Development of a Data Standard for V&V of Software to Calculate Nuclear System Thermal-Hydraulic Behavior

Size: px
Start display at page:

Download "Development of a Data Standard for V&V of Software to Calculate Nuclear System Thermal-Hydraulic Behavior"

Transcription

1 Development of a Data Standard for V&V of Software to Calculate Nuclear System Thermal-Hydraulic Behavior Richard R. Schultz & Edwin Harvego (INL) Ryan Crane (ASME)

2 Topics addressed Development of an experimental program designed to provide data to validate thermal-hydraulic software designed to analyze the behavior of nuclear plants. V&V30 Standard Committee

3 Nuclear Plant System & Calculational Envelopes System operational envelope: where the plant is designed to operate and produce power plus where the plant may experience various accident scenarios during its lifetime Anticipated operational occurrences Design basis accidents Beyond design basis accidents The system envelope is defined on the basis of the plant design characteristics and past history Calculational envelope: defined by numeric model physics Objective: Demonstrate calculational envelope encompasses the system envelope Calculational envelope = Domain of qualification Calculational envelope System envelopes System envelope = Domain where the plant will operate and also may experience various accident scenarios during plant lifetime.

4 Typical Operational and Accident Envelope State Conditions for Light Water Reactors Anywhere under steam dome at pressures less than ~17 MPa, limited superheated conditions, and above atmospheric pressures; subcooled conditions All two-phase flow regimes in vertical and horizontal direction

5 To Determine the Adequacy of Numerical Tools NRC s regulatory Guideline breaks process down into 5 pieces: 1. Define requirements 2. Develop assessment base (define data requirements) 3. Develop numerical models 4. Assess adequacy of model 5. Make decision whether good enough. 6. Following completion of process UQ is performed.

6 This presentation, and V&V30 standard committee, focuses on Element 2 Specifying the scope and magnitude of the validation data base. Defining the scaling approach to relate experiments to prototype. Defining the integral effects and separate effects experimental requirements. Defining the experimental uncertainties. Ultimate objective: an experimental data matrix that provides the required validation data for numerical models to enable the numeric model validation to be performed and an adequacy decision to be made.

7 Sample Validation Matrix LWR Large Break LOCA Scenario

8 Experiments Used to Provide Data to the Experiment Matrix (1) Must be scaled, using an acceptable methodology, such that the data are in an appropriate range for the plant scenario of interest Must have acceptable measurement uncertainties to provide a reasonable range of acceptance when the data are used to judge whether numerical models are capable of calculating the measured phenomena

9 Experiments Used to Provide Data to the Experiment Matrix (2) Should be designed as a set to create a validation pyramid that is comprised of supporting levels: Fundamental experiments give data that describes the behavior of the key phenomena in an environment free of extraneous influences, e.g., influences from other phenomena Separate effects experiments provide data that describes the behavior of key phenomena in typical system components Integral effects experiments give data that demonstrates the interactions that occur between the key phenomena for the scenarios of interest. The different scales used in the experiments of the validation pyramid provide a check on the measured experimental phenomena scaling

10 Validation is an In-Depth Activity

11 TH Phenomena: Experiment Execution/Planning Normal operation at full or partial loads Coolant flow and temperature distributions through reactor core channels ( hot channel ) Mixing of hot jets in the reactor core lower plenum ( hot streaking ) Integral Facility/ RCCS Lower Plenum Exp Core Exp MIR Exp Loss of Flow Accident (LOFA or pressurized cooldown ) Mixing of hot plumes in the reactor core upper plenum Coolant flow and temperature distributions through reactor core channels (natural circulation) Rejection of heat by natural convection and thermal radiation at the vessel outer surface Loss of Coolant Accident (LOCA or depressurized cooldown ) Prediction of reactor core depressurized cooldown - conduction and thermal radiation Rejection of heat by natural convection and thermal radiation at the vessel outer surface Plenum-to Plenum Exp Air Ingress Exp

12 Experiment Design The H2TS (Hierarchical Two-Tiered Scaling ) methodology was developed in 1980s by Zuber and provides the following advantages: It is a method that is systematic, auditable, and traceable Provides a unified scaling rationale and similarity criteria Assures that important processes have been identified and addressed properly and provide a means for prioritizing and selecting processes to be addressed experimentally Creates specifications for test facilities design and operation (test matrix, test initial and boundary conditions) and provide a procedure for conducting comprehensive reviews of facility design, test conditions, and results Assures the prototypicality of experimental data for important processes and quantify biases due to scale distortions or to nonprototypical test conditions VHTR experiments designed using H2TS methodology. Ref: Zuber, N., 1991, An Integrated Structure and Scaling Methodology for Severe Accident Technical Issue Resolution, NUREG/CR-5809, November, Appendix D, Hierarchical, Two- Tiered Scaling Analysis.

13 Zuber s H2TS Scaling Methodology Decomposes and organizes the system Starting with the whole system Working downward through subsystems, components, until reaching the transfer processes Scale measures are assigned at each level Each phase characterized by one or more geometrical configurations. Address the effects caused by the interaction of its constituents which have been identified as important in the PIRT. Similarity criteria developed at appropriate scaling level. Each geometrical configuration described by 3 field equations (mass, momentum, and energy) Includes a top-down (system) and bottom-up scaling analysis development of similarity criteria for interaction of constituents and specific processes

14 Application of H2TS Methodology to Separate- Effects and Integral-Effects Experiments

15 Scaling Choices Preserving kinematic similarity Preserving friction and form loss similarity Elevation and length scale ratio Diameter scaling ratio Pressure scaling ratio (full pressure) a i = 1 ac R ( Π ) = 1 F R ( L ) = 1:4 R ( D ) = 1:4 R ( ) P 0 = 1:8 R

16 Separate Effects Experiments Designed to Match Key Phenomena Ranges of Prototype Designed to capture key phenomena Scaled to provide direct link between subscaled experimental facility and prototypical plant Low, quantified uncertainties Experiment design should consider decomposition of behavior in system component to lowest level that can be modeled by software to ensure each component is properly being calculated by software physics Courtesy C. Oh

17 Summary of Process Objective of NGNP methods is to validate numeric models that are capable of calculating VHTR behavior throughout its system operational/accident envelope For the NGNP, a rigorous process is used to design experiments that will provide validation data for both systems analysis and CFD numerical models The process is based on the H2TS methodology Experimental and validation matrices are defined Both separate-effects and integral-effects experiments are underway Validation of numeric models is also proceeding The NGNP approach is compatible with NRC guidelines and practices as used to qualify numeric models for Generation III+ systems

18 V&V30 Committee Overview Committee scope and objectives Committee structure Committee function Anticipated content of Verification and Validation (V&V) 30 Standard Relationship to NQA-1 and other Nuclear Standards and Regulations Summary

19 V&V30 Scope & Objectives (presently under discussion) Develop a standard that: Defines validation data based requirements for V&V of CFD and system analysis codes used in nuclear applications Defines requirements for experimental data used for software validation Is consistent with all Nuclear Regulatory Commission (NRC) regulatory requirements Is consistent with or complements related consensus standards (existing or under development) Specifically addresses requirements unique to High-Temperature Gas- Cooled Reactors (HTGRs) as a starting point; subsequently addresses requirements for LWRs. Considers the potential for coupling of CFD and system analysis codes as part of the analysis process Meets ANSI requirements

20 Committee Structure Consist of 8-20 members selected from Industry, national laboratories, academia, and government (NRC and/or Department of Energy), and serving a maximum 5 year term Selection of members will be based on technical qualifications and to ensure balanced representation Participation on the committee is as an individual technical expert, not as a representative of a particular organization or interest group A chair and vice chair will be elected for three-year terms by the voting committee membership Chair is also the committee representative to the Verification and Validation Standards Committee The secretary is a non-voting appointed position and a member of the American Society for Mechanical Engineers (ASME) staff with no defined term of office

21 Committee Function Committee members will typically meet two to three times a year to discuss and review progress on development of the standard Other group or individual meetings may be required to coordinate and/or present results to regulators and/or other consensus standards development organizations Based on committee deliberations, individual members will research and develop different topics to be included in the standard Most of the work in writing the standard will be done by individual committee members between meetings At the discretion of the committee, contributing (non-voting) members may be solicited (within or outside the U.S.) to serve in review and consulting roles All activities of the committee will of course be subject to availability of funds

22 Anticipated Content of V&V 30 Standard Definition of operational and accident domains that must be considered for licensing the nuclear reactor Description of calculation domain that is target for developing validation matrix Requirements for the experimental data sets to be used for validation of CFD and/or system analysis software Requirements for the ensemble of experimental data sets used to populate the validation matrix for the software in question Application of the software validation standard Direct reference to appropriate regulatory requirements for each topic addressed in the standard

23 Definition of Operational and Accident Domains USNRC Standard Review Plan (NUREG-0800) developed for pressurized water reacotrs and boiling water reactors, but provides the framework for specifying operational and accident domains in HTGRs Ensure a sufficiently broad spectrum of transients and accidents, or initiating events. Initiating events categorized according to expected frequency of occurrence and by type. Anticipated Operational Occurrence (AOO) one or more times during the life of the nuclear plant Anticipated transients without scram (ATWSs) AOOs with failure to scram (beyond design basis) Postulated accidents unanticipated accidents that are not expected to occur during the life of the nuclear plant

24 Definition of Operational and Accident Domains cont. Grouping of AOOs and postulated accidents by types: Increase in heat removal by the secondary system Decrease in heat removal by the secondary system Decrease in RCS flow rate Reactivity and power distribution anomalies Increase in reactor coolant inventory Decrease in reactor coolant inventory Radioactive release from a subsystem or component

25 Calculation Domain Calculation envelope of the thermal-hydraulic software must match or encompass the system operational and accident envelope Phenomena Identification and Ranking Table (PIRT) process provides a basis for ranking important phenomena associated with each scenario in the operational domain Software physics models must properly calculate the key phenomena over the entire range of conditions encompassed by the calculation envelope Basis for assessing the adequacy of the CFD and system analysis software models is experimental data

26 Requirements for Experimental Data and Experimental Data Sets Proposed standard should provide the processes and procedures for determining the data needed to populate software validation matrices for both system analysis and CFD software Processes and procedures should address evaluation of both existing experimental data and procedures for defining new data needs Software validation matrices should include both separate effects experiments for evaluating localized phenomena and integral effects experiments for evaluating global system response Experiment validation matrices will include data from experimental facilities at different scales, so that scaling effects can be evaluated to identify any scaling distortions and provide confidence in scaling assessments performed as part of the software validation process

27 Considerations for New Facilities Assure that the proposed experiment facility captures key phenomena being investigated Experiment is scaled to provide a direct link between the scaled facility and prototype plant Adequate high-quality measurements are available to ensure that experimental data uncertainties are quantifiable and acceptably low Experiment results can be decomposed to the lowest level modeled by the software to ensure that system behavior at the component level is properly being calculated by the governing software physics Quality assurance meets applicable requirements of ASME Standard NQA-1

28 Application of Software Validation Standard It is anticipated that the standard will be used by vendors as the basis for verification and validation of software for licensing advanced reactor designs Standard should conform to current NRC and other regulatory requirements and guidelines, but will provide additional detail on acceptable processes and procedures used to meet regulatory requirements Standard is being developed in conjunction with ASME V&V 10 and V&V 20 Standards, and should be consistent with and complement these standards V&V 30 Committee presently deciding upon the detailed scope and intent of this Standard and path forward

29 Relationship of V&V 30 Categories to Equivalent Regulatory Requirements and Guidelines for LWRs V&V 30 Categories /Federal Regs. System Envelope Calculation Envelope Experiment Matrix Data Validation 10CFR Mitigation of accidents Acceptance criteria/ EM concept App. A General Design Criteria Appendix B QA criteria, testing Standard Review Plan Chpt AOO and accident categories Chpt. 15 Defines model requirements Chpt. 15 EM variable ranges Reg. Guide Defines application envelope Pg. 4(5) - Software peer review 1.2 (2) Need for assessment base 1.4 (4) - Scaling methodology Reg. Guide Characteristics of BE Model Experimental data requirements

30 Relationship of V&V 30 Categories to Other Consensus Standards V&V 30 Categories/ Other Standards ASME NQA ASME V&V 10 System Envelope Describe physical phenomena Calculation Envelope PIRT to develop CSM models Experiment Matrix Experiment design Data Validation Expands on QA criteria in 10CFR 50, App. B Sources of experiment error ASME V&V 20 ASME PTC 19.1 Estimate simulation model error Experiment error quantification Standard for uncertainty evaluation

31 Relationship of V&V 30 Categories to Other Consensus Standards cont. V&V 30 Categories/ Other Standards System Envelope Calculation Envelope Experiment Matrix Data Validation ANSI/ANS V&V of non-safety related software for nuclear appl. ANSI/IEEE Std V&V software processes ANS-10.7 (under development) Non-real time, high integrity software for Nuclear Industry

32 Summary V&V 30 Committee established and operational Committee presently discussing scope and content of standard. Have initiated interactions with other stakeholder committees and potential cooperation with NQA-1 Standard committee

NGNP Licensing Approach & Status

NGNP Licensing Approach & Status www.inl.gov NGNP Licensing Approach & Status IAEA Course on High Temperature Gas Cooled Reactor Technology Tsinghua University, Beijing October 22-26, 2012 Presented by: Javier Ortensi Based on material

More information

Joint ICTP-IAEA Essential Knowledge Workshop on Deterministic Safety Analysis and Engineering Aspects Important to Safety. Trieste,12-23 October 2015

Joint ICTP-IAEA Essential Knowledge Workshop on Deterministic Safety Analysis and Engineering Aspects Important to Safety. Trieste,12-23 October 2015 Joint ICTP- Essential Knowledge Workshop on Deterministic Safety Analysis and Engineering Aspects Important to Safety Trieste,12-23 October 2015 Safety classification of structures, systems and components

More information

INL/EXT Next Generation Nuclear Plant Licensing Basis Event Selection White Paper

INL/EXT Next Generation Nuclear Plant Licensing Basis Event Selection White Paper INL/EXT-10-19521 Next Generation Nuclear Plant Licensing Basis Event Selection White Paper September 2010 DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S.

More information

SMR/1848-T21b. Course on Natural Circulation Phenomena and Modelling in Water-Cooled Nuclear Reactors June 2007

SMR/1848-T21b. Course on Natural Circulation Phenomena and Modelling in Water-Cooled Nuclear Reactors June 2007 SMR/1848-T21b Course on Natural Circulation Phenomena and Modelling in Water-Cooled Nuclear Reactors 25-29 June 2007 T21b - Selected Examples of Natural Circulation for Small Break LOCA and Som Severe

More information

CSA N Environmental qualification of equipment for nuclear power plants

CSA N Environmental qualification of equipment for nuclear power plants CSA N290.13-19 Environmental qualification of equipment for nuclear power plants Michael K. Steeves P.Eng. Senior EQ Engineer, NB Power Point Lepreau Generating Station Deanna Mendolia P.Eng. CSA Group

More information

Licensing Issues and the PIRT

Licensing Issues and the PIRT Licensing Issues and the PIRT Frederik Reitsma IAEA Course on High temperature Gas Cooled Reactor Technology Oct 22-26, 2012 Content / Overview A few ideas to stimulate discussions: Safety assessment criteria

More information

Origins of the Uncertainty and Methods. F. D Auria Università di Pisa, DIMNP - Via Diotisalvi, Pisa, Italy

Origins of the Uncertainty and Methods. F. D Auria Università di Pisa, DIMNP - Via Diotisalvi, Pisa, Italy Origins of the Uncertainty and Methods F. D Auria Università di Pisa, DIMNP - Via Diotisalvi, 2-56100 Pisa, Italy f.dauria@ing.unipi.it H. Glaeser Gesellschaft für Anlagen- und Reaktorsicherheit (GRS)

More information

Verification of the MELCOR Code Against SCDAP/RELAP5 for Severe Accident Analysis

Verification of the MELCOR Code Against SCDAP/RELAP5 for Severe Accident Analysis Verification of the Code Against SCDAP/RELAP5 for Severe Accident Analysis Jennifer Johnson COLBERT 1* and Karen VIEROW 2 1 School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907-2017,

More information

STRATEGIC PLAN NUCLEAR RISK MANAGEMENT COORDINATING COMMITTEE

STRATEGIC PLAN NUCLEAR RISK MANAGEMENT COORDINATING COMMITTEE Member Organizations: American Nuclear Society American Society of Mechanical Engineers Institute of Electrical and Electronic Engineers U. S. Nuclear Regulatory Commission U. S. Department of Energy Nuclear

More information

Passive system Evaluation by using Integral thermal-hydraulic test facility

Passive system Evaluation by using Integral thermal-hydraulic test facility Passive system Evaluation by using Integral thermal-hydraulic test facility #537, Rui-Chang Zhao, SNPTRD 2014.06.22~27 PSAM12 International Conference 1 Briefly introduction of SNPTRD Engineered safety

More information

Naturally Safe HTGR in the response to the Fukushima Daiichi NPP accident

Naturally Safe HTGR in the response to the Fukushima Daiichi NPP accident IAEA Technical Meeting on on Re evaluation of Maximum Operating Temperatures and Accident Conditions for High Temperature Reactor Fuel and Structural Materials, 10 12 July 2012, Vienna, Austria Naturally

More information

Role of Licensing in Advanced Reactor Design

Role of Licensing in Advanced Reactor Design Role of Licensing in Advanced Reactor Design January 28, 2009 Current LWR Licensing Process Reactor vendors obtain design certification (DC) Approval of generic reactor plant design Vendor submits reactor

More information

Status of Development, ANS Standard 53.1, Nuclear Safety Criteria for the Design of Modular Helium Cooled Reactor Plants

Status of Development, ANS Standard 53.1, Nuclear Safety Criteria for the Design of Modular Helium Cooled Reactor Plants Status of Development, ANS Standard 53.1, Nuclear Safety Criteria for the Design of Modular Helium Cooled Reactor Plants M. LaBar General Atomics 3550 General Atomics Court San Diego, CA 92121-1122 Abstract

More information

Fatigue Monitoring for Demonstrating Fatigue Design Basis Compliance

Fatigue Monitoring for Demonstrating Fatigue Design Basis Compliance Fatigue Monitoring for Demonstrating Fatigue Design Basis Compliance Gary L. Stevens, Arthur F. Deardorff, David A. Gerber Structural Integrity Associates 3315 Almaden Expressway, Suite 24 San Jose, CA

More information

Verifying and Validating Software in a Regulated Environment

Verifying and Validating Software in a Regulated Environment Verifying and Validating Software in a Regulated Environment William J. Bryan Corporate Quality Manager ANSYS, Inc. KEYWORDS QUALITY, VERIFICATION, VALIDATION, REGULATED ABSTRACT Founded in 1970, ANSYS,

More information

FATIGUE MONITORING FOR DEMONSTRATING FATIGUE DESIGN BASIS COMPLIANCE

FATIGUE MONITORING FOR DEMONSTRATING FATIGUE DESIGN BASIS COMPLIANCE FATIGUE MONITORING FOR DEMONSTRATING FATIGUE DESIGN BASIS COMPLIANCE D. Gerber, G. Stevens, T. Gilman, J. Zhang Structural Integrity Associates,San Jose,USA Structural Integrity Associates,San Jose,USA

More information

American Nuclear Society NFSC Minutes November 13, 2006 Albuquerque, NM

American Nuclear Society NFSC Minutes November 13, 2006 Albuquerque, NM American Nuclear Society NFSC Minutes November 13, 2006 Albuquerque, NM 1. Welcome and Call to Order The meeting was called to order and introductions were made. 2. Action Items Old action items were reviewed

More information

Westinghouse Small Modular Reactor. Passive Safety System Response to Postulated Events

Westinghouse Small Modular Reactor. Passive Safety System Response to Postulated Events Westinghouse Small Modular Reactor Passive Safety System Response to Postulated Events Matthew C. Smith Dr. Richard F. Wright Westinghouse Electric Company Westinghouse Electric Company 600 Cranberry Woods

More information

ASME As a Help to Export! Our Topic today: Nuclear Quality Assurance ASME NQA 1

ASME As a Help to Export! Our Topic today: Nuclear Quality Assurance ASME NQA 1 ASME As a Help to Export! Our Topic today: Nuclear Quality Assurance ASME NQA 1 Karte: Wikipedia CIS GmbH Experts in ASME Code Consulting CIS GmbH Consulting Inspection Services 3 rd Party Inspection Training

More information

Workshop Information IAEA Workshop

Workshop Information IAEA Workshop IAEA Training Course on Safety Assessment of NPPs to Assist Decision Making Overview of Deterministic Safety Analysis: Input Data, Verification & Validation, Conservative/BE Approaches (Part. 2) Lecturer

More information

F l u i d F l o w a n d H e a t T r a n s f e r i n S t e a m G e n e r a t o r s

F l u i d F l o w a n d H e a t T r a n s f e r i n S t e a m G e n e r a t o r s Report Series - Applications TransAT for Nuclear Science & Technology F l u i d F l o w a n d H e a t T r a n s f e r i n S t e a m G e n e r a t o r s ASCOMP GmbH Edited by: Dr D. Lakehal Release Date:

More information

ACR Safety Systems Safety Support Systems Safety Assessment

ACR Safety Systems Safety Support Systems Safety Assessment ACR Safety Systems Safety Support Systems Safety Assessment By Massimo Bonechi, Safety & Licensing Manager ACR Development Project Presented to US Nuclear Regulatory Commission Office of Nuclear Reactor

More information

DETAILED ANALYSIS OF GEOMETRY EFFECT ON TWO PHASE NATURAL CIRCULATION FLOW UNDER IVR-ERVC

DETAILED ANALYSIS OF GEOMETRY EFFECT ON TWO PHASE NATURAL CIRCULATION FLOW UNDER IVR-ERVC DETAILED ANALYSIS OF GEOMETRY EFFECT ON TWO PHASE NATURAL CIRCULATION FLOW UNDER IVR-ERVC R. J. Park 1, K. S. Ha 1, and H. Y. Kim 1 Korea Atomic Energy Research Institute 989-111 Daedeok-daero,Yuseong-Gu,

More information

A discussion about P-T limit curves and PTS evaluation

A discussion about P-T limit curves and PTS evaluation Transactions of the 13th International Conference on Structural Mechanics in Reactor Technology (SMiRT 13), Escola de Engenharia - Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, August

More information

AP1000 European 15. Accident Analysis Design Control Document

AP1000 European 15. Accident Analysis Design Control Document 15.2 Decrease in Heat Removal by the Secondary System A number of transients and accidents that could result in a reduction of the capacity of the secondary system to remove heat generated in the reactor

More information

Design Requirements Safety

Design Requirements Safety Design Requirements Safety 22.39 Elements of Reactor Design, Operations, and Safety Fall 2005 George E. Apostolakis Massachusetts Institute of Technology Department of Nuclear Science and Engineering 1

More information

Station Blackout Analysis for a 3-Loop Westinghouse PWR Reactor Using TRACE

Station Blackout Analysis for a 3-Loop Westinghouse PWR Reactor Using TRACE The Egyptian Arab Journal of Nuclear Sciences and Applications Society of Nuclear Vol 50, 3, (229-239) 2017 Sciences and Applications ISSN 1110-0451 Web site: esnsa-eg.com (ESNSA) Station Blackout Analysis

More information

NUCLEARINSTALLATIONSAFETYTRAININGSUPPORTGROUP DISCLAIMER

NUCLEARINSTALLATIONSAFETYTRAININGSUPPORTGROUP DISCLAIMER NUCLEARINSTALLATIONSAFETYTRAININGSUPPORTGROUP DISCLAIMER Theinformationcontainedinthisdocumentcannotbechangedormodifiedinanywayand shouldserveonlythepurposeofpromotingexchangeofexperience,knowledgedissemination

More information

Safety Design of HTGR by JAEA in the light of the Fukushima Daiichi accident

Safety Design of HTGR by JAEA in the light of the Fukushima Daiichi accident Technical Meeting on the Safety of High Temperature Gas Cooled Reactors in the Light of the Fukushima Daiichi Accident, 8-11 April 2014, IAEA Head quarters, Vienna, Austria Safety Design of HTGR by JAEA

More information

AP1000 European 19. Probabilistic Risk Assessment Design Control Document

AP1000 European 19. Probabilistic Risk Assessment Design Control Document 19.39 In-Vessel Retention of Molten Core Debris 19.39.1 Introduction In-vessel retention of molten core debris through water cooling of the external surface of the reactor vessel is a severe accident management

More information

The RETRAN-3D code is operational on PCs using the Windows and Linux operating systems.

The RETRAN-3D code is operational on PCs using the Windows and Linux operating systems. What Is RETRAN-3D RETRAN-3D is a best-estimate light water reactor and reactor systems transient thermalhydraulic analysis code. Its predecessor, RETRAN-02, was used extensively by the commercial nuclear

More information

Computational Fluid Dynamics for Reactor Design & Safety-Related Applications

Computational Fluid Dynamics for Reactor Design & Safety-Related Applications NSE Nuclear Science & Engineering at MIT science : systems : society Computational Fluid Dynamics for Reactor Design & Safety-Related Applications Massachusetts Institute of Technology Emilio Baglietto

More information

Research Article The Best Estimate Plus Uncertainty Challenge in the Current Licensing Process of Present Reactors

Research Article The Best Estimate Plus Uncertainty Challenge in the Current Licensing Process of Present Reactors Science and Technology of Nuclear Installations Volume 2011, Article ID 958218, 9 pages doi:10.1155/2011/958218 Research Article The Best Estimate Plus Uncertainty Challenge in the Current Licensing Process

More information

American Nuclear Society Nuclear Facility Standards Committee (NFSC) Meeting Synopsis November 16, 2009 Edison Electric Institute, Washington DC

American Nuclear Society Nuclear Facility Standards Committee (NFSC) Meeting Synopsis November 16, 2009 Edison Electric Institute, Washington DC American Nuclear Society Nuclear Facility Standards Committee (NFSC) Meeting Synopsis November 16, 2009 Edison Electric Institute, Washington DC 1. Welcome and Call to Order The NFSC Chairman called the

More information

Thermal Response of a High Temperature Reactor during Passive Cooldown under Pressurized and Depressurized Conditions

Thermal Response of a High Temperature Reactor during Passive Cooldown under Pressurized and Depressurized Conditions 2nd International Topical Meeting on HIGH TEMPERATURE REACTOR TECHNOLOGY Beijing, CHINA, September 22-24, 2004 #Paper F02 Thermal Response of a High Temperature Reactor during Passive Cooldown under Pressurized

More information

Safety Research Activities on Severe Accident Management in S/NRA/R after Fukushima Daiichi Nuclear Power Plant Accident

Safety Research Activities on Severe Accident Management in S/NRA/R after Fukushima Daiichi Nuclear Power Plant Accident Safety Research Activities on Severe Accident Management in S/NRA/R after Fukushima Daiichi Nuclear Power Plant Accident K. AONO, H. HOSHI, A. HOTTA, M. FUKASAWA Regulatory Standard and Research Department,

More information

BEPU and Safety Margins in Nuclear Reactor Safety

BEPU and Safety Margins in Nuclear Reactor Safety University of Pisa DESTEC-GRNSPG Nuclear Research Group in San Piero a Grado (Pisa) - Italy BEPU and Safety Margins in Nuclear Reactor Safety F. D Auria, N. Debrecin, H. Glaeser Int. Conf. on Topical Issues

More information

U.S. NUCLEAR REGULATORY COMMISSION ASME CODE CLASS 1, 2, AND 3 COMPONENTS AND COMPONENT SUPPORTS, AND CORE SUPPORT STRUCTURES

U.S. NUCLEAR REGULATORY COMMISSION ASME CODE CLASS 1, 2, AND 3 COMPONENTS AND COMPONENT SUPPORTS, AND CORE SUPPORT STRUCTURES U.S. NUCLEAR REGULATORY COMMISSION STANDARD REVIEW PLAN NUREG-0800 3.9.3 ASME CODE CLASS 1, 2, AND 3 COMPONENTS AND COMPONENT SUPPORTS, AND CORE SUPPORT STRUCTURES REVIEW RESPONSIBILITIES Primary - Organization

More information

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D.C SAFETY EVALUATION REPORT

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D.C SAFETY EVALUATION REPORT UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D.C. 20555-0001 SAFETY EVALUATION REPORT Docket No. 72-1040 HI-STORM UMAX Canister Storage System Holtec International, Inc. Certificate of Compliance

More information

6.0 ENGINEERED SAFETY FEATURES

6.0 ENGINEERED SAFETY FEATURES Engineered Safety Features Materials 6.0 ENGINEERED SAFETY FEATURES This chapter of the U.S. EPR Final Safety Analysis Report (FSAR) is incorporated by reference with supplements as identified in the following

More information

Draft Regulatory Guide DG-1080 (Proposed Revision 3 of Regulatory Guide 1.149)

Draft Regulatory Guide DG-1080 (Proposed Revision 3 of Regulatory Guide 1.149) Draft Regulatory Guide DG-1080(Proposed Revi... Page 1 of 6 U.S. NUCLEAR REGULATORY COMMISSION OFFICE OF NUCLEAR REGULATORY RESEARCH August 1999 Division 1 Draft DG-1080 DRAFT REGULATORY GUIDE Contact:

More information

Risk-Informed Changes to the Licensing Basis - II

Risk-Informed Changes to the Licensing Basis - II Risk-Informed Changes to the Licensing Basis - II 22.39 Elements of Reactor Design, Operations, and Safety Lecture 14 Fall 2006 George E. Apostolakis Massachusetts Institute of Technology Department of

More information

Instrumentation and Control to Prevent and Mitigate Severe Accident Conditions

Instrumentation and Control to Prevent and Mitigate Severe Accident Conditions Instrumentation and Control to Prevent and Mitigate Severe Accident Conditions SAMG-D Toolkit, Module 3, Chapter 3 Martin Gajdoš Nuclear Engineering, Slovenské elektrárne IAEA Workshop on the Development

More information

Thermal Fluid Characteristics for Pebble Bed HTGRs.

Thermal Fluid Characteristics for Pebble Bed HTGRs. Thermal Fluid Characteristics for Pebble Bed HTGRs. Frederik Reitsma IAEA Course on High temperature Gas Cooled Reactor Technology Beijing, China Oct 22-26, 2012 Overview Background Key T/F parameters

More information

Swedish Radiation Safety Authority Regulatory Code

Swedish Radiation Safety Authority Regulatory Code Swedish Radiation Safety Authority Regulatory Code ISSN 2000-0987 SSMFS 2008:17 The Swedish Radiation Safety Authority s regulations and general advice concerning the design and construction of nuclear

More information

EXAMPLE OF SEVERE ACCIDENT MANAGEMENT GUIDELINES VALIDATION AND VERIFICATION USING FULL SCOPE SIMULATOR

EXAMPLE OF SEVERE ACCIDENT MANAGEMENT GUIDELINES VALIDATION AND VERIFICATION USING FULL SCOPE SIMULATOR International Conference Nuclear Energy in Central Europe 2001 Hoteli Bernardin, Portorož, Slovenia, September 10-13, 2001 www: http://www.drustvo-js.si/port2001/ e-mail: PORT2001@ijs.si tel.:+ 386 1 588

More information

Scenarios of Heavy Beyond-Design-Basis Accidents in HTGRs N.G. Kodochigov, Yu.P. Sukharev

Scenarios of Heavy Beyond-Design-Basis Accidents in HTGRs N.G. Kodochigov, Yu.P. Sukharev Scenarios of Heavy Beyond-Design-Basis Accidents in HTGRs N.G. Kodochigov, Yu.P. Sukharev IAEA Technical Meeting on the Safety of High Temperature Gas Cooled Reactors in the Light of the Fukushima Daiichi

More information

Format and Content of the Safety Analysis Report for Nuclear Power Plants - Core Set -

Format and Content of the Safety Analysis Report for Nuclear Power Plants - Core Set - Format and Content of the Safety Analysis Report for Nuclear Power Plants - Core Set - 2013 Learning Objectives After going through this presentation the participants are expected to be familiar with:

More information

Safety Issues for High Temperature Gas Reactors. Andrew C. Kadak Professor of the Practice

Safety Issues for High Temperature Gas Reactors. Andrew C. Kadak Professor of the Practice Safety Issues for High Temperature Gas Reactors Andrew C. Kadak Professor of the Practice Major Questions That Need Good Technical Answers Fuel Performance Normal operational performance Transient performance

More information

Accepting Supplier ISO 9000 Quality Programs

Accepting Supplier ISO 9000 Quality Programs Accepting Supplier ISO 9000 Quality Programs IEEE Subcommittee on Qualification October 7-8, 2004 Leigh A. Aparicio PSE Technical Leader aparicio@epri.com Project Overview ISO 9000 Phase I Initiated in

More information

Evaluation of Two Phase Natural Circulation Flow in the Reactor Cavity under IVR-ERVC for Different Thermal Power Reactors

Evaluation of Two Phase Natural Circulation Flow in the Reactor Cavity under IVR-ERVC for Different Thermal Power Reactors Evaluation of Two Phase Natural Circulation Flow in the Reactor Cavity under IVR-ERVC for Different Thermal Power Reactors Rae-Joon Park, Kwang-Soon Ha, Hwan-Yeol Kim Severe Accident & PHWR Safety Research

More information

Profile LFR-16 CLEAR-S CHINA. Lead-based cooled China Non-nuclear Reactor. Lead alloy (LBE,etc.)

Profile LFR-16 CLEAR-S CHINA. Lead-based cooled China Non-nuclear Reactor. Lead alloy (LBE,etc.) Profile LFR-16 CLEAR-S CHINA GENERAL INFORMATION NAME OF THE ACRONYM COOLANT(S) OF THE LOCATION (address): OPERATOR CONTACT PERSON (name, address, institute, function, telephone, email): Lead-based cooled

More information

CANDU Safety #10: Design and Analysis Process F.J. Doria Atomic Energy of Canada Limited

CANDU Safety #10: Design and Analysis Process F.J. Doria Atomic Energy of Canada Limited CANDU Safety #10: Design and Analysis Process F.J. Doria Atomic Energy of Canada Limited 24-May-01 CANDU Safety - #10 - Design and Analysis Process.ppt Rev. 0 1 Overview Establishment of basic safety requirements

More information

Development of a DesignStage PRA for the Xe-100

Development of a DesignStage PRA for the Xe-100 Development of a DesignStage PRA for the Xe-100 PSA 2017 Pittsburgh, PA, September 24 28, 2017 Alex Huning* Karl Fleming Session: Non-LWR Safety September 27th, 1:30 3:10pm 2017 X Energy, LLC, all rights

More information

Primary - Core Performance Branch (CPB) Reactor Systems Branch (SRXB) 1

Primary - Core Performance Branch (CPB) Reactor Systems Branch (SRXB) 1 U.S. NUCLEAR REGULATORY COMMISSION STANDARD REVIEW PLAN OFFICE OF NUCLEAR REACTOR REGULATION NUREG-0800 (Formerly NUREG-75/087) 4.3 NUCLEAR DESIGN REVIEW RESPONSIBILITIES Primary - Core Performance Branch

More information

IAEA-TECDOC Applications of probabilistic safety assessment (PSA) for nuclear power plants

IAEA-TECDOC Applications of probabilistic safety assessment (PSA) for nuclear power plants IAEA-TECDOC-1200 Applications of probabilistic safety assessment (PSA) for nuclear power plants February 2001 The originating Section of this publication in the IAEA was: Safety Assessment Section International

More information

Research Article Assessment of Severe Accident Depressurization Valve Activation Strategy for Chinese Improved 1000 MWe PWR

Research Article Assessment of Severe Accident Depressurization Valve Activation Strategy for Chinese Improved 1000 MWe PWR Science and Technology of Nuclear Installations Volume 3, Article ID 79437, pages http://dx.doi.org/.55/3/79437 Research Article Assessment of Severe Accident Depressurization Valve Activation Strategy

More information

Proposed - For Interim Use and Comment

Proposed - For Interim Use and Comment Proposed - For Interim Use and Comment U.S. NUCLEAR REGULATORY COMMISSION DESIGN-SPECIFIC REVIEW STANDARD FOR mpower TM ipwr DESIGN 14.2 INITIAL PLANT TEST PROGRAM - DESIGN CERTIFICATION AND NEW LICENSE

More information

Fast and High Temperature Reactors for Improved Thermal Efficiency and Radioactive Waste Management

Fast and High Temperature Reactors for Improved Thermal Efficiency and Radioactive Waste Management What s New in Power Reactor Technologies, Cogeneration and the Fuel Cycle Back End? A Side Event in the 58th General Conference, 24 Sept 2014 Fast and High Temperature Reactors for Improved Thermal Efficiency

More information

IRIS Pre-Application Licensing

IRIS Pre-Application Licensing IRIS Pre-Application Licensing GENES4/ANP2003, Sep. 15-19, 2003, Kyoto, JAPAN Paper 1146 Mario D. CARELLI *, Charles L. KLING and Stanley E. RITTERBUSCH Westinghouse Electric Company, Science and Technology

More information

EXPERIMENTS ON THE PERFORMANCE SENSITIVITY OF THE PASSIVE RESIDUAL HEAT REMOVAL SYSTEM OF AN ADVANCED INTEGRAL TYPE REACTOR

EXPERIMENTS ON THE PERFORMANCE SENSITIVITY OF THE PASSIVE RESIDUAL HEAT REMOVAL SYSTEM OF AN ADVANCED INTEGRAL TYPE REACTOR EXPERIMENTS ON THE PERFORMANCE SENSITIVITY OF THE PASSIVE RESIDUAL HEAT REMOVAL SYSTEM OF AN ADVANCED INTEGRAL TYPE REACTOR HYUN-SIK PARK *, KI-YONG CHOI, SEOK CHO, SUNG-JAE YI, CHOON-KYUNG PARK and MOON-KI

More information

REGULATORY GUIDE An Approach for Using Probabilistic Risk Assessment In Risk-Informed Decisions On Plant-Specific Changes to the Licensing Basis

REGULATORY GUIDE An Approach for Using Probabilistic Risk Assessment In Risk-Informed Decisions On Plant-Specific Changes to the Licensing Basis REGULATORY GUIDE 1.174 An Approach for Using... Page 1 of 38 July 1998 REGULATORY GUIDE 1.174 An Approach for Using Probabilistic Risk Assessment In Risk-Informed Decisions On Plant-Specific Changes to

More information

Dynamic Methods for the Assessment of Passive System Reliability

Dynamic Methods for the Assessment of Passive System Reliability Dynamic Methods for the Assessment of Passive System Reliability Acacia Brunett *a, David Grabaskas a, and Matthew Bucknor a a Nuclear Engineering Division, Argonne National Laboratory, Argonne, IL 60439,

More information

Boiling Water Reactor Vessel and Internals (QA)

Boiling Water Reactor Vessel and Internals (QA) Boiling Water Reactor Vessel and Internals (QA) Program Description Program Overview As boiling water reactors have aged, various forms of operation-limiting stress corrosion cracking have appeared, first

More information

Oregon State University s Small Modular Nuclear Reactor Experimental Program

Oregon State University s Small Modular Nuclear Reactor Experimental Program Oregon State University s Small Modular Nuclear Reactor Experimental Program IEEE Conference on Technologies for Sustainability August 1, 2013 Portland, Oregon Brian Woods Oregon State University brian.woods@oregonstate.edu,

More information

Risk-informed Seismic Design of US Nuclear Power Plants

Risk-informed Seismic Design of US Nuclear Power Plants Dr. Annie Kammerer NC State University 10 th Structural Engineering & Mechanics Symposium March 2011 Risk-informed Seismic Design of US Nuclear Power Plants Atomic Energy Commission (1954) Energy Reorganization

More information

U.S. NUCLEAR REGULATORY COMMISSION STANDARD REVIEW PLAN. Organization responsible for mechanical engineering reviews

U.S. NUCLEAR REGULATORY COMMISSION STANDARD REVIEW PLAN. Organization responsible for mechanical engineering reviews NUREG-0800 U.S. NUCLEAR REGULATORY COMMISSION STANDARD REVIEW PLAN 5.2.1.2 APPLICABLE CODE CASES REVIEW RESPONSIBILITIES Primary - Organization responsible for mechanical engineering reviews Secondary

More information

ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development Bologna, Italy

ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development Bologna, Italy Open issues associated with passive safety systems reliability assessment L. Burgazzi ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development Bologna, Italy Abstract.

More information

Probabilistic Risk Assessment and Management in the Nuclear Industry: Overview and Applications

Probabilistic Risk Assessment and Management in the Nuclear Industry: Overview and Applications Probabilistic Risk Assessment and Management in the Nuclear Industry: Overview and Applications Mohammad Modarres Department of Mechanical Engineering Presentation at the Meeting on Nuclear Energy and

More information

Pressurized Water Reactor Materials Reliability Program (QA)

Pressurized Water Reactor Materials Reliability Program (QA) Pressurized Water Reactor Materials Reliability Program (QA) Program Description Program Overview Stress corrosion cracking and general environmental corrosion of reactor coolant system components have

More information

THE IAEA SAFETY ASSESSMENT EDUCATION AND TRAINING PROGRAMME (SAET)

THE IAEA SAFETY ASSESSMENT EDUCATION AND TRAINING PROGRAMME (SAET) THE IAEA SAFETY ASSESSMENT EDUCATION AND TRAINING PROGRAMME (SAET) The Safety Assessment Education and Training (SAET) Programme has been designed to support the Member States with development of required

More information

ANS 8 th NPIC and HMIT Topical Meeting

ANS 8 th NPIC and HMIT Topical Meeting Development of a Diversity and Defense-In-Depth Strategy for the CNNC Fuqing and Fangjiashan Nuclear Plants Gershon Shamay RPS/ESFAS System Development Lead Invensys Operations Management 38 Neponset Ave

More information

Effectiveness of External Reactor Vessel Cooling (ERVC) Strategy for APR1400 and Issues of Phenomenological Uncertainties

Effectiveness of External Reactor Vessel Cooling (ERVC) Strategy for APR1400 and Issues of Phenomenological Uncertainties Effectiveness of External Reactor Vessel Cooling (ERVC) Strategy for APR1400 and Issues of Phenomenological Uncertainties S.J. OH and H.T. KIM se_oh@khnp.co.kr and hyeong@khnp.co.kr Nuclear Environmental

More information

Accident Sequence Analysis. Workshop Information IAEA Workshop

Accident Sequence Analysis. Workshop Information IAEA Workshop IAEA Training Course on Safety Assessment of NPPs to Assist Decision Making Accident Sequence Analysis Lecturer Lesson Lesson IV IV 3_2.2 3_2.2 Workshop Information IAEA Workshop City, XX XX - City -XX,

More information

Regulatory Guide An Approach For Plant-Specific Risk-informed Decisionmaking Inservice Inspection of Piping

Regulatory Guide An Approach For Plant-Specific Risk-informed Decisionmaking Inservice Inspection of Piping Regulatory Guide 1.178An Approach For Plant-S... Page 1 of 32 July 1998 Regulatory Guide 1.178 An Approach For Plant-Specific Risk-informed Decisionmaking Inservice Inspection of Piping Publication Information

More information

EXPERIMENTAL INVESTIGATION OF A SCALED REACTOR CAVITY COOLING SYSTEM WITH AIR FOR THE VHTR

EXPERIMENTAL INVESTIGATION OF A SCALED REACTOR CAVITY COOLING SYSTEM WITH AIR FOR THE VHTR EXPERIMENTAL INVESTIGATION OF A SCALED REACTOR CAVITY COOLING SYSTEM WITH AIR FOR THE VHTR M. A. Muci 1, D. D. Lisowski 2, M. H. Anderson 3, and M. L. Corradini 3 1 : Duke Energy, 139 East 4 th Street

More information

The Analysis of TRACE/FRAPTRAN in the Fuel Rods of Maanshan PWR for LBLOCA

The Analysis of TRACE/FRAPTRAN in the Fuel Rods of Maanshan PWR for LBLOCA The Analysis of TRACE/FRAPTRAN in the Fuel Rods of Maanshan PWR for LBLOCA J. R. Wang, W. Y. Li, H. T. Lin, J. H. Yang, C. Shih, S. W. Chen Abstract Fuel rod analysis program transient (FRAPTRAN) code

More information

Development of an Update to ISA S67.04 and RP 67.04: Setpoints for Nuclear Safety-Related Instrumentation for Nuclear Power Plants

Development of an Update to ISA S67.04 and RP 67.04: Setpoints for Nuclear Safety-Related Instrumentation for Nuclear Power Plants Development of an Update to ISA S67.04 and RP 67.04: Setpoints for Nuclear Safety-Related Instrumentation for Nuclear Power Plants Wayne Marquino Chairman, ISA S67.04 Committee Team Leader, ESBWR System

More information

S. Gupta - G. Poss - M. Sonnenkalb. OECD/NEA THAI Program for Containment Safety Research: main Insights and Perspectives

S. Gupta - G. Poss - M. Sonnenkalb. OECD/NEA THAI Program for Containment Safety Research: main Insights and Perspectives S. Gupta - G. Poss - M. Sonnenkalb OECD/NEA THAI Program for Containment Safety Research: main Insights and Perspectives. Introduction Overall objectives of OECD/NEA THAI projects: To provide containment

More information

Research on the Mechanism of Debris Bed Stratification. in Vessel Lower Plenum

Research on the Mechanism of Debris Bed Stratification. in Vessel Lower Plenum Research on the Mechanism of Debris Bed Stratification in Vessel Lower Plenum PEIWEN GU, KEMEI CAO, JIAYUN WANG 1 1 Shanghai Nuclear Research and Design Engineering Institute, SNERDI (China) ABSTRACT The

More information

GUIDELINES FOR REGULATORY REVIEW OF EOPs AND SAMGs

GUIDELINES FOR REGULATORY REVIEW OF EOPs AND SAMGs GUIDELINES FOR REGULATORY REVIEW OF EOPs AND SAMGs CNCAN, ROMANIA 2016 1 TABLE OF CONTENTS 1. INTRODUCTION 1.1. Background 1.2. Purpose and scope of the guidelines 1.3. Structure of the guidelines 1.4.

More information

Regulatory Guide Developing Software Life Cycle Processes for Digital Computer Software Used in Safety Systems of Nuclear Power Plants

Regulatory Guide Developing Software Life Cycle Processes for Digital Computer Software Used in Safety Systems of Nuclear Power Plants Regulatory Guide 1.173Developing Software Lif... Page 1 of 10 September 1997 Regulatory Guide 1.173 Developing Software Life Cycle Processes for Digital Computer Software Used in Safety Systems of Nuclear

More information

REGULATORY GUIDE (Draft was issued as DG-1080)

REGULATORY GUIDE (Draft was issued as DG-1080) U.S. NUCLEAR REGULATORY COMMISSION Revision 3 October 2001 REGULATORY GUIDE OFFICE OF NUCLEAR REGULATORY RESEARCH REGULATORY GUIDE 1.149 (Draft was issued as DG-1080) NUCLEAR POWER PLANT SIMULATION FACILITIES

More information

Passive Heat Removal System Testing Supporting the Modular HTGR Safety Basis

Passive Heat Removal System Testing Supporting the Modular HTGR Safety Basis Passive Heat Removal System Testing Supporting the Modular HTGR Safety Basis Various U.S. Facilities Office of Nuclear Energy U.S. Department of Energy Jim Kinsey Idaho National Laboratory IAEA Technical

More information

COMMERCIAL GRADE DEDICATION OF RELAP5-3D

COMMERCIAL GRADE DEDICATION OF RELAP5-3D COMMERCIAL GRADE DEDICATION OF RELAP5-3D D. Prelewicz Information Systems Laboratories, Inc. 11140 Rockville Pike, Suite 650 Rockville, MD 20850, USA danp@islinc.com B. Wolf, C. Delfino NuScale Power,

More information

Developing a Comprehensive Software Suite for Advanced Reactor Performance and Safety Analysis

Developing a Comprehensive Software Suite for Advanced Reactor Performance and Safety Analysis Developing a Comprehensive Software Suite for Advanced Reactor Performance and Safety Analysis W. David Pointer Technical Lead, NEAMS Reactor Product Line Oak Ridge National Laboratory Pathways Team Meeting

More information

Guidance on the Use of Deterministic and Probabilistic Criteria in Decision-making for Class I Nuclear Facilities

Guidance on the Use of Deterministic and Probabilistic Criteria in Decision-making for Class I Nuclear Facilities DRAFT Regulatory Document RD-152 Guidance on the Use of Deterministic and Probabilistic Criteria in Decision-making for Class I Nuclear Facilities Issued for Public Consultation May 2009 CNSC REGULATORY

More information

Current Activities on the 4S Reactor Deployment

Current Activities on the 4S Reactor Deployment PSN Number: PSN-2010-0586 Document Number: AFT-2010-000134 rev.000(1) Current Activities on the 4S Reactor Deployment The 4th Annual Asia-Pacific Nuclear Energy Forum on Small and Medium Reactors: Benefits

More information

GIF Risk and Safety Working Group Update: ISAM Implementation and System Safety Assessments

GIF Risk and Safety Working Group Update: ISAM Implementation and System Safety Assessments GIF Risk and Safety Working Group Update: ISAM Implementation and System Safety Assessments Tanju Sofu, Argonne National Laboratory GIF Risk & Safety Working Group Co-chair 12 th GIF-IAEA Interface Meeting

More information

Perspectives from Using PRA in Designing Advanced Reactors: An Iterative Approach to Uses of Risk Information in NuScale Design

Perspectives from Using PRA in Designing Advanced Reactors: An Iterative Approach to Uses of Risk Information in NuScale Design Perspectives from Using PRA in Designing Advanced Reactors: An Iterative Approach to Uses of Risk Information in NuScale Design Mohammad Modarres University of Maryland Presented at the Workshop on PRA

More information

NRC Use of Consensus Codes and Standards

NRC Use of Consensus Codes and Standards NRC Use of Consensus Codes and Standards July 7-10, 2014 Kenneth J. Karwoski, Senior Level Advisor Division of Engineering NRC Office of Nuclear Reactor Regulation 1 Who are We? The Energy Reorganization

More information

Computer-Aided Analysis of Bypass in Direct Vessel Vertical Injection System

Computer-Aided Analysis of Bypass in Direct Vessel Vertical Injection System GENES4/ANP2003, Sep. 15-19, 2003, Kyoto, JAPAN Paper 1220 Computer-Aided Analysis of Bypass in Direct Vessel Vertical Injection System Yong H. Yu 1, Sang H. Yoon 2, Kune Y. Suh 1,2* 1 PHILOSOPHIA, Inc.

More information

Boiling Water Reactor Vessel and Internals

Boiling Water Reactor Vessel and Internals Boiling Water Reactor Vessel and Internals Program Description Program Overview As boiling water reactors have aged, various forms of operation-limiting stress corrosion cracking have appeared, first in

More information

Simulation of thermal hydraulics accidental transients: evaluation of MAAP5.02 versus CATHAREv2.5

Simulation of thermal hydraulics accidental transients: evaluation of MAAP5.02 versus CATHAREv2.5 1/12 Simulation of thermal hydraulics accidental transients: evaluation of MAAP5.02 versus CATHAREv2.5 J. Bittan¹ 1) EDF R&D, Clamart (F) Summary MAAP is a deterministic code developed by EPRI that can

More information

SMR An Unconditionally Safe Source of Pollution-Free Nuclear Energy for the Post-Fukushima Age

SMR An Unconditionally Safe Source of Pollution-Free Nuclear Energy for the Post-Fukushima Age SMR -160 An Unconditionally Safe Source of Pollution-Free Nuclear Energy for the Post-Fukushima Age Dr. Stefan Anton SMR LLC Holtec Center 1001 U.S. Highway 1 North Jupiter, Florida 33477, USA July 17,

More information

NATIONAL NUCLEAR REGULATOR

NATIONAL NUCLEAR REGULATOR NATIONAL NUCLEAR REGULATOR For the protection of persons, property and the environment against nuclear damage REGULATORY GUIDE Guidance on the Verification and Validation of Evaluation and Calculation

More information

Interim Staff Guidance On Standard Review Plan Sections and Assessing Groundwater Flow and Transport of Accidental Radionuclide Releases

Interim Staff Guidance On Standard Review Plan Sections and Assessing Groundwater Flow and Transport of Accidental Radionuclide Releases Interim Staff Guidance On Standard Review Plan Sections 2.4.12 and 2.4.13 Assessing Groundwater Flow and Transport of Accidental Radionuclide Releases Purpose The purpose of this interim staff guidance

More information

Acceptance Criteria in DBA

Acceptance Criteria in DBA IAEA Safety Assessment Education and Training (SAET) Programme Joint ICTP-IAEA Essential Knowledge Workshop on Deterministic Safety Assessment and Engineering Aspects Important to Safety Acceptance Criteria

More information

Westinghouse UK AP1000 GENERIC DESIGN ASSESSMENT. Resolution Plan for GI-AP1000-PSA-01. Success Criteria for the Probabilistic Risk Assessment (PSA)

Westinghouse UK AP1000 GENERIC DESIGN ASSESSMENT. Resolution Plan for GI-AP1000-PSA-01. Success Criteria for the Probabilistic Risk Assessment (PSA) Westinghouse UK AP1000 GENERIC DESIGN ASSESSMENT Success Criteria for the Probabilistic Risk Assessment (PSA) MAIN ASSESSMENT AREA RELATED ASSESSMENT AREA(S) RESOLUTION PLAN REVISION GDA ISSUE REVISION

More information

Deterministic Safety Analyses for Human Reliability Analysis

Deterministic Safety Analyses for Human Reliability Analysis Deterministic Safety Analyses for Human Reliability Analysis Andrej Prošek Reactor Engineering Division Jožef Stefan Institute, Slovenia Marko Čepin Faculty of Electrical Engineering University of Ljubljana,

More information