Thermal protection of structural steel

Size: px
Start display at page:

Download "Thermal protection of structural steel"

Transcription

1 Thermal protection of structural steel J. E. J. Staggs Energy Research Institute School of Process, Environment and Materials Engineering University of Leeds Leeds LS2 9JT United Kingdom

2 Overview Thermal insulation has a twofold role for steel protection: To minimise the temperature difference between the exposed coating surface and the steel substrate. To maximise the time that it takes the steel temperature to reach a critical value. Whether the insulation layer is formed in-situ (as in the case of intumescents) or is static, it must possess certain desirable characteristics and these are discussed first. An alternative strategy to thermal insulation is to use a reactive heatsink coating. Two types are investigated: A coating that endothrmically degrades with no volume change on heating A sacrificial ablative coating that vaporises on heating.

3 Thermal Insulation Consider an inert layer of thermal insulation covering a vulnerable substrate, subject to an external heat flux on its exposed surface: Heat l T It transpires that the temperature difference T between the exposed and unexposed surfaces depends on two important material characteristics: The conduction heat transfer coefficient λ = λ l The thermal diffusion timescale l lρc = = α λ t D 2

4 Thermal Insulation Two observations are immediately apparent: To limit the temperature of a vulnerable substrate, the conduction heat transfer coefficient (CHTC) must be as small as possible. To maximise the time taken for a vulnerable substrate to reach a specific temperature, the diffusion time scale must be as large as possible. So: how do we make the CHTC small? λ = λ l SMALL BIG How do we make t D big? t D = lρc λ BIG SMALL

5 Thermal Insulation Porous solids (with pores sufficiently small to eliminate internal convection) are the most effective insulators The thermal conductivity of a porous solid lies between two bounds: λ / λ s Upper Bound Λ Λ + ϕ ( 1 Λ) λ 1 ϕ λ s ( 1 Λ) The actual thermal conductivity of a real porous solid depends on the shape, distribution and to a lesser extent size of the pores. But in all cases, thermal conductivity is a decreasing function of porosity Lower Bound Porosity So, it seems to make sense to make porosity ϕ as large as possible, correct?

6 Thermal Insulation Unfortunately no! The situation in reality is more complicated and there are two important factors that interfere with this simple approach. Factor 1: Heat Transfer Enhancement by Radiation As temperature increases, radiation heat transfer across the pores themselves provides an additional heat flux that becomes increasingly significant. For very small pores, it transpires that this additional heat transfer may be accounted for by an augmentation to the thermal conductivity: Radiation λ eff 3 T = λ + ϕλr 1 3 Ta Radiation enhancement

7 Thermal Insulation Increasing temperature will always increase thermal conductivity, implying that thermal insulation effectiveness reduces with temperature. Increasing porosity can have the effect of increasing the overall effective thermal conductivity. λ eff 3 T = λ + ϕλr 1 3 Ta 0.6 Best Fit Experimental Results 0.5 Effective TC / Wm -1 K Temperature / K

8 Thermal Insulation 3 T λeff = λ + ϕλr The term λ R in the radiation augmentation 1 3 Ta to total thermal conductivity is an increasing function of pore size. This implies that for the same overall porosity ϕ, a solid with many small pores will have lower total thermal conductivity than a solid with few large pores. More internal radiation transfer in this region than this region

9 Thermal Insulation Factor 2: Effect of Increasing Porosity on Diffusion Time Scale The density and specific heat capacity of a porous solid are c ρ = ( 1 ϕ ) ρ s + ϕρ0 ( 1 ϕ ) ρ s ( 1 ϕρ 0 / ρ ) cs + ϕρ0c0 / cs = ρ respectively, where the subscripts 0 and s again denote a pore property and a solid (skeletal) property respectively Hence from the definition of diffusion time scale, it follows that t ~ 1 ϕ /. Now, a desirable property is that increasing D ( ) λ porosity also increases the diffusion time scale. l lρc = = α λ t D 2 In other words, it is necessary that ( 1 ϕ )/ λ is an increasing ~ λ = λ / 1 ϕ is a decreasing function of ϕ, or equivalently ( ) function of ϕ.

10 Thermal Insulation Therefore a strict requirement of the porous solid should be that ~ dλ < 0. dϕ 1.0 Λ Λ + ϕ ( 1 Λ) λ 1 ϕ λ s ( 1 Λ) The functional dependence of λ ~ on porosity is determined largely by pore shape and distribution and a reasonable question is whether or not ~ 0.6 λ is always a decreasing function of porosity. λ s, for 0.0 ~ example, we find that d λ / dϕ = Λ /( 1 ϕ ) 2, which is always positive. This means that increasing porosity would actually reduce Porosity the diffusion time scale. Hence any material with a thermal conductivity - porosity functional dependence close to the upper bound would not make a good protector. If we look at the thermal conductivity upper bound / λ = 1Lower ϕ( 1Bound Λ) λ / λ s Upper Bound

11 Thermal Insulation Numerical results showing failure time as a function of porosity for TC upper bound

12 Heat Sink Coating An alternative approach to purely conductive protection or intumescent chars is to use a reactive heat sink coating. Consider a reactive coating P that endothermically degrades on heating to give P * * : P P with reaction heat H J/kg. The important feature of the process is that it consumes energy and so the coating acts as a heat sink. Important examples of materials in this category are alumina trihydrate and magnesium hydroxide. A characteristic feature of heat sink coatings is that they act to control the local temperature, until the virgin coating P is exhausted. Whilst the degradation reaction proceeds, the local temperature will be approximately equal to the characteristic kinetic temperature of the degradation reaction. This is determined by an interaction between the degradation kinetics and the local heating rate.

13 Heat Sink Coating Definition of characteristic kinetic temperature at a given heating rate

14 Heat Sink Coating The graph shows numerical results for the thermal histories of the exposed surface, midpoint and the unexposed surface. Degradation at the exposed surface occurs as soon as the CKT is attained. At the midpoint, there is an induction period (labelled I on the figure) caused by thermal diffusion. The temperature remains close to the CKT until all reactant has been consumed (region II). After this, there is an interplay between heat diffusing from above and also being diffused away to lower regions where the degradation reaction is still proceeding (region III). When all reactant throughout has been consumed, the temperature increases purely by diffusion to the adiabatic limit (region IV). At the unexposed face, temperature increases until the characteristic kinetic temperature is reached and the degradation reaction switches on. During degradation, the temperature is controlled by the reaction until conversion is complete. After this point, the temperature then increases to the adiabatic limit.

15 Heat Sink Coating Hence the effectiveness of a heat-sink coating is determined by two main measures: The characteristic kinetic temperature of the coating at the interface with the substrate. The length of time taken for total conversion of the coating. For a simple heat-sink coating undergoing a single-step first order Arrhenius degradation process (with pre-exponential factor A and activation temperature T A ), subject to a fixed heat flux on the exposed surface, it transpires that the important parameters are: The coating Damköhler number: D = ln = ln( ) The coating Stefan number: S H = ct A The dimensionless external heat flux: 2 l A α q η = λ T A At D

16 Heat Sink Coating The overall performance of the heat-sink coating is determined by a combination of the three parameters above, together with the diffusion time scale and CHTC already discussed. lρ H The approximate duration of the heat-sink phase will scale like t HS ~ q Coating Thickness: 0 mm 2.5 mm 5.0 mm 7.5 mm 10.0 mm 750 Temperature / K Coating begins to dehydrate Coating anhydrous Numerical results for substrate temperature of magnesium hydroxide coated sample in a standard furnace test Time / s

17 Ablative Coating An ablative is a sacrificial coating that is thermally eroded during the heating cycle. Coatings of this type are used on space vehicles. The coating is assumed to be inert until the ablation temperature T abl is reached. At this point, the coating starts to vaporise. Vaporisation of the coating is endothermic, much like the heat sink coating considered above. The local temperature during ablation is controlled by the vaporisation process and limited to the ablation temperature. The most important difference between the two approaches is that during the ablation process, the volume of coating reduces as it vaporises and so its conduction heat transfer coefficient increases.

18 Ablative Coating Substrate fails fails Induction Ablation Post-Ablation Idealised behaviour of an ablative coating in a furnace test.

19 Ablative Coating Let H be the latent heat of vaporisation and c the specific heat capacity of the coating. If the coating is exposed to an external heat flux, then the steady ablation rate (mass flux of vaporised coating) will be m = c q ( T T ) + H abl a So, assuming that the temperature is sufficient for the coating to ablate, the timescale for which the coating can provide protection will be ( T T ) lρc abl a t abl ~ 1+ q c H ( T ) abl Ta

20 Ablative Coating There are three possible failure modes for the coated substrate, termed inductive failure, ablative failure and post ablative failure: 1. Inductive failure. The substrate reaches its failure temperature during the induction phase (where the temperature of the exposed surface of the coating increases to its ablation temperature); the coating has not yet started to ablate. 2. Ablative failure. The steel sample reaches its failure temperature during ablation of the coating, but before all of the coating is consumed. 3. Post ablative failure. The steel sample reaches its failure temperature after all of the coating has been consumed.

21 Ablative Coating Failure Time / s Coating Thermal Conductivity = 0.5 Wm -1 K -1 T abl = T fail Post-Ablative Failure Ablative Failure Ablative Failure Ablative Failure Ablative Failure Ablative Failure Inductive Failure Inductive Failure Inductive Failure Initial Coating Thickness 20 mm 15 mm 10 mm 5 mm 1 mm Ablation Temperature /K Numerical results for varying ablative thicknesses The conduction heat transfer coefficient is a critical parameter. Failure time does not always increase with ablation temperature. When λ 50 Wm -2 K -1, failure time increases to a maximum when the ablation temperature corresponds to the failure temperature and then decreases. When λ 50 Wm -2 K -1, failure time continues to increase for a finite range of ablation temperature. This is because the coating is acting both as a sacrificial barrier and a thermally insulating layer. The insulating layer delays diffusion of heat to the substrate thereby increasing the overall thermal resistance despite the fact that failure occurs before all of the coating is consumed.

22 Conclusion For insulators, the most important thermal parameters are the conduction heat transfer coefficient and the thermal diffusion time scale. The effectiveness of porous thermal insulators decreases with temperature and is strongly dependent on pore shape (and distribution). Pore shape (and distribution) should be such that the complimentary thermal conductivity λ / (1 ϕ) is a decreasing function of ϕ. For a given porosity, a char or insulator with many small pores is better than few large pores. Both heat sink and reactive coatings control the local temperature by an endothermic degradation reaction. The characteristic kinetic temperature of the reaction is therefore important for performance. For both heat sink and ablative coatings, the total coating reactivity surface density E = lρ H is a critical parameter. The time for which the substrate temperature is controlled is an increasing function of E.

Oxide Growth. 1. Introduction

Oxide Growth. 1. Introduction Oxide Growth 1. Introduction Development of high-quality silicon dioxide (SiO2) has helped to establish the dominance of silicon in the production of commercial integrated circuits. Among all the various

More information

Abstract. Nomenclature. A Porosity function for momentum equations L Latent heat of melting (J/Kg) c Specific heat (J/kg-K) s Liquid fraction

Abstract. Nomenclature. A Porosity function for momentum equations L Latent heat of melting (J/Kg) c Specific heat (J/kg-K) s Liquid fraction Enthalpy Porosity Method for CFD Simulation of Natural Convection Phenomenon for Phase Change Problems in the Molten Pool and its Importance during Melting of Solids Abstract Priyanshu Goyal, Anu Dutta,

More information

AN ANALYSIS OF POROUS MEDIA HEAT SINKS FOR NATURAL CONVECTION COOLED MICROELECTRONIC SYSTEMS. Eric R. Savery

AN ANALYSIS OF POROUS MEDIA HEAT SINKS FOR NATURAL CONVECTION COOLED MICROELECTRONIC SYSTEMS. Eric R. Savery AN ANALYSIS OF POROUS MEDIA HEAT SINKS FOR NATURAL CONVECTION COOLED MICROELECTRONIC SYSTEMS. by Eric R. Savery Engineering Project submitted in partial fulfillment of the requirements for the degree of

More information

EPSRC Centre for Doctoral Training in Industrially Focused Mathematical Modelling

EPSRC Centre for Doctoral Training in Industrially Focused Mathematical Modelling EPSRC Centre for Doctoral Training in Industrially Focused Mathematical Modelling Mathematical modelling of dissolution of alumina Attila Kovacs Contents 1. Introduction... 2 Background... 2 Glossary...

More information

A Model for Prediction of Temperature in Steel Structure Protected by Intumescent Coating, based on Tests in the Cone Calorimeter

A Model for Prediction of Temperature in Steel Structure Protected by Intumescent Coating, based on Tests in the Cone Calorimeter A Model for Prediction of Temperature in Steel Structure Protected by Intumescent Coating, based on Tests in the Cone Calorimeter YONG WANG 1, ULF GÖRANSSON 2, GÖRAN HOLMSTEDT 2, and ALAA OMRANE 3 1 University

More information

Characterization of Coal and Biomass. Conversion Behaviors in Advanced Energy Systems

Characterization of Coal and Biomass. Conversion Behaviors in Advanced Energy Systems Characterization of Coal and Biomass Conversion Behaviors in Advanced Energy Systems Reginald Mitchell, Paul Campbell and Liqiang Ma High Temperature Gasdynamics Laboratory Group Mechanical Engineering

More information

Modeling of HTPEM Fuel Cell Start-Up Process by Using Comsol Multiphysics

Modeling of HTPEM Fuel Cell Start-Up Process by Using Comsol Multiphysics Modeling of HTPEM Fuel Cell Start-Up Process by Using Comsol Multiphysics Y. Wang *1,2, J. Kowal 1,2 and D. U. Sauer 1,2,3 1 Electrochemical Energy Conversion and Storage Systems Group, Institute for Power

More information

The Chinese Performance-based Code for Fire-resistance of Steel Structures

The Chinese Performance-based Code for Fire-resistance of Steel Structures ctbuh.org/papers Title: Authors: Subject: Keywords: The Chinese Performance-based Code for Fire-resistance of Steel Structures Chao Zhang, Tongji University Chao Zhang, Tongji University Fire & Safety

More information

Heat Exchangers. Introduction. Classification of heat Exchangers

Heat Exchangers. Introduction. Classification of heat Exchangers Heat Exchangers Introduction Heat Exchanger is an adiabatic steady flow device in which two flowing fluids exchange or transfer heat between themselves due to a temperature difference without losing or

More information

Evaluating the effective diffusion coefficient within the automobile catalysts

Evaluating the effective diffusion coefficient within the automobile catalysts Evaluating the effective diffusion coefficient within the automobile catalysts Hironobu Ozeki, Hiroshi Yamada, Tomohiko Tagawa and aoki Takahashi 2. Chemical Engineering, agoya University, agoya, Japan

More information

Modelling Heat and Mass Transfer in Wood-frame Floor Assemblies Exposed to Fire

Modelling Heat and Mass Transfer in Wood-frame Floor Assemblies Exposed to Fire ling Heat and Mass Transfer in Wood-frame Floor Assemblies Exposed to Fire STEVEN T. CRAFT 1,2, BURKAN ISGOR 2, JAMES R. MEHAFFEY 1, and GEORGE HADJISOPHOCLEOUS 2 1 Building Systems Fire Program FPInnovations

More information

THERMAL CONDUCTIVITY OF ZIRCONIA COATINGS WITH ZIG-ZAG PORE MICROSTRUCTURES

THERMAL CONDUCTIVITY OF ZIRCONIA COATINGS WITH ZIG-ZAG PORE MICROSTRUCTURES Acta mater. 49 (2001) 2539 2547 www.elsevier.com/locate/actamat THERMAL CONDUCTIVITY OF ZIRCONIA COATINGS WITH ZIG-ZAG PORE MICROSTRUCTURES S. GU 1,T.J.LU 1, D. D. HASS 2 and H. N. G. WADLEY 2 1 Department

More information

Particle Size Determination of Porous Powders Using the SediGraph

Particle Size Determination of Porous Powders Using the SediGraph Application Note 94 Particle Size Determination of Porous Powders Using the SediGraph Sedimentation analysis based upon Stokes Law provides a convenient method for determining particle size distribution

More information

Hygrothermal properties applied in numerical simulation: Interstitial condensation analysis Received (in revised form): 24th July 2009

Hygrothermal properties applied in numerical simulation: Interstitial condensation analysis Received (in revised form): 24th July 2009 Original Article Hygrothermal properties applied in numerical simulation: Interstitial condensation analysis Received (in revised form): 24th July 29 Nuno M o n te i ro Ram os is Assistant Professor since

More information

Heat Storage Performance of a Honeycomb Ceramic Monolith

Heat Storage Performance of a Honeycomb Ceramic Monolith Send Orders for Reprints to reprints@benthamscience.ae The Open Fuels & Energy Science Journal, 2014, 7, 113-120 113 Heat Storage Performance of a Honeycomb Ceramic Monolith Xiaoni Qi * and Yongqi Liu

More information

Investigation on the Rate of Solidification and Mould Heating in the Casting of Commercially Pure Aluminium in Permanent Moulds of varying Thicknesses

Investigation on the Rate of Solidification and Mould Heating in the Casting of Commercially Pure Aluminium in Permanent Moulds of varying Thicknesses IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684 Volume 6, Issue 1 (Mar. - Apr. 2013), PP 33-37 Investigation on the Rate of Solidification and Mould Heating in the Casting

More information

S.P. YIM Korea Atomic Energy Research Institute P.O.Box 150, Yusong, Daejon, Republic of Korea

S.P. YIM Korea Atomic Energy Research Institute P.O.Box 150, Yusong, Daejon, Republic of Korea Hydrodynamic Dispersion Coefficients in a Porous Medium with Parallel Fractures - C.K. Lee Handong Global University 3 Namsong-ri, Heunghae-eub, Buk-gu, Pohang, Kyungbuk, 791-708 Republic of Korea S.P.

More information

Performance of a counterflow heat exchanger with heat loss through the wall at the cold end

Performance of a counterflow heat exchanger with heat loss through the wall at the cold end Cryogenics 39 (1999) 43 5 Performance of a counterflow heat exchanger with heat loss through the wall at the cold end S. Pradeep Narayanan, G. Venkatarathnam * Department of Mechanical Engineering, Indian

More information

A new model to predict multi-stage pyrolysis of flammable materials in standard fire tests

A new model to predict multi-stage pyrolysis of flammable materials in standard fire tests Journal of Physics: Conference Series A new model to predict multi-stage pyrolysis of flammable materials in standard fire tests To cite this article: A Snegirev et al 2012 J. Phys.: Conf. Ser. 395 012012

More information

Simulation of a Thermal Environment for Chilled Foods during Transport

Simulation of a Thermal Environment for Chilled Foods during Transport Simulation of a Thermal Environment for Chilled Foods during Transport D.Stubbs, S.H.Pulko, A.J.Wilkinson + Abstract Here we describe a modification of the existing treatments for thermal effects associated

More information

Fire performance of basalt FRP mesh reinforced HPC thin plates

Fire performance of basalt FRP mesh reinforced HPC thin plates Downloaded from orbit.dtu.dk on: Mar 08, 2018 Fire performance of basalt FRP mesh reinforced HPC thin plates Hulin, Thomas; Hodicky, Kamil; Schmidt, Jacob Wittrup; Nielsen, Jens Henrik; Stang, Henrik Published

More information

TIMAwave a novel test stand for thermal diffusivity measurement based on the Angstrom s method

TIMAwave a novel test stand for thermal diffusivity measurement based on the Angstrom s method 1 TIMAwave a novel test stand for thermal diffusivity measurement based on the Angstrom s method 12th European Advanced Technology Workshop on Micropackaging and Thermal management La Rochelle, France

More information

Liquid-Solid Phase Change Modeling Using Fluent. Anirudh and Joseph Lam 2002 Fluent Users Group Meeting

Liquid-Solid Phase Change Modeling Using Fluent. Anirudh and Joseph Lam 2002 Fluent Users Group Meeting Liquid-Solid Phase Change Modeling Using Fluent Anirudh and Joseph Lam 2002 Fluent Users Group Meeting Solidification Model FLUENT can be used to solve fluid flow problems involving both solidification

More information

Insulating Basements: Part 1 Fundamentals

Insulating Basements: Part 1 Fundamentals The Pennsylvania Housing Research Center Insulating Basements: Part 1 Fundamentals Builder Brief: BB0510 Brian Wolfgang, PHRC Fellow INTRODUCTION The perception of a basement has changed significantly

More information

Thermal Management of LEDs: Looking Beyond Thermal Conductivity Values

Thermal Management of LEDs: Looking Beyond Thermal Conductivity Values Thermal Management of LEDs: Looking Beyond Thermal Conductivity Values Specifically designed and formulated chemical products are widely used in the electronics industry for a vast array of applications.

More information

Characterization of Coal and Biomass Conversion Behaviors in Advanced Energy Systems

Characterization of Coal and Biomass Conversion Behaviors in Advanced Energy Systems Characterization of Coal and Biomass Conversion Behaviors in Advanced Energy Systems Investigators Reginald E. Mitchell, Associate Professor, Mechanical Engineering; Paul A. Campbell and Liqiang Ma, Graduate

More information

THERMAL PERFORMANCE STUDY OF FINNED FOAM HEAT SINKS AND THE EFFECT OF PAINTING AND INCLINATION ANGLE IN NATURAL CONVECTIVE HEAT TRANSFER

THERMAL PERFORMANCE STUDY OF FINNED FOAM HEAT SINKS AND THE EFFECT OF PAINTING AND INCLINATION ANGLE IN NATURAL CONVECTIVE HEAT TRANSFER HEFAT214 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 14 16 July 214 Orlando, Florida THERMAL PERFORMANCE STUDY OF FINNED FOAM HEAT SINKS AND THE EFFECT OF PAINTING

More information

Numerical Analysis of Heat Conduction and Phase. Transformation in Laser Transformation. Hardening: Influences of Heating Duration and

Numerical Analysis of Heat Conduction and Phase. Transformation in Laser Transformation. Hardening: Influences of Heating Duration and Applied Mathematical Sciences, Vol. 4, 2010, no. 61, 3019-3033 Numerical Analysis of Heat Conduction and Phase Transformation in Laser Transformation Hardening: Influences of Heating Duration and Laser

More information

118 RAKENNUSTEKNIIKKA Olli Ilveskoski rev FIRE SAFETY

118 RAKENNUSTEKNIIKKA Olli Ilveskoski rev FIRE SAFETY 118 RAKENNUSTEKNIIKKA FIRE SAFETY Kuva: Palomitoitusta TRY ry:n / Risto Liljan Oppimisympäristö ECCS Teknisen komitean 3, ENV 1993 osaan 1.2 "Teräsrakenteiden suunnittelu- Rakenteellinen palomitoitus"

More information

tests reduction of lead and zinc sulphates by hydrogen

tests reduction of lead and zinc sulphates by hydrogen J Therm Anal Calorim (215) 121:861 866 DI 1.17/s1973-15-4616-y Reduction of lead and zinc sulphates by hydrogen Stanisław Małecki 1 Received: 8 January 215 / Accepted: 3 March 215 / Published online: 18

More information

ENERGY SAVING IN BUILDING USING PCM IN WINDOWS

ENERGY SAVING IN BUILDING USING PCM IN WINDOWS ENERGY SAVING IN BUILDING USING PCM IN WINDOWS Rouhollah Ahmadi, Amir Shahcheraghian School of New Technologies, Iran University of Science and Technology Narmak, Tehran, Iran, 1684613114 ABSTRACT The

More information

Heat transfer analysis of hybrid stainless-carbon steel beam-column joints

Heat transfer analysis of hybrid stainless-carbon steel beam-column joints Heat transfer analysis of hybrid stainless-carbon steel beam-column joints Ali Razzazzadeh 1), *Zhong Tao 2) and Tian-Yi Song 3) 1), 2), 3) Institute for Infrastructure Engineering, University of Western

More information

Fire safety Engineering

Fire safety Engineering Fire safety Engineering 74 th session of the ECE Committee on Forests and the Forest Industry Geneva, 19 th of October, 2016 Dr. Michael Klippel Email: klippel@ibk.baug.ethz.ch ETH Zurich, Switzerland

More information

A calculation model for Trombe walls and its use as a passive cooling technique

A calculation model for Trombe walls and its use as a passive cooling technique International Conference Passive and Low Energy Cooling 365 for the Built Environment, May 5, Santorini, Greece A calculation model for Trombe walls and its use as a passive cooling technique Á. Ruiz,

More information

Slag formation during high temperature interactions between refractories containing SiO 2 and iron melts with oxygen

Slag formation during high temperature interactions between refractories containing SiO 2 and iron melts with oxygen Slag formation during high temperature interactions between refractories containing SiO 2 and iron melts with oxygen E. Kapilashrami* 1, V. Sahajwalla 2 and S. Seetharaman 1 Refractory metal interactions

More information

High temperature sulfidation of pack-tantalized iron

High temperature sulfidation of pack-tantalized iron JOURNAL DE PHYSIQUE IV Colloque C9, suppltment au Journal de Physique 111, Volume 3, dccembre 1993 High temperature sulfidation of pack-tantalized iron A. Galerie, F. Passier, X. Nguyen Khac and M. Caillet

More information

Investigators: R. E. Mitchell, Associate Professor, Mechanical Engineering Department; P. A. Campbell and L. Ma, Graduate Researchers

Investigators: R. E. Mitchell, Associate Professor, Mechanical Engineering Department; P. A. Campbell and L. Ma, Graduate Researchers Coal and Biomass Char Reactivity Investigators: R. E. Mitchell, Associate Professor, Mechanical Engineering Department; P. A. Campbell and L. Ma, Graduate Researchers Project Overview: There is considerable

More information

Intensive Quenching of Steel Parts: Equipment and Method

Intensive Quenching of Steel Parts: Equipment and Method Intensive Quenching of Steel Parts: Equipment and Method N. KOBASKO, M. ARONOV, J. POWELL, J.VANAS IQ Technologies, Inc., Akron, USA www.intensivequench.com Euclid Heat Treating Co, Euclid, USA www.euclidheattreating.com

More information

Schunk Innovative Insulation Materials. Schunk Kohlenstofftechnik GmbH

Schunk Innovative Insulation Materials. Schunk Kohlenstofftechnik GmbH Schunk Innovative Insulation Materials Schunk Kohlenstofftechnik GmbH Thermal Insulation at High Temperatures Carbon and Graphite Felt As a manufacturer of graphite felt for insulation in high-temperature

More information

Characterization of Coal and Biomass Conversion Behaviors in Advanced Energy Systems

Characterization of Coal and Biomass Conversion Behaviors in Advanced Energy Systems Characterization of Coal and Biomass Conversion Behaviors in Advanced Energy Systems Investigators Reginald E., Associate Professor, Mechanical Engineering; Paul A. Campbell and Liqiang Ma, Graduate Researchers

More information

THERMAL DIFFUSIVITY THERMAL CONDUCTIVITY

THERMAL DIFFUSIVITY THERMAL CONDUCTIVITY THERMAL DIFFUSIVITY THERMAL CONDUCTIVITY Thermal Diffusivity, Thermal Conductivity Information of the thermo physical properties of materials and heat transfer optimization of final products is becoming

More information

2D axial-symmetric model for fluid flow and heat transfer in the melting and resolidification of a vertical cylinder

2D axial-symmetric model for fluid flow and heat transfer in the melting and resolidification of a vertical cylinder Presented at the COMSOL Conference 2010 Paris 2D axial-symmetric model for fluid flow and heat transfer in the melting and resolidification of a vertical cylinder Simon Morville, Muriel Carin, Denis Carron,

More information

Monitoring Of Adhesive Cure Process and Following Evaluation of Adhesive Joint Structure by Acoustic Techniques

Monitoring Of Adhesive Cure Process and Following Evaluation of Adhesive Joint Structure by Acoustic Techniques ECNDT 006 - We... Monitoring Of Adhesive Cure Process and Following Evaluation of Adhesive Joint Structure by Acoustic Techniques Elena Yu. MAEVA, Ina SEVIARYNA, Gilbert B. CHAPMAN, Fedar M. SEVERIN University

More information

Comparison of Thermal Behavior of Solar Ponds with Flat (or Conventional) and Corrugated Bottom

Comparison of Thermal Behavior of Solar Ponds with Flat (or Conventional) and Corrugated Bottom International Journal of Scientific and Research Publications, Volume 3, Issue 3, March 213 1 Comparison of Thermal Behavior of Solar Ponds with Flat (or Conventional) and Corrugated Bottom U. K. Sinha

More information

PITTURE INTUMESCENTI Intumescentcoatings. Claudio Pagella, IRIS Coatings

PITTURE INTUMESCENTI Intumescentcoatings. Claudio Pagella, IRIS Coatings PITTURE INTUMESCENTI Intumescentcoatings Claudio Pagella, IRIS Coatings 1 Outline Intumescence Intumescent coatings Fire Fire protection Reaction to fire Resistance to fire Fire testing Regulation & standards

More information

Heat Transfer Modelling For Thermal Stimulation Of Near Wellbore Using COMSOL Multiphysics

Heat Transfer Modelling For Thermal Stimulation Of Near Wellbore Using COMSOL Multiphysics Heat Transfer Modelling For Thermal Stimulation Of Near Wellbore Using COMSOL Multiphysics M. Mohammed 1, F. Rose 1 1. Institute of Drilling Engineering and Fluid Mining, Technical University of Mining

More information

Charring rate of intumescent fire protective coated Norway spruce (Picea abies L.)

Charring rate of intumescent fire protective coated Norway spruce (Picea abies L.) Charring rate of intumescent fire protective coated Norway spruce (Picea abies L.) Wilfried Beikircher 1, Paul Hartmann 2, Josef Kögl 3 ABSTRACT: The objective of this study was to determine the combustion

More information

Power Resistor for Mounting onto a Heatsink Thick Film Technology

Power Resistor for Mounting onto a Heatsink Thick Film Technology Power Resistor for Mounting onto a Heatsink Thick Film Technology DESIGN SUPPORT TOOLS click logo to get started FEATURES 800 W at 85 C bottom case temperature Wide resistance range: 0.3 to 900 k E24 series

More information

Comparison of Carbonation Models

Comparison of Carbonation Models Comparison of Carbonation Models I. Galan and C. Andrade Eduardo Torroja Institute IETcc-CSIC, Madrid, Spain ABSTRACT: In order to describe the CO 2 diffusion process into the concrete, several carbonation

More information

Thermal behaviour modelling of superplastic forming tools

Thermal behaviour modelling of superplastic forming tools Thermal behaviour modelling of superplastic forming tools Vincent Velay, Thierry Cutard, N. Guegan To cite this version: Vincent Velay, Thierry Cutard, N. Guegan. Thermal behaviour modelling of superplastic

More information

Numerical study of residual stresses formation during the APS process

Numerical study of residual stresses formation during the APS process Numerical study of residual stresses formation during the APS process J.Li, R. Bolot, H.Liao and C.Coddet, LERMPS-UTBM, Belfort /F The formation of residual stresses during thermal spray processes may

More information

Influence of Solid CaO and Liquid Slag on Hot Metal Desulfurization

Influence of Solid CaO and Liquid Slag on Hot Metal Desulfurization , pp. 10 17 Influence of Solid CaO and Liquid Slag on Hot Metal Desulfurization Koichi TAKAHASHI, 1) Keita UTAGAWA, 2) Hiroyuki SHIBATA, 3) Shin-ya KITAMURA, 3) Naoki KIKUCHI 4) and Yasushi KISHIMOTO 5)

More information

Effect of CO Gas Concentration on Reduction Rate of Major Mineral Phase in Sintered Iron Ore

Effect of CO Gas Concentration on Reduction Rate of Major Mineral Phase in Sintered Iron Ore , pp. 570 575 Effect of CO Gas Concentration on Reduction Rate of Major Mineral Phase in Sintered Iron Ore Daisuke NOGUCHI, 1) * Ko-ichiro OHNO, 2) Takayuki MAEDA, 2) Kouki NISHIOKA 3) and Masakata SHIMIZU

More information

Carbon Monoxide Catalytic Oxidation Model

Carbon Monoxide Catalytic Oxidation Model International Journal of Chemistry and Chemical Engineering. ISSN 2248-9924 Volume 3, Number 3 (2013), pp. 161-166 Research India Publications http://www.ripublication.com Carbon Monoxide Catalytic Oxidation

More information

Chapter 10, Phase Transformations

Chapter 10, Phase Transformations Chapter Outline: Phase Transformations Heat Treatment (time and temperature) Microstructure Kinetics of phase transformations Homogeneous and heterogeneous nucleation Growth, rate of the phase transformation

More information

THERMAL ANALYSIS OF CPU WITH VARIABLE BASEPLATE HEAT- SINK USING CFD

THERMAL ANALYSIS OF CPU WITH VARIABLE BASEPLATE HEAT- SINK USING CFD THERMAL ANALYSIS OF CPU WITH VARIABLE BASEPLATE HEAT- SINK USING CFD Channamallikarjun Department of Mechanical Engineering, BKIT-Bhalki-585328 Abstract The computational fluid dynamics is concentrated

More information

Table of Contents. Preface...

Table of Contents. Preface... Preface... xi Chapter 1. Metallurgical Thermochemistry... 1 1.1. Introduction... 1 1.2. Quantities characterizing the state of a system and its evolution... 3 1.2.1. The types of operations... 3 1.2.2.

More information

Heat Insulation Analysis of an Aluminium Honeycomb Sandwich Structure

Heat Insulation Analysis of an Aluminium Honeycomb Sandwich Structure RESEARCH ARTICLE OPEN ACCESS Heat Insulation Analysis of an Aluminium Honeycomb Sandwich Structure Pratap reddy.* *PG Scholar,. Abstract Heat-transfer has been performed on a sandwich thermal protection

More information

Hideout of Sodium Phosphates in Steam Generator Crevices

Hideout of Sodium Phosphates in Steam Generator Crevices Hideout of Sodium Phosphates in Steam Generator Crevices By Gwendy Harrington Department of Chemical Engineering, University of New Brunswick, P.O. Box 4400, Fredericton, New Brunswick, E3B 5A3 Abstract

More information

HOT DIP GALVANNEALED STEEL

HOT DIP GALVANNEALED STEEL HOT DIP GALVANNEALED STEEL Construction Auto Body Panels Electrical Enclosures HOT DIP GALVANNEALED STEEL, known as ZINCGRIP GA Steel, is continuously coated on both sides with a zinc-iron (Zn-Fe) alloy.

More information

A study of the revaporisation behaviour of deposits from the metallic vertical line of Phébus FPT3

A study of the revaporisation behaviour of deposits from the metallic vertical line of Phébus FPT3 A study of the revaporisation behaviour of deposits from the metallic vertical line of Phébus FPT3 P. D. W. BOTTOMLEY 1, E. FONTANA 1, D. PAPAIOANNOU 1, G. MONTAGNIER 1, E. TEIXEIRA 1, C. DIEBOLD 1, S.

More information

Embedded Mold Temperature Sensor

Embedded Mold Temperature Sensor ANNUAL REPORT 2006 Meeting date: June 15, 2006 Design & Installation of Novel Sensors into the Continuous Casting Mold Michael K. Okelman (Combined BS/MS Student) & Brian G. Thomas Department of Mechanical

More information

HT A COMPUTATIONAL MODEL OF A PHASE CHANGE MATERIAL HEAT EXCHANGER IN A VAPOR COMPRESSION SYSTEM WITH A LARGE PULSED HEAT LOAD

HT A COMPUTATIONAL MODEL OF A PHASE CHANGE MATERIAL HEAT EXCHANGER IN A VAPOR COMPRESSION SYSTEM WITH A LARGE PULSED HEAT LOAD Proceedings of the ASME 2012 Summer Heat Transfer Conference HT2012 July 8-12, 2012, Rio Grande, Puerto Rico HT2012-58284 A COMPUTATIONAL MODEL OF A PHASE CHANGE MATERIAL HEAT EXCHANGER IN A VAPOR COMPRESSION

More information

Theory Comparison between Propane and Methane Combustion inside the Furnace

Theory Comparison between Propane and Methane Combustion inside the Furnace International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2015 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Theory

More information

Thermal Energy Storage Systems: Power-to-Heat Concepts in Solid Media Storage for High Storage Densities

Thermal Energy Storage Systems: Power-to-Heat Concepts in Solid Media Storage for High Storage Densities Journal of Traffic and Transportation Engineering 5 (017) 85-94 doi: 10.1765/38-14/017.06.001 D DAVID PUBLISHING Thermal Energy Storage Systems: Power-to-Heat Concepts in Solid Media Storage for High Storage

More information

Controlled management of a severe accident

Controlled management of a severe accident July 2015 Considerations concerning the strategy of corium retention in the reactor vessel Foreword Third-generation nuclear reactors are characterised by consideration during design of core meltdown accidents.

More information

by Hill K. Nandi CompAS Controls Inc. Indiana, Pa.

by Hill K. Nandi CompAS Controls Inc. Indiana, Pa. SOFTWARE TOOL OPTIMIZES FURNACE DESIGN AND OPERATION Adapted from an article published in the November 2002 issue of Heat Treating Progress. Copyright 2002, by ASM International, Materials Park, Ohio.

More information

The influence of Mg 17 Al 12 phase volume fraction on the corrosion behaviour of AZ91 magnesium alloy. Andrzej Kiełbus* and Grzegorz Moskal

The influence of Mg 17 Al 12 phase volume fraction on the corrosion behaviour of AZ91 magnesium alloy. Andrzej Kiełbus* and Grzegorz Moskal 196 Int. J. Microstructure and Materials Properties, Vol. 4, No. 2, 2009 The influence of Mg 17 Al 12 phase volume fraction on the corrosion behaviour of AZ91 magnesium alloy Andrzej Kiełbus* and Grzegorz

More information

In general, passive-solar components can be described by the U-value (heat loss coefficient) and

In general, passive-solar components can be described by the U-value (heat loss coefficient) and SIMULATION OF A PHOTOVOLTAIC HYBRID FACADE Olaf Gutschker and Harald Rogaß Brandenburgische Technische Universität Cottbus Lehrstuhl für Angewandte Physik Postfach 101344, D-03013 Cottbus Germany ABSTRACT

More information

INFLUENCE OF A ROTATING MAGNETIC FIELD ON THE CRYSTAL GROWTH OF GaAs

INFLUENCE OF A ROTATING MAGNETIC FIELD ON THE CRYSTAL GROWTH OF GaAs INFLUENCE OF A ROTATING MAGNETIC FIELD ON THE CRYSTAL GROWTH OF GaAs Olaf Pätzold 1, Ilmars Grants, Ulrike Wunderwald 1, and Gunter Gerbeth 1. Introduction The GaAs wafer market is characterised by an

More information

T A ~ box is divided into chambers. The

T A ~ box is divided into chambers. The AN EVALUATION OF THE PLACEMENT OF RADIANT BARRIERS ON THEIR. EFFECTIVENESS IN REDUCING HEAT TRANSFER IN ATTICS Srinivas Katipamula and Dennis L. OVNeal Texas A&M University Department of Mechanical Engineering

More information

LIGHTWEIGHT FOAMED CO CRETE (LFC) THERMAL A D MECHA ICAL PROPERTIES AT ELEVATED TEMPERATURES A D ITS APPLICATIO TO COMPOSITE WALLI G SYSTEM

LIGHTWEIGHT FOAMED CO CRETE (LFC) THERMAL A D MECHA ICAL PROPERTIES AT ELEVATED TEMPERATURES A D ITS APPLICATIO TO COMPOSITE WALLI G SYSTEM LIGHTWEIGHT FOAMED CO CRETE (LFC) THERMAL A D MECHA ICAL PROPERTIES AT ELEVATED TEMPERATURES A D ITS APPLICATIO TO COMPOSITE WALLI G SYSTEM A thesis submitted to the University of Manchester for the degree

More information

20 W Power Resistor, Thick Film Technology, TO-220

20 W Power Resistor, Thick Film Technology, TO-220 20 W Power Resistor, Thick Film Technology, TO-220 DESIGN SUPPORT TOOLS Models Available click logo to get started The well known TO-220 package is compact and easy to mount. DIMENSIONS in millimeters

More information

Numerical prediction of temperature and density distributions in selective laser sintering processes

Numerical prediction of temperature and density distributions in selective laser sintering processes Numerical prediction of temperature and density distributions in selective laser sintering processes Gabriel Bugeda Miguel Cervera and Guillermo Lombera The authors Gabriel Bugeda and Miguel Cervera are

More information

a: potential difference before direct current is applied b: potential difference after the application of current

a: potential difference before direct current is applied b: potential difference after the application of current CATHODIC PROTECTION Cathodic protection is a proven corrosion control method for protection of underground and undersea metallic structures, such as oil and gas pipelines, cables, utility lines and structural

More information

SOFC Modeling Considering Internal Reforming by a Global Kinetics Approach. and My Research in General

SOFC Modeling Considering Internal Reforming by a Global Kinetics Approach. and My Research in General SOFC Modeling Considering Internal Reforming by a Global Kinetics Approach and My Research in General Martin Andersson Division of Heat Transfer, Department of Energy Sciences, Faculty of Engineering (LTH),

More information

CHAPTER-6: SUMMARY AND CONCLUSIONS

CHAPTER-6: SUMMARY AND CONCLUSIONS CHAPTER-6: SUMMARY AND CONCLUSIONS 190 6. SUMMARY AND CONCLUSIONS 6.1 Summary of laboratory test work Based on the entire laboratory test work, findings are summarized as following; 6.1.1 Characterization

More information

Basic concepts for Localization of deformation. Stress vs. displacement/velocity boundary conditions - unstable/stable processes

Basic concepts for Localization of deformation. Stress vs. displacement/velocity boundary conditions - unstable/stable processes Basic concepts for Localization of deformation Weakening vs. strengthening rheologies (P, T, porosity, fluids, grain size) positive vs. negative feedbacks Stress vs. displacement/velocity boundary conditions

More information

STUDY ON SLAG RESISTANCE OF REFRACTORIES IN SUBMERGED ARC FURNACES MELTING FERRONICKEL

STUDY ON SLAG RESISTANCE OF REFRACTORIES IN SUBMERGED ARC FURNACES MELTING FERRONICKEL STUDY ON SLAG RESISTANCE OF REFRACTORIES IN SUBMERGED ARC FURNACES MELTING FERRONICKEL Dong HU 1 Pei-Xiao LIU 2 Shao-Jun CHU 1 1 School of Metallurgical and Ecological Engineering, University of Science

More information

AND TESTING OF A CARBON FOAM BASED SUPERCOOLER FOR HIGH HEAT FLUX COOLING IN OPTOELECTRONIC PACKAGES

AND TESTING OF A CARBON FOAM BASED SUPERCOOLER FOR HIGH HEAT FLUX COOLING IN OPTOELECTRONIC PACKAGES Proceedings of the ASME 2009 ASME 2009 InterPACK Conference IPACK2009 July 19-23, 2009, San Francisco, California, USA InterPACK2009-89008 IPACK2009-89008 DESIGN AND TESTING OF A CARBON FOAM BASED SUPERCOOLER

More information

Cooling Ceiling Panel

Cooling Ceiling Panel A Study on the Performance of Cooling Ceiling Panel Dr. Chirdpun Vitooraporn 1 and Aryut Wattanawanichakorn 2 1 Lecturer at Building Technology and Environment Laboratory, 2 Former graduate student Mechanical

More information

Site Verified Contaminant Transport Model as a Mathematical Vehicle for Prevention of the Natural Aquifer Contamination

Site Verified Contaminant Transport Model as a Mathematical Vehicle for Prevention of the Natural Aquifer Contamination PUBLS. INST. GEOPHYS. POL. ACAD. SC., E-10 (406), 2008 Site Verified Contaminant Transport Model as a Mathematical Vehicle for Prevention of the Natural Aquifer Contamination Andrzej ANISZEWSKI Szczecin

More information

Induction Heating. Jean Callebaut, Laborelec. 1 Introduction Physical principles Induction Installations... 5

Induction Heating. Jean Callebaut, Laborelec. 1 Introduction Physical principles Induction Installations... 5 Induction Heating Jean Callebaut, Laborelec 1 Introduction... 2 2 Physical principles... 2 2.1 Electromagnetic induction... 2 2.2 The Joule-effect... 3 2.3 Penetration depth... 3 3 Induction Installations...

More information

Durability Testing of Ceramic Coatings for Indirect Resistance Heat Treating in Vehicle Lightweighting Applications

Durability Testing of Ceramic Coatings for Indirect Resistance Heat Treating in Vehicle Lightweighting Applications Durability Testing of Ceramic Coatings for Indirect Resistance Heat Treating in Vehicle Lightweighting Applications Warren Peterson and Jerry E. Gould EWI Abstract The need for vehicle lightweighting has

More information

Potential of a Chemical Heat Storage as a Heat for a Catalytic Converter

Potential of a Chemical Heat Storage as a Heat for a Catalytic Converter RESEARCH Exhaust Aftertreatment AUTHORS Potential of a Chemical Heat Storage as a Heat for a Catalytic Converter Michael Albrecht is Research Assistant at the Institute of Internal Combustion Engines at

More information

Experiences of PLD Technology for LIB Separators. PICODEON Oy. Neal White

Experiences of PLD Technology for LIB Separators. PICODEON Oy. Neal White Experiences of PLD Technology for LIB Separators PICODEON Oy Neal White 1 Outline Introduction to Picodeon Ceramic coating rationale Separator overview Why PLD for LIB separators Current status of Picodeon

More information

MODELLING OF EFFECTS OF OPERATING CONDITIONS AND COAL REACTIVITY ON TEMPERATURE OF BURNING PARTICLES IN FLUIDIZED BED COMBUSTION

MODELLING OF EFFECTS OF OPERATING CONDITIONS AND COAL REACTIVITY ON TEMPERATURE OF BURNING PARTICLES IN FLUIDIZED BED COMBUSTION Acta Geodyn. Geomater.Vol.1, No.2 (134), 261-274, 2004 MODELLING OF EFFECTS OF OPERATING CONDITIONS AND COAL REACTIVITY ON TEMPERATURE OF BURNING PARTICLES IN FLUIDIZED BED COMBUSTION Karel SVOBODA*, Miloslav

More information

Effective Thermal Conductivity of Layered Porous Media

Effective Thermal Conductivity of Layered Porous Media Effective Thermal Conductivity of Layered Porous Media 10th IHPS, Taipei, Taiwan, Nov. 6-9, 2011 J. P. M. Florez a, G. G. V. Nuernberg a, M. B. H. Mantelli a, R. S. M. Almeida a and A. N. Klein b a Department

More information

Thermal Analysis of Solar Flat Plate Collector

Thermal Analysis of Solar Flat Plate Collector Thermal Analysis of Solar Flat Plate Collector # Yakoob Kolipak,Associate Professor, ME Dept, E-mail:yakoob.cjits @gmail.com # Kranthi Kumar Guduru,Assistant Professor,ME Dept, E-mail: kranthicjits1@gmail.com

More information

Batch Annealing Model for Cold Rolled Coils and Its Application

Batch Annealing Model for Cold Rolled Coils and Its Application China Steel Technical Report, No. 28, pp.13-20, (2015) Chun-Jen Fang and Li-Wen Wu 13 Batch Annealing Model for Cold Rolled Coils and Its Application CHUN-JEN FANG and LI-WEN WU New Materials Research

More information

Automotive gas sensors. Christophe PIJOLAT, Ecole des Mines de St-Etienne, France

Automotive gas sensors. Christophe PIJOLAT, Ecole des Mines de St-Etienne, France Automotive gas sensors Christophe PIJOLAT, Ecole des Mines de St-Etienne, France Outline - EC regulation - AQS - Oxygen sensors - DeNOx SCR - NOx and NH3 sensors - Soots sensors Christophe PIJOLAT, Ecole

More information

5th Pan American Conference for NDT 2-6 October 2011, Cancun, Mexico. Detecting Corrosion in Metal Elements of Ammunition by IR Thermography Methods

5th Pan American Conference for NDT 2-6 October 2011, Cancun, Mexico. Detecting Corrosion in Metal Elements of Ammunition by IR Thermography Methods Detecting Corrosion in Metal Elements of Ammunition by IR Thermography Methods Waldemar SWIDERSKI Military Institute of Armament Technology; Zielonka, Poland Phone: +48 22 7614552, Fax: +48 22 7614447;

More information

THERMAL protection systems (TPS) are designed to protect the

THERMAL protection systems (TPS) are designed to protect the JOURNAL OF SPACECRAFT AND ROCKETS Vol. 46, No. 3, May June 2009 Comparison of Materials for an Integrated Thermal Protection System for Spacecraft Reentry Christian Gogu, Satish K. Bapanapalli, Raphael

More information

- paste cement-water mix allowing setting and hardening to occur w/c: setting stiffening without significant increase in strength

- paste cement-water mix allowing setting and hardening to occur w/c: setting stiffening without significant increase in strength Definition - w/c, w/s water to cement / solid ratio by mass - paste cement-water mix allowing setting and hardening to occur w/c: 0.3-0.6 - setting stiffening without significant increase in strength -

More information

Experimental Study of Bulk Storage Ignition by Hot Points

Experimental Study of Bulk Storage Ignition by Hot Points 919 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 31, 2013 Guest Editors: Eddy De Rademaeker, Bruno Fabiano, Simberto Senni Buratti Copyright 2013, AIDIC Servizi S.r.l., ISBN 978-88-95608-22-8;

More information

Global Warming and the Hydrological Cycle

Global Warming and the Hydrological Cycle Global Warming and the Hydrological Cycle Climate Change Projections Wet regions will become wetter Dry regions will become drier Precipitation will occur less frequently Precipitation will be more intense

More information

Material for a pressure vessel Short term thermal insulation Energy efficient kilns

Material for a pressure vessel Short term thermal insulation Energy efficient kilns More Case Studies in Materials Selection Material for a pressure vessel Short term thermal insulation Energy efficient kilns More info: Materials Selection in Mechanical Design, Chapters 5 and 6 ME 474-674

More information

EFFECT OF NATURAL CONVECTION PATTERNS ON OPTIMAL LOCATION AND SIZE OF A HEAT SINK IN A GEOTHERMAL RESERVOIR

EFFECT OF NATURAL CONVECTION PATTERNS ON OPTIMAL LOCATION AND SIZE OF A HEAT SINK IN A GEOTHERMAL RESERVOIR PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 - February 2, 2011 SGP-TR-191 EFFECT OF NATURAL CONVECTION PATTERNS ON OPTIMAL

More information