N 2, O 2 Ar CO mg/l mg/l. Carbon dioxide. Carbon dioxide 4. - Only about 0.035% of air (~350 ppm)

Size: px
Start display at page:

Download "N 2, O 2 Ar CO mg/l mg/l. Carbon dioxide. Carbon dioxide 4. - Only about 0.035% of air (~350 ppm)"

Transcription

1 (Carbon dioxide : CO 2 ) Carbon dioxide 4 N 2, O 2 Ar CO mg/l mg/l 30 CO 2 CO 2 carbonate ph Only about 0.035% of air (~350 ppm) Concentration in water higher than expected based on low atmospheric partial pressure of its high solubility Gas (at 10ºC) 1 atm (mg/l) N O CO Carbon dioxide CO 2 CO 2 CO 2 carbonate 5 Carbon dioxide bicarbonate carbonate ph CaCO 3 MgCO 3 ph 6

2 Carbon dioxide CO 2 ph CO 2 carbonic acid carbonate bicarbonate CO 2 carbonate bicarbonate ph Carbon dioxide reaction in water CO 2 (gas) CO 2 (dissolved) <1% CO 2 carbonic acid CO 2 + H 2 O H 2 CO Carbon dioxide reaction in water Inorganic C equilibria carbonic acid bicarbonate hydrogen ions H 2 CO 3 HCO 3 + H + ph bicarbonate 100% (ph of 8.3) ph carbonate HCO 3 CO 3 + H + 9 Note 100% CO 2 for ph< 4.5; 100% bicarbonate for ph 8 and 100% carbonate for ph> 12 10

3 CO 2 supersaturation killer Lake Nyos In the middle of an August night in 1986 in the westafrican country of Cameroon a misty cloud of carbon dioxide bubbled out of a lake and swept silently down the surrounding valleys thousands of animals and 1700 people died, many in their sleep. Gas Estimates at Lake Nyos Possible CO 2 storage 1.45 km 3 Amount of CO 2 stored in May 1987 Estimated CO 2 released in 1986 (Kling, 1989) 0.38 km km 3 (up to 1 km 3 )

4 Remediation of the Hazards Soda pop chemistry 17 18

5 CO 2 and the inorganic carbon system CO 2 CO 2 ( ) carbon carbon dioxide allocthonous (alkalinity),, ph, total inorganic carbon (Nitrogen : N 2 ) Nitrogen 79% (NH 3 N) (NO 3 ) (NO ) Total Alkalinity (Alk T ) = [HCO 3 ] + 2[CO 3 ] +[OH ] [H + ]

6 4 (Nitrogen Fixation) (Azolla) Rhizobium 23 Aerobic bacteria Azomonas, Azobactor, Beijerinckia, Berxia, Methylomonas, Mycobacterium Spirillium Facultatively anaerobic bacteria Bacillus, Enterobactor Klebsiella Anaerobic bacteria Clostridium, Desulfovibrio Desulfotomaculum Photosynthetic bacteria Nonsulfer purple bacteria Rhodomicrobium, Rhodopseudomonas Rhodospirillium Purple sulfer bacteria Chromatium Ectothiorhodospira Green sulfer bacteria Chlorobium (Bluegreen algae) Anabaena 24 Ammonificication ( ) Org. N NH 3 + H + NH 4 + Anabaena heterotroph NH 4 + nitrification 25 26

7 Nitrification NH 3 NO 2 NO 3 2 NH (1/2) O 2 NO 2 + 2H + + H 2 O Nitrisomonas, Nitrosococcus,Nitrosospira, Nitrosolobus Nitrification ph 78 ph Nitrobacter ph NO 2 + 1/2 O 2 NO 3 Nitrobacter Denitrification Denitrification (N 2 ) (N 2 O) (NO) denitrifying bacteria anaerobic bacteria 29 30

8 NH 3 NH 3 Nitrogen ph nitrification denitrification nitrate reduction nitrification nitrate reduction (S; sulfur) S CaSO 4 (gypsum), H 2 S H 2 SO 4 S S epilimnion hypolimnion, S H 2 O 2 H 2 S, FeS 2 SO 4 H 2 H 2 SO

9 S H 2 S SO 4 (pyrite; FeS 2 ) H 2 S SO 2 H 2 S Some major steps in the sulfur cycle include: 1.Assimilative reduction of sulfate (SO 4 ) into SH groups in proteins. 2.Release of SH to form H 2 S during excretion, decomposition, and desulfurylation. 3.Oxidation of H 2 S by chemolithotrophs to form sulfur (S o ) and sulfate (SO 4 ) 4.Dissimilative reduction of sulfate (SO 4 ) by anaerobic respiration of sulfatereducing bacteria. 5.Anaerobic oxidation of H 2 S and S by anoxygenic phototrophic bacteria (purple and green bacteria) Thiobacillus (Methane : CH 4 ) organic gas marsh gas bacteria multistage breakdown complex organic material organic compound of simple molecular structure CH 4 CO 2 O

10 Water Chemistry (The major ions in inland water) ION BALANCE FOR TYPICAL FRESH WATER Major ion concentrations freshwater Anions mg/l Cations mg/l Anions Percent Cations Percent HCO 3 73% Ca +2 63% SO % Mg +2 17% Cl 10% Na + 15% K + 4% other < 1% other < 1% HCO Ca SO Mg Cl 7.8 Na SiO 2 13 K NO 3 ~1.0 Fe +3 ~0.7 Total = ~91.4 anions + ~28.4 cations = ~ 120 mg/l (TDS) (Source of ions),,,,, ( ) oxidation reduction 41 42

11 Carbonate (CO 3 ) anion CO 3 HCO 3 Ca 2+ evaporation Ca(HCO 3 ) 2 CaCO 3 + H 2 O + CO 2 alkalinity CO 3 CO 3 (compound of CO 3 ) CO 3 CaCO 3 CO 3 Ca 2+ calcite aragonite 30 Na 2 CO 3, K 2 CO 3, (NH 4 ) 2 CO 3, Mg(CO 3 ), BaCO 3 SrCO 3 CaCO 3 H 2 CO 3 Ca(HCO 3 ) 2 HCO 3 CO Cl (chloride) Cl halide angal cell Cl Edaphic igneous rock ( ) chloride, soda lite (Na 8 (AlSiO 4 ) 6 Cl 2 ), (magmatic water) Atmospheric volcanic gas HCl Pollution, ( 5 g/l),, NaCl CaCl

12 Ca (calcium) Ca CaCO 3 Ca(HCO 3 ) 2 Ca Silicate, anorthite (CaAl 2 Si 2 O 8 ) CaCO 3 CO 2 HCO 3 Ca Calcite (CaCO 3 ),, Marl CaCO 3 gastropod, clam shells marl Anorthite Sinter Mg (magnesium) Mg Mg silicate nonsilicate Sinter Gypsum Anhydrite Mg silicate forsterite (Mg 2 SiO 4 ) H 2 CO 3 silica, cabonate serpentine (H 4 Mg 3 Si 2 O 9 ) 5Mg 2 SiO 4 + 4H 2 O + 4CO 2 2H 4 Mg 3 Si 2 O 9 + 4MgCO 3 + SiO 2 Ca SO 4 gypsum (CaSO 4.2H 2 O) anhydrite (CaSO 4 ) SO 4 CO 3 calcium CaCl 2 49 Forsterite 50

13 Na (sodium) Na Na aluminosilicates ( ) Saltern lake; Utah Type of sodium lakes 3 1. Salterns lakes NaCl 2. Saline lakes Na 2 SO 4 Aluminosilicate Saline lake; Chile 3. Soda lakes NaHCO 3 Na 2 CO 3 Soda lake; California K (potassium) K K feldspar KAlSi 3 O 8, sodium mineral Leucite (KAlSi 2 O 6 ) Feldspar Leucite Nutrients phosphorus (sediment) 53 54

14 Phosphorus levels in the environment Major factors affecting phosphorus levels, cycling, and impacts on water quality include: Soil properties Land use and disturbance Transport associated with runoff Phosphorus Cycle phospholipid ATP (Adenosine 5' triphosphate) 5(6aminopurin9yl)3,4dihydroxyoxolanyl methoxyhydroxyphosphoryl oxyhydroxyphosphory oxyphosphonic acid phosphatizing bacteria CaHPO 4 [Ca 3 (PO 4 ) 2 ] 57 Where does phosphorus come from? 58

15 Phosphorus external sources Phosphorus internal sources Nonpoint sources ( ) (Watershed) (land use management) (urban and rural) ( ; failing septic systems), Point sources ( ) O 2 > 1 mg/l Insoluble ferric (+3) salts form that precipitate and settle out, adsorbing PO 4 3 O 2 < 1 mg/l (anoxic) ferric ion reduced to soluble ferrous ion (Fe +2 ) allowing sediment phosphate to diffuse up into the water ( ) algal blooms Phosphorus Lake budget Phosphorus cycling major sources Dissolved Particulate Particulate Particulate and dissolved 61 62

16 Phosphorus cycling internal recycling Rapid PO 4 3 recycling Bacterial Algal Zooplankton Phosphorus cycle major transformations The whole phosphorus cycle Nitrogen basic properties Nitrogen, chlorophyll Nitrogen biologically available forms N 2 major source, Blue green algae (cyanobacteria) and anaerobic bacteria Nitrate (NO 3 ) and ammonium (NH 4+ ) major forms dissolved inorganic nitrogen (DIN) Total nitrogen (TN) includes: DIN + dissolved organic nitrogen (DON) + particulate nitrogen 65 66

17 Nitrogen sources NO 3 NH 4+ (power plants, vehicle exhaust, acid rain),, (NO 3 ) (NO 3 and NH 4+ ) (NO 3 and NH 4+ ) hypoliminion (NH 4+ ) Nitrogen toxicity Methemoglobinemia blue baby syndrome > 10 mg/l NO 3 N or > 1 mg/l NO 2 N in well water NO 3 N 2 O and NO x smog,, 67 68

Nutrient Cycling in an Aquatic Ecosystem

Nutrient Cycling in an Aquatic Ecosystem Nutrient Cycling in an Aquatic Ecosystem 2.1 Productivity 2.2 Oxygen 2.3 Salinity 2.4 Carbon 2.5 Nitrogen 2.6 Phosphorous 2.7 Iron 2.8 Sulphur 2.9 Silica 2.3 Salinity of Inland Waters The salinity of freshwaters

More information

CHEMICAL COMPOSITION OF NATURAL WATERS

CHEMICAL COMPOSITION OF NATURAL WATERS CHEMICAL COMPOSITION OF NATURAL WATERS DISSOVLED GASES Oxygen (and E h ) Why important? product of photosynthesis needed for aerobic respiration - Much of an aquatic organisms energy budget is devoted

More information

CHEMICAL: NITROGEN AND PHOSPHORUS (read pp in Dodson)

CHEMICAL: NITROGEN AND PHOSPHORUS (read pp in Dodson) BIOE 155, Fall 010 BACKGROUND CHEMICAL: NITROGEN AND PHOSPHORUS (read pp39-50 in Dodson) Lakes are often classified according to trophic status, specifically how much energy or food is available for the

More information

1. Energy to do work 2. Raw material to build/repair things (nutrients)

1. Energy to do work 2. Raw material to build/repair things (nutrients) 1. Energy to do work 2. Raw material to build/repair things (nutrients) Living things are built from water Nutrients: carbon, hydrogen, nitrogen, and oxygen 3. Essential nutrients are cycled through environment

More information

Nutrient Cycling & Soils

Nutrient Cycling & Soils Nutrient Cycling & Soils tutorial by Paul Rich Outline 1. Nutrient Cycles What are nutrient cycles? major cycles 2. Water Cycle 3. Carbon Cycle 4. Nitrogen Cycle 5. Phosphorus Cycle 6. Sulfur Cycle 7.

More information

NUTRIENT CYCLES REVIEW

NUTRIENT CYCLES REVIEW 52 Name A.P. Environmental Science Date Mr. Romano NUTRIENT CYCLES REVIEW 1. Which of the following chain of events would occur as a result of land clearing/deforestation? (vocabulary check: efflux means

More information

Pollutant Types and Sources

Pollutant Types and Sources Pollutant Types and Sources FSA STORMWATER BMP SEMINAR SEPTEMBER 11, 2015 Prevailing thoughts about nutrient pollution and stormwater 1. Nutrient pollutant load estimates are commonly represented by a

More information

Nitrogen cycle Important steps

Nitrogen cycle Important steps Nitrogen cycle Nitrogen cycle Important steps Stage1 Entry and Accumulation Ammonia is introduced into the water via tropical fish waste, uneaten food, and decomposition. These will break down into ammonia

More information

Streamwater Chemistry

Streamwater Chemistry Streamwater Chemistry 1) Dissolved major ions 2) Suspended and dissolved organic matter 3) Dissolved nutrients and biological transformations 4) Dissolved gases 5) ph 1) Dissolved major ions TDS (Total

More information

WASTEWATER 101 Fo r MOWA

WASTEWATER 101 Fo r MOWA WASTEWATER 101 For MOWA iochemical xygen emand BOD Reactions BOD 5 = 0.68 BOD u Lu Carbonaceous BOD BOD 5 Time, Days BOD w/ Nitrification Oxygen Used for Nitrificationifi ti BOD Point Nitrification Begins

More information

Chapter Two: Cycles of Matter (pages 32-65)

Chapter Two: Cycles of Matter (pages 32-65) Chapter Two: Cycles of Matter (pages 32-65) 2.2 Biogeochemical Cycles (pages 42 52) In order to survive and grow, organisms must obtain nutrients that serve as sources of energy or chemical building blocks,

More information

BIOGEOCHEMICAL CYCLES

BIOGEOCHEMICAL CYCLES BIOGEOCHEMICAL CYCLES BIOGEOCHEMICAL CYCLES A biogeochemical cycle or cycling of substances is a pathway by which a chemical element or molecule moves through both biotic and abiotic compartments of Earth.

More information

3 3 Cycles of Matter. EOC Review

3 3 Cycles of Matter. EOC Review EOC Review A freshwater plant is placed in a salt marsh. Predict the direction in which water will move across the plant s cell wall, and the effect of that movement on the plant. a. Water would move out

More information

Lakes, Primary Production, Budgets and Cycling

Lakes, Primary Production, Budgets and Cycling OCN 401-Biogeochemical Systems Lecture #10 (9.22.11) Lakes, Primary Production, Budgets and Cycling (Schlesinger: Chapter 7) 1. Primary Production and Nutrient Cycling in Lakes Physical aspects and nomenclature

More information

Chapter 4: Advanced Wastewater Treatment for Phosphorous Removal

Chapter 4: Advanced Wastewater Treatment for Phosphorous Removal ENGI 9605 Advanced Wastewater Treatment Chapter 4: Advanced Wastewater Treatment for Phosphorous Removal Winter 2011 Faculty of Engineering & Applied Science 4.1 Phosphorous in wastewaters 1. Common forms

More information

Lesson Overview. Cycles of Matter. Lesson Overview. 3.4 Cycles of Matter

Lesson Overview. Cycles of Matter. Lesson Overview. 3.4 Cycles of Matter Lesson Overview 3.4 THINK ABOUT IT A handful of elements combine to form the building blocks of all known organisms. Organisms cannot manufacture these elements and do not use them up, so..where do essential

More information

Water Chemistry. Water 101

Water Chemistry. Water 101 Water Chemistry Water 101 I. Introduction A. Water is not pure Many different kinds of chemicals dissolved in it Ions, organic chemicals, organic matter, particulate matter, and gases can all be in water

More information

Ecosystems. Trophic relationships determine the routes of energy flow and chemical cycling in ecosystems.

Ecosystems. Trophic relationships determine the routes of energy flow and chemical cycling in ecosystems. AP BIOLOGY ECOLOGY ACTIVITY #5 Ecosystems NAME DATE HOUR An ecosystem consists of all the organisms living in a community as well as all the abiotic factors with which they interact. The dynamics of an

More information

Lesson Overview. Cycles of Matter. Lesson Overview. 3.4 Cycles of Matter

Lesson Overview. Cycles of Matter. Lesson Overview. 3.4 Cycles of Matter Lesson Overview 3.4 THINK ABOUT IT A handful of elements combine to form the building blocks of all known organisms. Organisms cannot manufacture these elements and do not use them up, so where do essential

More information

Sulfur and Silica. Wetzel, Ch. 14

Sulfur and Silica. Wetzel, Ch. 14 Sulfur and Silica Wetzel, Ch. 14 Nutrient: any element that an organism must take in to live, grow and reproduce. Macronutrients: C, H, N, O, P, S Hydrologic Gaseous Sedimentary water C,N P, S 0.08 0.04

More information

THE CYCLING OF NUTRIENTS

THE CYCLING OF NUTRIENTS Unit 4 THE CYCLING OF NUTRIENTS LEARNING OBJECTIVES 1. Recognize the need for the recycling of the earth s chemicals and the consequences if this is not done. 2. Learn the difference between a global cycle

More information

Cycling and Biogeochemical Transformations of N, P and S

Cycling and Biogeochemical Transformations of N, P and S Cycling and Biogeochemical Transformations of N, P and S OCN 401 - Biogeochemical Systems Reading: Schlesinger, Chapter 6 1. Nitrogen cycle Soil nitrogen cycle Nitrification Emissions of N gases from soils

More information

Cycles of Ma,er. Lesson Overview. Lesson Overview. 3.4 Cycles of Matter

Cycles of Ma,er. Lesson Overview. Lesson Overview. 3.4 Cycles of Matter Lesson Overview Cycles of Ma,er Lesson Overview 3.4 Cycles of Matter THINK ABOUT IT A handful of elements combine to form the building blocks of all known organisms. Organisms cannot manufacture these

More information

Nutrient Cycles. Nutrient cycles involve flow of high quality energy from the sun through the environment & of elements.

Nutrient Cycles. Nutrient cycles involve flow of high quality energy from the sun through the environment & of elements. Nutrient Cycles Nutrient cycles (= biogeochemical cycles): natural processes that involve the flow of nutrients from the environment (air, water, soil, rock) to living organisms ( ) & back again. Nutrient

More information

Do Now. Take out your activity you completed on Friday when I wasn t here!

Do Now. Take out your activity you completed on Friday when I wasn t here! Do Now Take out your activity you completed on Friday when I wasn t here! Biogeochemical Cycles 37.18-37.23 Objectives Identify and describe the flow of nutrients in each biogeochemical cycle Explain the

More information

Ecosphere. Background Information on Organisms ALGAE BRINE SHRIMP BACTERIA

Ecosphere. Background Information on Organisms ALGAE BRINE SHRIMP BACTERIA Background Information on Organisms ALGAE Ecosphere Algae are photosynthetic organisms that occur in most habitats, ranging from marine and freshwater to desert sands and from hot boiling springs in snow

More information

Cycling and Biogeochemical Transformations of N, P and S

Cycling and Biogeochemical Transformations of N, P and S Cycling and Biogeochemical Transformations of N, P and S OCN 401 - Biogeochemical Systems Reading: Schlesinger,, Chapter 6 1. Nitrogen cycle Soil nitrogen cycle Nitrification Emissions of N gases from

More information

INDEX FRESH SEMINAR SERIES

INDEX FRESH SEMINAR SERIES INDEX FRESH SEMINAR SERIES Acidification & ph Control with SO 2 -Sulfurous Acid Generators By Terry R. Gong Harmon Systems International, LLC We provide solutions that benefit the world 1 Presentation

More information

Biology. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall Biology 1 of 33 2 of 33 3-3 Cycles of Matter How does matter move among the living and nonliving parts of an ecosystem? 3 of 33 Recycling in the Biosphere Recycling in the Biosphere Energy and matter move

More information

3 3 Cycles of Matter

3 3 Cycles of Matter 3 3 Cycles of Matter Recycling in the Biosphere Energy - one way flow matter - recycled within and between ecosystems. biogeochemical cycles matter Elements, chemical compounds, and other forms passed

More information

Chapter 3 Ecosystem Ecology. Tuesday, September 19, 17

Chapter 3 Ecosystem Ecology. Tuesday, September 19, 17 Chapter 3 Ecosystem Ecology Reversing Deforestation in Haiti Answers the following: Why is deforestation in Haiti so common? What the negative impacts of deforestation? Name three actions intended counteract

More information

The Carbon cycle. Atmosphere, terrestrial biosphere and ocean are constantly exchanging carbon

The Carbon cycle. Atmosphere, terrestrial biosphere and ocean are constantly exchanging carbon The Carbon cycle Atmosphere, terrestrial biosphere and ocean are constantly exchanging carbon The oceans store much more carbon than the atmosphere and the terrestrial biosphere The oceans essentially

More information

10/17/ Cycles of Matter. Recycling in the Biosphere. How does matter move among the living and nonliving parts of an ecosystem?

10/17/ Cycles of Matter. Recycling in the Biosphere. How does matter move among the living and nonliving parts of an ecosystem? 2 of 33 3-3 Cycles of Matter How does matter move among the living and nonliving parts of an ecosystem? 3 of 33 Recycling in the Biosphere Recycling in the Biosphere Energy and matter move through the

More information

Sodium Peroxides (Na 2 O 2 ): Preparation: It is formed by heating the metal in excess of air or oxygen at 300, which is free from

Sodium Peroxides (Na 2 O 2 ): Preparation: It is formed by heating the metal in excess of air or oxygen at 300, which is free from S-Block Elements Generally one question was asked every year from this topic. This is completely theoretical and little memory based. Last minute revision generally helps. The general trends in the properties

More information

Available sources of nitrogen (N 2 )

Available sources of nitrogen (N 2 ) Nitrogen Metabolism Available sources of nitrogen (N 2 ) Atmospheric nitrogen Nitrogen in rocks Lightning Inorganic fertilizers Nitrogen Fixation Animal Residues Crop residues Organic fertilizers Forms

More information

Lecture 1: Introduction

Lecture 1: Introduction Islamic University of Gaza Environmental Engineering Department Water Treatment EENV 4331 Lecture 1: Introduction Dr. Fahid Rabah 1 1.1 Water Cycle and Water Resources 2 1.2 Water Distribution on Earth

More information

Biology. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall Biology 1 of 33 2 of 33 Recycling in the Biosphere Recycling in the Biosphere Energy and matter move through the biosphere very differently. Unlike the one-way flow of energy, matter is recycled within

More information

3 3 Cycles of Matter Slide 1 of 33

3 3 Cycles of Matter Slide 1 of 33 1 of 33 Recycling in the Biosphere Recycling in the Biosphere Energy and matter move through the biosphere very differently. Unlike the one-way flow of energy, matter is recycled within and between ecosystems.

More information

10/18/2010 THINK ABOUT IT CHAPTER 3 THE BIOSHPERE RECYCLING IN THE BIOSPHERE RECYCLING IN THE BIOSPHERE

10/18/2010 THINK ABOUT IT CHAPTER 3 THE BIOSHPERE RECYCLING IN THE BIOSPHERE RECYCLING IN THE BIOSPHERE THINK ABOUT IT CHAPTER 3 THE BIOSHPERE 3.4 Mrs. Michaelsen A handful of elements combine to form the building blocks of all known organisms. Organisms cannot manufacture these elements and do not use them

More information

Ch. 5 - Nutrient Cycles and Soils

Ch. 5 - Nutrient Cycles and Soils Ch. 5 - Nutrient Cycles and Soils What are Nutrient (biogeochemical) Cycles? a process by which nutrients are recycled between living organisms and nonliving environment. The three general types of nutrient

More information

TABLE OF CONTENTS. 4, Environmental Chemistry 2, Biogeochemical cycle of carbon and nitrogen

TABLE OF CONTENTS. 4, Environmental Chemistry 2, Biogeochemical cycle of carbon and nitrogen Subject Paper No and Title Module No and Title Module Tag CHE_P4_M2 TABLE OF CONTENTS 1. Learning outcomes 2. Introduction 2.1. Bio-distribution of elements 2.2. Biogeochemical cycles 3. Carbon cycle 3.1.

More information

BIOGEOCHEMICAL CYCLES: The RECYCLING of MATERIALS through living organisms and the physical environment.

BIOGEOCHEMICAL CYCLES: The RECYCLING of MATERIALS through living organisms and the physical environment. BIOGEOCHEMICAL CYCLES: The RECYCLING of MATERIALS through living organisms and the physical environment. BIOCHEMIST: Scientists who study how LIFE WORKS at a CHEMICAL level. The work of biochemists has

More information

MICROBES IN ECOLOGY INTRODUCTION

MICROBES IN ECOLOGY INTRODUCTION MICROBES IN ECOLOGY INTRODUCTION - Microbes usually live in communities and rarely as individuals They are Present in every known ecosystem Over 99% of microbes contribute to the quality of human life

More information

Cycling and Biogeochemical Transformations of N, P, S, and K

Cycling and Biogeochemical Transformations of N, P, S, and K Cycling and Biogeochemical Transformations of N, P, S, and K OCN 401 - Biogeochemical Systems 18 September 2012 Reading: Schlesinger, Chapter 6 1. Nitrogen cycle Soil nitrogen cycle Nitrification Emissions

More information

CHEMICAL: CARBON and OXYGEN (read 44-45; in Dodson)

CHEMICAL: CARBON and OXYGEN (read 44-45; in Dodson) BIOE 155, Fall BACKGROUND INFORMATION CHEMICAL: CARBON and OXYGEN (read -5; 3-39 in Dodson) Types of molecules Organic: compounds containing Carbon-Hydrogen bonds Inorganic: everything else. Photosynthesis

More information

Cycling and Biogeochemical Transformations of N, P, S, and K

Cycling and Biogeochemical Transformations of N, P, S, and K Cycling and Biogeochemical Transformations of N, P, S, and K OCN 401 - Biogeochemical Systems 24 September 2013 Reading: Schlesinger & Bernhardt, Chapter 6 1. Nitrogen cycle Soil nitrogen cycle Nitrification

More information

Lakes, Primary Production, Budgets and Cycling Schlesinger and Bernhardt (2013): Chapter 8, p

Lakes, Primary Production, Budgets and Cycling Schlesinger and Bernhardt (2013): Chapter 8, p OCN 401-Biogeochemical Systems Lecture #12 (10.8.13) Angelos Hannides, hannides@hawaii.edu Lakes, Primary Production, Budgets and Cycling Schlesinger and Bernhardt (2013): Chapter 8, p. 288-308 1. Physical

More information

WHY DO WE NEED NITROGEN?? Nitrogen is needed to make up DNA and protein!

WHY DO WE NEED NITROGEN?? Nitrogen is needed to make up DNA and protein! Nitrogen Cycle 2.2 WHY DO WE NEED NITROGEN?? Nitrogen is needed to make up DNA and protein! In animals, proteins are vital for muscle function. In plants, nitrogen is important for growth. NITROGEN Nitrogen

More information

EQ: How are nutrients recycled throughout the environment?

EQ: How are nutrients recycled throughout the environment? EQ: How are nutrients recycled throughout the environment? Biogeochemical Cycles Recall that matter is neither created nor destroyed; but it can transform and be passed on. Biogeochemical cycles: how water,

More information

2.2 Nutrient Cycles in Ecosystems

2.2 Nutrient Cycles in Ecosystems 2.2 Nutrient Cycles in Ecosystems CARBON CYCLE A. Carbon Facts: Carbon is found in all living matter. Places that carbon is found are called stores or sinks Short-term Stores Long-term Stores - living

More information

CO 2 (g) + H 2 O = H 2 CO 3 log K H = HCO 3 log K 1 = HCO - 3 = H CO 3 log K 2 = -9.0

CO 2 (g) + H 2 O = H 2 CO 3 log K H = HCO 3 log K 1 = HCO - 3 = H CO 3 log K 2 = -9.0 Ocean 400 Chemical Oceanography Winter 2006 Your Name Final Exam Read all questions carefully before you begin to answer. Use the back of the pages if necessary. Points are assigned to each question in

More information

5/6/2015. Matter is recycled within and between ecosystems.

5/6/2015. Matter is recycled within and between ecosystems. Biogeochemical Cycles/ Nutrient Cycles Biogeochemical Cycle Evaporation Water Cycle Transpiration Condensation Precipitation Runoff Vocabulary Seepage Root Uptake Carbon Cycle Phosphorus Cycle Nitrogen

More information

UNIT 1 SUSTAINING ECOSYSTEMS

UNIT 1 SUSTAINING ECOSYSTEMS UNIT 1 SUSTAINING ECOSYSTEMS Chapter 2 Biogeochemical Cycles Science 10 Change & Recovery in Ecosystems (you do not need to copy) What happens to the materials that make up a truck when it begins to rust?

More information

BIOGEOCHEMICAL and NATURAL CYCLES WHAT COMES AROUND, GOES AROUND

BIOGEOCHEMICAL and NATURAL CYCLES WHAT COMES AROUND, GOES AROUND BIOGEOCHEMICAL and NATURAL CYCLES WHAT COMES AROUND, GOES AROUND By Scientist Cindy of www.scientistcindy.com https://smartermoms.wordpress.com/2014/11/20/full-circle-moments/ What is the world is BIOGEOCHEMICAL

More information

2.2 Nutrient Cycles in Ecosystems. Review How energy flows What is the difference between a food chain, food web, and food pyramid?

2.2 Nutrient Cycles in Ecosystems. Review How energy flows What is the difference between a food chain, food web, and food pyramid? 2.2 Nutrient Cycles in Ecosystems Review How energy flows What is the difference between a food chain, food web, and food pyramid? https://www.youtube.com/watch?v=xhr1iebeops https://www.youtube.com/watch?v=alusi_6ol8m

More information

BC Science Nutrient Cycles in Ecosystems

BC Science Nutrient Cycles in Ecosystems BC Science 10 2.2 Nutrient Cycles in Ecosystems Notes Nutrients are chemicals required for growth and other life processes. Nutrients move through the biosphere in nutrient cycles (n.c), or exchanges.

More information

REMOVAL OF HARDNESS BY PRECIPITATION

REMOVAL OF HARDNESS BY PRECIPITATION REMOVAL OF HARDNESS BY PRECIPITATION Hardness divalent cations If hardness is too high Ca 2+ + Mg 2+ + Fe 2+ + Mn 2+ + Sr 2+... precipitation of soap, scaling on pipes, boilers, cooling towers, heat exchangers.

More information

Ecosystems: Nutrient Cycles

Ecosystems: Nutrient Cycles Ecosystems: Nutrient Cycles Greeks, Native Peoples, Buddhism, Hinduism use(d) Earth, Air, Fire, and Water as the main elements of their faith/culture Cycling in Ecosystems the Hydrologic Cycle What are

More information

Pennsylvania Senior Environment Corps. Table of Contents Part 2 Getting Started:. 21 Chemical Analysis... 22

Pennsylvania Senior Environment Corps. Table of Contents Part 2 Getting Started:. 21 Chemical Analysis... 22 Table of Contents Part 2 Getting Started:. 21 Chemical Analysis.... 22 3 Chapter 2: Getting Started 21 Chemical Analysis of the Water Dependent on your area, you may measure for several parameters. In

More information

Cycles of Matter. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall

Cycles of Matter. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall Cycles of Matter 1 of 33 The purpose of this lesson is to learn the water, carbon, nitrogen, and phosphorus cycles. This PowerPoint will provide most of the required information you need to accomplish

More information

FilterSorb SP3 Treatment Method: Part II

FilterSorb SP3 Treatment Method: Part II FilterSorb SP3 Treatment Method: Part II By Deepak Chopra WatchvWater GmbH Fahrlachstraße 14 68165 Mannheim Germany May 2013 Web: www.watchwater.de email: info@watchwater.de Telefon: +49 (0) 621 87951-0

More information

ENVE203 Environmental Engineering Ecology (Oct 08, 2012)

ENVE203 Environmental Engineering Ecology (Oct 08, 2012) ENVE203 Environmental Engineering Ecology (Oct 08, 2012) Elif Soyer Ecosystem and Physical Environment Cycling of Materials within Ecosystems Energy flows in one direction through an ecosystem Matter moves

More information

Plant Nutrients (1): Nitrogen and Sulfur

Plant Nutrients (1): Nitrogen and Sulfur Plant Nutrients (1): Nitrogen and Sulfur Main Objectives Capable of asking a systematic set of questions about all relevant nutrients, and providing a basic answer to each questions. Comprehend the global

More information

Nutrient Cycles. I. Biogeochemical Cycles

Nutrient Cycles. I. Biogeochemical Cycles Nutrient Cycles Chapter 3: The Biosphere I. Biogeochemical Cycles a. a.k.a. nutrient cycles b. Nature does not throw anything away c. Cycle the path from nonliving environments to living organisms and

More information

13.5. Cycling of Matter. Water cycles through the environment.

13.5. Cycling of Matter. Water cycles through the environment. 13.5 Cycling of Matter VOCABULARY hydrologic cycle biogeochemical cycle nitrogen fixation KEY CONCEPT Matter cycles in and out of an ecosystem. Main Ideas Water cycles through the environment. Elements

More information

Lakes: Primary Production, Budgets and Cycling. Lecture Outline

Lakes: Primary Production, Budgets and Cycling. Lecture Outline OCN 401-Biogeochemical Systems (10.06.16) Lakes: Primary Production, Budgets and Cycling Reading: Schlesinger, Chapter 8 Lecture Outline 1. Seasonal cycle of lake stratification Temperature / density relationship

More information

Lakes: Primary Production, Budgets and Cycling

Lakes: Primary Production, Budgets and Cycling OCN 401-Biogeochemical Systems (9.28.17) Lakes: Primary Production, Budgets and Cycling Reading: Schlesinger, Chapter 8 Lecture Outline 1. Seasonal cycle of lake stratification Temperature / density relationship

More information

Transport & Transformation of chemicals in an ecosystem, involving numerous interrelated physical, chemical, & biological processes

Transport & Transformation of chemicals in an ecosystem, involving numerous interrelated physical, chemical, & biological processes OPEN Wetland Ecology Lectures 14-15-16 Wetland Biogeochemistry What is biogeochemical cycling? Transport & Transformation of chemicals in an ecosystem, involving numerous interrelated physical, chemical,

More information

The Biosphere Chapter 3. What Is Ecology? Section 3-1

The Biosphere Chapter 3. What Is Ecology? Section 3-1 The Biosphere Chapter 3 What Is Ecology? Section 3-1 Interactions and Interdependence Ecology is the scientific study of interactions among organisms and between organisms and their environment, or surroundings.

More information

Photosynthesis and cellular respiration A. photosynthesis the process of converting carbon dioxide and water into glucose and oxygen

Photosynthesis and cellular respiration A. photosynthesis the process of converting carbon dioxide and water into glucose and oxygen APES CHAPTER 3 NOTES (MRS. BAUCK): ECOSYSTEM ECOLOGY MODULE 6: The Movement of Energy I. Unclear ecosystem boundaries A. general terms 1) biota = biotic community plants, animals, and microbes of an area

More information

Know What You re Monitoring! Since not all of us are water chemists, here is a brief understanding of what your different tools measure

Know What You re Monitoring! Since not all of us are water chemists, here is a brief understanding of what your different tools measure 1 Know What You re Monitoring! Since not all of us are water chemists, here is a brief understanding of what your different tools measure Extech EC400 meters Salinity (SAL) Total Dissolved Solids (TDS)

More information

Biogeochemical Cycles

Biogeochemical Cycles Biogeochemical Cycles Biogeochemical Cycles refers to the cycling of materials between living things and the environment. Text Pages 50 51, 62 69 1 The Oxygen Cycle the movement of oxygen between the atmosphere

More information

General Information on Nitrogen

General Information on Nitrogen General Information on Nitrogen What is nitrogen? Nitrogen was discovered in 1772 by Daniel Rutherford in Scotland Nitrogen gas makes up nearly 80% of the air we breathe Nitrogen gas is not toxic Nitrogen

More information

BIOGEOCHEMICAL CYCLES INTRODUCTION THE CYCLING PROCESS TWO CYCLES: CARBON CYCLE NITROGEN CYCLE HUMAN IMPACTS GLOBAL WARMING AQUATIC EUTROPHICATION

BIOGEOCHEMICAL CYCLES INTRODUCTION THE CYCLING PROCESS TWO CYCLES: CARBON CYCLE NITROGEN CYCLE HUMAN IMPACTS GLOBAL WARMING AQUATIC EUTROPHICATION BIOGEOCHEMICAL CYCLES INTRODUCTION THE CYCLING PROCESS TWO CYCLES: CARBON CYCLE NITROGEN CYCLE HUMAN IMPACTS GLOBAL WARMING AQUATIC EUTROPHICATION BIOGEOCHEMICAL CYCLES: The RECYCLING of MATERIALS through

More information

Lysis and Autooxidation. Organic Nitrogen (net growth) Figure by MIT OCW.

Lysis and Autooxidation. Organic Nitrogen (net growth) Figure by MIT OCW. Bacterial Decomposition any hydrolysis Nitrification Organic Nitrogen (proteins; urea) O Ammonia Nitrogen 2 Nitrate (NO - O 2 ) 2 Nitrate (NO- 3 ) Assimilation Organic Nitrogen (bacterial cells) Lysis

More information

2.2 Nutrient Cycles in Ecosystems

2.2 Nutrient Cycles in Ecosystems 2.2 Nutrient Cycles in Ecosystems are chemicals required for growth and other life processes. Nutrients move through the biosphere in Nutrients often accumulate in areas called Without interference, generally

More information

Elements essential for life also cycle through ecosystems.

Elements essential for life also cycle through ecosystems. 13.5 Cycling of Matter KEY CONCEPT Matter cycles in and out of an ecosystem. MAIN IDEAS Water cycles through the environment. Elements essential for life also cycle through ecosystems. VOCABULARY hydrologic

More information

Oceanography Lecture 16

Oceanography Lecture 16 Only those that intend the absurd, achieve the impossible Escher Oceanography Lecture 16 a. Dissolved gases b. The chemistry of Life and Biogeochemical Cycles c. Nutrient cycles d. The carbonate system

More information

Slide 1. Slide 2. Slide 3. Hardness. Concentration is. What s the concentration of red triangles? What s in your pipes? 500 ml

Slide 1. Slide 2. Slide 3. Hardness. Concentration is. What s the concentration of red triangles? What s in your pipes? 500 ml Slide 1 Hardness What s in your pipes? Slide 2 What s the concentration of red triangles? 500 ml 1 g 1 g 1 g A. 10 B. 10 C. D. 1 g 1 g It s all of the above! Slide 3 Concentration is any statement of the

More information

Biogeochemical cycles

Biogeochemical cycles Biogeochemical cycles Microbial Ecology SS2010 www.icbm.de/pmbio Biogeochemistry The study of the exchange of material between the living and nonliving components of the biosphere. The biogeochemical cycling

More information

Lecture 18. Soil Acidity, Alkalinity, and Socidity

Lecture 18. Soil Acidity, Alkalinity, and Socidity Lecture 18 Soil Acidity, Alkalinity, and Socidity 1 Questions ow can acidification occur in soils? ow does p affects availability of N, P, K? ow can acidic soils be managed? Define a saline and sodic soil.

More information

Nitrates are essential for plant growth

Nitrates are essential for plant growth THE NITROGEN CYCLE Nitrates are essential for plant growth Plant protein Root uptake Nitrate NO 3 Nitrates are recycled via microbes Animal protein Soil organic nitrogen Ammonification Ammonium NH 4 +

More information

OPTION C.6 NITROGEN & PHOSPHORUS CYCLES

OPTION C.6 NITROGEN & PHOSPHORUS CYCLES OPTION C.6 NITROGEN & PHOSPHORUS CYCLES C.6 A Cycle INTRO https://www.thewastewaterblog.com/single-post/2017/04/29/-cycle-and-other-graphics IB BIO C.6 3 The nitrogen cycle describes the movement of nitrogen

More information

Biogeochemical Cycles

Biogeochemical Cycles Biogeochemical Cycles SB4b. Explain the flow of matter and energy through ecosystems by explaining the need for cycling of major nutrients (C, O, H, N, P). Biogeochemical Cycles describe the flow of essential

More information

3.3 Minerals. Describe the characteristics that define minerals.

3.3 Minerals. Describe the characteristics that define minerals. 3.3 Minerals Describe the characteristics that define minerals. Are you a mineral? There used to be a TV commercial that said "you are what you eat." If that s true - and to some extent it is - then you

More information

Ecosystems and Nutrient Cycles Chapters 3

Ecosystems and Nutrient Cycles Chapters 3 Ecosystems and Nutrient Cycles Chapters 3 Prokaryotic and Eukaryotic cells Figure 3-2 Prokaryotic cells: Have organelles. Bacteria and Archaea are composed of prokaryotic cells. Eukaryotic cells: cells,

More information

Cycling and Biogeochemical Transformations of N, P, S, and K

Cycling and Biogeochemical Transformations of N, P, S, and K Cycling and Biogeochemical Transformations of N, P, S, and K OCN 401 - Biogeochemical Systems 23 September 2014 Reading: Schlesinger & Bernhardt, Chapter 6 2014 Frank Sansone 1. Nitrogen cycle Soil nitrogen

More information

We share the Earth. Ecology & Environmental Issues

We share the Earth. Ecology & Environmental Issues We share the Earth Ecology & Environmental Issues 1 with a whole lot of other creatures We don t share very well. 2 Ecology Putting it all together study of interactions between creatures & their environment,

More information

CE421/521 Environmental Biotechnology. Nitrogen and Phosphorus Cycles Lecture Tim Ellis

CE421/521 Environmental Biotechnology. Nitrogen and Phosphorus Cycles Lecture Tim Ellis CE421/521 Environmental Biotechnology Nitrogen and Phosphorus Cycles Lecture 9-269 26-06 Tim Ellis Nitrification Kinetics µ = µ K maxs NH 4 S + S NH4 K O S O2 + S O2 where µ max = maximum specific growth

More information

TERRESTRIAL ECOLOGY PART DUEX. Biogeochemical Cycles Biomes Succession

TERRESTRIAL ECOLOGY PART DUEX. Biogeochemical Cycles Biomes Succession DO NOW: -GRAB PAPERS FOR TODAY -GET A HIGHLIGHTER -UPDATE HW FOR TONIGHT COMPLETE AQUATIC ECOLOGY PACKET (INCLUDES VIDEO) -BEGIN READING THROUGH THE LECTURE TERRESTRIAL ECOLOGY PART DUEX Biogeochemical

More information

Biogeochemical Cycles. {Living World

Biogeochemical Cycles. {Living World Biogeochemical Cycles {Living World What Sustains Life on Earth? Solar energy, the cycling of matter, and gravity sustain the earth s life. Earth's Spheres Atmosphere layer of air that surrounds the Earth

More information

with sewage effluent Nutrient enrichment ( Eutrophication ) Algal Blooms Deaeration of the watercourse oxidation of ammonia a potable.

with sewage effluent Nutrient enrichment ( Eutrophication ) Algal Blooms Deaeration of the watercourse oxidation of ammonia a potable. Chapter-4 Prof. Dr. Samir Afifi Nutrient Removal from wastewaters Major problems associated with sewage effluent Nutrient enrichment ( Eutrophication ) Algal Blooms Deaeration of the watercourse oxidation

More information

Bio Microbiology - Spring 2010 Study Guide 09.

Bio Microbiology - Spring 2010 Study Guide 09. Bio 230 - Microbiology - Spring 2010 Study Guide 09 https://www8.georgetown.edu/centers/cndls/applications/postertool/data/users/cartoon044.jpg http://www.cbu.edu/~jvarrian/122/absspex.html http://courses.cm.utexas.edu/emarcotte/ch339k/fall2005/lecture-ch19-3/slide5.jpg

More information

3 3 CYCLES OF MATTER

3 3 CYCLES OF MATTER 3 3 CYCLES OF MATTER REVIEW: 1. What is an element? 2. What is a compound? 3. What are the 6 elements that are most important to living things? Matter = a substance that takes up space. BIOGEOCHEMICAL

More information

Santa Rosa Creek Water Quality Results 2004

Santa Rosa Creek Water Quality Results 2004 Santa Rosa Creek Water Quality Results 24 Community Clean Water Institute Site Description: SRC4: Off 3rd Street in downtown Santa Rosa. Behind the Vineyard Hotel just West of Highway 11 along the Prince

More information

2.2 Nutrient Cycles in Ecosystems Name: Date: (Reference: BC Science 10 pp. 68 to 91) Block: NUTRIENT CYCLING IN THE BIOSPHERE. nutrients: aka.

2.2 Nutrient Cycles in Ecosystems Name: Date: (Reference: BC Science 10 pp. 68 to 91) Block: NUTRIENT CYCLING IN THE BIOSPHERE. nutrients: aka. 2.2 Nutrient Cycles in Ecosystems Name: Date: (Reference: BC Science 10 pp. 68 to 91) Block: NUTRIENT CYCLING IN THE BIOSPHERE nutrients: stores: aka Nutrients are accumulated for short or long periods

More information

Biosphere & Biogeochemical Cycles

Biosphere & Biogeochemical Cycles Biosphere & Biogeochemical Cycles Biosphere Sphere of living organisms All the regions of the earth and its atmosphere in which living organisms are found or can live. Interacts with all the other spheres

More information

Membrane Technology: From Manufacture to. May Production

Membrane Technology: From Manufacture to. May Production Membrane Technology: From Manufacture to May 2018 Production Osmosis Graphic pulled from https://earthobservatory.nasa.gov/features/water/page2.php Water Sources Surface Waters Ground Water Seawater Lakes

More information

Ecology Ecology is the study of interactions between organisms and their environment.

Ecology Ecology is the study of interactions between organisms and their environment. Ecology Ecology Ecology is the study of interactions between organisms and their environment. Population ecology Community ecology Ecosystem ecology Ecology vs. Environmentalism Ecology - the study of

More information

2. WATER. Wet Processing I (Pretreatment)

2. WATER. Wet Processing I (Pretreatment) 2. WATER Wet Processing I Q. Define water. Water is a complex compound. It is very important compound in textile wet processing. The total amount of water in the world is about 75%. Natural water is obtained

More information