ure Outline edulability tests for fixed-priority systems ctical factors nues from material in lecturee 5, with the same assumption

Size: px
Start display at page:

Download "ure Outline edulability tests for fixed-priority systems ctical factors nues from material in lecturee 5, with the same assumption"

Transcription

1 riority-driven Scheduling f Periodic Ta asks (2) Embedded Softw ware Lectu ure 6 Real-Time

2 ure Outline edulability tests for fixed-priority systems onditions for optimality and schedulability eneral schedulability tests and time demand analysis ctical factors on-preemptable regions elf-suspension ontext switches imited priority levels nues from material in lecturee 5, with the same assumption

3 mality and Schedulability will recall: DF and LST dynamic priority scheduling optimal: Always produce a feasible schedule if one exists on a single processor, as long a preemption is allowed and jobs do not contend for resources Lecture 3 + confirmation last lecture: U EDF = 1 ixed priority algorithms is non-optimal in general: e.g. RM and DM sometimes fail to schedule tasks that can be scheduled using oth algorithms Proof: ence introduced schedulability testss in lecture 5

4 mality of RM and DM Algorithms ed priority algorithms can be optimal in restricted systems mple: M and DM are optimal in simply periodic systems system of periodic tasks is simply periodic if the period of each task is an ultiple of the period of the other tasks: p k = n p i where p i < p k and n is a positive integer; for all T i and T k rue for many real-world systems, e.g. the helicopter flight control system iscussed in lecture 1

5 mality of RM and DM Algorithms orem: A system of simply periodic, independent, preempt s with D i p i is schedulable on one processor using the R rithm if and only if U 1 orollary: The same is true for the DM algorithm of: simply periodic system, assume tasks in phase Worst case execution time occurs when tasks in phase i misses deadline at time t where t is an integer multiple of p i Again, worst case D i = p i imply periodic t integer multiple of periods of all higher priority tasks otal time required to complete jobs with deadline t is nly fails when U i > 1

6 dulability of Fixed-Priority Tasks ntified several simple schedulability tests for fixed-priority eduling: system of n independent preemptable periodic tasks with D i = p i c easibly scheduled on one processor using RM if U system of simply periodic independent preemptable tasks with D i chedulable on one processor using the RM algorithm iff U 1 similar results for DM] : there are algorithms and regions of operation where we d e a schedulability test and must resort to exhaustive simul s there a more general schedulability test? es, extend the approach taken for simply periodic system schedula

7 d-priority Tasks: Schedulability Test ed priority algorithms are predictable and do not suffer fro eduling anomalies he worst case execution time of the system occurs with the worst case exec ime of the jobs, unlike dynamic priority algorithms which can exhibit anom ehavior this as the basis for a general schedulability test: ind the critical instant when the system is most loaded, and has its worst esponse time se time demand analysis to determine if the system is schedulable at that nstant rove that, if a fixed-priority system is schedulable at the critical instant, it lways schedulable

8 ing the Critical Instant itical instant for a job is the worst-case release time for th, taking into account all jobs that have higher priority.e. a job released at the same instant as all jobs with higher priority eleased, and must wait for all those jobs to complete before it execu he response time of a job in T i released at a critical instant is called aximum (possible) response time, and is denoted by W i schedulability test involves checking each task in turn, to ify that it can be scheduled when started at a critical instan f schedulable at all critical instants, will work at other times ore work than the test for maximum schedulable utilization, but le han an exhaustive simulation

9 ing the Critical Instant itical instant of a task T i is a time instant such that: f w i,k D i,k for every J i,k in T i, then he job released at that instant has the maximum response time of a n T i and W i = w i,k. All jobs meet deadlines, but this instant is when the job with the slowes response is started lse if there exists J i,k such that w i,k > D i,k, then he job released at that instant has response time larger than D. If some jobs don t meet deadlines, this is one of those jobs. here w i,k is the response time of the job. orem: In a fixed-priority system where every job complete ore the next job in the same task is released, a critical insta urs when one of its jobs J i,c is released at the same time wi from every higher-priority task. ntuitively obvious, but proved in the book

10 ing the Critical Instant: Example sider 3 tasks (2.0, 0.6), T2 = (2.5, 0.2), T3 = (3, 1.2) 5 10 sks scheduled using rate-monotonic response times of jobs in T 2 are: 2,1 = 0.8, r 2,2 = 0.3, r 2,3 = 0.2, r 2,4 = 0.2, r 2,5 = 0.8, herefore, the critical instants of T 2 are t = 0 and t = 10 at are the response times of jobs in T 3?

11 g the Critical Instant ing determined the critical instants, show that each job J i,c released at a critical instant, that job and all h rity tasks complete executing before their relative deadlin o, the entire system be schedulable t is: don t simulate the entiree system, simply show that it h rect characteristics following a critical instant his process is called time demandd analysis

12 -Demand Analysis pute the total demand for processor time by a job release ical instant of a task, and by all the higher-priority tasks, a ction of time from the critical instant ck if this demand can be met before the deadline of the job onsider one task, T i, at a time, starting highest priority and workin own to lowest priority ocus on a job, J i, in T i, where the release time, t 0, of that job is a cri nstant of T i t time t 0 + t for t 0, the processor time demand w i (t) for this job igher-priority jobs released in [t 0 0, t ] is:

13 -Demand Analysis pare the time demand, w i (t), with the available time, t: f w i (t) t for some t D i, the job, J i, meets its deadline, t 0 + D i f w i (t) > t for all 0 < t D i then the task probably cannot complete b eadline; and the system likely cannot be scheduled using a fixed pr lgorithm Note that this is a sufficient condition, but not a necessary condition. Simulation may show that the critical instant never occurs in practice, s system could be feasible this method to check that alll tasks are schedulable if relea heir critical instants; if so conclude the entire system can b eduled

14 -Demand Analysis: Example e Monotonic: (3,1), T 2 =(5,2), T 3 =(10,2) time-demand functions 10 t), w 2 (t), and w 3 (t) not above t heir deadline 8 ystem can cheduled Time-demand function, w i (t) J 3,1 startss with a timeof 5 units; demand 2 for itself, 2 for J2,1, 1 for J1,11 Deadline for J 2,1 w 3 (t) w 2 (t) Dead w 1 (t) 0 Deadline for J 1, Tim

15 -Demand Analysis time-demand function w i (t) is a staircase function teps in the time-demand for a task occur at multiples of the period igher-priority tasks he value of w i (t) t linearly decreases from a step until the next ste ur interest is the schedulability of a task, it suffices to chec t) t at the time instants when a higher-priority job is rele schedulability test becomes: ompute w i (t) heck whether w i (t) t is satisfied at any of the instants t = j p k here k = 1, 2,, i j = 1, 2,, ëmin(p i, D i )/p k û

16 -Demand Analysis: Exercise the following tasks: (3,1), T 2 = (5, 1.5), T 3 = (7, 1.25), T 4 = (9, 0.5) raw the time-demand functions etermine if they are RM schedulable one more task (10, 1) raw the time-demand functions etermine if they are RM schedulable

17 -Demand Analysis: Summary e-demand analysis schedulability test is more complex tha schedulable utilization test, but more general orks for any fixed-priority scheduling algorithm, provided the tas ave short response time (i.e. p i < D i ) an be extended to tasks with arbitrary deadlines (see book) nly a sufficient test: guarantees that schedulable results are correc equires further testing to validate a result of not schedulable rnative approach: simulate the behavior of tasks released critical instants, up to the largest period of the tasks till involves simulation, but less complex than an exhaustive simula f the system behavior orst-case simulation method an easily extend the time-demand analysis method for non-preemp

18 tical Factors have assumed that: obs are preemptable at any time obs never suspend themselves ach job has distinct priority he scheduler is event driven and acts immediately se assumptions are often not valid how does this affect t tem?

19 king and Priority Inversion ady job is blocked when it is prevented from executing by er-priority job; a priority inversion is when a lower-priori executes while a higher-priority job is blocked preemptibility ome jobs cannot be pre-empted: Critical section over a resource Some system calls are non-preemptable Disk scheduling f a job becomes non-preemptable, priority inversions may occur, th ay cause a higher priority task to miss its deadline hen attempting to determine if a task meets all of its deadlines, m onsider not only all the tasks thatt have higher priorities, but also onpreemptable regions of lower-prioritdd the blocking time in when calculating if a task is tasks schedulable

20 Suspension and Context Switches -suspension job may invoke an external operation (e.g. request an I/O operatio uring which time it is suspendedd his means the task is no longer strictly periodic again need to tak ccount self-suspension time when calculating a schedule text Switches ssume maximum number of context switches K i for a job in T i is kn ach takes t CS time units ompensate by setting execution time of each job, actual = e i + 2 T cs re if jobs self-suspend, since additional context switches)

21 Scheduling of our previous discussion of priority-driven scheduling w en by events (job release and completion) rnatively, can perform priority-driven scheduling at perio nts (timer interrupts) generated by a hardware clock.e. tick (or time-based) scheduling itional factors to account for in schedulability analysis he fact that a job is ready to execute will not be noticed and acted upon un ext clock interrupt; this will delay the completion of the job ready job that is yet to be noticed by the scheduler must be held somewhe ther than the ready job queue, the pending job queue hen the scheduler executes, it moves jobs in the pending queue to the rea ueue according to their priorities; once in ready queue, the jobs execute in riority order

22 tical Factors ar that non-ideal behaviour can affect the schedulability of tem e touched on how more details later in the module

23 mary e discussed fixed-priority scheduling of periodic tasks: ptimality of RM and DM ore general schedulability tests and time-demand analysis lined practical factors that affect real-world periodic syste

Priority-Driven Scheduling of Periodic Tasks. Why Focus on Uniprocessor Scheduling?

Priority-Driven Scheduling of Periodic Tasks. Why Focus on Uniprocessor Scheduling? Priority-Driven Scheduling of Periodic asks Priority-driven vs. clock-driven scheduling: clock-driven: cyclic schedule executive processor tasks a priori! priority-driven: priority queue processor tasks

More information

ELC 4438: Embedded System Design Real-Time Scheduling

ELC 4438: Embedded System Design Real-Time Scheduling ELC 4438: Embedded System Design Real-Time Scheduling Liang Dong Electrical and Computer Engineering Baylor University Scheduler and Schedule Jobs are scheduled and allocated resources according to the

More information

Lecture Note #4: Task Scheduling (1) EECS 571 Principles of Real-Time Embedded Systems. Kang G. Shin EECS Department University of Michigan

Lecture Note #4: Task Scheduling (1) EECS 571 Principles of Real-Time Embedded Systems. Kang G. Shin EECS Department University of Michigan Lecture Note #4: Task Scheduling (1) EECS 571 Principles of Real-Time Embedded Systems Kang G. Shin EECS Department University of Michigan 1 Reading Assignment Liu and Layland s paper Chapter 3 of the

More information

Real-Time and Embedded Systems (M) Lecture 4

Real-Time and Embedded Systems (M) Lecture 4 Clock-Driven Scheduling Real-Time and Embedded Systems (M) Lecture 4 Lecture Outline Assumptions and notation for clock-driven scheduling Handling periodic jobs Static, clock-driven schedules and the cyclic

More information

Lab: Response Time Analysis using FpsCalc Course: Real-Time Systems Period: Autumn 2015

Lab: Response Time Analysis using FpsCalc Course: Real-Time Systems Period: Autumn 2015 Lab: Response Time Analysis using FpsCalc Course: Real-Time Systems Period: Autumn 2015 Lab Assistant name: Jakaria Abdullah email: jakaria.abdullah@it.uu.se room: 1235 Introduction The purpose of this

More information

Lecture 6: Scheduling. Michael O Boyle Embedded Software

Lecture 6: Scheduling. Michael O Boyle Embedded Software Lecture 6: Scheduling Michael O Boyle Embedded Software Overview Definitions of real time scheduling Classification Aperiodic no dependence No preemption EDD Preemption EDF Least Laxity Periodic Rate Monotonic

More information

Periodic task scheduling

Periodic task scheduling Periodic task scheduling Optimality of rate monotonic scheduling (among static priority policies) Utilization bound for EDF Optimality of EDF (among dynamic priority policies) Tick-driven scheduling (OS

More information

ENGG4420 CHAPTER 4 LECTURE 3 GENERALIZED TASK SCHEDULER

ENGG4420 CHAPTER 4 LECTURE 3 GENERALIZED TASK SCHEDULER CHAPTER 4 By Radu Muresan University of Guelph Page 1 ENGG4420 CHAPTER 4 LECTURE 3 November 14 12 9:44 AM GENERALIZED TASK SCHEDULER In practical applications we need to be able to schedule a mixture of

More information

Clock-Driven Scheduling

Clock-Driven Scheduling NOTATIONS AND ASSUMPTIONS: UNIT-2 Clock-Driven Scheduling The clock-driven approach to scheduling is applicable only when the system is by and large deterministic, except for a few aperiodic and sporadic

More information

Real Time Scheduling. Real Time Scheduling. Real-Time Scheduling. Scheduling

Real Time Scheduling. Real Time Scheduling. Real-Time Scheduling. Scheduling Real Time Scheduling Process control plants, robotics, air traffic control, telecommunications Real Time Computing is defined as:- a type of computing where the correctness of the system depends not only

More information

GENERALIZED TASK SCHEDULER

GENERALIZED TASK SCHEDULER CHAPTER 4 By Radu Muresan University of Guelph Page 1 ENGG4420 CHAPTER 4 LECTURE 4 November 12 09 2:49 PM GENERALIZED TASK SCHEDULER In practical applications we need to be able to schedule a mixture of

More information

DEADLINE MONOTONIC ALGORITHM (DMA)

DEADLINE MONOTONIC ALGORITHM (DMA) CHAPTER 4 By Radu Muresan University of Guelph Page 1 ENGG4420 CHAPTER 4 LECTURE 5 November 19 12 12:07 PM DEADLINE MONOTONIC ALGORITHM (DMA) RMA no longer remains an optimal scheduling algorithm for periodic

More information

CS510 Operating System Foundations. Jonathan Walpole

CS510 Operating System Foundations. Jonathan Walpole CS510 Operating System Foundations Jonathan Walpole Project 3 Part 1: The Sleeping Barber problem - Use semaphores and mutex variables for thread synchronization - You decide how to test your code!! We

More information

Announcements. Program #1. Reading. Is on the web Additional info on elf file format is on the web. Chapter 6. CMSC 412 S02 (lect 5)

Announcements. Program #1. Reading. Is on the web Additional info on elf file format is on the web. Chapter 6. CMSC 412 S02 (lect 5) Program #1 Announcements Is on the web Additional info on elf file format is on the web Reading Chapter 6 1 Selecting a process to run called scheduling can simply pick the first item in the queue called

More information

Clock-Driven Scheduling

Clock-Driven Scheduling Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:49 a.m. chap5 page 85 C H A P T E R 5 Clock-Driven Scheduling The previous chapter gave a skeletal description of clock-driven scheduling.

More information

Lecture 11: Scheduling

Lecture 11: Scheduling Design & Co-design of Embedded Systems Lecture 11: Scheduling Sharif University of Technology Computer Engineering Dept. Winter-Spring 2008 Mehdi Modarressi Processes and operating systems Dynamic vs.

More information

1

1 VE7104/INTRODUCTION TO EMBEDDED CONTROLLERS MULTITASKING AND THE REAL-TIME OPERATING SYSTEM The challenges of multitasking and real-time, Achieving multitasking with sequential programming, RTOS, Scheduling

More information

2. Scheduling issues. Common approaches /2. Common approaches /1. Common approaches / /18 UniPD - T. Vardanega 14/03/2018

2. Scheduling issues. Common approaches /2. Common approaches /1. Common approaches / /18 UniPD - T. Vardanega 14/03/2018 Common approaches /2 2. Scheduling issues Weighted round-robin scheduling With basic round-robin (which requires preemption) All ready jobs are placed in a FIFO queue CPU time quantized, that is, allotted

More information

Real-Time Systems. Modeling Real-Time Systems

Real-Time Systems. Modeling Real-Time Systems Real-Time Systems Modeling Real-Time Systems Hermann Härtig WS 2013/14 Models purpose of models describe: certain properties derive: knowledge about (same or other) properties (using tools) neglect: details

More information

Tasks or processes attempt to control or react to external events occuring in real time RT processes must be able to keep up events

Tasks or processes attempt to control or react to external events occuring in real time RT processes must be able to keep up events RTOS Characteristics Time constraints Shdli Scheduling C. Brandolese, W. Fornaciari Real-Time Systems Definition of real-time system A real-time system is one in which h the correctness of the computation

More information

3. Scheduling issues. Common approaches /2. Common approaches /1. Common approaches / /17 UniPD / T. Vardanega 06/03/2017

3. Scheduling issues. Common approaches /2. Common approaches /1. Common approaches / /17 UniPD / T. Vardanega 06/03/2017 Common approaches /2 3. Scheduling issues Weighted round-robin scheduling With basic round-robin All ready jobs are placed in a FIFO queue The job at head of queue is allowed to execute for one time slice

More information

Project 2 solution code

Project 2 solution code Project 2 solution code Project 2 solution code in files for project 3: Mutex solution in Synch.c But this code has several flaws! If you copied this, we will know! Producer/Consumer and Dining Philosophers

More information

Energy Efficient Fixed-Priority Scheduling for Real-Time Systems on Variable Voltage Processors

Energy Efficient Fixed-Priority Scheduling for Real-Time Systems on Variable Voltage Processors Energy Efficient Fixed-Priority Scheduling for Real-Time Systems on Variable Voltage Processors Gang Quan Xiaobo (Sharon) Hu Department of Computer Science & Engineering University of Notre Dame Notre

More information

Scheduling theory, part 1

Scheduling theory, part 1 Scheduling theory, part 1 Aperiodic jobs Pontus Ekberg Uppsala University 2017-09-01 Real-time systems? Not necessarily fast but always predictable 2 Real-time systems: theory & practice Practice Building

More information

Design and Implementation of LST Based Dynamic Scheduler on Real Time OS

Design and Implementation of LST Based Dynamic Scheduler on Real Time OS Design and Implementation of LST Based Dynamic Scheduler on Real Time OS Prasad M Kamath, Rakesh Belagali, Sushant S Kulkarni, Vinayak Hegde, Geetishree Mishra Department of Electronics and Communication,

More information

Mwave/OS: A Predictable Real-time DSP Operating System

Mwave/OS: A Predictable Real-time DSP Operating System Mwave/OS: A Predictable Real-time DSP Operating System Jay K. Strosnider and Daniel I. Katcher Department of Electrical& Computer Engineering Carnegie Mellon University Pittsburgh, PA 15213 strosnider@ece.cmu.edu

More information

Introduction to Real-Time Systems. Note: Slides are adopted from Lui Sha and Marco Caccamo

Introduction to Real-Time Systems. Note: Slides are adopted from Lui Sha and Marco Caccamo Introduction to Real-Time Systems Note: Slides are adopted from Lui Sha and Marco Caccamo 1 Overview Today: this lecture introduces real-time scheduling theory To learn more on real-time scheduling terminology:

More information

CHAPTER 4 CONTENT October :10 PM

CHAPTER 4 CONTENT October :10 PM CHAPTER 4 By Radu Muresan University of Guelph Page 1 CHAPTER 4 CONTENT October 30 09 4:10 PM UNIPROCESSOR SCHEDULING Real Time Task Model Concepts Types of Real Time Tasks and Their Characteristics Task

More information

Real-Time Scheduler Design For Embedded System Domain

Real-Time Scheduler Design For Embedded System Domain Real-Time Scheduler Design For Embedded System Domain Anil Kumar Mishra #, Yogomaya Mohapatra*, Ashis Kumar Mishra # # Department of Computer Science & Engineering, Orissa Engineering College Bhubaneswar,

More information

CS 143A - Principles of Operating Systems

CS 143A - Principles of Operating Systems CS 143A - Principles of Operating Systems Lecture 4 - CPU Scheduling Prof. Nalini Venkatasubramanian nalini@ics.uci.edu CPU Scheduling 1 Outline Basic Concepts Scheduling Objectives Levels of Scheduling

More information

Chapter 9 Uniprocessor Scheduling

Chapter 9 Uniprocessor Scheduling Operating Systems: Internals and Design Principles Chapter 9 Uniprocessor Scheduling Eighth Edition By William Stallings Table 9.1 Types of Scheduling Long- t er m schedul i ng The decision to add to the

More information

Q1. What is Real time system? Explain the basic model of Real time system. (8)

Q1. What is Real time system? Explain the basic model of Real time system. (8) B. TECH VIII SEM I MID TERM EXAMINATION BRANCH: CSE SUB. CODE: 8CS4.2A SUBJECT: REAL TIME SYSTEM TIME ALLOWED: 2 Hours MAX. MARKS: 40 Q1. What is Real time system? Explain the basic model of Real time

More information

Real time scheduling for embedded systems

Real time scheduling for embedded systems Real time scheduling for embedded systems Introduction In many critical systems, tasks must compute a value within a given time bound The correctness of the system relies on these contraints Introduction

More information

Limited-preemptive Earliest Deadline First Scheduling of Real-time Tasks on Multiprocessors

Limited-preemptive Earliest Deadline First Scheduling of Real-time Tasks on Multiprocessors Limited-preemptive Earliest Deadline First Scheduling of Real-time Tasks on Multiprocessors Mälardalen University School of Innovation, Design and Technology Kaiqian Zhu Master Thesis 5/27/15 Examiner:

More information

Motivation. Types of Scheduling

Motivation. Types of Scheduling Motivation 5.1 Scheduling defines the strategies used to allocate the processor. Successful scheduling tries to meet particular objectives such as fast response time, high throughput and high process efficiency.

More information

CSC 553 Operating Systems

CSC 553 Operating Systems CSC 553 Operating Systems Lecture 9 - Uniprocessor Scheduling Types of Scheduling Long-term scheduling The decision to add to the pool of processes to be executed Medium-term scheduling The decision to

More information

CPU Scheduling. Chapter 9

CPU Scheduling. Chapter 9 CPU Scheduling 1 Chapter 9 2 CPU Scheduling We concentrate on the problem of scheduling the usage of a single processor among all the existing processes in the system The goal is to achieve High processor

More information

Enhancement in System Schedulability by Controlling Task Releases

Enhancement in System Schedulability by Controlling Task Releases Enhancement in System Schedulability by Controlling Task Releases Basharat Mahmood Department of Computer Science COMSATS Institute of Information Technology Islamabad, Pakistan Naveed Ahmad Department

More information

CS Advanced Operating Systems Structures and Implementation Lecture 10. Scheduling (Con t) Real-Time Scheduling.

CS Advanced Operating Systems Structures and Implementation Lecture 10. Scheduling (Con t) Real-Time Scheduling. Goals for Today S194-24 dvanced Operating Systems Structures and Implementation Lecture 10 Scheduling (on t) Real-Time Scheduling March 4 th, 2013 Prof. John Kubiatowicz http://inst.eecs.berkeley.edu/~cs194-24

More information

CPU SCHEDULING. Scheduling Objectives. Outline. Basic Concepts. Enforcement of fairness in allocating resources to processes

CPU SCHEDULING. Scheduling Objectives. Outline. Basic Concepts. Enforcement of fairness in allocating resources to processes Scheduling Objectives CPU SCHEDULING Enforcement of fairness in allocating resources to processes Enforcement of priorities Make best use of available system resources Give preference to processes holding

More information

Asymptotic Analysis of Real-Time Queues

Asymptotic Analysis of Real-Time Queues Asymptotic Analysis of John Lehoczky Department of Statistics Carnegie Mellon University Pittsburgh, PA 15213 Co-authors: Steve Shreve, Kavita Ramanan, Lukasz Kruk, Bogdan Doytchinov, Calvin Yeung, and

More information

Scheduling Processes 11/6/16. Processes (refresher) Scheduling Processes The OS has to decide: Scheduler. Scheduling Policies

Scheduling Processes 11/6/16. Processes (refresher) Scheduling Processes The OS has to decide: Scheduler. Scheduling Policies Scheduling Processes Don Porter Portions courtesy Emmett Witchel Processes (refresher) Each process has state, that includes its text and data, procedure call stack, etc. This state resides in memory.

More information

Real-Time Scheduling Theory and Ada

Real-Time Scheduling Theory and Ada Technical Report CMU/SEI-88-TR-033 ESD-TR-88-034 Real-Time Scheduling Theory and Ada Lui Sha John B. Goodenough November 1988 Technical Report CMU/SEI-88-TR-033 ESD-TR-88-034 November 1988 Real-Time Scheduling

More information

CPU Scheduling. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

CPU Scheduling. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University CPU Scheduling Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu CPU Scheduling policy deciding which process to run next, given a set of runnable

More information

FIFO SJF STCF RR. Operating Systems. Minati De. Department of Mathematics, Indian Institute of Technology Delhi, India. Lecture 6: Scheduling

FIFO SJF STCF RR. Operating Systems. Minati De. Department of Mathematics, Indian Institute of Technology Delhi, India. Lecture 6: Scheduling Operating Systems Minati De Department of Mathematics, Indian Institute of Technology Delhi, India. Lecture 6: Scheduling What is a scheduling policy? On context switch, which process to run next, from

More information

SimSo: A Simulation Tool to Evaluate Real-Time Multiprocessor Scheduling Algorithms

SimSo: A Simulation Tool to Evaluate Real-Time Multiprocessor Scheduling Algorithms : A Simulation Tool to Evaluate Real-Time Multiprocessor Scheduling Algorithms Maxime Chéramy, Pierre-Emmanuel Hladik and Anne-Marie Déplanche maxime.cheramy@laas.fr July 8, 2014 5th International Workshop

More information

Dual Priority Scheduling: A Means of Providing Flexibility in Hard Real-time Systems.

Dual Priority Scheduling: A Means of Providing Flexibility in Hard Real-time Systems. Dual Priority Scheduling: A Means of Providing Flexibility in Hard Real-time Systems Robert Davis Real-Time Systems Research Group, Department of Computer Science, University of York, Y1 5DD, England Email:

More information

CSE 451: Operating Systems Spring Module 8 Scheduling

CSE 451: Operating Systems Spring Module 8 Scheduling CSE 451: Operating Systems Spring 2017 Module 8 Scheduling John Zahorjan Scheduling In discussing processes and threads, we talked about context switching an interrupt occurs (device completion, timer

More information

CPU Scheduling (Chapters 7-11)

CPU Scheduling (Chapters 7-11) CPU Scheduling (Chapters 7-11) CS 4410 Operating Systems [R. Agarwal, L. Alvisi, A. Bracy, M. George, E. Sirer, R. Van Renesse] The Problem You re the cook at State Street Diner customers continuously

More information

Bounding Worst-Case Response Time for Tasks With Non-Preemptive Regions

Bounding Worst-Case Response Time for Tasks With Non-Preemptive Regions Bounding Worst-Case Response Time for Tasks With Non-Preemptive Regions Harini Ramaprasad, Frank Mueller Dept. of Computer Science, Center for Efficient, Secure and Reliable Computing North Carolina State

More information

Comp 204: Computer Systems and Their Implementation. Lecture 10: Process Scheduling

Comp 204: Computer Systems and Their Implementation. Lecture 10: Process Scheduling Comp 204: Computer Systems and Their Implementation Lecture 10: Process Scheduling 1 Today Deadlock Wait-for graphs Detection and recovery Process scheduling Scheduling algorithms First-come, first-served

More information

Schedulability Analysis of the Linux Push and Pull Scheduler with Arbitrary Processor Affinities

Schedulability Analysis of the Linux Push and Pull Scheduler with Arbitrary Processor Affinities Schedulability Analysis of the Linux Push and Pull Scheduler with Arbitrary Processor Affinities Arpan Gujarati Felipe Cerqueira Björn B. Brandenburg Max Planck Institute for Software Systems (MPI-SWS)

More information

CPU Scheduling. Basic Concepts Scheduling Criteria Scheduling Algorithms. Unix Scheduler

CPU Scheduling. Basic Concepts Scheduling Criteria Scheduling Algorithms. Unix Scheduler CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms FCFS SJF RR Priority Multilevel Queue Multilevel Queue with Feedback Unix Scheduler 1 Scheduling Processes can be in one of several

More information

Lecture 3. Questions? Friday, January 14 CS 470 Operating Systems - Lecture 3 1

Lecture 3. Questions? Friday, January 14 CS 470 Operating Systems - Lecture 3 1 Lecture 3 Questions? Friday, January 14 CS 470 Operating Systems - Lecture 3 1 Outline CPU scheduling Comparison criteria Scheduling algorithms First Come, First Serviced (FCFS) Shortest Job First (SJF)

More information

CPU Scheduling. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University

CPU Scheduling. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University CPU Scheduling Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu SSE3044: Operating Systems, Fall 2017, Jinkyu Jeong (jinkyu@skku.edu) CPU Scheduling

More information

CSC 1600: Chapter 5. CPU Scheduling. Review of Process States

CSC 1600: Chapter 5. CPU Scheduling. Review of Process States CSC 1600: Chapter 5 CPU Scheduling Review of Process States 1 OS Queuing Model Enter Ready queue CPU Exit Disk Queue Network Queue Printer Queue Processes enter and leave the system CPU Scheduling Each

More information

Course Outline. Embedded Real Time Operating System Chin Fu Kuo National University of Kaohsiung 2009 Fall

Course Outline. Embedded Real Time Operating System Chin Fu Kuo National University of Kaohsiung 2009 Fall Course Outline Embedded Real Time Operating System Chin Fu Kuo National University of Kaohsiung 2009 Fall Information Instructor: chinfukuo2006@nuk.edu.tw Office: M624 TA:? Course Materials Website http://www.csie.nuk.edu.tw/~kcf/course_main.htm

More information

CPU Scheduling. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University

CPU Scheduling. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University CPU Scheduling Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu EEE3052: Introduction to Operating Systems, Fall 2017, Jinkyu Jeong (jinkyu@skku.edu)

More information

An operating system executes a variety of programs: Batch system - jobs Time-shared systems - user programs or tasks

An operating system executes a variety of programs: Batch system - jobs Time-shared systems - user programs or tasks Process Concept An operating system executes a variety of programs: Batch system - jobs Time-shared systems - user programs or tasks Process - a program in execution; process execution must progress in

More information

Recall: Example of RR with Time Quantum = 20. Round-Robin Discussion

Recall: Example of RR with Time Quantum = 20. Round-Robin Discussion CS162 Operating Systems and Systems Programming Lecture 10 Scheduling February 21 st, 2018 Profs. Anthony D. Joseph and Jonathan Ragan-Kelley http://cs162.eecs.berkeley.edu Recall: Example of RR with Time

More information

CPU Scheduling. Disclaimer: some slides are adopted from book authors and Dr. Kulkarni s slides with permission

CPU Scheduling. Disclaimer: some slides are adopted from book authors and Dr. Kulkarni s slides with permission CPU Scheduling Disclaimer: some slides are adopted from book authors and Dr. Kulkarni s slides with permission 1 Recap Deadlock prevention Break any of four deadlock conditions Mutual exclusion, no preemption,

More information

א א א א א א א א

א א א א א א א א א א א W א א א א א א א א א 2008 2007 1 Chapter 6: CPU Scheduling Basic Concept CPU-I/O Burst Cycle CPU Scheduler Preemptive Scheduling Dispatcher Scheduling Criteria Scheduling Algorithms First-Come, First-Served

More information

CPU scheduling. CPU Scheduling

CPU scheduling. CPU Scheduling EECS 3221 Operating System Fundamentals No.4 CPU scheduling Prof. Hui Jiang Dept of Electrical Engineering and Computer Science, York University CPU Scheduling CPU scheduling is the basis of multiprogramming

More information

Operating Systems. Scheduling

Operating Systems. Scheduling Operating Systems Fall 2014 Scheduling Myungjin Lee myungjin.lee@ed.ac.uk 1 Scheduling In discussing processes and threads, we talked about context switching an interrupt occurs (device completion, timer

More information

Scheduling issues in mixedcriticality

Scheduling issues in mixedcriticality Scheduling issues in mixedcriticality systems Sanjoy Baruah The University of North Carolina at Chapel Hill Scheduling issues in mixedcriticality systems Integrated environments: Multiple systems on a

More information

Limited Preemptive Real-time Scheduling on Multiprocessors. Abhilash Thekkilakattil

Limited Preemptive Real-time Scheduling on Multiprocessors. Abhilash Thekkilakattil Limited Preemptive Real-time Scheduling on Multiprocessors Abhilash Thekkilakattil Mälardalen University- Sweden Västerås ( Westeros ) Stockholm Västerås Kerala, India Why am I here? 5 Why am I here? 6

More information

Environmental Management Systems

Environmental Management Systems Environmental Management Systems August 11, 2003 Frederic C. Murphy UML EMS Service Program 1 21st Century Management Why? UML EMS Service Program 2 21st Century Management Pressures 2002 Laws New England

More information

Scheduling I. Today. Next Time. ! Introduction to scheduling! Classical algorithms. ! Advanced topics on scheduling

Scheduling I. Today. Next Time. ! Introduction to scheduling! Classical algorithms. ! Advanced topics on scheduling Scheduling I Today! Introduction to scheduling! Classical algorithms Next Time! Advanced topics on scheduling Scheduling out there! You are the manager of a supermarket (ok, things don t always turn out

More information

Preemptive Scheduling of Multi-Criticality Systems with Varying Degrees of Execution Time Assurance

Preemptive Scheduling of Multi-Criticality Systems with Varying Degrees of Execution Time Assurance 28th IEEE International Real-Time Systems Symposium Preemptive Scheduling of Multi-Criticality Systems with Varying Degrees of Execution Time Assurance Steve Vestal steve.vestal@honeywell.com Honeywell

More information

Roadmap. Tevfik Koşar. CSE 421/521 - Operating Systems Fall Lecture - V CPU Scheduling - I. University at Buffalo.

Roadmap. Tevfik Koşar. CSE 421/521 - Operating Systems Fall Lecture - V CPU Scheduling - I. University at Buffalo. CSE 421/521 - Operating Systems Fall 2011 Lecture - V CPU Scheduling - I Tevfik Koşar University at Buffalo September 13 th, 2011 1 Roadmap CPU Scheduling Basic Concepts Scheduling Criteria & Metrics Different

More information

CPU Scheduling CPU. Basic Concepts. Basic Concepts. CPU Scheduler. Histogram of CPU-burst Times. Alternating Sequence of CPU and I/O Bursts

CPU Scheduling CPU. Basic Concepts. Basic Concepts. CPU Scheduler. Histogram of CPU-burst Times. Alternating Sequence of CPU and I/O Bursts Basic Concepts CPU Scheduling CSCI 315 Operating Systems Design Department of Computer Science Notice: The slides for this lecture have been largely based on those from an earlier What does it mean to

More information

Real-time System Overheads: a Literature Overview

Real-time System Overheads: a Literature Overview Real-time System Overheads: a Literature Overview Mike Holenderski October 16, 2008 Abstract In most contemporary systems there are several jobs concurrently competing for shared resources, such as a processor,

More information

Mode Change Protocols for Priority-Driven Preemptive Scheduling

Mode Change Protocols for Priority-Driven Preemptive Scheduling Technical Report CMU/SEI-88-TR-34 ESD-TR-88-035 Mode Change Protocols for Priority-Driven Preemptive Scheduling Lui Sha Ragunathan Rajkumar John Lehoczky Krithi Ramamritham November 1988 Technical Report

More information

Today s Papers. Composability is Essential. The Future is Parallel Software. EECS 262a Advanced Topics in Computer Systems Lecture 12

Today s Papers. Composability is Essential. The Future is Parallel Software. EECS 262a Advanced Topics in Computer Systems Lecture 12 EECS 262a Advanced Topics in Computer Systems Lecture 12 Multiprocessor/Realtime Scheduling October 8 th, 2012 Today s Papers Implementing Constant-Bandwidth Servers upon Multiprocessor Platforms Sanjoy

More information

The Design of SMART: A Scheduler for Multimedia Applications

The Design of SMART: A Scheduler for Multimedia Applications The Design of SMART: A Scheduler for Multimedia Applications Jason Nieh and Monica S. Lam {nieh,lam}@cs.stanford.edu Technical Report CSL-TR-96-697 Computer Systems Laboratory Stanford University June

More information

CS 111. Operating Systems Peter Reiher

CS 111. Operating Systems Peter Reiher Operating System Principles: Scheduling Operating Systems Peter Reiher Page 1 Outline What is scheduling? What are our scheduling goals? What resources should we schedule? Example scheduling algorithms

More information

On-line Multi-threaded Scheduling

On-line Multi-threaded Scheduling Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Tesis de Licenciatura On-line Multi-threaded Scheduling por Marcelo Mydlarz L.U.: 290/93 Director Dr. Esteban

More information

September 30 th, 2015 Prof. John Kubiatowicz

September 30 th, 2015 Prof. John Kubiatowicz CS162 Operating Systems and Systems Programming Lecture 10 Scheduling September 30 th, 2015 Prof. John Kubiatowicz http://cs162.eecs.berkeley.edu Acknowledgments: Lecture slides are from the Operating

More information

Fixed-Priority Preemptive Multiprocessor Scheduling: To Partition or not to Partition

Fixed-Priority Preemptive Multiprocessor Scheduling: To Partition or not to Partition Fixed-Priority Preemptive Multiprocessor Scheduling: To Partition or not to Partition Björn Andersson and Jan Jonsson Department of Computer Engineering Chalmers University of Technology SE 412 96 Göteborg,

More information

Lecture 6: CPU Scheduling. CMPUT 379, Section A1, Winter 2014 February 5

Lecture 6: CPU Scheduling. CMPUT 379, Section A1, Winter 2014 February 5 Lecture 6: CPU Scheduling CMPUT 379, Section A1, Winter 2014 February 5 Objectives Introduce CPU scheduling: the basis for multiprogrammed operating systems Describe various CPU scheduling algorithms Discuss

More information

Rate Monotonic Analysis

Rate Monotonic Analysis Rate Monotonic Analysis Periodic tasks Extending basic theory Synchronization and priority inversion Aperiodic servers Case study: BSY-1 Trainer 1 Purpose of Tutorial Introduce rate monotonic analysis

More information

Preference-Oriented Fixed-Priority Scheduling for Real-Time Systems

Preference-Oriented Fixed-Priority Scheduling for Real-Time Systems Preference-Oriented Fixed-Priority Scheduling for Real-Time Systems Rehana Begam, Dakai Zhu University of Texas at San Antonio San Antonio, TX, 7829 rehan.sheta@gmail.com, dakai.zhu@utsa.edu Hakan Aydin

More information

Intro to O/S Scheduling. Intro to O/S Scheduling (continued)

Intro to O/S Scheduling. Intro to O/S Scheduling (continued) Intro to O/S Scheduling 1. Intro to O/S Scheduling 2. What is Scheduling? 3. Computer Systems Scheduling 4. O/S Scheduling Categories 5. O/S Scheduling and Process State 6. O/S Scheduling Layers 7. Scheduling

More information

Process Scheduling I. COMS W4118 Prof. Kaustubh R. Joshi hdp://

Process Scheduling I. COMS W4118 Prof. Kaustubh R. Joshi hdp:// Process Scheduling I COMS W4118 Prof. Kaustubh R. Joshi krj@cs.columbia.edu hdp://www.cs.columbia.edu/~krj/os References: OperaVng Systems Concepts (9e), Linux Kernel Development, previous W4118s Copyright

More information

APPENDIX 1 Processing time (pij) Release date (rj) Due date (dj): Weight (wj)

APPENDIX 1 Processing time (pij) Release date (rj) Due date (dj): Weight (wj) 172 APPENDIX 1 In all the scheduling problems considered the number of jobs and the number of machines are assumed to be finite. The number of jobs is denoted by N and the number of machines by M. usually,

More information

Chapter 6: CPU Scheduling. Basic Concepts. Histogram of CPU-burst Times. CPU Scheduler. Dispatcher. Alternating Sequence of CPU And I/O Bursts

Chapter 6: CPU Scheduling. Basic Concepts. Histogram of CPU-burst Times. CPU Scheduler. Dispatcher. Alternating Sequence of CPU And I/O Bursts Chapter 6: CPU Scheduling Basic Concepts Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor Scheduling Real-Time Scheduling Algorithm Evaluation Maximum CPU utilization obtained

More information

ISTQB CTFL BH0-010 Exam Practice Question Paper

ISTQB CTFL BH0-010 Exam Practice Question Paper ISTQ TFL H0-010 Exam Practice Question Paper For Software Testing rticlesvisit @ http://softwaretestinghelp.com Join the est Software Testing Training ourse @ http://softwaretestinghelp.org QUESTION 1:

More information

Reading Reference: Textbook: Chapter 7. UNIX PROCESS SCHEDULING Tanzir Ahmed CSCE 313 Fall 2018

Reading Reference: Textbook: Chapter 7. UNIX PROCESS SCHEDULING Tanzir Ahmed CSCE 313 Fall 2018 Reading Reference: Textbook: Chapter 7 UNIX PROCESS SCHEDULING Tanzir Ahmed CSCE 313 Fall 2018 Process Scheduling Today we will ask how does a Kernel juggle the (often) competing requirements of Performance,

More information

MAX PLANCK INSTITUTE FOR SOFTWARE SYSTEMS. Max Planck Institute for Software Systems (MPI-SWS) Germany

MAX PLANCK INSTITUTE FOR SOFTWARE SYSTEMS. Max Planck Institute for Software Systems (MPI-SWS) Germany MAX PLANCK INSTITUTE FOR SOFTWARE SYSTEMS Mitra Nasri* Bjӧrn B. Brandenburg Max Planck Institute for Software Systems (MPI-SWS) Germany RTSS, December 2017 An exact and sustainable schedulability analysis

More information

Exploiting Dynamic Workload Variation in Low Energy Preemptive Task Scheduling

Exploiting Dynamic Workload Variation in Low Energy Preemptive Task Scheduling Exploiting Dynamic Workload Variation in Low Energy Preemptive Scheduling Xiaobo Sharon Department of Electrical and Electronic Engineering Department of Computer Science and Engineering Hong Kong University

More information

Roadmap. Tevfik Ko!ar. CSC Operating Systems Spring Lecture - V CPU Scheduling - I. Louisiana State University.

Roadmap. Tevfik Ko!ar. CSC Operating Systems Spring Lecture - V CPU Scheduling - I. Louisiana State University. CSC 4103 - Operating Systems Spring 2008 Lecture - V CPU Scheduling - I Tevfik Ko!ar Louisiana State University January 29 th, 2008 1 Roadmap CPU Scheduling Basic Concepts Scheduling Criteria Different

More information

CS 318 Principles of Operating Systems

CS 318 Principles of Operating Systems CS 318 Principles of Operating Systems Fall 2017 Lecture 11: Page Replacement Ryan Huang Memory Management Final lecture on memory management: Goals of memory management - To provide a convenient abstraction

More information

The Award Winning Aircon Energy Saver

The Award Winning Aircon Energy Saver The Award Winning Aircon Energy Saver Significantly Reduce Carbon Emissions, Improve Air Quality and Save up to 30% on Energy Costs for Air Conditioning. About AIRCON ENERGY SAVER Air-Conditioning accounts

More information

Bounding Worst-Case Response Time for Tasks With Non-Preemptive Regions

Bounding Worst-Case Response Time for Tasks With Non-Preemptive Regions Bounding Worst-Case Response Time for Tasks With Non-Preemptive Regions Harini Ramaprasad, Frank Mueller Dept. of Computer Science, Center for Efficient, Secure and Reliable Computing North Carolina State

More information

Ricardo Rocha. Department of Computer Science Faculty of Sciences University of Porto

Ricardo Rocha. Department of Computer Science Faculty of Sciences University of Porto Ricardo Rocha Department of Computer Science Faculty of Sciences University of Porto Slides based on the book Operating System Concepts, 9th Edition, Abraham Silberschatz, Peter B. Galvin and Greg Gagne,

More information

Energy-Efficient Scheduling of Interactive Services on Heterogeneous Multicore Processors

Energy-Efficient Scheduling of Interactive Services on Heterogeneous Multicore Processors Energy-Efficient Scheduling of Interactive Services on Heterogeneous Multicore Processors Shaolei Ren, Yuxiong He, Sameh Elnikety University of California, Los Angeles, CA Microsoft Research, Redmond,

More information

Implementing a Predictable Real-Time. Multiprocessor Kernel { The Spring Kernel.

Implementing a Predictable Real-Time. Multiprocessor Kernel { The Spring Kernel. Implementing a Predictable Real-Time Multiprocessor Kernel { The Spring Kernel. L. D. Molesky, K. Ramamritham, C. Shen, J. A. Stankovic, and G. Zlokapa Department of Computer and Information Science University

More information

Advanced Types Of Scheduling

Advanced Types Of Scheduling Advanced Types Of Scheduling In the previous article I discussed about some of the basic types of scheduling algorithms. In this article I will discuss about some other advanced scheduling algorithms.

More information

CS 153 Design of Operating Systems Winter 2016

CS 153 Design of Operating Systems Winter 2016 CS 153 Design of Operating Systems Winter 2016 Lecture 11: Scheduling Scheduling Overview Scheduler runs when we context switching among processes/threads on the ready queue What should it do? Does it

More information

Author's personal copy

Author's personal copy J. Parallel Distrib. Comput. 71 (2011) 963 973 Contents lists available at ScienceDirect J. Parallel Distrib. Comput. journal homepage: www.elsevier.com/locate/jpdc Online algorithms for advance resource

More information