invented by the Romans, approx BC invented by the Egyptians, approx BC

Size: px
Start display at page:

Download "invented by the Romans, approx BC invented by the Egyptians, approx BC"

Transcription

1

2 Wood is a natural composite of Cellulose fibres in a matrix of lignin. Plywood is a man made composite. ECC is a cement composite. Concrete itself is a composite. invented by the Egyptians, approx BC invented by the Romans, approx BC

3

4 Fibre-reinforced polymer (FRP) is a composite material made of a polymer matrix reinforced with fibres. The fibres are usually fibreglass, carbon, or aramid, while the polymer is usually an epoxy, vinyl ester or polyester thermosetting plastic. FRPs are commonly used in the aerospace, automotive, marine, and construction industries.

5 1. Fibre Process * Manufacture of fibre fabric. * Manufacture of fibre preform. 2. Moulding Process

6 Reinforcing Material Most Common Matrix Materials Properties Improved Glass Fibres UP, EP, PA, PC, POM, PP, PBT, VE Strength, Elasticity, heat resistance Wood Fibres PE, PP, ABS, HDPE, PLA Flexural strength, Tensile modulus, Tensile Strength Carbon and Aramid Fibres EP, UP, VE, PA Elasticity, Tensile Strength, compression strength, electrical strength. Inorganic Particulates Semi crystalline Thermoplastics, UP Isotropic shrinkage, abrasion, compression strength

7

8 FRP allows the alignment of the glass fibres of thermoplastics to suit specific design programs. Specifying the orientation of reinforcing fibres can increase the strength and resistance to deformation of the polymer. Glass reinforced polymers are strongest and most resistive to deforming forces when the polymers fibres are parallel to the force being exerted, and are weakest when the fibres are perpendicular. Thus this ability is at once both an advantage or a limitation depending on the context of use. Weak spots of perpendicular fibres can be used for natural hinges and connections, but can also lead to material failure when production processes fail to properly orient the fibres parallel to expected forces. When forces are exerted perpendicular to the orientation of fibres the strength and elasticity of the polymer is less than the matrix alone. In cast resin components made of glass reinforced polymers such as UP and EP, the orientation of fibres can be oriented in two-dimensional and three-dimensional weaves. This means that when forces are possibly perpendicular to one orientation, they are parallel to another orientation; this eliminates the potential for weak spots in the polymer.

9 Hadid s Chanel pavilion Construction Mats Sandwich Composite

10 It is best suited for any design program that demands weight savings, precision engineering, finite tolerances, and the simplification of parts in both production and operation. It can be applied to strengthen the beams, columns and slabs in buildings. It is possible to increase strength of these structural members even after these have been severely damaged due to loading conditions. Beams - I. FRP plates can be pasted to the bottom (generally the tension face)of a beam. This increases the strength of beam, deflection capacity of beam and stiffness (load required to make unit deflection). II. FRP strips can be pasted in 'U' shape around the sides and bottom of a beam, resulting in higher shear resistance. Columns - Can be wrapped with FRP for achieving higher strength. This is called wrapping of columns. The technique works by restraining the lateral expansion of the column. Slabs - FRP strips can be pasted at their bottom (tension face). This will result in better performance, since the tensile resistance of slabs is supplemented by the tensile strength of FRP.

11 Metal matrix composite (mmc) is a composite material, with one part being metal and the other can be a different metal, ceramic or organic compound.

12 High strength High modulus High toughness and impact properties Low sensitivity to temperature changes High surface durability High electrical conductivity

13 Particle reinforced composites: reinforcements are SiC,Al 2 O 3,TiC etc Laminated composites: reinforcements are TiB 2,SiC etc Fiber reinforced composites: reinforcements are B,C,Al 2 O 3 +SiO 2.

14 Powder processes Deposition processes Liquid processes Solid state processes

15 Aerospace Transportation (automotive and railways) Electronics and thermal management Filamentary superconducting magnets Power conduction Wear resistant materials.

16 Carbon-Carbon Composites are the woven mesh of Carbon-fibers. Carbon-Carbon Composites are used for their high strength and modulus of rigidity. Carbon-Carbon Composites' structure can be tailored to meet requirements. Carbon-Carbon Composites are light weight material which can withstand temperatures up to 3000 C

17 Variety of high temperature applications.

18 Flexi Heat Shield Baffle Heat Shield

19 Liquid Phase Infiltration Chemical Vapor Deposition

20

21 Preparation of C/C fiber pre-form of desired shape and structure Liquid pre-cursor : Petroleum pitch/ Phenolic resin/ Coal tar Pyrolysis (Chemical deposition by heat in absence of O2 It is processed at C under high pressure Pyrolysis cycle is repeated 3 to 10 times for desired density Heat Treatment converts amorphous C into crystalline C Temperature range of treatment : C Heat treatment increases Modulus of Elasticity and Strength

22 Preparation of C/C fiber pre-form of desired shape and structure Densification of the composite by CVD technique Infiltration from pressurized hydrocarbon gases at C Gas is pyrolyzed from deposition on fibre surface Process duration depends on thickness of pre-form Heat treatment increases Modulus of Elasticity and Strength This process gives higher strength and modulus of elasticity

23 Excellent Thermal Shock Resistance Low Coefficient of Thermal Expansion High Modulus of Elasticity ( 200 GPa ) High Thermal Conductivity ( 100 W/m*K ) Low Density ( 1830 Kg/m^3 ) High Strength Low Coefficient of Friction ( in Fiber direction ) Thermal Resistance in non-oxidizing atmosphere High Abrasion Resistance High Electrical Conductivity Non-Brittle Failure

24 Low oxidation resistance Reacts with Oxygen at temperature above 490 C

25 Ceramic coatings Physical vapor deposition Plasma spraying Injecting with inorganic salts, borate & silicate glass. Replacement of C/C matrix material by Si-C.

26 High Performance Braking System Refractory Material Hot-Pressed Dies Turbo-Jet Engine Components Heating Elements Missile Nose-Tips Rocket Motor Throats Leading Edges Heat Shields X-Ray Targets

27 Aramid fibers are a class of heat-resistant and strong synthetic fibers. The name is aportmanteau of "aromatic polyamide". They are fibers in which the chain molecules are highly oriented along the fiber axis, so the strength of the chemical bond can be exploited. General structure of polyaramide

28 Marine industry: As the ongoing trend is towards larger, more luxurious motorboats and sailing yachts, and a distinct rise in fast cruising and racing, the demand for greater strength and safety has grown in recent years.

29 Industrial components: Aramid is used in different kinds of industrial components, like helmets, speaker cones, bottom plates for its high modulus, damage tolerance and strength. It is also used in rods for circuit breakers, where the combination of high modulus and aramid s dielectric properties offer specific advantages. aramid Fiber Characteristics No melting point Low flammability Good fabric integrity at elevated temperatures Para-aramid fibers, which have a slightly different molecular structure, also provide outstanding strength to weight properties, high tenacity and high modulus.

30 Aramid Fiber Rubber core Packing:Kevlar Packing braided with silicone core is Composite braid, high strength aramid fibers braided around 4 equally spaced silicone silicone rubber cords forming a packings that offers excellent resilience. Sport and leisure: Different kinds of sporting goods are reinforced with aramid fibres like tennis rackets, hockey sticks, skis, fishing rods, surf boards and golf shafts. It is also used to build a wide range of vessels, including canoes, kayaks, catamarans and racing boats. Multifaceted and demanding world The industries we are involved in are constantly changing, and manufacturers are facing increasingly stringent market demand. To a major extent, sustainability is the foundation of the composites industry: composite products offer the combination of light-weight and good mechanical properties, often replacing steel or concrete solutions, resulting in fuel savings as well as reduced maintenance costs. Waste aramid can often be reclaimed and recycled for other applications.

31 bulletproof plate / armor plate (TAT-BP-3):Material: Alumina ceramic composite ofaramid fabric Criteria: NIJ level III, resisting 7.62x51mm NATO M80 ball by a M14 rifle, 5.56x45mm SS109 by a M-16 rifle, and 7.62x39 mm MSC by AK-47 rifle. Weight:2.7 kg PASGT Style Ballistic Helmet:The helmet shape is one that the Army has developed for its Future Force Warrior (FFW) initiative. These helmets, called PASGT helmets, are made using a composite comprising aramid fabric in a thermoset matrix. Flight suit made of NomexIIIA fire retardant fabric NomexIIIA is a blend of NOMEX, KEVLAR and a static dissipative fiber. It is inherently flame resistant. Material has excellent resistance to mildew, aging abrasion and laundering.

32 GLASS FIBERS are among the most versatile industrial materials known today. They are readily produced from raw materials, which are available in virtually unlimited supply. All glass fibers described in this article are derived from compositions containing silica. They exhibit useful bulk properties such as hardness, transparency, resistance to chemical attack, stability, and inertness, as well as desirable fiber properties such as strength, flexibility, and stiffness.

33 Glass-ceramics are polycrystalline material produced through controlled crystallization of base glass. Glass-ceramic materials share many properties with both glasses and ceramics. Glass-ceramics have an amorphous phase and one or more crystalline phases and are produced by a so called "controlled crystallization. Glass-ceramics have the fabrication advantage of glass as well as special properties of ceramics. Recycled glass-ceramic tiles

34 COMMON PHYSICAL PROPERTIES

35 Fiber Reinforcement Carbon fiber Nicalon and Tyranno fibers SiC and boronmonofilament fibers Oxide fibers Glass/glass ceramic fiber Metal Fiber Carbon fiber reinforced glass SiC-Nicalon fiber reinforcement

36 Tyranno fiber Silicon Carbide fiber Aluminum oxide fiber Glass ceramic fiber

37 The processing of formation of glass ceramics consists of the following steps : Slurry infiltration and hot-pressing Tape casting

38 Sol gel, colloidal routes and electrophoretic deposition

39 Storage tanks Storage tanks can be made of fiber-glass with capacities up to about 300 tonnes. The smaller tanks can be made with chopped strand mat cast over a thermoplastic inner tank which acts as a pre-form during construction. Much more reliable tanks are made using woven mat or filament wound fibre with the fibre orientation at right angles to the hoop stress imposed in the side wall by the contents. They tend to be used for chemical storage because the plastic liner (often polypropylene) is resistant to a wide range of strong chemicals. Fiber-glass tanks are also used for septic tanks. House building Glass reinforced plastics are also used in the house building market for the production of roofing laminate, door surrounds, over-door canopies, window canopies and dormers, chimneys, coping systems, heads with keystones and sills. The use of fiber-glass for these applications provides for a much faster installation and due to the reduced weight manual handling issues are reduced. With the advent of high volume manufacturing processes it is possible to construct fiber-glass brick effect panels which can be used in the construction of composite housing. These panels can be constructed with the appropriate insulation which reduces heat loss. Piping GRP and GRE pipe systems can be used for a variety of applications, above and under the ground. Firewater systems Cooling water systems Drinking water systems Waste water systems/sewage systems Gas systems

40 Nanoparticles are the particles whose sizes are less than 100 nm. Hence A nano composite is a multi-phase where one of the phase has one or more dimension less than 100 nm. The mechanical,electrical,thermal,optical,electromagnetic properties of these particles differ markedly from that of the component material. Example abalone shell, bone,nano composite hydrogel

41 In mechanical terms, nanocomposites differ from conventional composite materials due to the exceptionally high surface to volume ratio of the reinforcing phase and/or its exceptionally high aspect ratio. The reinforcing material can be made up of particles (e.g. minerals), sheets (e.g. exfoliated clay stacks) or fibres (e.g. carbon nanotubes or electro spun fibres). The area of the interface between the matrix and reinforcement phase(s) is typically an order of magnitude greater than for conventional composite materials.

42 This large amount of reinforcement surface area means that a relatively small amount of nano scale reinforcement can have an observable effect on the macro scale properties of the composite. For example, adding carbon nanotubes improves the electrical and Thermal conductivity. Other kinds of nanoparticulates may result in enhanced optical properties Dielectric properties, heat resistance or mechanical properties such as stiffness, strength and resistance to wear and damage. In general, the nano reinforcement is dispersed into the matrix during processing. Epoxy layered silicate nano composites

43 Ceramic matrix nanocomposites : In this group ceramic is the main constituent (ceramic is generally a compound of oxides,nitrides,borides,silicides. Metal matrix nanocomposites : they can also be defined as reinforced metal Matrix composites example carbon nano tube metal matrix polymer matrix nanocomposites :In the simplest case, appropriately adding nanoparticulates to a polymer matrix can enhance its performance Polymer glass matrix fiber Carbon nanotubes Ceramic matrix (Sio and al)

44 The Nanocomposites 2000 conference has revealed clearly the property advantages that nanomaterial additives can provide in comparison to both their conventional filler counterparts and base polymer. Properties which have been shown to undergo substantial improvements include: Mechanical properties e.g. strength, modulus and dimensional stability Decreased permeability to gases, water and hydrocarbons Thermal stability and heat distortion temperature Flame retardancy and reduced smoke emissions Chemical resistance Surface appearance Electrical conductivity Optical clarity in comparison to conventionally filled polymers

45 To date one of the few disadvantages associated with nanoparticle incorporation has concerned toughness and impact performance. Some of the data presented has suggested that nanoclay modification of polymers such as polyamides, could reduce impact performance. Clearly this is an issue which would require consideration for applications where impact loading events are likely. In addition, further research will be necessary to, for example, develop a better understanding of formulation/structure/property relationships, better routes to platelet exfoliation and dispersion etc.

46 Light weight High strength and stiffness Corrosion resistance (long life) Design and formulation flexibility Fatigue resistance Good damping characteristics Low thermal conductivity Unitized structure/part consolidation High impact strength Radar Transparent Durability

47 Low Relative Investment- One reason the composites industry has been successful is because of the low relative investment in setting-up a composites manufacturing facility. This has resulted in many creative and innovative companies in the field. Corrosion Resistance- Composites products provide long-term resistance to severe chemical and temperature environments. Composites are the material of choice for outdoor exposure, chemical handling applications, and severe environment service. Light Weight - Composites are light in weight, compared to most woods and metals. Their lightness is important in automobiles and aircraft, for example, where less weight means better fuel efficiency (more miles to the gallon). Design flexibility- Composites have an advantage over other materials because they can be molded into complex shapes at relatively low cost. This gives designers the freedom to create any shape or configuration. Boats are a good example of the success of composites.

48 Higher Specific Strength (strength-to-weight ratio)- Composites have a higher specific strength than many other materials. A distinct advantage of composites over other materials is the ability to use many combinations of resins and reinforcements, and therefore custom tailor the mechanical and physical properties of a structure.. Durability- Composite products and structures have an exceedingly long life span. Coupled with low maintenance requirements, the longevity of composites is a benefit in critical applications. In a halfcentury of composites development, well-designed composite structures have yet to wear out.

49 Reinforcing fibres give composites the attributes of high strength and stiffness which in the industrial arena translates to high performance. These fibres are surrounded by a choice of polymers that act as a support system, transferring load between fibres and protecting the fibres from the operating environment. Fibre/resin combinations have significantly lower weight densities when compared to steel and concrete. This means excellent strength and stiffness ratios-to-weight ratios. A Multilayer Composite Pipe combines the advantages of metal and plastic pipes and eliminates the disadvantages of both materials at the same time. The aluminium core is absolutely diffusion tight and prevents oxygen or gases from permeating into the pipe. It compensates and reduces snap-back forces and heat expansion with changes in temperature. Multilayer Composite pipe

50

51 Composites are heterogeneous Properties in composites vary from point to point in the material. Most engineering structural materials are homogeneous. Composites are highly anisotropic The strength in composites varies as the direction along which we measure changes (most engineering structural materials are isotropic). As a result, all other properties such as, stiffness, thermal expansion, thermal and electrical conductivity and creep resistance are also anisotropic. The relationship between stress and strain (force and deformation) is much more complicated than in isotropic materials. Highly Prone to Chemical Paints Also, chemical paint strippers are very harmful to composites, and must not be used on them. If paint needs to be removed from composites, only mechanical methods are allowed, such as gentle grit blasting or sanding. Many expensive composite parts have been ruined by the use of paint stripper, and such damage is generally not repairable. 52

52 The most important disadvantage is the lack of visual proof of damage. Composites respond differently from other structural materials to impact, and there is often no obvious sign of damage. In a composite structure, a low energy impact, such as a bump or a tool drop, may not leave any visible sign of the impact on the surface. Underneath the impact site there may be extensive delaminations, spreading in a coneshaped area from the impact location. The damage on the backside of the structure can be significant and extensive, but it may be hidden from view Impact energy affects the visibility, as well as the severity, of damage in composite structures. High and medium energy impacts, while severe, are easy to detect. Low energy impacts can easily cause hidden damage.

COMPOSITES. Gayathri & Yamuna

COMPOSITES. Gayathri & Yamuna COMPOSITES Definition A composite is a combination of two or more simple materials to get another material with better properties Examples Wood (a natural composite - comprising cellulose fibers in a lignin

More information

COMPOSITE MATERIALS. Dr. S.M.K. Hosseini

COMPOSITE MATERIALS. Dr. S.M.K. Hosseini Imam Khomeini International University Faculty of Eng.- Dept. of Materials Engineering COMPOSITE MATERIALS Presented by: Dr. S.M.K. Hosseini Smk_hosseini@ikiu.ac.ir hossinim@ioec.com Classification Reinforcing

More information

COMPOSITE MATERIALS. Asst. Prof. Dr. Ayşe KALEMTAŞ

COMPOSITE MATERIALS. Asst. Prof. Dr. Ayşe KALEMTAŞ COMPOSITE MATERIALS Office Hours: Tuesday, 16:30-17:30 akalemtas@mu.edu.tr, akalemtas@gmail.com Phone: +90 252 211 19 17 Metallurgical and Materials Engineering Department ISSUES TO ADDRESS Reinforcement

More information

COMPOSITE MATERIALS. Asst. Prof. Dr. Ayşe KALEMTAŞ

COMPOSITE MATERIALS. Asst. Prof. Dr. Ayşe KALEMTAŞ COMPOSITE MATERIALS Office Hours: Tuesday, 16:30-17:30 akalemtas@mu.edu.tr, akalemtas@gmail.com Phone: +90 252 211 19 17 Metallurgical and Materials Engineering Department ISSUES TO ADDRESS Ceramic Materials

More information

Composite Materials. In depth look

Composite Materials. In depth look Composite Materials In depth look Classification of Composites Metals Materials Polymers Ceramics Composites Metal Matrix Composites Polymer Matrix Composites Ceramic Matrix Composites Classification of

More information

Introduction to Composites

Introduction to Composites Section 1 Introduction to Composites By definition, composite materials are formed from two or more materials that have quite different properties. The resultant material has a heterogeneous microstructure

More information

Analysis and design of composite structures

Analysis and design of composite structures Analysis and design of composite structures Class notes 1 1. Introduction 2 Definition: composite means that different materials are combined to form a third material whose properties are superior to those

More information

Topics to Discuss.. Composite Materials

Topics to Discuss.. Composite Materials A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka 27 Composite Materials Topics to Discuss.. What are composites? Why do we make composite material? Classifications of composite materials Fibre-reinforced

More information

Composite Materials. Metal matrix composites

Composite Materials. Metal matrix composites Composite Materials Metal matrix composites Introduction The properties that make MMCs attractive are high strength and stiffness, good wear resistance, high service temperature, tailorable coefficient

More information

Engineering Materials

Engineering Materials Engineering Materials Lecture 2 MEL120: Manufacturing Practices 1 Selection of Material A particular material is selected is on the basis of following considerations 1. Properties of material 1. Properties

More information

Lecture 24 Fibre-reinforced composite materials

Lecture 24 Fibre-reinforced composite materials Lecture 24 Fibre-reinforced composite materials Fibre-reinforced composite materials Reference Text Higgins RA & Bolton, 2410. Materials for Engineers and Technicians, 5th ed, Butterworth Heinemann Section

More information

Composite Materials. Manufacturing processes for Polymer Matrix Composites

Composite Materials. Manufacturing processes for Polymer Matrix Composites Composite Materials Manufacturing processes for Polymer Matrix Composites Polymer Matrix Composites The method of manufacturing composites is very important to the design and outcome of the product With

More information

Lecture 5. Chapter 7. Range of Mechanical Properties for Polymers. The University of New Mexico. The University of New Mexico TABLE 7.

Lecture 5. Chapter 7. Range of Mechanical Properties for Polymers. The University of New Mexico. The University of New Mexico TABLE 7. Lecture 5 Chapter 7 Range of Mechanical Properties for Polymers TABLE 7.1 Material UTS (MPa) E (GPa) ABS 28 55 1.4 2.8 ABS, reinforced 100 7.5 Acetal 55 70 1.4 3.5 Acetal, reinforced 135 10 Acrylic 40

More information

Structural Composite Materials

Structural Composite Materials Structural Composite Materials F.C. Campbell The Materials Information Society ASM International Materials Park, Ohio 44073-0002 www.asminternational.org Contents Preface About the Author xi xv Chapter

More information

Introduction: Standard Plastic Terminology Plastic Program Analysis and Development p. 1 Selecting the Design Team for Success p. 3 Using Checklists

Introduction: Standard Plastic Terminology Plastic Program Analysis and Development p. 1 Selecting the Design Team for Success p. 3 Using Checklists Preface p. xv Introduction: Standard Plastic Terminology p. xix Plastic Program Analysis and Development p. 1 Selecting the Design Team for Success p. 3 Using Checklists to Develop Product Requirements

More information

CHAPTER BACKGROUND INTRODUCTION TO COMPOSITES FIBRE REINFORCED COMPOSITES AND ITS CONSTITUENTS 6

CHAPTER BACKGROUND INTRODUCTION TO COMPOSITES FIBRE REINFORCED COMPOSITES AND ITS CONSTITUENTS 6 1 CHAPTER 1 INTRODUCTION 1.1 BACKGROUND 2 1.2 INTRODUCTION TO COMPOSITES 3 1.3 FIBRE REINFORCED COMPOSITES AND ITS CONSTITUENTS 6 1.4 SIGNIFICANT AND IMPORTANT FUNCTIONS OF FIBRES AND MATRIX 9 1.4.1 Functions

More information

BY JACK AND TABO FIBER REINFORCED COMPOSITE

BY JACK AND TABO FIBER REINFORCED COMPOSITE BY JACK AND TABO FIBER REINFORCED COMPOSITE DEFINITION: FIBRE-REINFORCED PLASTIC (FRP) (ALSO FIBRE- REINFORCED POLYMER) IS A COMPOSITE MATERIAL MADE OF A POLYMER MATRIX REINFORCED WITH FIBRES. THE FIBRES

More information

CHAPTER - 1 INTRODUCTION

CHAPTER - 1 INTRODUCTION CHAPTER - 1 INTRODUCTION 1. 1.1 Polymer Matrix Composites Composite materials are formed by combining two or more materials that have different properties. The constituent materials work together to give

More information

COMPOSITE MATERIALS 10. COMPOSITE MATERIALS 10.1 INTRODUCTION

COMPOSITE MATERIALS 10. COMPOSITE MATERIALS 10.1 INTRODUCTION MODULE FIVE COMPOSITE MATERIALS 10. COMPOSITE MATERIALS Introduction Classification of composites Types of matrix materials and reinforcements Production of FRP s and MMC s Advantages and applications

More information

5.1 Essentials of Polymer Composites

5.1 Essentials of Polymer Composites 5 Polymer Composites Polymer modification can follow from the mixing of two or more macromolecular compounds or their filling with reinforcing materials of inorganic or organic substances. It enables the

More information

Lecture No. (7) Rubber Fillers

Lecture No. (7) Rubber Fillers Lecture No. (7) Rubber Fillers Introduction of Rubber Fillers Rubbers in general are seldom used in their only form because of they are too weak to fulfill practical requirements for many applications

More information

STP772-EB/Jun Index

STP772-EB/Jun Index STP772-EB/Jun. 1982 Index Acoustic emission monitoring, 106-112 Aerospace applications, 64, 133, 225 Agglomerations, fiber, 6, 9, 47 Analysis (see Testing, Thermal mechanical analysis technique, Ultrasonic

More information

أت ارش. Dr. Abdel-Wahab El-Morsy Faculty of Engineering - Rabigh

أت ارش. Dr. Abdel-Wahab El-Morsy Faculty of Engineering - Rabigh Basic Workshop 1 أت ارش There are thousands of materials available for use in engineering applications. Most materials fall into one of three classes that are based on the atomic bonding forces of a particular

More information

COMPOSITE MATERIALS. Asst. Prof. Dr. Ayşe KALEMTAŞ

COMPOSITE MATERIALS. Asst. Prof. Dr. Ayşe KALEMTAŞ COMPOSITE MATERIALS Office Hours: Tuesday, 16:30-17:30 akalemtas@mu.edu.tr, akalemtas@gmail.com Phone: +90 252 211 19 17 Metallurgical and Materials Engineering Department ISSUES TO ADDRESS Reinforcement

More information

2007 Titus Racer X Exogrid. Mechanical Engineering. Instructor: Autar Kaw. My wish. The Full Page Ad for 2007 Titus Racer X Exogrid

2007 Titus Racer X Exogrid. Mechanical Engineering. Instructor: Autar Kaw. My wish. The Full Page Ad for 2007 Titus Racer X Exogrid Introduction to Composite Materials (Laminated Composite Materials) 2007 Titus Racer X Exogrid Mechanical Engineering Instructor: Autar Kaw The Full Page Ad for 2007 Titus Racer X Exogrid My wish 1 What

More information

Composites. Fiber-Reinforced Composites. Fig Several geometric arrangements of fiber reinforcements. Source: Ref 10.1

Composites. Fiber-Reinforced Composites. Fig Several geometric arrangements of fiber reinforcements. Source: Ref 10.1 Elementary Materials Science William F. Hosford Copyright 2013 ASM International All rights reserved www.asminternational.org Chapter 10 Composites With composite materials, combinations of properties

More information

Introduction to Composite Materials

Introduction to Composite Materials Structural Composite Materials Copyright 2010, ASM International F.C. Campbell All rights reserved. (#05287G) www.asminternational.org Chapter 1 Introduction to Composite Materials A composite material

More information

Composite Materials. Introduction

Composite Materials. Introduction Composite Materials Introduction Outline Composite Materials course gives an ability to identify the properties of reinforcements and matrix materials used in composites, as well as types and design of

More information

Metal and ceramic matrices: new composite materials

Metal and ceramic matrices: new composite materials Metal and ceramic matrices: new composite materials Introduction In the case of materials subjected to mechanical loads, the use of composite materials has improved the properties by using substances that

More information

Composites Manufacturing

Composites Manufacturing Composites Manufacturing Session delivered by: Dr. Srikari S. 1 Session Objectives At the end of the session the delegates will get an overview on Manufacturing Processes Polymer Matrix Composites (PMCs)

More information

COMPOSITES. Composite Materials: Structure, General Properties, and Applications

COMPOSITES. Composite Materials: Structure, General Properties, and Applications COMPOSITES Composite Materials: Structure, General Properties, and Applications COMPOSITES Composite Materials Metal Matrix Composites (MMC) Mixture of ceramics and metals reinforced by strong, high-stiffness

More information

Haseeb Ullah Khan Jatoi Department of Chemical Engineering UET Lahore

Haseeb Ullah Khan Jatoi Department of Chemical Engineering UET Lahore Haseeb Ullah Khan Jatoi Department of Chemical Engineering UET Lahore Greek word Keramikos which means Burnt Stuff indicating that desired properties of these materials are normally achieved through a

More information

Workshop Practice TA 102

Workshop Practice TA 102 Workshop Practice TA 102 Lec 2 & 3 :Engineering Materials By Prof.A.Chandrashekhar Engineering Materials Materials play an important role in the construction and manufacturing of equipment/tools. Right

More information

TERPOLYMER ETHYLENE VINYL ACETATE MALEIC ANHYDRIDE

TERPOLYMER ETHYLENE VINYL ACETATE MALEIC ANHYDRIDE TERPOLYMER ETHYLENE VINYL ACETATE MALEIC ANHYDRIDE Hot Melt Formulation To optimise cost/performance, OREVAC Terpolymers are combined with EVATANE. Adhesion tests have been performed in a classical Hot

More information

Introduction to Material Science and Engineering

Introduction to Material Science and Engineering Introduction to Material Science and Engineering Introduction What is materials engineering? the understanding and modification of the structure and properties of materials to improve the performance and

More information

MSE 383 Unit 3-5 Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept.

MSE 383 Unit 3-5 Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept. Fiber Reinforced Polymer Composites MSE 383 Unit 3-5 Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept. Scope General Introduction composite constitutents applications Strength

More information

Comparative study on Mechanical properties of E-glass / Epoxy laminates filled with Silicon carbide, Activated charcoal and Mica

Comparative study on Mechanical properties of E-glass / Epoxy laminates filled with Silicon carbide, Activated charcoal and Mica Comparative study on Mechanical properties of E-glass / Epoxy laminates filled with Silicon carbide, Activated charcoal and Mica L. Ganesh 1*, R. Manivannan 2, L. Jayaprakash 3, S. Harish 4, S. Louies

More information

THEORY AND ANALYSIS OF LAMINATED COMPOSITE AND FUNCTINALLY GRADED BEAMS, PLATES, AND SHELLS

THEORY AND ANALYSIS OF LAMINATED COMPOSITE AND FUNCTINALLY GRADED BEAMS, PLATES, AND SHELLS THEORY AND ANALYSIS OF LAMINATED COMPOSITE AND FUNCTINALLY GRADED BEAMS, PLATES, AND SHELLS J. N. Reddy e-mail: jnreddy@tamu.edu Texas A&M University College Station, TX 77843-3123 USA * This document

More information

Examples of composites. Composited in nature wood bones. Syntetic composites Plywood Paper Metallic alloys Reinforced concrete

Examples of composites. Composited in nature wood bones. Syntetic composites Plywood Paper Metallic alloys Reinforced concrete MTY-7-EN Composites Examples of composites Composited in nature wood bones Syntetic composites Plywood Paper Metallic alloys Reinforced concrete Advantages and disadvantages of composites Advantages High

More information

Materials Science and Engineering: An Introduction

Materials Science and Engineering: An Introduction Materials Science and Engineering: An Introduction Callister, William D. ISBN-13: 9780470419977 Table of Contents List of Symbols. 1 Introduction. 1.1 Historical Perspective. 1.2 Materials Science and

More information

1-Materials Science & Materials Engineering

1-Materials Science & Materials Engineering 1-Materials Science & Materials Engineering 1-1-Structure & Properties Relationship (Materials Science or Materials Engineering) Processing Structure Properties Performance Sub Atomic Atomic Sub Atomic

More information

Carbon Fiber Epoxy Composites and Its Mechanical Properties. Hitesh Pingle 1

Carbon Fiber Epoxy Composites and Its Mechanical Properties. Hitesh Pingle 1 ISSN UA Volume 01 Issue 01 June-2018 Carbon Fiber Epoxy Composites and Its Mechanical Properties Hitesh Pingle 1 Available online at: www.xournals.com Received 15 th December 2017 Revised 19 th February

More information

Mathematics and Science in Schools in Sub-Saharan Africa

Mathematics and Science in Schools in Sub-Saharan Africa Mathematics and Science in Schools in Sub-Saharan Africa Composites The Designer Material What is a Composite? Mixture Compound Composites When two or more materials with very different properties are

More information

Vacuum infused thermoplastic composites for wind turbine blades

Vacuum infused thermoplastic composites for wind turbine blades Vacuum infused thermoplastic composites for wind turbine blades 28-10-2009 Julie Teuwen, Design and Production of Composites Structures Delft University of Technology Challenge the future Introduction

More information

Personnel Protection Vehicle Protection Structural Protection

Personnel Protection Vehicle Protection Structural Protection S-2 Glass Armor Systems Personnel Protection Vehicle Protection Structural Protection Hit Us With Your Best Shot From military rocket motor housings to combat vehicle hulls and from composite inserts for

More information

MATERIALS SCIENCE AND ENGINEERING

MATERIALS SCIENCE AND ENGINEERING MATERIALS SCIENCE AND ENGINEERING materials science - the discipline that involves investigating the relationships that exist between the structures and properties of materials materials engineering -

More information

Solving Corrosion Problems with VIPEL Composites

Solving Corrosion Problems with VIPEL Composites Solving Corrosion Problems with VIPEL Composites Slide 1 Welcome to the seminar on Solving Corrosion Problems with Fiberglass Composites. The Solution is AOC VIPEL, CORROSION RESISTANT RESINS Slide 2 Shows

More information

PLASTICS. Chapter 5. Materials of Construction-Plastics 1

PLASTICS. Chapter 5. Materials of Construction-Plastics 1 PLASTICS Chapter 5 Materials of Construction-Plastics 1 Plastics Plastics are synthetic materials which are composed of high molecular weight substances consisting of macromolecules of colloidal dimensions.

More information

Endumax an ultra-strong thin film with a high modulus

Endumax an ultra-strong thin film with a high modulus Endumax an ultra-strong thin film with a high modulus Contents What is Endumax? 3 How is Endumax produced? 4 What types of Endumax are available? 6 What can Endumax be used for? 8 Endumax a unique combination

More information

Processing and Properties of Metal Matrix Composites

Processing and Properties of Metal Matrix Composites Washington University in St. Louis Washington University Open Scholarship Mechanical Engineering and Materials Science Independent Study Mechanical Engineering & Materials Science 5-12-2016 Processing

More information

Material s Engineering Branch Fall 2013

Material s Engineering Branch Fall 2013 Material s Engineering Branch Fall 2013 Department of Civil, Environmental and Architectural Engineering Piazzale J.F.Kennedy 1, Pad D, 16129, Genoa, Italy Fabrizio Barberis SERP CHEM: Introduction to

More information

Pressure Vessel Material Composite Material

Pressure Vessel Material Composite Material Pressure Vessel Material Composite Material Sagar Santu Shete 1, Prof. Hredeya Mishra 2 1, 2 Dept. Of Mechanical Engineering, University of Pune Abstract: The aim of this paper is to study and analyze

More information

Features Conductive Room Temperature Cure. Product Ref IP 4525IP Low viscosity adhesive & coating. High thermal conductivity

Features Conductive Room Temperature Cure. Product Ref IP 4525IP Low viscosity adhesive & coating. High thermal conductivity Properties and Part Selection Overview Selection Table - Epoxy-Based Adhesive Properties Features Conductive Room Temperature Cure Product Ref 120 132 4461IP 42IP 438 700 Properties High electrical conductivity

More information

Composite Materials Raw Materials. Week

Composite Materials Raw Materials. Week Composite Materials Raw Materials Week 2 24.02.2014 Content Reinforcements Matrix Materials Fabrics Prepregs Preforms Molding compound Honeycomb and core materials Introduction Each manufacturing method

More information

REFRACTORY CERAMIC FIBER TEXTILE

REFRACTORY CERAMIC FIBER TEXTILE REFRACTORY CERAMIC FIBER TEXTILE UNITECO Refractory ceramic fiber textile is made from ceramic fiber raw material with glasses fiber or refractory stainless steel wire as strengthening stuff, the fiber

More information

Industrial Grade Products Range from Reinste Nano Ventures Pvt. Ltd.

Industrial Grade Products Range from Reinste Nano Ventures Pvt. Ltd. Industrial Grade Products Range from Reinste Nano Ventures Pvt. Ltd. Antibacterial & Antimicrobial Solutions for Various Industries Liquid Nanosilver & Nanosilver Intermediaries Liquid Nano Silver (Aqueous

More information

C A R B O N F I B E R

C A R B O N F I B E R CARBON FIBER 101 What is this stuff anyway? Carbon fiber is a high strength, high stiffness, low weight synthetic fiber that can be used in a wide variety of aesthetic and structural applications. Carbon

More information

MANUFACTURING WITH COMPOSITES 2

MANUFACTURING WITH COMPOSITES 2 MANUFACTURING WITH COMPOSITES 2 WCC WEBINAR 10 th June 2011 1 AIMS OF WEBINAR To give an overview of the most important manufacturing methods for composite materials Covering suitable materials, typical

More information

Figure 159. Tailor. chapter 08 technical report. Technical report. chapter

Figure 159. Tailor. chapter 08 technical report. Technical report. chapter 117 Figure 159. Tailor 118 Technical report chapter 8 TECHNICAL REPORT TECHNICAL EXPLORATION A space with its own rhythms needs to act and react in response to habitation. The post elements must also be

More information

WIND BLADE REPAIR. Study Guide

WIND BLADE REPAIR. Study Guide WIND BLADE REPAIR Study Guide Wind Blade Repair When you apply to become a Certified Composites Technician-Wind Blade Repair, you take the first step towards achieving excellence in the composites industry,

More information

Range of Products. FRP Applications of Products

Range of Products. FRP Applications of Products Range of Products FRP Applications of Products Pultruded Profiles Pultrusion Process Arvind Composites is one of the largest Pultrusion manufacturer in India. We offer superior Pultrusion solutions for

More information

Metal Matrix Composite (MMC)

Metal Matrix Composite (MMC) Matrix Metal Matrix Composite (MMC) The matrix is the monolithic material into which the reinforcement is embedded, and is completely continuous. This means thatt there is apath throughh the matrix ti

More information

MANUFACTURING WITH COMPOSITES 1

MANUFACTURING WITH COMPOSITES 1 MANUFACTURING WITH COMPOSITES 1 WCC WEBINAR 3 rd June 2011 1 AIMS OF WEBINAR To give an overview of the most important manufacturing methods for composite materials Covering suitable materials, typical

More information

Review of Manufacturing Processes

Review of Manufacturing Processes Review of Manufacturing Processes ME 682 Dr. Han P. Bao Mechanical Engineering, ODU ME 682 Module 3 1 Engineering Materials The four major categories: Metal Plastics Ceramics Composites 1- Metals: Cast:

More information

AIRCRAFT COMPOSITE STRUCTURE REPAIR. Introduction to Aircraft Composite Technology

AIRCRAFT COMPOSITE STRUCTURE REPAIR. Introduction to Aircraft Composite Technology Introduction to Aircraft Composite Technology AIRCRAFT COMPOSITE STRUCTURE REPAIR Disclaimer/ Provision This course is designed to provide trainers with the general information on Introduction of Aircraft

More information

Classification of Ceramics

Classification of Ceramics Classification of Ceramics 2 Y. Imanaka et al. (eds.), The Ceramic Society of Japan, Advanced Ceramic Technologies & Products, DOI 10.1007/978-4-431-54108-0_2, Springer Japan 2012 5 Monolithic Ceramics

More information

Innovative Advanced Composite Materials for Various Industries

Innovative Advanced Composite Materials for Various Industries Innovative Advanced Composite Materials for Various Industries 2017 About UMATEX Group UMATEX Group is a management company and part of a new promising Composite Materials Division of ROSATOM State Corporation.

More information

Developments in Recycled Carbon Fiber for High Volume Manufacturing. JEC Forum International Conference on Automotive Technology Knoxville, 2016

Developments in Recycled Carbon Fiber for High Volume Manufacturing. JEC Forum International Conference on Automotive Technology Knoxville, 2016 Developments in Recycled Carbon Fiber for High Volume Manufacturing JEC Forum International Conference on Automotive Technology Knoxville, 2016 Overview of ELG Carbon Fibre Established in 2011 when ELG

More information

The Pros of Conformal Coatings

The Pros of Conformal Coatings The Pros of Conformal Coatings Choosing the right coating to preserve and protect electronics in harsh environments Introduction Many chemicals found in the oil, gas, and petrochemical industries can consign

More information

Processing of Non-Metals Prof. Dr. Inderdeep Singh Department of Mechanical and Industrial Engineering Indian Institute of Technology, Roorkee

Processing of Non-Metals Prof. Dr. Inderdeep Singh Department of Mechanical and Industrial Engineering Indian Institute of Technology, Roorkee Processing of Non-Metals Prof. Dr. Inderdeep Singh Department of Mechanical and Industrial Engineering Indian Institute of Technology, Roorkee Module - 5 Polymer Matrix Composites: Processing Lecture -

More information

TOPIC 8. COMPOSITE MATERIALS

TOPIC 8. COMPOSITE MATERIALS Universidad Carlos III de Madrid www.uc3m.es MATERIALS SCIENCE AND ENGINEERING TOPIC 8. COMPOSITE MATERIALS 1. Classification according to type of reinforcement and matrix 2. Type of constituents 3. Particle

More information

Mechanical and Tribological Properties of Epoxy Nanocomposites

Mechanical and Tribological Properties of Epoxy Nanocomposites Chapter 7 Mechanical and Tribological Properties of Epoxy Nanocomposites 7.1 Introduction This chapter discusses the mechanical and tribological properties of silicon dioxide (SiO 2 ) and alumina (Al 2

More information

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 04, 2016 ISSN (online):

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 04, 2016 ISSN (online): IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 04, 2016 ISSN (online): 2321-0613 A Review on Recent Application and Future Scope of Composite Material Amber Nigam 1 Deepak

More information

Basic types of bridge decks

Basic types of bridge decks Bridge Deck Slab 1 Introduction 2 Bridge deck provide the riding surface for traffic, support & transfer live loads to the main load carrying member such as girder on a bridge superstructure. Selection

More information

Chapter 16: Composites

Chapter 16: Composites Chapter 16: Composites ISSUES TO ADDRESS... What are the classes and types of composites? What are the advantages of using composite materials? How do we predict the elastic modulus for composites with

More information

COMPOSITE COMPONENTS IN AIRCRAFT APPLICATIONS

COMPOSITE COMPONENTS IN AIRCRAFT APPLICATIONS Technical Sciences and Applied Mathematics COMPOSITE COMPONENTS IN AIRCRAFT APPLICATIONS Mihaela SMEADĂ Henri Coanda Air Force Academy Abstract: There are more than 50,000 materials available to engineers

More information

PROPERTIES OF POLYMER COMPOSITE MATERIALS. Prof. Zaffar Mohammad Khan, PhD.

PROPERTIES OF POLYMER COMPOSITE MATERIALS. Prof. Zaffar Mohammad Khan, PhD. PROPERTIES OF POLYMER COMPOSITE MATERIALS Prof. Zaffar Mohammad Khan, PhD. From Dedaulus to Vvyln EVOLUTION OF COMPOSITES COMPOSITES IN BARJ UL ARAB COMPOSITE GROWTH RATE IN ENGINEERING INDUSTRIES THE

More information

Metals are generally ductile because the structure consists of close-packed layers of

Metals are generally ductile because the structure consists of close-packed layers of Chapter 10 Why are metals ductile and ceramics brittle? Metals are generally ductile because the structure consists of close-packed layers of atoms that allow for low energy dislocation movement. Slip

More information

FACTFILE: GCSE Technology and Design

FACTFILE: GCSE Technology and Design FACTFILE: GCSE Technology and Design UNIT: 1.2 MATERIALS AND THEIR GENERAL PHYSICAL, AESTHETIC AND STRUCTURAL CHARACTERISTICS Thermosetting Plastics Learning Outcomes You should be able to: demonstrate

More information

FE MODELING OF CFRP STRENGTHENED CONCRETE BEAM EXPOSED TO CYCLIC TEMPERATURE, HUMIDITY AND SUSTAINED LOADING

FE MODELING OF CFRP STRENGTHENED CONCRETE BEAM EXPOSED TO CYCLIC TEMPERATURE, HUMIDITY AND SUSTAINED LOADING FE MODELING OF STRENGTHENED CONCRETE BEAM EXPOSED TO CYCLIC TEMPERATURE, HUMIDITY AND SUSTAINED LOADING H. R. C. S. Bandara (Email: chinthanasandun@yahoo.com) J. C. P. H. Gamage (Email: kgamage@uom.lk)

More information

Lecture 1: Introduction to composite materials

Lecture 1: Introduction to composite materials At the end of this lecture you will have: An understanding of what are composite materials What the various types of composite materials Why they are used How they are designed 1/17/2014 1 What are composites

More information

Designing a Composite Material for Use in Brake Applications

Designing a Composite Material for Use in Brake Applications Materials Science Forum Online: 2005-01-15 ISSN: 1662-9752, Vols. 475-479, pp 1109-1112 doi:10.4028/www.scientific.net/msf.475-479.1109 2005 Trans Tech Publications, Switzerland Designing a Composite Material

More information

Fiber Reinforced Concrete

Fiber Reinforced Concrete Fiber Reinforced Concrete Old Concept Exodus 5:6, And Pharaoh commanded the same day the taskmasters of the people, and their officers, saying, Ye shall no more give the people straw to make brick, as

More information

ENGINEERING SPECIFICATION NON-MAGNETIC RAISED FLOOR SYSTEM FOR MRI ROOM APPLICATIONS

ENGINEERING SPECIFICATION NON-MAGNETIC RAISED FLOOR SYSTEM FOR MRI ROOM APPLICATIONS ENGINEERING SPECIFICATION NON-MAGNETIC RAISED FLOOR SYSTEM FOR MRI ROOM APPLICATIONS PULTRUDED DYNAFORM FIBERGLASS STRUCTURAL SHAPES FIBERGRATE COVERED TOP MICRO-MESH MOLDED GRATING WITH NON-MAGNETIC GRATING

More information

HIGH-VOLUME MANUFACTURE OF A COMPOSITE DOOR MODULE BY A NOVEL 3D-PREFORM TECHNOLOGY

HIGH-VOLUME MANUFACTURE OF A COMPOSITE DOOR MODULE BY A NOVEL 3D-PREFORM TECHNOLOGY HIGH-VOLUME MANUFACTURE OF A COMPOSITE DOOR MODULE BY A NOVEL 3D-PREFORM TECHNOLOGY Queein Chang-Manson and Ah Yeong Park EELCEE Ltd., Gunpo IT Valley A-106, 148, Gosan-ro, Gunpo-si, Gyeonggi-do, South

More information

SURVEY OF THE STATE OF THE ART COMPOSITES AND SANDWICH STRUCTURES

SURVEY OF THE STATE OF THE ART COMPOSITES AND SANDWICH STRUCTURES ACTA UNIVERSITATIS CIBINIENSIS TECHNICAL SERIES Vol. LXVII 2015 DOI: 10.1515/aucts-2015-0085 SURVEY OF THE STATE OF THE ART COMPOSITES AND SANDWICH STRUCTURES CORNEL Bucur, Ph.D. student Technical University

More information

Influence of Angle Ply Orientation on Tensile Properties of Carbon/Glass Hybrid Composite

Influence of Angle Ply Orientation on Tensile Properties of Carbon/Glass Hybrid Composite Journal of Minerals and Materials Characterization and Engineering, 2013, 1, 231-235 http://dx.doi.org/10.4236/jmmce.2013.15036 Published Online September 2013 (http://www.scirp.org/journal/jmmce) Influence

More information

Composites Processing ver. 1 ME 4210: Manufacturing Processes and 1 Engineering Prof. J.S. Colton GIT 2009

Composites Processing ver. 1 ME 4210: Manufacturing Processes and 1 Engineering Prof. J.S. Colton GIT 2009 Composites Processing ver. 1 1 Definition A microscopic mixture of two or more different materials. One typically being the continuous phase (matrix), and the other being the discontinuous phase (reinforcement).

More information

Fiber Sizing Fundamentals and Emerging Technologies ACCE / SPE

Fiber Sizing Fundamentals and Emerging Technologies ACCE / SPE Fiber Sizing Fundamentals and Emerging Technologies ACCE / SPE 0 Contents What is fiber sizing? Sizing chemistry, formulation and application Sizing challenges Sizing benefits Sizing selection & product

More information

Introduction to Aerospace Engineering

Introduction to Aerospace Engineering Introduction to Aerospace Engineering Lecture slides Challenge the future 1 Manufacturing aspects Metals & Composites Faculty of Aerospace Engineering 6-12-2011 Delft University of Technology Challenge

More information

Uni-Seals Product Catalog

Uni-Seals Product Catalog Uni-Seals Product Catalog www.uni-seals.com 0 Index Graphite Series CL1020 Woven graphite cloth.. 2 TA1020 Woven graphite tape 3 TA1027 Woven graphite tape with self-adhesive... 3 Asbestos Series CL2020

More information

Recycling and Disposal of Thermoset Composites Steve Pickering University of Nottingham

Recycling and Disposal of Thermoset Composites Steve Pickering University of Nottingham Recycling and Disposal of Thermoset Composites Steve Pickering University of Nottingham Workshop on Life Cycle Assessment (LCA) for Composites, Composites Gateway 25 th September 2013, Dartington Hall.

More information

What is a composite Material?

What is a composite Material? Composite Materials What is a composite Material? A broad definition of composite is: Two or more chemically distinct materials which when combined have improved properties over the individual materials.

More information

Advantex Glass: The E-CR Glass for a Sustainable Future

Advantex Glass: The E-CR Glass for a Sustainable Future Advantex Glass: The E-CR Glass for a Sustainable Future discover your fibreglass world Advantex Glass: Eco-Responsible, Durable and Versatile Sustainable development meets the needs of the present without

More information

PLASTIC PIPE TERMS & DEFINITIONS

PLASTIC PIPE TERMS & DEFINITIONS PLASTIC PIPE TERMS & DEFINITIONS Every product has certain terms and definitions that are unique to that particular product. Listed below are some of the more common terms and definitions that relate to

More information

Heating elements shall not be used for FRP tank-containers including tank swap bodies.

Heating elements shall not be used for FRP tank-containers including tank swap bodies. Chapter 6.9 6.9.1 General Requirements for the design, construction, equipment, type approval, testing and marking of fibre-reinforced plastics (FRP) tank-containers including tank swap bodies NOTE: For

More information

Materials Engineering PTT 110

Materials Engineering PTT 110 By: Pn. Nurul Ain Harmiza Abdullah Materials Engineering PTT 110 SEMESTER 1 (2013/2014) PowerPoint Lecture Slides for Foundations of Materials Science and Engineering Fifth Edition William F. Smith Javad

More information

The Durability of Composites for Outdoor Applications Dr Cris Arnold.

The Durability of Composites for Outdoor Applications Dr Cris Arnold. The Durability of Composites for Outdoor Applications Dr Cris Arnold Use of Composites Outside 2 Use of Composites Outside 3 Use of Composites Outside 4 Use of Composites Outside Use of Composites Outside

More information

Nonmetallic Materials: Plastics, Elastomers, Ceramics, and Composites. Chapter 9. ME-215 Engineering Materials and Processes.

Nonmetallic Materials: Plastics, Elastomers, Ceramics, and Composites. Chapter 9. ME-215 Engineering Materials and Processes. Nonmetallic Materials: Plastics, Elastomers, Ceramics, and Composites Chapter 9 9.1 Introduction Wood has been a key engineering material throughout human history Ways to manufacture specific types of

More information

Silicon Carbide Fiber and Its Application to Ceramic Matrix Composites

Silicon Carbide Fiber and Its Application to Ceramic Matrix Composites Silicon Carbide Fiber and Its Application to Ceramic Matrix Composites Michio TAKEDA NGS Advanced Fibers Co.,Ltd. Ceramics Expo May 1 st, 2018 Company Profile of NGS Advanced Fibers Head Office 1-1 Takauchi,

More information