iron s effectiveness at dehalogenating chlorobenzenes and its feasibility as a reactive cap Zero-valent iron s effectiveness at dehalogenating chlorobenzenes and its feasibility as a reactive cap Shawn Moderow and Danny Reible University of Texas at Austin Department of Civil, Architectural and

More information

Remediation of Chlorinated Solvents in Groundwater using Carbon Amendments: Analytical Challenges and Solutions

Remediation of Chlorinated Solvents in Groundwater using Carbon Amendments: Analytical Challenges and Solutions Remediation of Chlorinated Solvents in Groundwater using Carbon Amendments: Analytical Challenges and Solutions Heather Lord, Samantha Clay, Atena Georgescu, Mariana Cojocar: Maxxam, Mississauga. Eric

More information

Experimental and Kinetic Study of Zero-valent Iron Nanoparticles Performance for the Removal of Chromium from Oil Industry Waste water

Experimental and Kinetic Study of Zero-valent Iron Nanoparticles Performance for the Removal of Chromium from Oil Industry Waste water J. Appl. Environ. Biol. Sci., 5(6)31-39, 215 215, TextRoad Publication ISSN: 29-4274 Journal of Applied Environmental and Biological Sciences www.textroad.com Experimental and Kinetic Study of Zero-valent

More information

Kinetics of trichloroethene (TCE) reduction by zero-valent iron: effect of medium composition

Kinetics of trichloroethene (TCE) reduction by zero-valent iron: effect of medium composition Groundwater Quality: Natural and Enhanced Restoration of Groundwater Pollution (Proceedings ofthe Groundwater Quality 2001 Conference held at Sheffield, UK, June 2001). IAHS Publ. no. 275.2002. 397 Kinetics

More information

Green Remediation of Petroleum Contaminated Groundwater Using Oxygen Injection in Western Maine

Green Remediation of Petroleum Contaminated Groundwater Using Oxygen Injection in Western Maine Green Remediation of Petroleum Contaminated Groundwater Using Oxygen Injection in Western Maine Brian Bachmann, CG Keith Taylor, CG 2012 Maine Water Conference March 14, 2012 Introduction Typically in

More information

THE USE OF VEGETABLE OIL SUBSTRATE S IN THE TREATMENT OF CONTAMINATED GROUNDWATER

THE USE OF VEGETABLE OIL SUBSTRATE S IN THE TREATMENT OF CONTAMINATED GROUNDWATER THE USE OF VEGETABLE OIL SUBSTRATE S IN THE TREATMENT OF CONTAMINATED GROUNDWATER M. Pienaar 1, S. Labuschagne and D. Duthe 2 1 SRK Consulting, IBM House, 54 Norfolk Terrace, Westville, Durban, KwaZulu

More information

Injection of zero-valent iron

Injection of zero-valent iron Injection of zero-valent iron Transnational Herk-de-Stad Flanders Coordination Group 12-13 June 2013 Art Lobs Verhoeve Groep Project s objectives: improve the quality and minimize the pollution of soil

More information

FEASIBILITY ANAYLYSIS FOR THE TREATMENT OF 1,4-DIOXANE ON LONG ISLAND

FEASIBILITY ANAYLYSIS FOR THE TREATMENT OF 1,4-DIOXANE ON LONG ISLAND FEASIBILITY ANAYLYSIS FOR THE TREATMENT OF 1,4-DIOXANE ON LONG ISLAND Prepared by: Christopher Melillo Manhattan College/ D&B Engineers and Architects, P.C. OUTLINE Introduce 1,4-dioxane Review the hydrology

More information

Use of Remox SR+ Cylinders in Treatment for Chlorinated Solvents in Groundwater. Grant Walsom XCG. SMART Remediation Ottawa, ON February 15, 2018

Use of Remox SR+ Cylinders in Treatment for Chlorinated Solvents in Groundwater. Grant Walsom XCG. SMART Remediation Ottawa, ON February 15, 2018 Use of Remox SR+ Cylinders in Treatment for Chlorinated Solvents in Groundwater Grant Walsom XCG SMART Remediation Ottawa, ON February 15, 2018 SMART is Powered by: www.vertexenvironmental.ca Subtitle

More information

Remedy Selection and Implementation for Radionuclides in Soil and Ground Water

Remedy Selection and Implementation for Radionuclides in Soil and Ground Water Remedy Selection and Implementation for Radionuclides in Soil and Ground Water MICHAEL TRUEX Pacific Northwest National Laboratory 1 Outline Radionuclide characteristics related to remediation Considering

More information

Use of Electrochemical Iron Generation for Removing Heavy Metals from Contaminated Groundwater

Use of Electrochemical Iron Generation for Removing Heavy Metals from Contaminated Groundwater Use of Electrochemical Iron Generation for Removing Heavy Metals from Contaminated Groundwater M. D. Brewster and R. J. Passmore Andco Environmental Processes, Inc., Buffalo, NY 14228-2380 ~~ ~~~~ This

More information

RECENT USES OF IN SITU STABILIZATION, IN SITU CHEMICAL OXIDATION, AND IN SITU CHEMICAL REDUCTION USING SOIL MIXING. RE3 Remediation, Renewal, Results

RECENT USES OF IN SITU STABILIZATION, IN SITU CHEMICAL OXIDATION, AND IN SITU CHEMICAL REDUCTION USING SOIL MIXING. RE3 Remediation, Renewal, Results RECENT USES OF IN SITU STABILIZATION, IN SITU CHEMICAL OXIDATION, AND IN SITU CHEMICAL REDUCTION USING SOIL MIXING Presented by: Ken Andromalos & Daniel Ruffing RE3 Remediation, Renewal, Results Soil Mixing

More information

Mainstreams and Lessons Learned at Nine German PRB Sites Over Five Years An Interim Report

Mainstreams and Lessons Learned at Nine German PRB Sites Over Five Years An Interim Report University of Applied Sciences Fachhochschule Nordostniedersachsen Lüneburg Buxtehude Suderburg Mainstreams and Lessons Learned at Nine German PRB Sites Over Five Years An Interim Report Volker Birke Coordination

More information

Biological Reductive Dechlorination of Chlorinated Compounds. Barry Molnaa WSW Remediation Practice Manager ARCADIS

Biological Reductive Dechlorination of Chlorinated Compounds. Barry Molnaa WSW Remediation Practice Manager ARCADIS Biological Reductive Dechlorination of Chlorinated Compounds Barry Molnaa WSW Remediation Practice Manager ARCADIS 1 Presentation Outline What are we trying to do? How is it supposed to work? What are

More information

TREATMENT OF PERCHLORATE AND 1,1,1-TRICHLOROETHANE IN GROUNDWATER USING EDIBLE OIL SUBSTRATE (EOS )

TREATMENT OF PERCHLORATE AND 1,1,1-TRICHLOROETHANE IN GROUNDWATER USING EDIBLE OIL SUBSTRATE (EOS ) Paper 4B-1, in: A.R. Gavaskar and A.S.C. Chen (Eds.), Remediation of Chlorinated and Recalcitrant Compounds 24. Proceedings of the Fourth International Conference on Remediation of Chlorinated and Recalcitrant

More information

Reduction of TNT and RDX by Core Material from an Iron Permeable Reactive Barrier

Reduction of TNT and RDX by Core Material from an Iron Permeable Reactive Barrier Paper M-009, in: Bruce M. Sass (Conference Chair), Remediation of Chlorinated and Recalcitrant Compounds 2008. Proceedings of the Sixth International Conference on Remediation of Chlorinated and Recalcitrant

More information

In Situ Remediation Conference 14

In Situ Remediation Conference 14 In Situ Remediation Conference 14 2 nd - 4 th September 2014 BOOK OF ABSTRACTS Index Session 1: Urban groundwater contamination and emerging contaminants Challenges in Urban Hydrogeology Examples from

More information

Transport of Nanoscale Zero Valent Iron Using Electrokinetic Phenomena

Transport of Nanoscale Zero Valent Iron Using Electrokinetic Phenomena Transport of Nanoscale Zero Valent Iron Using Electrokinetic Phenomena 2006 Angus Adams 10126688 Supervisor: Dr. David Reynolds Transport of Nanoscale Zero Valent Iron Using Electrokinetic Phenomena Abstract

More information

ICSE-Science 2 (Chemistry) 2004

ICSE-Science 2 (Chemistry) 2004 ICSE-Science 2 (Chemistry) 2004 Answers to this Paper must be written on the paper provided separately. You will not be allowed to write during the first 15 minutes. This time is to be spent in reading

More information

SIMULTANEOUS REMOVAL OF CU II, NI II, AND ZN II BY A GRANULAR MIXTURE OF ZVI AND PUMICE IN COLUMN SYSTEMS

SIMULTANEOUS REMOVAL OF CU II, NI II, AND ZN II BY A GRANULAR MIXTURE OF ZVI AND PUMICE IN COLUMN SYSTEMS Proceedings of the 13 th International Conference on Environmental Science and Technology Athens, Greece, 5-7 September 2013 SIMULTANEOUS REMOVAL OF CU II, NI II, AND ZN II BY A GRANULAR MIXTURE OF ZVI

More information

INFOR. Field Demonstration in Situ Fenton's Destruction of DNAPLS RECORDS ADMINISTRATION. by K. M. Jerome

INFOR. Field Demonstration in Situ Fenton's Destruction of DNAPLS RECORDS ADMINISTRATION. by K. M. Jerome Field Demonstration in Situ Fenton's Destruction of DNAPLS 7,. ~ J t " ' *. RECORDS ADMNSTRATON by K. M. Jerome Westinghouse Savannah River Company Savannah River Site Aiken, South Carolina 2988 6. 6.

More information

Lab scale experiments for permeable reactive barriers against contaminated groundwater with ammonium and heavy metals using clinoptilolite (01-29B)

Lab scale experiments for permeable reactive barriers against contaminated groundwater with ammonium and heavy metals using clinoptilolite (01-29B) Journal of Hazardous Materials B95 (2002) 65 79 Lab scale experiments for permeable reactive barriers against contaminated groundwater with ammonium and heavy metals using clinoptilolite (01-29B) Jun-Boum

More information

Discharge and Discovery Reporting Standard. Saskatchewan Environmental Code

Discharge and Discovery Reporting Standard. Saskatchewan Environmental Code Discharge and Discovery Reporting Standard Saskatchewan Environmental Code October 1, 2017 Discharge and Discovery Reporting Standard A B DEFINITIONS (1) In this Standard the following words and phrases

More information

Field Evaluation of the Treatment of DNAPL Using Emulsified Zero-Valent Iron (EZVI)

Field Evaluation of the Treatment of DNAPL Using Emulsified Zero-Valent Iron (EZVI) Field Evaluation of the Treatment of DNAPL Using Emulsified Zero-Valent Iron (EZVI) Tom Krug, Suzanne O Hara, Mark Watling (Geosyntec Consultants) Jacqueline Quinn (NASA Kennedy Space Center, FL) Nancy

More information

ABIOTIC AND BIOTIC FACTORS AFFECTING CONTAMINANT TRANSFORMATION AT IRON OXIDE SURFACES (Cosponsored with the Division of Geochemistry) Organized by

ABIOTIC AND BIOTIC FACTORS AFFECTING CONTAMINANT TRANSFORMATION AT IRON OXIDE SURFACES (Cosponsored with the Division of Geochemistry) Organized by ABIOTIC AND BIOTIC FACTORS AFFECTING CONTAMINANT TRANSFORMATION AT IRON OXIDE SURFACES (Cosponsored with the Division of Geochemistry) Organized by D.E. Giammar, M.L. McCormick and E.J. O Loughlin Symposia

More information

Confirmation of MTBE Destruction (not Volatilization) When Sparging with Ozone

Confirmation of MTBE Destruction (not Volatilization) When Sparging with Ozone Confirmation of MTBE Destruction (not Volatilization) When Sparging with Ozone Cindy G. Schreier (PRIMA Environmental, Sacramento, California, USA) Scott Seyfried (Levine Fricke, Granite Bay, California,

More information

Caroline Purdy, Kurt Gerdes U.S. Department of Energy Washington, DC. Jihad Aljayoushi U.S. Department of Energy Idaho Falls, ID

Caroline Purdy, Kurt Gerdes U.S. Department of Energy Washington, DC. Jihad Aljayoushi U.S. Department of Energy Idaho Falls, ID EXAMPLES OF DEPARTMENT OF ENERGY SUCCESSES FOR REMEDIATION OF CONTAMINATED GROUNDWATER: PERMEABLE REACTIVE BARRIER AND DYNAMIC UNDERGROUND STRIPPING ASTD PROJECTS Caroline Purdy, Kurt Gerdes U.S. Department

More information

FIELD IMPLIMENTATION OF ANAEROBIC DECHLORINATION UTILIZING ZERO-VALENT IRON WITH AN ORGANIC HYDROGEN DONOR

FIELD IMPLIMENTATION OF ANAEROBIC DECHLORINATION UTILIZING ZERO-VALENT IRON WITH AN ORGANIC HYDROGEN DONOR FIELD IMPLIMENTATION OF ANAEROBIC DECHLORINATION UTILIZING ZERO-VALENT IRON WITH AN ORGANIC HYDROGEN DONOR Michael Scalzi (IET@IET-INC.NET) (Innovative Environmental Technologies, Pipersville, PA, USA)

More information

Field Evaluation of the Treatment of DNAPL

Field Evaluation of the Treatment of DNAPL Field Evaluation of the Treatment of DNAPL Using Emulsified Zero-Valent Iron (EZVI) Jacqueline Quinn (NASA Kennedy Space Center, FL) Chris Clausen, Cherie Geiger (University of Central Florida) Tom Krug,

More information

Geology 627, Hydrogeology Review questions for final exam h t 1/ 2

Geology 627, Hydrogeology Review questions for final exam h t 1/ 2 Geology 67, Hydrogeology Review questions for final exam 004 Multiple choice and fill in the blank. There may be more than one correct choice for each question. 1. Which hydrogeologic quantities are represented

More information

Destruction of Chlorinated Hydrocarbons by Zero-Valent Zinc and Bimetallic Zinc Reductants in Bench-Scale Investigations

Destruction of Chlorinated Hydrocarbons by Zero-Valent Zinc and Bimetallic Zinc Reductants in Bench-Scale Investigations Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 214 Destruction of Chlorinated Hydrocarbons by Zero-Valent Zinc and Bimetallic Zinc Reductants in Bench-Scale

More information

Surface Water/Waste Water Treatment Plant Watch Water Solution

Surface Water/Waste Water Treatment Plant Watch Water Solution Surface Water/Waste Water Treatment Plant Watch Water Solution All Problem One Solution Advantages No Chlorine No Flocculent/Alum No Acids No DBPs No Ozone INTRODUCTION TO REDOXY-3C Introduction Combined

More information

In-situ Remediation Lessons Learned

In-situ Remediation Lessons Learned Slide 1 In-situ Remediation Lessons Learned John Sankey, P.Eng., True Blue Technologies, Long Beach, CA Vancouver, BC Slide 2 In-situ Remediation Lessons Learned Introduction Case studies LNAPL Remediation

More information

Lance I. Robinson, PE

Lance I. Robinson, PE BASICS OF PETROLEUM REMEDIATION - 101 Lance I. Robinson, PE November 6, 2009 REMEDIATION PROCESS Assessment Design Installation Operation Monitoring Closure ASSESSMENT PROCESS Identify Sources Define Horizontal

More information

Evaluation of Permeable Reactive Barrier Performance

Evaluation of Permeable Reactive Barrier Performance Evaluation of Permeable Reactive Barrier Performance Federal Remediation Technologies Roundtable Prepared by the Member Agencies of the Federal Remediation Technologies Roundtable Evaluation

More information

BioGenesis Enterprises, Inc Alban Station Blvd. Suite B-208 Springfield, Virginia USA TEL (703) FAX (703)

BioGenesis Enterprises, Inc Alban Station Blvd. Suite B-208 Springfield, Virginia USA TEL (703) FAX (703) BENCH-SCALE TREATABILITY STUDY REPORT BIOGENESIS SM SEDIMENT WASHING TECHNOLOGY NamDong Retardation Basin Incheon City, South Korea October 15, 2008 BioGenesis Enterprises, Inc. Abstract BioGenesis Enterprises,

More information

The emamoc (electrolytic methanogenicmethanotrophic FOR BIOREMEDIATION OF CHLORINATED SOLVENTS

The emamoc (electrolytic methanogenicmethanotrophic FOR BIOREMEDIATION OF CHLORINATED SOLVENTS The emamoc (electrolytic methanogenicmethanotrophic coupling) SYSTEM : A TOOL FOR BIOREMEDIATION OF CHLORINATED SOLVENTS Boris Tartakovsky, Ruxandra Cimpoia, Michelle-France Manuel, Marie-Josée Lévesque,

More information

Technical/Regulatory Guidance. Permeable Reactive Barrier: Technology Update

Technical/Regulatory Guidance. Permeable Reactive Barrier: Technology Update Technical/Regulatory Guidance Permeable Reactive Barrier: Technology Update June 2011 Prepared by The Interstate Technology & Regulatory Council PRB: Technology Update Team ABOUT ITRC Established in 1995,

More information

Groundwater Risk Assessment

Groundwater Risk Assessment Groundwater Risk Assessment ELQF - 6 November 2012 Katy Baker Technical Director ARCADIS (UK) Limited Imagine the result Problem definition The importance of the CSM 2 The definition of the problem: 3

More information

Compounds & Reactions Week 1. Writing Formulas & Balancing Equations. Write the chemical formula for each molecular (covalent) compound.

Compounds & Reactions Week 1. Writing Formulas & Balancing Equations. Write the chemical formula for each molecular (covalent) compound. Compounds & Reactions Week 1 Name Writing Formulas & Balancing Equations Write the chemical formula for each ionic compound. 1. Lithium fluoride 2. Copper (II) chloride 3. Manganese (II) oxide 4. Potassium

More information

Behavior of a Chlorinated Ethene Plume following Source-Area Treatment with Fenton s Reagent

Behavior of a Chlorinated Ethene Plume following Source-Area Treatment with Fenton s Reagent Behavior of a Chlorinated Ethene Plume following Source-Area Treatment with Fenton s Reagent by Francis H. Chapelle, Paul M. Bradley, and Clifton C. Casey Abstract Monitoring data collected over a 6-year

More information

James Studer, 2 Barry Ronellenfitch, 2 Adam Mabbott, 2 Heather Murdoch, 2 Greg Whyte, and 3 Ian Hakes. REMTECH 2008 at Banff, Alberta

James Studer, 2 Barry Ronellenfitch, 2 Adam Mabbott, 2 Heather Murdoch, 2 Greg Whyte, and 3 Ian Hakes. REMTECH 2008 at Banff, Alberta PILOT TEST OF ISCO TECHNOLOGIES LEADS TO IMPROVED UNDERSTANDING OF IMMEDIATE AND MID-TERM GEOCHEMICAL RESPONSE AND CONTAMINANT DESTRUCTION WITHIN PETROLEUM HYDROCARBON PLUME 1 James Studer, 2 Barry Ronellenfitch,

More information

Technical/Regulatory Guidelines

Technical/Regulatory Guidelines Technical/Regulatory Guidelines Regulatory Guidance for Permeable Reactive Barriers Designed to Remediate Inorganic and Radionuclide Contamination Remediated Ground Water Reactive Medium Permeable Reactive

More information

Development and in situ implementation of a chemical process for reductive dechlorination of chlorinated solvents in polluted aquifers

Development and in situ implementation of a chemical process for reductive dechlorination of chlorinated solvents in polluted aquifers Development and in situ implementation of a chemical process for reductive dechlorination of chlorinated solvents in polluted aquifers Stéphanie Betelu, Romain Rodrigues, Cécile Noel, Stéfan Colombano,

More information

Solids Formation and Permeability Reduction in Zero-Valent Iron and Iron Sulfide Media for Permeable Reactive Barriers. Andrew Dalrymple Henderson

Solids Formation and Permeability Reduction in Zero-Valent Iron and Iron Sulfide Media for Permeable Reactive Barriers. Andrew Dalrymple Henderson Solids Formation and Permeability Reduction in Zero-Valent Iron and Iron Sulfide Media for Permeable Reactive Barriers by Andrew Dalrymple Henderson A dissertation submitted in partial fulfillment of the

More information

LABORATORY TURNAROUND TIMES AND CHARGES

LABORATORY TURNAROUND TIMES AND CHARGES LABORATORY TURNAROUND TIMES AND CHARGES The enclosed prices reflect a 5 business day turnaround time. There will be a $25.00 minimum charge per report. Same Day Rush 24 Hour Rush 48 Hour Rush 72 Hour Rush

More information

Section 2 Corrective Action Objectives

Section 2 Corrective Action Objectives Section 2 Corrective Action Objectives 2.1 Corrective Action Objectives Corrective action objectives have been developed for this site based on the requirements provided under the North Carolina Solid

More information

Remediation of 1,2-dichloroethane (1,2-DCA) and vinyl chloride (VC) contaminated groundwater: lab and field pilot test.

Remediation of 1,2-dichloroethane (1,2-DCA) and vinyl chloride (VC) contaminated groundwater: lab and field pilot test. Paper A 31 Remediation of 1,2-dichloroethane () and vinyl chloride (VC) contaminated groundwater: lab and field pilot test. Ing. Claudio Sandrone 1, Ing. Paola Goria 1, Ing. Marcello Carboni 1, Dott. Luca

More information

In-situ Dechlorination of Polychlorinated Biphenyls in Sediments Using Zero- Valent Iron

In-situ Dechlorination of Polychlorinated Biphenyls in Sediments Using Zero- Valent Iron In-situ Dechlorination of Polychlorinated Biphenyls in Sediments Using Zero- Valent Iron Kevin Gardner, Emese Hadnagy Deana Aulisio, Jean Spear Center for Contaminated Sediments Research University of

More information

In Situ Remediation of Fractured Bedrock DNAPL Sites Using Chemical Oxidation Abstract

In Situ Remediation of Fractured Bedrock DNAPL Sites Using Chemical Oxidation Abstract In Situ Remediation of Fractured Bedrock DNAPL Sites Using Chemical Oxidation J.S. Konzuk, L.K MacKinnon, E.D. Hood, and E.E. Cox GeoSyntec Consultants, Guelph, Ontario, Canada Abstract The remediation

More information

Selenium Reduction. Caroline Dale

Selenium Reduction. Caroline Dale Selenium Reduction Caroline Dale > Contents Biological Selenium Reduction The MBBR technology Operating Experience SeleniumZero Conclusions 2 Selenium Cycle Se(VI) Se(IV) Se(IV) Se(0) Se(-II) Selenium

More information

Remediation methods of polluted soils. Sakari Halmemies, DSc (Tech) 20 May 2009

Remediation methods of polluted soils. Sakari Halmemies, DSc (Tech) 20 May 2009 Remediation methods of polluted soils Sakari Halmemies, DSc (Tech) 20 May 2009 Classification of remediation methods on base of activities (FRTR 2001) Grouping of remediation methods on base of environment

More information

ATTACHMENT 12: CDISCO Description and Sensitivity to Input Parameters

ATTACHMENT 12: CDISCO Description and Sensitivity to Input Parameters ATTACHMENT 12: CDISCO Description and Sensitivity to Input Parameters INTRODUCTION The A11. ISCO Spreadsheet Design Tool (a.k.a. Conceptual Design for ISCO or CDISCO) was developed with support from ESTCP

More information