Pollutant Chemicals and Toxicity:

Size: px
Start display at page:

Download "Pollutant Chemicals and Toxicity:"

Transcription

1 Lecture 18 Pollutant Chemicals and Toxicity - examples from Heavy Metal Contaminants in fresh water Please read Chap. 6, 19 ( just ) and 22 (just ) of your text (chapters 7, 20 and 23 in the 9 th ed.) Today: 1. general aspects of environmental toxicology 2. heavy metal toxicity and sources to the environment Next time: 3. heavy metal contaminants in some fresh water and near shore sea waters. Pollutant Chemicals and Toxicity: simple classification of pollutants a) Organic b) Inorganic c) radioactive d) Biological (which we will not discuss in this class). Table 6.1 of Manahan further categorizes pollutants based upon their chemistry and effect in the environment. Notes: Trace metals, radionuclides and P and N nutrients are all "inorganic" pollutants, but each behaves differently in the environment and can therefore be classified separately. The distinction between "organic" and "inorganic" breaks down for some heavy metals that are bound in organo-metallic compounds (e.g., dimethyl mercury, tributyl tin). 1

2 Pollutant Chemicals and Toxicity: Other simple classifications of pollutants a) Liquid b) Solid c) Gas/vapor d) aqueous Steps for dealing with contaminant discoveries: 1. determine net detrimental effect (i.e., definition of a pollutant. "Detrimental effects" almost always involve harmful situations to organisms. Not all pollutants are detrimental at all concentrations. an ecologist ascertains the net negative, positive or neutral effects of that substance on various organisms within that ecosystem to assess impacts. Next, look at fate and transport For verified or suspected pollutants: 2. how do contaminants become distributed in the environment? 3. Examine how long the pollutant is expected to persist in the environment from: source fluxes natural dispersion/attenuation chemical and microbial reactivity 2

3 Finally, look at impacts on target populations and remediation methods: 4. What organisms come in contact with the polutant, at what concentration level and at what frequency. Related: how toxic is the material? 5. Devise methods to remediate the problem based on what was learned in steps 1 to 4. Toxic chemical Intake pathway: Organisms come in contact with toxic substances in 3 main ways: 1. Ingestion 2. Inhalation 3. Dermal Contact The Pollutant may interact differently with an organism over each of these pathways. Toxicity levels differ for specific chemicals as well. 3

4 Toxicity Risk Assessment Conceptual Site Model This example was developed to consider pathways to human receptors from a heavy metal contaminated soil. Some Biological Factors Involving Heavy Metals in the environment: Essential Metal - Required by an organism at some level; turns toxic at some higher concentration. Non-Essential Metal - Not required by an organism at any level; turns toxic at some higher concentration. 4

5 Some Biological Factors Involving Heavy Metals in the environment: (These terms and definitions also apply to other contaminant types as well) Food Chain Factors: Plants and animals vary widely in their ability to regulate metal content. Additionally, metals (as well as other things such as some halogenated hydrocarbons) can not be broken down or excreted by many organisms. Instead, they remain in the body of an organism and increase in concentration throughout it's life. Just like other chemicals in the environment, we can categorize pollutants as conservative (not changing with respect to other constituents and non-conservative (changing ) Some Biological Factors Involving Heavy Metals in the environment: (These terms and definitions also apply to other contaminant types as well) Food Chain Factors: Pollutants such as heavy metals can enter the environment in any number of ways. Then, geosphere-biosphere hydrosphere-biosphere atmosphere-biosphere exchanges, plus within-ecosystem exchanges all contribute to subsequent distribution into organisms, including those we use for fod.. 5

6 Some Biological Factors Involving Heavy Metals in the environment: (These terms and definitions also apply to other contaminant types as well) Food Chain Factors: Badly conflated on internet Bioaccumulation - conservative pollutant buildup in an organism over its life. Biomagnification - the increase in concentration of a conservative pollutant up the food chain approaches/persistence-and-bioaccumulation-of-persistent-organic-pollutants-pops- Time 1 Time 2 This nice figure from is bioaccumulation, not biomagnification as labeled Food Chain Factors: 6

7 Differentiation of metals in various parts of organisms: Hg (above) (below) 7

8 Reversibility - Uptake is reversible for this organism. Other Effects - PbNO 3 acts as a nutrient to this diatom (siliceous shell bearing phytoplankton) because Pb has a low toxity to this organism and the added NO 3- acts in the standard nutrient fashion. Toxicity assessment determined from the dose-response relationship, wherein the percentage of individuals in a population showing a particular response is plotted as a function of "dosage" of a toxicant. LD = "lethal dose", which is the typical toxic effect most environmental scientists use for maximum allowable concentration in the environment. 8

9 Toxicity factors of specific chemicals Sub-lethal effects are those that harm but don't kill an organism. They usually occur at lower concentrations Relationships between exposure, doses, and effects Depending upon the situation, policy makers and environmental scientists may use the dosage for a sublethal effect as the maximum instead (typically the case when human exposure is involved). 9

10 Table Salt (ingested) 10 6 The toxicity on a gram per gram basis is quite variable from substance to substance Polonium 210: estimated at 10-5 if inhaled) to 5 x 10-5 (if ingested) Some specific toxic effects of metals on various organisms: Cu or Zn 10

11 biological activity of toxic metals Heavy metals inhibit enzymes (by binding) and protein synthesis They cross membranes by passive diffusion/pinocytosis The target /critical organ for most metals is the kidney (Victor, 2014) Example - Influence of some heavy metals on aquatic vertebrates. MT = metallothionein: small cysteine-rich protein thought to play a critical role in cellular detoxification of inorganic species by sequestering metal ions that are present in elevated concentrations. From Wang et al., 2014, Characteristics, functions, and applications of metallothionein in aquatic vertebrates, Front. Mar. Sci.,

12 Factors related to the overall toxicity of the chemical elements includes alkali metals, alkaline earths, halogens and a few others. Calling them noncritical is not to say that toxic compounds of these elements do not exist; rather, these are the least problematic in general Includes elements that are more toxic, and more/less accessible in common polluted environments. Notice that more toxic metals tend to be in the center of the periodic chart (moderate electronegativity). In general it is many of these metals' ability to make covalent or partially covalent bonds with natural Lewis bases found in organisms (O, N and S bearing molecules) that allow them to disrupt biochemical functions and result in adverse effects. Ironically, Lewis acid behavior of some of these metals also can make them essential nutrients at other times (e.g., Co, as in B vitamins). Other general characteristics that contribute to metal toxicity (Victor, 2014) 12

13 Chemical, physical and biological factors that influence metal toxicity. Age factor example: Inorganic lead salts enter the body ingestion or inhalation. For adults only about 10% of the does ingested by an adult is absorbed, where as up to 50% might be absorbed by children. Condition of organism example: More Pb is absorbed lead if a person is deficient in Fe, Ca or Zn. Heavy Metal Pollutant Sources and Cycles. aqueous speciation, and sources of a few of the most problematic toxic metals. Concentrated deposits of one metal or another within the near-surface rocks of a watershed (e.g., ores) occasionally erode naturally to produce toxic concentrations in the hydrosphere. However, disruption of these ore bodies by mining is what usually accelerates their rate of introduction into the environment. 13

14 Heavy Metal Pollutant Sources and Cycles. (Victor, 2014) Heavy Metal Pollutant Sources and Cycles Except in extreme point source contamination cases pollutant concentration in a given location typically depends on geochemical cycling over multiple input sources and pathways, with inter-reservoir exchange. Not all aspects of the complete box model in Fig. 1 may be required to understand pollutant distribution in a given area, but the better our overall understanding of the movement of a pollutant through the environment is, the better equipped we are to deal with problems. 14

15 Heavy Metal Pollutant Sources and Cycles aquatic environments (Victor, 2014) Heavy Metal Pollutant Sources and Cycles Notice for example that the atmosphere is a significant source of metals deposition to the North Sea, although rivers and dredging are also major players for these 4 metals. 15

16 Heavy Metal Pollutant Sources and Cycles Globally, something like 50% of the atmospheric content of many metals is from natural sources such as volcanoes, forest fires and windblown dust. Heavy Metal Pollutant Sources and Cycles Atmospheric deposition is not constant around the globe. These open ocean values reflect input variations, atmospheric circulation patterns and variable rainout rates. 16

17 The common industrial use(s) of a number of metals, the rate of recycling within those industries and some alternatives (some also problematic). Long term improvements in metals pollution will require improved industrial activities or alternative materials 17

5) Geological and anthropogenic sources of metals. Instructor: Martin Stillman ChB064

5) Geological and anthropogenic sources of metals. Instructor: Martin Stillman ChB064 Metals in Life or The Inorganic Chemistry of Life Chemistry 2211a 5) Geological and anthropogenic sources of metals Instructor: Martin Stillman ChB064 Martin.stillman@uwo.ca 1. Geological origins of metals

More information

Objectives. Aquatic Toxicology of Metals 4/20/11. Why are metals different than organic chemicals? Essential vs. Non-essential metals

Objectives. Aquatic Toxicology of Metals 4/20/11. Why are metals different than organic chemicals? Essential vs. Non-essential metals Aquatic Systems & Environmental Health Aquatic Toxicology of Metals David Barber barberd@vetmed.ufl.edu 392-2243 x.5540 Objectives Understand how metals differ from organic compounds including their source

More information

CYCLES OF MATTER NATURAL WORLD

CYCLES OF MATTER NATURAL WORLD CYCLES OF MATTER NATURAL WORLD Objectives Describe how matter cycles between the living and nonliving parts of an ecosystem. Explain why nutrients are important in living systems. Describe how the availability

More information

Aquatic Toxicology of Metals. David Barber ext

Aquatic Toxicology of Metals. David Barber ext Aquatic Toxicology of Metals David Barber barberd@vetmed.ufl.edu 352-392-2243 ext 1-5540 Why are metals different than organic chemicals? Some are essential micronutrients Natural parts of the earth s

More information

Environmental Systems Format: Digital and Work Text

Environmental Systems Format: Digital and Work Text Environmental Systems Format: Digital and Work Text Course Objective This semester-length, high school elective introduces students to career opportunities and educational pathways in a wide array of environmental

More information

3 3 Cycles of Matter

3 3 Cycles of Matter 3 3 Cycles of Matter Recycling in the Biosphere Energy - one way flow matter - recycled within and between ecosystems. biogeochemical cycles matter Elements, chemical compounds, and other forms passed

More information

10/17/ Cycles of Matter. Recycling in the Biosphere. How does matter move among the living and nonliving parts of an ecosystem?

10/17/ Cycles of Matter. Recycling in the Biosphere. How does matter move among the living and nonliving parts of an ecosystem? 2 of 33 3-3 Cycles of Matter How does matter move among the living and nonliving parts of an ecosystem? 3 of 33 Recycling in the Biosphere Recycling in the Biosphere Energy and matter move through the

More information

Ecosystems. Trophic relationships determine the routes of energy flow and chemical cycling in ecosystems.

Ecosystems. Trophic relationships determine the routes of energy flow and chemical cycling in ecosystems. AP BIOLOGY ECOLOGY ACTIVITY #5 Ecosystems NAME DATE HOUR An ecosystem consists of all the organisms living in a community as well as all the abiotic factors with which they interact. The dynamics of an

More information

Modeling the Biogeochemical Cycle of Mercury in Lakes: The Mercury Cycling Model (MCM) and Its Application to the MTL Study Lakes

Modeling the Biogeochemical Cycle of Mercury in Lakes: The Mercury Cycling Model (MCM) and Its Application to the MTL Study Lakes ~- -.,, OLO ('''"' ~...,;;,, FEB 11 2004 Chapter V.1 Modeling the Biogeochemical Cycle of Mercury in Lakes: The Mercury Cycling Model (MCM) and Its Application to the MTL Study Lakes CONTENTS Robert J.

More information

Ch. 5 - Nutrient Cycles and Soils

Ch. 5 - Nutrient Cycles and Soils Ch. 5 - Nutrient Cycles and Soils What are Nutrient (biogeochemical) Cycles? a process by which nutrients are recycled between living organisms and nonliving environment. The three general types of nutrient

More information

3 3 Cycles of Matter Slide 1 of 33

3 3 Cycles of Matter Slide 1 of 33 1 of 33 Recycling in the Biosphere Recycling in the Biosphere Energy and matter move through the biosphere very differently. Unlike the one-way flow of energy, matter is recycled within and between ecosystems.

More information

Biology. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall Biology 1 of 33 2 of 33 Recycling in the Biosphere Recycling in the Biosphere Energy and matter move through the biosphere very differently. Unlike the one-way flow of energy, matter is recycled within

More information

Lesson Overview. Cycles of Matter. Lesson Overview. 3.4 Cycles of Matter

Lesson Overview. Cycles of Matter. Lesson Overview. 3.4 Cycles of Matter Lesson Overview 3.4 THINK ABOUT IT A handful of elements combine to form the building blocks of all known organisms. Organisms cannot manufacture these elements and do not use them up, so where do essential

More information

Cycles of Ma,er. Lesson Overview. Lesson Overview. 3.4 Cycles of Matter

Cycles of Ma,er. Lesson Overview. Lesson Overview. 3.4 Cycles of Matter Lesson Overview Cycles of Ma,er Lesson Overview 3.4 Cycles of Matter THINK ABOUT IT A handful of elements combine to form the building blocks of all known organisms. Organisms cannot manufacture these

More information

Oceanic CO 2 system - Significance

Oceanic CO 2 system - Significance OCN 401 Biogeochemical Systems (10.25.18) (10.30.18) (Schlesinger: Chapter 9) (11.27.18) Oceanic Carbon and Nutrient Cycling - Part 2 Lecture Outline 1. The Oceanic Carbon System 2. Nutrient Cycling in

More information

Geochemistry GG325 Instructor: Prof. Ken Rubin

Geochemistry GG325 Instructor: Prof. Ken Rubin Geochemistry GG325 Instructor: Prof. Ken Rubin Email: Office: Phone: krubin@hawaii.edu POST 606E; Office hrs: tba. x68973 http://www.soest.hawaii.edu/krubin/gg325.html Text: Reading assignments from various

More information

Chapter 4 Biogeochemical Cycles

Chapter 4 Biogeochemical Cycles Chapter 4 Biogeochemical Cycles ENERGY FLOW THROUGH ECOSYSTEMS Nature s Building Blocks Matter Energy Laws of Nature Earth s Major Components Ecosystems Ecology and biodiversity Organisms Components and

More information

DEPARTMENT OF ENVIRONMENTAL SCIENCES, UNIVERSITY OF KERALA M.Phil Syllabus. Paper I Research Methodology

DEPARTMENT OF ENVIRONMENTAL SCIENCES, UNIVERSITY OF KERALA M.Phil Syllabus. Paper I Research Methodology DEPARTMENT OF ENVIRONMENTAL SCIENCES, UNIVERSITY OF KERALA M.Phil Syllabus Paper I Research Methodology Microscopy- Phase contrast, fluorescence, Electron microscope. Titrimetry- Principles and Methods-

More information

The Biosphere Chapter 3. What Is Ecology? Section 3-1

The Biosphere Chapter 3. What Is Ecology? Section 3-1 The Biosphere Chapter 3 What Is Ecology? Section 3-1 Interactions and Interdependence Ecology is the scientific study of interactions among organisms and between organisms and their environment, or surroundings.

More information

2.1 Energy Flow in Ecosystems Student Notes

2.1 Energy Flow in Ecosystems Student Notes 2.1 Energy Flow in Ecosystems Student Notes General Information Biomass is Biomass is also sometimes used to measure the mass of organic materials that are used to produce biofuels such as biogas. Biomass

More information

MPA in Environmental Science and Policy. ENV U6220: Environmental Chemistry and Toxicology

MPA in Environmental Science and Policy. ENV U6220: Environmental Chemistry and Toxicology MPA in Environmental Science and Policy ENV U6220: Environmental Chemistry and Toxicology Summer Semester 2005 Instructors: Dr. Patrick Louchouarn Associate professor Dept. of Earth & Environmental Science

More information

10/18/2010 THINK ABOUT IT CHAPTER 3 THE BIOSHPERE RECYCLING IN THE BIOSPHERE RECYCLING IN THE BIOSPHERE

10/18/2010 THINK ABOUT IT CHAPTER 3 THE BIOSHPERE RECYCLING IN THE BIOSPHERE RECYCLING IN THE BIOSPHERE THINK ABOUT IT CHAPTER 3 THE BIOSHPERE 3.4 Mrs. Michaelsen A handful of elements combine to form the building blocks of all known organisms. Organisms cannot manufacture these elements and do not use them

More information

Chapter Two: Cycles of Matter (pages 32-65)

Chapter Two: Cycles of Matter (pages 32-65) Biology 20 Chapter 2.1_keyed Chapter Two: Cycles of Matter (pages 32-65) 2.1 The Role of Water in the Cycles of Matter (pages 34 40) Due to its ability to form hydrogen bonds, water has several unique

More information

The Phosphorus Cycle

The Phosphorus Cycle Lecture Outline Introduction Global Cycle Overview Major Forms Anthropogenic Influences Terrestrial Processes Freshwater Processes Ocean Processes The Phosphorus Cycle No important gaseous form, present

More information

Biology. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall Biology 1 of 33 2 of 33 3-3 Cycles of Matter How does matter move among the living and nonliving parts of an ecosystem? 3 of 33 Recycling in the Biosphere Recycling in the Biosphere Energy and matter move

More information

II. Needs of Organisms. Biosphere A. All parts of the earth that contains and support life 1. Geosphere 2. Atmosphere 3.

II. Needs of Organisms. Biosphere A. All parts of the earth that contains and support life 1. Geosphere 2. Atmosphere 3. I. Earth s Spheres A. Hydrosphere: Water part of the planet B. Atmosphere: Gas part of the earth C. Biosphere: Life part of the earth D. Geosphere: Rock/Soil part of the earth E. Mr. Wright s famous saying,

More information

TABLE OF CONTENTS. 4, Environmental Chemistry 2, Biogeochemical cycle of carbon and nitrogen

TABLE OF CONTENTS. 4, Environmental Chemistry 2, Biogeochemical cycle of carbon and nitrogen Subject Paper No and Title Module No and Title Module Tag CHE_P4_M2 TABLE OF CONTENTS 1. Learning outcomes 2. Introduction 2.1. Bio-distribution of elements 2.2. Biogeochemical cycles 3. Carbon cycle 3.1.

More information

What does each part of the equation mean? q=cm T

What does each part of the equation mean? q=cm T Assignment #10 Energy Pyramids LO: I can define trophic levels and explain the energy flow. I can apply those ideas to food webs EQ: Where does all the energy from the sun go? (4-5 sentences) LEVEL ZERO

More information

Another cause of diversity may be the creation of different habitats within a region by periodic disturbance A community that forms if the land is

Another cause of diversity may be the creation of different habitats within a region by periodic disturbance A community that forms if the land is Another cause of diversity may be the creation of different habitats within a region by periodic disturbance A community that forms if the land is undisturbed and that perpetuates itself for as long as

More information

Lesson Overview. Cycles of Matter. Lesson Overview. 3.4 Cycles of Matter

Lesson Overview. Cycles of Matter. Lesson Overview. 3.4 Cycles of Matter Lesson Overview 3.4 THINK ABOUT IT A handful of elements combine to form the building blocks of all known organisms. Organisms cannot manufacture these elements and do not use them up, so..where do essential

More information

BIOGEOCHEMICAL CYCLES

BIOGEOCHEMICAL CYCLES BIOGEOCHEMICAL CYCLES BIOGEOCHEMICAL CYCLES A biogeochemical cycle or cycling of substances is a pathway by which a chemical element or molecule moves through both biotic and abiotic compartments of Earth.

More information

Elemental Metals and Toxic Effects. Heavy Metals

Elemental Metals and Toxic Effects. Heavy Metals Elemental Metals and Toxic Effects Many communities may have high levels of toxic metals in their drinking water, particularly those served by from private wells, because of contamination or as a result

More information

EXPOSURE 4.1 EXPOSURE PATHWAYS. Water. Source of Contamination. Environmental Media

EXPOSURE 4.1 EXPOSURE PATHWAYS. Water. Source of Contamination. Environmental Media Exposure 4 4 EXPOSURE Exposure is any direct contact between a substance and an individual, whether by touching, breathing, or swallowing material from a source. Contaminants must follow pathways from

More information

3 3 Cycles of Matter. EOC Review

3 3 Cycles of Matter. EOC Review EOC Review A freshwater plant is placed in a salt marsh. Predict the direction in which water will move across the plant s cell wall, and the effect of that movement on the plant. a. Water would move out

More information

Name Hour. Section 3-1 What Is Ecology? (pages 63-65) Interactions and Interdependence (page 63) 1. What is ecology?

Name Hour. Section 3-1 What Is Ecology? (pages 63-65) Interactions and Interdependence (page 63) 1. What is ecology? Name Hour Section 3-1 What Is Ecology? (pages 63-65) Interactions and Interdependence (page 63) 1. What is ecology? 2. What does the biosphere contain? _ Levels of Organization (page 64) 3. Why do ecologists

More information

Chapter Two: Cycles of Matter (pages 32-65)

Chapter Two: Cycles of Matter (pages 32-65) Chapter Two: Cycles of Matter (pages 32-65) 2.2 Biogeochemical Cycles (pages 42 52) In order to survive and grow, organisms must obtain nutrients that serve as sources of energy or chemical building blocks,

More information

TERRESTRIAL ECOLOGY PART DUEX. Biogeochemical Cycles Biomes Succession

TERRESTRIAL ECOLOGY PART DUEX. Biogeochemical Cycles Biomes Succession DO NOW: -GRAB PAPERS FOR TODAY -GET A HIGHLIGHTER -UPDATE HW FOR TONIGHT COMPLETE AQUATIC ECOLOGY PACKET (INCLUDES VIDEO) -BEGIN READING THROUGH THE LECTURE TERRESTRIAL ECOLOGY PART DUEX Biogeochemical

More information

Cycles of Matter. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall

Cycles of Matter. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall Cycles of Matter 1 of 33 The purpose of this lesson is to learn the water, carbon, nitrogen, and phosphorus cycles. This PowerPoint will provide most of the required information you need to accomplish

More information

BIOGEOCHEMICAL CYCLES: The RECYCLING of MATERIALS through living organisms and the physical environment.

BIOGEOCHEMICAL CYCLES: The RECYCLING of MATERIALS through living organisms and the physical environment. BIOGEOCHEMICAL CYCLES: The RECYCLING of MATERIALS through living organisms and the physical environment. BIOCHEMIST: Scientists who study how LIFE WORKS at a CHEMICAL level. The work of biochemists has

More information

E-beam Treatment of Toxic Wastes; The Experiences in Pilot and Industrial Scale Plant

E-beam Treatment of Toxic Wastes; The Experiences in Pilot and Industrial Scale Plant E-beam Treatment of Toxic Wastes; The Experiences in Pilot and Industrial Scale Plant @ BUMSOO HAN / EB TECH Co. for Waste Water Treatment Marine Environmental Protection Over the last 70 years, we have

More information

Unit 2: Ecology. Chapters 2: Principles of Ecology

Unit 2: Ecology. Chapters 2: Principles of Ecology Unit 2: Ecology Chapters 2: Principles of Ecology Ecology Probe: Answer the questions and turn it in! This is a standard aquarium with a population of fish. There is no filter in this aquarium and no one

More information

Nutrient Cycles. Nutrient cycles involve flow of high quality energy from the sun through the environment & of elements.

Nutrient Cycles. Nutrient cycles involve flow of high quality energy from the sun through the environment & of elements. Nutrient Cycles Nutrient cycles (= biogeochemical cycles): natural processes that involve the flow of nutrients from the environment (air, water, soil, rock) to living organisms ( ) & back again. Nutrient

More information

Earth Systems and Interactions

Earth Systems and Interactions CHAPTER The Earth System Earth Systems and Interactions What do you think? Read the three statements below and decide whether you agree or disagree with them. Place an A in the Before column if you agree

More information

Lesson 2.4 Biogeochemical Cycles

Lesson 2.4 Biogeochemical Cycles Lesson 2.4 Biogeochemical Cycles A carbon atom in your body today may have been part of a blade of grass last year, or a dinosaur bone millions of years ago. Fossilized bones in a Colorado dig. Lesson

More information

Niche and Habitat a species plays in a community. What it does all

Niche and Habitat a species plays in a community. What it does all Ecosystem Dynamics What is ecology? Study of the interactions between parts of the environment Connections in nature Abiotic: soil comp. Biotic: and Abiotic and Biotic factors factors in the environment

More information

Basics of Water Quality Sheila Murphy

Basics of Water Quality Sheila Murphy Basics of Water Quality Sheila Murphy Water quality: The chemical, physical, and biological characteristics of water, usually in respect to its suitability for a particular purpose Water quality can include:

More information

The rest of this article describes four biogeochemical cycles: the water cycle, carbon cycle, nitrogen cycle, and phosphorous cycle.

The rest of this article describes four biogeochemical cycles: the water cycle, carbon cycle, nitrogen cycle, and phosphorous cycle. BIOGEOCHEMICAL CYCLES The chemical elements and water that are needed by living things keep recycling over and over on Earth. These cycles are called biogeochemical cycles. They pass back and forth through

More information

MPA in Environmental Science and Policy. ENV U6220: Environmental Chemistry and Toxicology

MPA in Environmental Science and Policy. ENV U6220: Environmental Chemistry and Toxicology MPA in Environmental Science and Policy ENV U6220: Environmental Chemistry and Toxicology Summer Semester 2004 Instructors: Dr. Patrick Louchouarn Associate professor Dept. of Earth & Environmental Science

More information

CHAPTER ENERGY!

CHAPTER ENERGY! CHAPTER 8.1 ENERGY! 8.1 What is energy? Energy- The ability to do work Thermodynamics- is the study of the flow and transformation of energy in the universe. *All cells need energy for many Functions that

More information

NOTES 12.4: HUMAN ISSUES, IMPACTS, & SOLUTIONS. Pages ,

NOTES 12.4: HUMAN ISSUES, IMPACTS, & SOLUTIONS. Pages , NOTES 12.4: HUMAN ISSUES, IMPACTS, & SOLUTIONS Pages 435-437, 440-452 ENVIRONMENTAL SCIENCE The study of the interactions between humans and their own environment Earth s Layers Geosphere Earth s rock

More information

Chapter 6: Microbial Growth

Chapter 6: Microbial Growth Chapter 6: Microbial Growth 1. Requirements for Growth 2. Culturing Microorganisms 3. Patterns of Microbial Growth 1. Requirements for Growth Factors that affect Microbial Growth Microbial growth depends

More information

The Biosphere and Biogeochemical Cycles

The Biosphere and Biogeochemical Cycles The Biosphere and Biogeochemical Cycles The Earth consists of 4 overlapping layers: Lithosphere Hydrosphere (and cryosphere) Atmosphere Biosphere The Biosphere The biosphere is the layer of life around

More information

Ecosystems Full of Matter, Energy, and Entropy

Ecosystems Full of Matter, Energy, and Entropy Living Environment Ecosystems Ecosystems Full of Matter, Energy, and Entropy 2017-07-18 www.njctl.org Table of Contents: Ecosystems Full of Matter, Energy, and Entropy Click on a topic to go to that section

More information

Canadian Mercury Science Assessment Executive Summary

Canadian Mercury Science Assessment Executive Summary Canadian Mercury Science Assessment Executive Summary Cat. No.: En84-130/1-2016E-PDF ISSN 978-0-660-03315-0 Unless otherwise specified, you may not reproduce materials in this publication, in whole or

More information

S1 Building Blocks Summary Notes

S1 Building Blocks Summary Notes S1 Building Blocks Summary Notes Atoms & Molecules 1 We are developing our understanding of atoms and molecules. Atoms are the simplest building blocks of every substance in the universe. There are just

More information

Section 3 1 What Is Ecology? (pages 63 65)

Section 3 1 What Is Ecology? (pages 63 65) Chapter 3 The Biosphere Section 3 1 What Is Ecology? (pages 63 65) This section identifies the different levels of organization that ecologists study. It also describes methods used to study ecology. Interactions

More information

Water dule04/basics2.htm. Presented by Victor Tibane

Water   dule04/basics2.htm. Presented by Victor Tibane Water http://techalive.mtu.edu/meec/mo dule04/basics2.htm Presented by Victor Tibane Water 1. Water bodies water states 2. Chemistry of water, how it operates naturally and how it is perturbed by human

More information

Ecology Part 2. Living Environment

Ecology Part 2. Living Environment Ecology Part 2 Living Environment Recycling in the Biosphere Matter is recycled within and between ecosystems Elements, chemical compounds, and other forms of matter are passed from one organism to another

More information

CHAPTER 5 Water and Seawater

CHAPTER 5 Water and Seawater 1 2 3 4 5 6 7 8 9 10 11 12 13 CHAPTER 5 Water and Seawater Chapter Overview Water has many unique thermal and dissolving properties. Seawater is mostly water molecules but has dissolved substances. Ocean

More information

Nutrient Cycling & Soils

Nutrient Cycling & Soils Nutrient Cycling & Soils tutorial by Paul Rich Outline 1. Nutrient Cycles What are nutrient cycles? major cycles 2. Water Cycle 3. Carbon Cycle 4. Nitrogen Cycle 5. Phosphorus Cycle 6. Sulfur Cycle 7.

More information

Interest Grabber. Levels Within Levels

Interest Grabber. Levels Within Levels Interest Grabber Section 3-1 Levels Within Levels An ecosystem is a collection of all the organisms that live in a particular place, together with their nonliving, or physical, environment. Within an ecosystem,

More information

Biology Factors Modifying Contaminant Effects

Biology Factors Modifying Contaminant Effects Biology 5868 Factors Modifying Contaminant Effects Modifying Factors Any characteristic of the organism or its surrounding environment that affects toxicity of a pollutant is considered to act as a Modifying

More information

Nutrients elements required for the development, maintenance, and reproduction of organisms.

Nutrients elements required for the development, maintenance, and reproduction of organisms. Nutrient Cycles Energy flows through ecosystems (one way trip). Unlike energy, however, nutrients (P, N, C, K, S ) cycle within ecosystems. Nutrients are important in controlling NPP in ecosystems. Bottom-up

More information

Chapter 3 - ATMOSPHERIC TRANSPORT AND MERCURY DEPOSITION

Chapter 3 - ATMOSPHERIC TRANSPORT AND MERCURY DEPOSITION Chapter 3 - ATMOSPHERIC TRANSPORT AND MERCURY DEPOSITION A. Introduction Mercury is an especially dynamic pollutant because of its unique physical, chemical, and bioaccumulative properties. The volatility

More information

Effects of Bioaccumulation on Ecosystems

Effects of Bioaccumulation on Ecosystems Effects of Bioaccumulation on Ecosystems Textbook pages 92 103 Section 2.3 Summary Before You Read Everyday activities, such as driving or heating your home, often pollute ecosystems. In your opinion,

More information

Date. 1 St primary producer obtain energy from grass, algae (plants) the Sun

Date. 1 St primary producer obtain energy from grass, algae (plants) the Sun Name Energy Textbook pages 56-6 7 Iow n Date Ecosystems Sectioii 2i Summary Before You Read In this section, you will explore food chains and food webs, as well as food pyramids. What are the main differences

More information

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1 Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1 Life Depends on the Sun Energy from the sun enters an ecosystem when plants use sunlight to make sugar molecules. This happens through

More information

Toxic Effects of Aluminium

Toxic Effects of Aluminium Toxic Effects of Aluminium Aluminium accumulates in the Stomach. Aluminium may stimulate the production of Free Radicals and may initiate the Cross-Linking process. references Aluminium accumulates in

More information

RipCycles & Nutrient Travels

RipCycles & Nutrient Travels RipCycles & Nutrient Travels Adapted from: Water Wonders in Project Learning Tree produced by The American Forest Foundation, Washington, D.C., 1996. Nutrient Cycling Grade Level: Part A: Intermediate

More information

Autotrophs vs. Heterotrophs

Autotrophs vs. Heterotrophs How Ecosystems Work Autotrophs vs. Heterotrophs Autotrophs make their own food so they are called PRODUCERS Heterotrophs get their food from another source so they are called CONSUMERS Two Main forms of

More information

Prepare for Learning. A 4000 year old corpse preserved in ice. Why hasn t it decomposed?

Prepare for Learning. A 4000 year old corpse preserved in ice. Why hasn t it decomposed? Prepare for Learning A 4000 year old corpse preserved in ice. Why hasn t it decomposed? Why is carbon important? Carbon is the main constituent of all living cells (biochemistry, organic chemistry) Component

More information

Characteristics of Mercury and other Metals

Characteristics of Mercury and other Metals Characteristics of Mercury and other Metals Ben Hodges Physical Transport Lynn Katz Surface/Water Chemistry Howard Liljestrand- Air/Water Chemistry The University of Texas at Austin 8 February 2002 Metals

More information

Oceans OUTLINE. Reading: White, Chapter 15 Today Finish estuaries and particles, then: 1. The oceans: currents, stratification and chemistry

Oceans OUTLINE. Reading: White, Chapter 15 Today Finish estuaries and particles, then: 1. The oceans: currents, stratification and chemistry Oceans OUTLINE Reading: White, Chapter 15 Today Finish estuaries and particles, then: 1. The oceans: currents, stratification and chemistry Next Time Salinity Exercise bring something to calculate with

More information

The Carbon Cycle. the atmosphere the landmass of Earth (including the interior) all of Earth s water all living organisms

The Carbon Cycle. the atmosphere the landmass of Earth (including the interior) all of Earth s water all living organisms The Carbon Cycle Carbon is an essential part of life on Earth. About half the dry weight of most living organisms is carbon. It plays an important role in the structure, biochemistry, and nutrition of

More information

LIMNOLOGY. Inland Water Ecosystems. JACOB KALFF McGill University. Prentice Hall. Upper Saddle River, New Jersey 07458

LIMNOLOGY. Inland Water Ecosystems. JACOB KALFF McGill University. Prentice Hall. Upper Saddle River, New Jersey 07458 LIMNOLOGY Inland Water Ecosystems JACOB KALFF McGill University Prentice Hall Prentice Hall Upper Saddle River, New Jersey 07458 Contents CHAPTER 1 Inland Waters and Their Catchments: An Introduction and

More information

METHODOLOGY FOR THE ENVIRONMENTAL RISK ASSESSMENT OF FLY ASH USE IN HIGHWAY EMBANKMENTS

METHODOLOGY FOR THE ENVIRONMENTAL RISK ASSESSMENT OF FLY ASH USE IN HIGHWAY EMBANKMENTS METHODOLOGY FOR THE ENVIRONMENTAL RISK ASSESSMENT OF FLY ASH USE IN HIGHWAY EMBANKMENTS Pardeep Kumar Gupta Civil Engineering, Department, PEC University of Technology, Chandigarh Abstract: Fly ash can

More information

Bacillus spp and Activated Bacillus spp The Complete Cycle

Bacillus spp and Activated Bacillus spp The Complete Cycle Bacillus spp and Activated Bacillus spp The Complete Cycle DISCUSSION PAPER Robert Morgan 13/01/2017 Inventor of The Water Cleanser ROBERT MORGAN JANUARY 13TH, 2017 + THE WATER CLEANSER Bacillus spp and

More information

Chapter 6 Humans in the Biosphere. Dr. Bertolotti

Chapter 6 Humans in the Biosphere. Dr. Bertolotti Chapter 6 Humans in the Biosphere Dr. Bertolotti Essential Question How have human activities shaped local and global ecology? What is the relationship between resource use and sustainable development?

More information

Biogeochemical cycles

Biogeochemical cycles Biogeochemical cycles MATTER CYCLING IN ECOSYSTEMS Nutrient Cycles: Global Recycling Global Cycles recycle nutrients through the earth s air, land, water, and living organisms. Nutrients are the elements

More information

Chemical contaminants can enter surface waters or be deposited on beaches from

Chemical contaminants can enter surface waters or be deposited on beaches from CHAPTER 10 Chemical and physical agents Chemical contaminants can enter surface waters or be deposited on beaches from both natural and anthropogenic sources. These may be either point sources, such as

More information

DOW CORNING CORPORATION Material Safety Data Sheet DOW CORNING(R) 200 FLUID, 60,000 CST.

DOW CORNING CORPORATION Material Safety Data Sheet DOW CORNING(R) 200 FLUID, 60,000 CST. Page: 1 of 7 1. PRODUCT AND COMPANY IDENTIFICATION MSDS No.: 01013394 SUPPLIER: Dow Corning Corporation South Saginaw Road Midland, Michigan 48686 MANUFACTURER: Dow Corning Corporation South Saginaw Road

More information

Introduction. Copyright 2002 Pearson Education, Inc., publishing as Benjamin Cummings

Introduction. Copyright 2002 Pearson Education, Inc., publishing as Benjamin Cummings Introduction An ecosystem consists of all the organisms living in a community as well as all the abiotic factors with which they interact. The dynamics of an ecosystem involve two processes: energy flow

More information

Unit C Environmental Chemistry

Unit C Environmental Chemistry Unit C Environmental Chemistry Focusing Questions: 1. What substances do we find in local and global environments? 2. What role do they play, and how do changes in their concentration and distribution

More information

ENVIRONMENTAL QUALITY Fall Semester 2011

ENVIRONMENTAL QUALITY Fall Semester 2011 ENVIRONMENTAL QUALITY Fall Semester 2011 Instructor: Office: Office Hours: Course Text: Grading: Dr. George F. Vance 1007 Agricultural Hall, 766-2297, gfv@uwyo.edu Tuesday, Wednesday, Thursday 12:15-1:30,

More information

HYDROSPHERE. Freshwater Systems and Pollution

HYDROSPHERE. Freshwater Systems and Pollution OUR FRAGILE PLANET HYDROSPHERE Freshwater Systems and Pollution OUR FRAGILE PLANET Atmosphere Biosphere Climate Geosphere humans and the Natural environment hydrosphere oceans polar regions OUR FRAGILE

More information

Classifying our Biotic Environment (Trophic Levels) Ecology. Ecology is study how things interact with other and else in the.

Classifying our Biotic Environment (Trophic Levels) Ecology. Ecology is study how things interact with other and else in the. Ecology Ecology is study how things interact with other and else in the. Ecologists focus their attention on in order to organize their studies. Ecosystems can be very large or very small. For example:

More information

Ocean Pollution Homework & Lecture Notes Part II (2 points)

Ocean Pollution Homework & Lecture Notes Part II (2 points) Name: Ocean Pollution Homework & Lec. Notes Part II (Topic 13B) Section: Ocean Pollution Homework & Lecture Notes Part II (2 points) Stamp Read the ocean pollution reading assignment (13B). Then, answer

More information

DOW CORNING CORPORATION Material Safety Data Sheet DOW CORNING(R) 200 FLUID, 20 CST.

DOW CORNING CORPORATION Material Safety Data Sheet DOW CORNING(R) 200 FLUID, 20 CST. Page: 1 of 8 1. PRODUCT AND COMPANY IDENTIFICATION Dow Corning Corporation South Saginaw Road Midland, Michigan 48686 24 Hour Emergency Telephone: Customer Service: Product Disposal Information: CHEMTREC:

More information

Student s Book Table of Contents

Student s Book Table of Contents Student s Book Table of Contents Unit Section 1 Section 2 Section 3 Section 4 pages 8 43 1 Living Things and Nonliving Things Living Things Animals taking care of animals Birth and Nourishment of Animals

More information

Biology 5868 ID Exam 1 February 23, 2007

Biology 5868 ID Exam 1 February 23, 2007 Ecotoxicology Name KEY Biology 5868 ID Exam 1 February 23, 2007 Be as specific as possible for all answers. Most of the questions have multiple parts; make sure to answer each part! Use diagrams, flowcharts,

More information

Summary. 3 1 What Is Ecology? 3 2 Energy Flow. Name Class Date

Summary. 3 1 What Is Ecology? 3 2 Energy Flow. Name Class Date Chapter 3 Summary The Biosphere 3 1 What Is Ecology? Ecology is the scientific study of interactions among organisms and between organisms and their environment. Earth s organisms live in the biosphere.

More information

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1 Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1 Life Depends on the Sun Energy from the sun enters an ecosystem when plants use sunlight to make sugar molecules. This happens through

More information

Chapter 2 9/15/2015. Chapter 2. Penny Boat. 2.1 The Role of Water in Cycles of Matter

Chapter 2 9/15/2015. Chapter 2. Penny Boat. 2.1 The Role of Water in Cycles of Matter Chapter 2 Chapter 2 Cycles of Matter 2.1 The Role of Water in Cycles of Matter 2.2 Biogeochemical Cycles 2.3 the Balance of the Matter and Energy Exchange 2.1 The Role of Water in Cycles of Matter In this

More information

BIOGEOCHEMICAL CYCLES INTRODUCTION THE CYCLING PROCESS TWO CYCLES: CARBON CYCLE NITROGEN CYCLE HUMAN IMPACTS GLOBAL WARMING AQUATIC EUTROPHICATION

BIOGEOCHEMICAL CYCLES INTRODUCTION THE CYCLING PROCESS TWO CYCLES: CARBON CYCLE NITROGEN CYCLE HUMAN IMPACTS GLOBAL WARMING AQUATIC EUTROPHICATION BIOGEOCHEMICAL CYCLES INTRODUCTION THE CYCLING PROCESS TWO CYCLES: CARBON CYCLE NITROGEN CYCLE HUMAN IMPACTS GLOBAL WARMING AQUATIC EUTROPHICATION BIOGEOCHEMICAL CYCLES: The RECYCLING of MATERIALS through

More information

2.2 - Nutrient Cycles. Carbon Cycle

2.2 - Nutrient Cycles. Carbon Cycle 2.2 - Nutrient Cycles Carbon Cycle Nutrients What are nutrients? Chemicals (C,O, N, P, H...) needed for life There is a constant amount of these nutrients on Earth and they are stored in different places.

More information

Understanding the Environmental Requirements for Fish

Understanding the Environmental Requirements for Fish Lesson C3 2 Understanding the Environmental Requirements for Fish Unit C. Animal Wildlife Management Problem Area 3. Fish Management Lesson 2. Understanding the Environmental Requirements for Fish New

More information

Lecture 2, Part 1, Conceptual Site Models for Exposure Assessment

Lecture 2, Part 1, Conceptual Site Models for Exposure Assessment Lecture 2, Part 1, Conceptual Site Models for Exposure Assessment Conrad (Dan) Volz, DrPH, MPH Assistant Professor, Environmental and Occupational Health, University of Pittsburgh, Graduate School of Public

More information

Senior 2, Cluster 1: Dynamics of Ecosystems

Senior 2, Cluster 1: Dynamics of Ecosystems Senior 2, Cluster 1: Dynamics of Ecosystems In this cluster, students examine the complex relationships present in ecosystems in order to further investigate issues of sustainability. The large scale cycling

More information

pk g = 1.41 pk 1 = 6.35 pk 2 = ph of pure water? ph of rain

pk g = 1.41 pk 1 = 6.35 pk 2 = ph of pure water? ph of rain Acid Rain Acid deposition consists of delivery of acid substances or precursors, principally sulfur and nitrogen oxides, acids, and salts, from the atmosphere to the earth surface (Schwartz 1989) Wet deposition-

More information

Chemistry in the Environment

Chemistry in the Environment Chemistry in the Environment Section 261 Earth s Atmosphere In your textbook, read about the terms used to describe the physical and chemical properties of Earth s atmosphere Complete each statement 1

More information