High cycle fatigue Ð initiation

Size: px
Start display at page:

Download "High cycle fatigue Ð initiation"

Transcription

1 1 (8) High cycle fatigue Ð initiation Two primary causes From stress concentrations, such as pores, inclusions, initial cracks etc. There will be a local increase of the stress levels Due to a pile-up of dislocations, which will form slip bands, which will grow to form cracks Cracks form due to a local decrease in the fatigue strength Which of this two mechanisms that will dominate depends on the purity of the material, the nature of the loading, etc.

2 2 (8) Fatigue life at different stress levels σ a Stress amplitude For some materials, there is a stress amplitude below which no fatigue failures will occur Finite fatigue life ÒsteelÓ ÒaluminumÓ Infinite fatigue life N Stress cycles to failure 10 7 This is called the fatigue limit The fatigue limit can be considered to be a material parameter Designing for infinite life is to assure that no stress levels exceeds the fatigue limit But how do we translate the fatigue limit to other types of loading?

3 3 (8) The Wšhler (S-N) curve σ a Stress amplitude The Wöhler curve shows fatigue life corresponding to a certain stress amplitude Finite fatigue life ÒsteelÓ ÒaluminumÓ Infinite fatigue life N Stress cycles to failure 10 7 It is also called a S-N-curve The diagram is primarily valid for uniaxial loading The curve does not take into account any effects of the mid value of the stress during a stress cycle Consequently, the curve is only valid for loading with a certain R-ratio There are also Wöhler curves for entire components (e.g. chains, wheel axles). Then, fatigue life is normally plotted against applied load

4 4 (8) Using the Wšhler (S-N) curve σ a Given stress amplitude Gives allowable stress amplitude Gives pertinent fatigue life No fatigue damage is induced, the component can sustain an infinite number of load cycles Given service life 10 1 This slope on the Wöhler curve can be described by the equation m N f = K ÒsteelÓ ÒaluminumÓ N The Wöhler diagram can be used to design for finite (and infinite) life This can be done either for a given service loading or a given service life

5 How to Construct a Wšhler Diagram 5 (8) σ a σ FRA For alternating loading, σ FRA = σ UTS For pulsating loading σ FRA = σ UTS 2 σ σ UTS Note that the Wöhler curve is only valid for a certain R-value ( R = σ in max ) 10 For low strength wrought steel σ UTS N For steel, the fatigue limit corresponds to 106<N<107

6 The Haigh diagram 6 (8) The fatigue limits for two cases fully reversed tension/compression (or bending) pulsating tension (or bending) and the yield limit, are needed to create the diagram P The diagram is only valid for uniaxial loading The diagram is valid for different R-ratios Plasticity σ UTS

7 Reduction of the Haigh Diagram 7 (8) Reduction is made on the amplitude axis Reduction is normally made with respect to Surface roughness (taking also the effect of corrosion into account) κ Size of the raw material λ Loaded volume (no reduction in the case of a notch) δ Fatigue notch factor K f The reduction factors are taken from diagrams (see Material Fatigue, p.9-12) The fatigue notch factor is determined from K f =1+q(K t -1) where K t is the stress concentration factor and q depends on the notch radius (q<1, which gives K f < K t )

8 Using the Haigh Diagram 8 (8) Create the Haigh diagram Reduce the Haigh diagram P κλδ κλδp σ UTS Insert your service stress, P, in the reduced Haigh diagram σ UTS Check if your in the safe area. Calculate safety factors ( K σ, K σ ) t m f a P σ UTS P

CH 6: Fatigue Failure Resulting from Variable Loading

CH 6: Fatigue Failure Resulting from Variable Loading CH 6: Fatigue Failure Resulting from Variable Loading Some machine elements are subjected to statics loads and for such elements, statics failure theories are used to predict failure (yielding or fracture).

More information

At the end of this lesson, the students should be able to understand

At the end of this lesson, the students should be able to understand Instructional Objectives At the end of this lesson, the students should be able to understand Mean and variable stresses and endurance limit S-N plots for metals and non-metals and relation between endurance

More information

PowerPoint Images. Chapter 7. Failures Resulting from Variable Loading. Shigley Mischke Budynas. Mechanical Engineering Design Seventh Edition

PowerPoint Images. Chapter 7. Failures Resulting from Variable Loading. Shigley Mischke Budynas. Mechanical Engineering Design Seventh Edition PowerPoint Images Chapter 7 Failures Resulting from Variable Loading Mechanical Engineering Design Seventh Edition Shigley Mischke Budynas Copyright The McGraw-Hill Companies, Inc. Permission required

More information

Monday, May 05, Chapter 6. Fatigue Failure Resulting from Variable Loading. Dr. Mohammad Suliman Abuhaiba, PE

Monday, May 05, Chapter 6. Fatigue Failure Resulting from Variable Loading. Dr. Mohammad Suliman Abuhaiba, PE Monday, May 05, 2014 Chapter 6 Fatigue Failure Resulting from Variable Loading 1 Chapter Outline Introduction to Fatigue in Metals Approach to Fatigue Failure in Analysis and Design Fatigue-Life Methods

More information

Design, Analysis and Optimization of Overhead Crane Girder

Design, Analysis and Optimization of Overhead Crane Girder Design, Analysis and Optimization of Overhead Crane Girder Pratik R Patel 1, Bhargav J Patel 2, Vipul K Patel 3 1 M.E student in Mechanical Department, S K Patel Engineering College, Visnagar 2 Assistant

More information

Materials Issues in Fatigue and Fracture. 5.1 Fundamental Concepts 5.2 Ensuring Infinite Life 5.3 Failure 5.4 Summary

Materials Issues in Fatigue and Fracture. 5.1 Fundamental Concepts 5.2 Ensuring Infinite Life 5.3 Failure 5.4 Summary Materials Issues in Fatigue and Fracture 5.1 Fundamental Concepts 5.2 Ensuring Infinite Life 5.3 Failure 5.4 Summary 1 A simple view of fatigue 1. Will a crack nucleate? 2. Will it grow? 3. How fast will

More information

Fatigue. David Roylance Department of Materials Science and Engineering Massachusetts Institute of Technology Cambridge, MA

Fatigue. David Roylance Department of Materials Science and Engineering Massachusetts Institute of Technology Cambridge, MA Fatigue David Roylance Department of Materials Science and Engineering Massachusetts Institute of Technology Cambridge, MA 02139 May 1, 2001 Introduction The concept of \fatigue" arose several times in

More information

MSE200 Lecture 9 (CH ) Mechanical Properties II Instructor: Yuntian Zhu

MSE200 Lecture 9 (CH ) Mechanical Properties II Instructor: Yuntian Zhu MSE200 Lecture 9 (CH. 7.1-7.2) Mechanical Properties II Instructor: Yuntian Zhu Objectives/outcomes: You will learn the following: Fracture of metals. Ductile and brittle fracture. Toughness and impact

More information

Today we will cover fatigue after a short refresher of stress based static failure and fracture mechanics.

Today we will cover fatigue after a short refresher of stress based static failure and fracture mechanics. 2009-14-dec Today we will cover fatigue after a short refresher of stress based static failure and fracture mechanics. Non-destructive Testing Testing methods exist that can detect cracks or flaws in metallic

More information

Tensile/Tension Test Advanced Topics

Tensile/Tension Test Advanced Topics CIVE.3110 Engineering Materials Laboratory Fall 2017 Tensile/Tension Test Advanced Topics Tzuyang Yu Associate Professor, Ph.D. Structural Engineering Research Group (SERG) Department of Civil and Environmental

More information

Fatigue of metals. Subjects of interest

Fatigue of metals. Subjects of interest Fatigue of metals Chapter 12 Subjects of interest Objectives / Introduction Stress cycles The S-N curve Cyclic stress-strain curve Low cycle fatigue Structural features of fatigue Fatigue crack propagation

More information

Fracture. Brittle vs. Ductile Fracture Ductile materials more plastic deformation and energy absorption (toughness) before fracture.

Fracture. Brittle vs. Ductile Fracture Ductile materials more plastic deformation and energy absorption (toughness) before fracture. 1- Fracture Fracture: Separation of a body into pieces due to stress, at temperatures below the melting point. Steps in fracture: 1-Crack formation 2-Crack propagation There are two modes of fracture depending

More information

1) Fracture, ductile and brittle fracture 2) Fracture mechanics

1) Fracture, ductile and brittle fracture 2) Fracture mechanics Module-08 Failure 1) Fracture, ductile and brittle fracture 2) Fracture mechanics Contents 3) Impact fracture, ductile-to-brittle transition 4) Fatigue, crack initiation and propagation, crack propagation

More information

Fundamentals of Structural Design Part of Steel Structures

Fundamentals of Structural Design Part of Steel Structures Fundamentals of Structural Design Part of Steel Structures Civil Engineering for Bachelors 133FSTD Teacher: Zdeněk Sokol Office number: B619 1 Syllabus of lectures 1. Introduction, history of steel structures,

More information

MAE 322 Machine Design Lecture 5 Fatigue. Dr. Hodge Jenkins Mercer University

MAE 322 Machine Design Lecture 5 Fatigue. Dr. Hodge Jenkins Mercer University MAE 322 Machine Design Lecture 5 Fatigue Dr. Hodge Jenkins Mercer University Introduction to Fatigue in Metals Cyclic loading produces stresses that are variable, repeated, alternating, or fluctuating

More information

Fatigue Analysis and Design: Theory

Fatigue Analysis and Design: Theory Fatigue Analysis and Design: Theory 2014 Fall School of Mechanical and Aerospace Engineering Seoul National University Contents 5 Stress-Life(S-N) Method 6 Strain-Life(ε-N) Method 7 Fracture Mechanics

More information

Fatigue Overview. F. V. Lawrence FCP 1. Single primary slip system

Fatigue Overview. F. V. Lawrence FCP 1. Single primary slip system Fatigue Overview S Single primary slip system F. V. Lawrence S FCP 1 Fatigue Overview! History of Fatigue! Fatigue Overview! The Process of Fatigue FCP 2 Fatigue-prone Machine FCP 3 Welded Ship - 2 sink

More information

Fatigue failure & Fatigue mechanisms. Engineering Materials Chedtha Puncreobutr.

Fatigue failure & Fatigue mechanisms. Engineering Materials Chedtha Puncreobutr. Fatigue failure & Fatigue mechanisms Engineering Materials 2189101 Department of Metallurgical Engineering Chulalongkorn University http://pioneer.netserv.chula.ac.th/~pchedtha/ Fracture Mechanism Ductile

More information

Residual life time assessment of railway axles

Residual life time assessment of railway axles Residual life time assessment of railway axles Luboš Náhlík*, Pavel Pokorný, Pavel Hutař *nahlik@ipm.cz ESIS TC24 Leoben 24th-25th October 2016 AS CR (founded 1955) 140 employees 45 researchers Brno 2

More information

Chapter 6 Mechanical Properties

Chapter 6 Mechanical Properties Engineering Materials MECH 390 Tutorial 2 Chapter 6 Mechanical Properties Chapter 3-1 6.14:A cylindrical specimen of steel having a diameter of 15.2 mm and length of 250 mm is deformed elastically in tension

More information

Fatigue Life Estimation of Fuselage Structure Due to Fluctuating Bending Loads

Fatigue Life Estimation of Fuselage Structure Due to Fluctuating Bending Loads Fatigue Life Estimation of Fuselage Structure Due to Fluctuating Bending Loads Mallikarjun 1, Vidyadhar Pujar 2 1 PG Scholar, The Oxford College of Engineering Bangalore, Karnataka, India 2 Assistant Professor,

More information

Lecture 10: Fatigue of welds

Lecture 10: Fatigue of welds Kul-49.4350 Fatigue of Structures Lecture 10: Fatigue of welds 12.3.2016 Learning outcomes After the lecture, you understand fatigue phenomena in welded structures know the main influencing factors for

More information

COMMENTARY ON THE TEST METHOD FOR TENSILE FATIGUE OF CONTINUOUS FIBER REINFORCING MATERIALS (JSCE-E )

COMMENTARY ON THE TEST METHOD FOR TENSILE FATIGUE OF CONTINUOUS FIBER REINFORCING MATERIALS (JSCE-E ) COMMENTARY ON THE TEST METHOD FOR TENSILE FATIGUE OF CONTINUOUS FIBER REINFORCING MATERIALS (JSCE-E 535-1995) INTRODUCTION The test method presented here is based on the JSCE "Test Method for Fatigue of

More information

THEORY QUESTIONS [60% of paper for weld fatigue]

THEORY QUESTIONS [60% of paper for weld fatigue] 1. THEORY QUESTIONS [60% of paper for weld fatigue] Note, to obtain maximum points for each problem clearly motivate solutions and equations used. Because the students had digital versions of previous

More information

CHAPTER 8 DEFORMATION AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS

CHAPTER 8 DEFORMATION AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS CHAPTER 8 DEFORMATION AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS Slip Systems 8.3 (a) Compare planar densities (Section 3.15 and Problem W3.46 [which appears on the book s Web site]) for the (100),

More information

High Temperature Materials. By Docent. N. Menad. Luleå University of Technology ( Sweden )

High Temperature Materials. By Docent. N. Menad. Luleå University of Technology ( Sweden ) of Materials Course KGP003 Ch. 6 High Temperature Materials By Docent. N. Menad Dept. of Chemical Engineering and Geosciences Div. Of process metallurgy Luleå University of Technology ( Sweden ) Mohs scale

More information

INFLUENCE OF NOTCH TIP RADIUS AND FIBRE ORIENTATION ON THE FATIGUE STRENGTH OF A SHORT GLASS FIBRE REINFORCED POLYAMIDE 6

INFLUENCE OF NOTCH TIP RADIUS AND FIBRE ORIENTATION ON THE FATIGUE STRENGTH OF A SHORT GLASS FIBRE REINFORCED POLYAMIDE 6 INFLUENCE OF NOTCH TIP RADIUS AND FIBRE ORIENTATION ON THE FATIGUE STRENGTH OF A SHORT GLASS FIBRE REINFORCED POLYAMIDE 6 A. Bernasconi a*, E. Conrado a, P.J. Hine b a Dipartimento di Meccanica, Politecnico

More information

Structural Vessel Repairs Using Automated Weld Overlays

Structural Vessel Repairs Using Automated Weld Overlays Structural Vessel Repairs Using Automated Weld Overlays Mahmod Samman, Ph.D., P.E. mms@hes.us.com Houston Engineering Solutions, LLC Eric Williams George Gemmel ewilliams@cimsltd.com ggemmell@cimsltd.com

More information

Extension of the Uniform Material Law for High Strength Steels

Extension of the Uniform Material Law for High Strength Steels BAUHAUS UNIVERSITY GRADUATE SCHOOL OF STRUCTURAL ENGINEERING Extension of the Uniform Material Law for High Strength Steels Master s Thesis by Sinan Korkmaz Supervised by Prof. Joachim W. Bergmann 2008

More information

How to tackle fatigue failures

How to tackle fatigue failures How to tackle fatigue failures The number of cycles that a metal can endure before it breaks is a complex function of the static and cyclic stress values, the alloy, heat-treatment and surface condition

More information

MACHINES DESIGN SSC-JE STAFF SELECTION COMMISSION MECHANICAL ENGINEERING STUDY MATERIAL MACHINES DESIGN

MACHINES DESIGN SSC-JE STAFF SELECTION COMMISSION MECHANICAL ENGINEERING STUDY MATERIAL MACHINES DESIGN 1 SSC-JE STAFF SELECTION COMMISSION MECHANICAL ENGINEERING STUDY MATERIAL C O N T E N T 2 1. MACHINE DESIGN 03-21 2. FLEXIBLE MECHANICAL ELEMENTS. 22-34 3. JOURNAL BEARINGS... 35-65 4. CLUTCH AND BRAKES.

More information

UNIVERSITY OF HAIL College of Engineering Department of Mechanical Engineering

UNIVERSITY OF HAIL College of Engineering Department of Mechanical Engineering UNIVERSITY OF HAIL College of Engineering Department of Mechanical Engineering Chapter 10 Design of springs Text Book : Mechanical Engineering Design, 9th Edition Dr. Badreddine AYADI 2016 Chapter Outline

More information

different levels, also called repeated, alternating, or fluctuating stresses.

different levels, also called repeated, alternating, or fluctuating stresses. Fatigue and Dynamic Loading 1 Fti Fatigue fil failure: 2 Static ti conditions : loads are applied gradually, to give sufficient i time for the strain to fully develop. Variable conditions : stresses vary

More information

Fatigue assessment. Thuong Van DANG. May 30, 2018

Fatigue assessment. Thuong Van DANG. May 30, 2018 Fatigue assessment Thuong Van DANG May 30, 2018 1 / 27 2 / 27 3 / 27 Concept of Fatigue Introduction Factors causing fatigue failure Fatigue loading The S-N curve Cumulative damage Fatigue crack propagation

More information

Fatigue Life Prediction of Steam Turbine Blades during Start-up Operation Using Probabilistic Concepts

Fatigue Life Prediction of Steam Turbine Blades during Start-up Operation Using Probabilistic Concepts Fatigue Life Prediction of Steam Turbine Blades during Start-up Operation Using Probabilistic Concepts Presenter: C Booysen Academic Mentor: Prof P.S Heyns Date: 2014/07/25 Outline Problem statement Fatigue

More information

The strength of a material depends on its ability to sustain a load without undue deformation or failure.

The strength of a material depends on its ability to sustain a load without undue deformation or failure. TENSION TEST The strength of a material depends on its ability to sustain a load without undue deformation or failure. This strength is inherent in the material itself and must be determined by experiment.

More information

An Analytical Investigation on Fatigue Behaviour Of Carbon Steel Materials Subjected To Rotating Bending Loads

An Analytical Investigation on Fatigue Behaviour Of Carbon Steel Materials Subjected To Rotating Bending Loads Seoul FISITA World Automotive Congress June -5,, Seoul, Korea FA8 An Analytical Investigation on Fatigue Behaviour Of Carbon Steel Materials Subjected To Rotating Bending Loads Harkali Setiyono UPT-Laboratorium

More information

21 Fracture and Fatigue Revision

21 Fracture and Fatigue Revision 21 Fracture and Fatigue Revision EG2101 / EG2401 March 2015 Dr Rob Thornton Lecturer in Mechanics of Materials www.le.ac.uk Fracture concepts Fracture: Initiation and propagation of cracks within a material

More information

Stress cycles: Dr.Haydar Al-Ethari

Stress cycles: Dr.Haydar Al-Ethari Dr.Haydar Al-Ethari Lecture #17/ Fatigue in metals: Fatigue is a degradation of mechanical properties leading to failure of a material or a component under cyclic loading. (This definition excludes the

More information

C. PROCEDURE APPLICATION (FITNET)

C. PROCEDURE APPLICATION (FITNET) C. PROCEDURE APPLICATION () 266 INTRODUCTION INPUTS SPECIAL OPTIONS 267 INTRODUCTION INTRODUCTION The fatigue module provides a series of assessment procedures or routes for evaluating the effect of cyclic

More information

Effect of fiber fatigue rupture on bridging stress degradation in fiber reinforced cementitious composites

Effect of fiber fatigue rupture on bridging stress degradation in fiber reinforced cementitious composites Effect of fiber fatigue rupture on bridging stress degradation in fiber reinforced cementitious composites T. Matsumoto, P. Chun, & P. Suthiwarapirak The University of Tokyo, Tokyo, Japan. ABSTRACT: This

More information

ISO INTERNATIONAL STANDARD. Steel for the reinforcement and prestressing of concrete Test methods Part 3: Prestressing steel

ISO INTERNATIONAL STANDARD. Steel for the reinforcement and prestressing of concrete Test methods Part 3: Prestressing steel INTERNATIONAL STANDARD ISO 15630-3 First edition 2002-04-15 Steel for the reinforcement and prestressing of concrete Test methods Part 3: Prestressing steel Aciers pour l'armature et la précontrainte du

More information

Creep failure Strain-time curve Effect of temperature and applied stress Factors reducing creep rate High-temperature alloys

Creep failure Strain-time curve Effect of temperature and applied stress Factors reducing creep rate High-temperature alloys Fatigue and Creep of Materials Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Fatigue failure Laboratory fatigue test The S-N Ncurve Fractography of fractured surface Factors improving fatigue life

More information

Non rotating shaft. Problem: static failure, a very large deformation will occur on the structure or machine members..

Non rotating shaft. Problem: static failure, a very large deformation will occur on the structure or machine members.. Chapter 8 Fatigue Introduction F Non rotating shaft Under static failure, the stress on the member is constant Problem: static failure, a very large deformation will occur on the structure or machine members..

More information

Topics in Ship Structures

Topics in Ship Structures Topics in Ship Structures 10 Fatigue Crack Propagation Reference : Fracture Mechanics by T.L. Anderson Ch. 10 2017. 11 by Jang, Beom Seon OPen INteractive Structural Lab 0. INTRODUCTION Contents 1. Similitude

More information

Modelling of TMF Crack Initiation in Smooth Single-Crystal Superalloy Specimens

Modelling of TMF Crack Initiation in Smooth Single-Crystal Superalloy Specimens Modelling of TMF Crack Initiation in Smooth Single-Crystal Superalloy Specimens Daniel Leidermark, Mikael Segersäll, Johan Moverare and Kjell Simonsson Linköping University Post Print N.B.: When citing

More information

Mechanical Properties

Mechanical Properties Mechanical Properties Elastic deformation Plastic deformation Fracture Fatigue Environmental crack growth Crack Instabilty ß σ T The critical crack length for given σ a a c = Q 2 K Ic σ a 2 a r ß a Sources

More information

ADVANCES in NATURAL and APPLIED SCIENCES

ADVANCES in NATURAL and APPLIED SCIENCES ADVANCES in NATURAL and APPLIED SCIENCES ISSN: 995-0772 Published BYAENSI Publication EISSN: 998-090 http://www.aensiweb.com/anas 207 June (8): pages 3-36 Open Access Journal Fatigue Behavior of Aluminium

More information

CE 221: MECHANICS OF SOLIDS I CHAPTER 3: MECHANICAL PROPERTIES OF MATERIALS

CE 221: MECHANICS OF SOLIDS I CHAPTER 3: MECHANICAL PROPERTIES OF MATERIALS CE 221: MECHANICS OF SOLIDS I CHAPTER 3: MECHANICAL PROPERTIES OF MATERIALS By Dr. Krisada Chaiyasarn Department of Civil Engineering, Faculty of Engineering Thammasat university Outline Tension and compression

More information

Estimate the endurance strength in MPa if the rod is used in rotating bending.

Estimate the endurance strength in MPa if the rod is used in rotating bending. 348 Mechanical Engineering Design PROBLEMS Problems marked with an asterisk (*) are linked to problems in other chapters, as summarized in Table 1 1 of Sec. 1 16, p. 24. Problems 6 1 to 6 63 are to be

More information

Analysis of Fatigue Life in Two Weld Class Systems

Analysis of Fatigue Life in Two Weld Class Systems Analysis of Fatigue Life in Two Weld Class Systems Master Thesis in Solid Mechanics Niklas Karlsson, Per-Henrik Lenander LITH-IKP-EX--5/3--SE November 5 i Master Thesis in Solid Mechanics Niklas Karlsson,

More information

Using Open Source Software to Predict Crack Initiation and Crack Propagation for the F.D.E. Total Fatigue Life Project

Using Open Source Software to Predict Crack Initiation and Crack Propagation for the F.D.E. Total Fatigue Life Project Using Open Source Software to Predict Crack Initiation and Crack Propagation for the F.D.E. Total Fatigue Life Project Al Conle, Univ. Windsor, Canada Presented at F.D.E. Cincinnati Meeting April 15 2014

More information

26. Irradiation Induced Mechanical Property Changes: Hardening and Embrittlement

26. Irradiation Induced Mechanical Property Changes: Hardening and Embrittlement 26. Irradiation Induced Mechanical Property Changes: Hardening and Embrittlement General idea is that irradiation -induced microstructure causes deformation localization and consequent loss of ductility

More information

a. 50% fine pearlite, 12.5% bainite, 37.5% martensite. 590 C for 5 seconds, 350 C for 50 seconds, cool to room temperature.

a. 50% fine pearlite, 12.5% bainite, 37.5% martensite. 590 C for 5 seconds, 350 C for 50 seconds, cool to room temperature. Final Exam Wednesday, March 21, noon to 3:00 pm (160 points total) 1. TTT Diagrams A U.S. steel producer has four quench baths, used to quench plates of eutectoid steel to 700 C, 590 C, 350 C, and 22 C

More information

BFF1113 Engineering Materials DR. NOOR MAZNI ISMAIL FACULTY OF MANUFACTURING ENGINEERING

BFF1113 Engineering Materials DR. NOOR MAZNI ISMAIL FACULTY OF MANUFACTURING ENGINEERING BFF1113 Engineering Materials DR. NOOR MAZNI ISMAIL FACULTY OF MANUFACTURING ENGINEERING Course Guidelines: 1. Introduction to Engineering Materials 2. Bonding and Properties 3. Crystal Structures & Properties

More information

Chapter Outline: Failure

Chapter Outline: Failure Chapter Outline: Failure How do Materials Break? Ductile vs. brittle fracture Principles of fracture mechanics Stress concentration Impact fracture testing Fatigue (cyclic stresses) Cyclic stresses, the

More information

Note 1.1 Introduction to fatigue design

Note 1.1 Introduction to fatigue design April 2009/ John Wægter Note 1.1 Introduction to fatigue design General...2 The S-N curve...2 Fatigue crack propagation...3 Definition of basic S-N curves...6 Tubular joints...9 Influence of the parent

More information

TECHNICAL GUIDE FATIGUE RESISTANCE

TECHNICAL GUIDE FATIGUE RESISTANCE TECHNICAL GUIDE FATIGUE RESISTANCE FATIGUE RESISTANCE OF BISALLOY STEEL Bisalloy Steels has recently introduced a new product nomenclature. The following table details the grade equivalents. Note: Only

More information

INTRODUCTION TO THE USE OF LINEAR ELASTIC FRACTURE MECHANICS IN ESTIMATING FATIGUE CRACK GROWTH RATES AND RESIDUAL STRENGTH OF COMPONENTS

INTRODUCTION TO THE USE OF LINEAR ELASTIC FRACTURE MECHANICS IN ESTIMATING FATIGUE CRACK GROWTH RATES AND RESIDUAL STRENGTH OF COMPONENTS INTRODUCTION TO THE USE OF LINEAR ELASTIC FRACTURE MECHANICS IN ESTIMATING FATIGUE CRACK GROWTH RATES AND RESIDUAL STRENGTH OF COMPONENTS 1. INTRODUCTION This Item introduces the concepts of linear elastic

More information

Joints / Fixed Joints

Joints / Fixed Joints Autodesk Inventor Engineer s Handbook هندبوک مهندسی نرم افزار Autodesk Inventor انجمن اینونتور ایران www.irinventor.com Email: irinventor@chmail.ir irinventor@hotmail.com Tel: 09352191813 & Joints / Fixed

More information

Fatigue Analysis of a Welded Structure in a Random Vibration Environment

Fatigue Analysis of a Welded Structure in a Random Vibration Environment Fatigue Analysis of a Welded Structure in a Random Vibration Environment ANSYS Users Conference Framingham, MA June 13, 2013 Michael Bak 2013 CAE Associates Outline Problem description: Life assessment

More information

Presentation Outline High Impact Wheels Thermal-Mechanical Shelling What Can We Do About High Impact Wheel Removals? Locomotive Wheel Stresses Axle Fa

Presentation Outline High Impact Wheels Thermal-Mechanical Shelling What Can We Do About High Impact Wheel Removals? Locomotive Wheel Stresses Axle Fa Current Important Wheel and Axle Issues C. P. Lonsdale Vice President - Technical Standard Steel, LLC Burnham, PA Presentation Outline High Impact Wheels Thermal-Mechanical Shelling What Can We Do About

More information

Notch fatigue resistance of shot peened high-strength aluminium alloys: The role of residual stress relaxation

Notch fatigue resistance of shot peened high-strength aluminium alloys: The role of residual stress relaxation UNIVERSITÀ DI PISA Notch fatigue resistance of shot peened high-strength aluminium alloys: 1, V. Fontanari 1, C. Santus 2 1 Department of Materials Engineering and Industrial Technologies, University of

More information

Steam Turbine Critical Crack Evaluation and Ranking Cracks to Prioritize Inspection

Steam Turbine Critical Crack Evaluation and Ranking Cracks to Prioritize Inspection Steam Turbine Critical Crack Evaluation and Ranking Cracks to Prioritize Inspection G. Thorwald, V. Garcia, R. Bentley, and O. Kwon Quest Integrity Abstract: The objective of this paper is to evaluate

More information

Component Fatigue Behaviors And Life Predictions Of A Steering Knuckle Using Finite Element Analysis

Component Fatigue Behaviors And Life Predictions Of A Steering Knuckle Using Finite Element Analysis Component Fatigue Behaviors And Life Predictions Of A Steering Knuckle Using Finite Element Analysis Prof R. L. Jhala, K. D. Kothari, Member IAENG, Dr. S.S. Khandare Abstract - The paper describes a vehicle

More information

Detecting cracks with differential thermographic imaging. 21 June 2011

Detecting cracks with differential thermographic imaging. 21 June 2011 Detecting cracks with differential thermographic imaging 21 June 2011 Robert Bayles, Naval Research Laboratory, Washington DC David Moore, Virginia Tech, Blacksburg VA Norman Dowling, Virginia Tech, Blacksburg

More information

Structural design criteria

Structural design criteria chapter three Structural design criteria Contents 3.1 Modes of failure... 3.2 Theories of failure... 3.3 Theories of failure used in ASME Boiler and Pressure Vessel Code... 3.4 Allowable stress limits

More information

A CRITICAL DISTANCE APPROACH APPLIED TO MICROSCOPIC 316L BIOMEDICAL SPECIMENS UNDER FATIGUE LOADING

A CRITICAL DISTANCE APPROACH APPLIED TO MICROSCOPIC 316L BIOMEDICAL SPECIMENS UNDER FATIGUE LOADING A CRITICAL DISTANCE APPROACH APPLIED TO MICROSCOPIC 316L BIOMEDICAL SPECIMENS UNDER FATIGUE LOADING S.A. Wiersma and D. Taylor Department of Mechanical and Manufacturing Engineering, Trinity College Dublin,

More information

FATIGUE OF 8630 CAST STEEL IN THE PRESENCE OF SHRINKAGE POROSITY

FATIGUE OF 8630 CAST STEEL IN THE PRESENCE OF SHRINKAGE POROSITY FATIGUE OF 8630 CAST STEEL IN THE PRESENCE OF SHRINKAGE POROSITY K.M. Sigl 1, R.A. Hardin 2, R.I. Stephens 3, and C. Beckermann 3 1 Research Assistant, Mechanical and Industrial Engineering Dept. The University

More information

Nomenclature. σ wo. 2. Material and experiments Fatigue tests

Nomenclature. σ wo. 2. Material and experiments Fatigue tests Available online at www.sciencedirect.com ScienceDirect Procedia Structural Integrity 7 (2017) 214 221 www.elsevier.com/locate/procedia 3rd International Symposium on Fatigue Design and Material Defects,

More information

Steels for cold stamping -Fortiform

Steels for cold stamping -Fortiform Automotive Worldwide Steels for cold stamping -Fortiform Extract from the product catalogue -European edition Note: Information contained in this catalogue is subject to change. Please contact our sales

More information

WELD - STATIC AND FATIGUE STRENGTH -III

WELD - STATIC AND FATIGUE STRENGTH -III 32 WELD - STATIC AND FATIGUE STRENGTH -III 1.0 INTRODUCTION A component or a structure, which can withstand a single application of load, may fracture if the same load is applied a large number of times.

More information

III Fatigue Models. 1. Will a crack nucleate? 2. Will it grow? 3. How fast will it grow?

III Fatigue Models. 1. Will a crack nucleate? 2. Will it grow? 3. How fast will it grow? III Fatigue Models 1. Will a crack nucleate? 2. Will it grow? 3. How fast will it grow? Outline Sources of knowledge Modeling Crack nucleation Non propagating cracks Crack growth AM 11/03 2 Source of knowledge

More information

Dynamic Contact & Fatigue Analysis of a CV Boot (Gaiter) Design

Dynamic Contact & Fatigue Analysis of a CV Boot (Gaiter) Design Research & Development, FEA, CFD, Material Selection, Testing & Assessment Dynamic Contact & Fatigue Analysis of a CV Boot (Gaiter) Design M S Yeoman 1, R Damodharan 1 & R Varley 1 1. Continuum Blue Ltd.,

More information

Cyclic Fatigue Testing of Wrought Magnesium AZ80 Alloy for Automotive Wheels

Cyclic Fatigue Testing of Wrought Magnesium AZ80 Alloy for Automotive Wheels Cyclic Fatigue Testing of Wrought Magnesium AZ80 Alloy for Automotive Wheels MATLS 701 Oct 21, 2009 Geoff Rivers Supervisor Dr. Marek Niewczas Overview Introduction Background Previous work Research objectives

More information

Design to Prevent Fatigue

Design to Prevent Fatigue white paper Design to Prevent Fatigue inspiration SUMMARY In 1954, two crashes involving the world s first commercial airliner, the de Havilland Comet, brought the words metal fatigue to newspaper headlines

More information

True Stress and True Strain

True Stress and True Strain True Stress and True Strain For engineering stress ( ) and engineering strain ( ), the original (gauge) dimensions of specimen are employed. However, length and cross-sectional area change in plastic region.

More information

Fatigue Analysis of a Wind Turbine Power Train

Fatigue Analysis of a Wind Turbine Power Train Fatigue Analysis of a Wind Turbine Power Train N. Ghareeb; Inst. of General Mechanics (IAM), Aachen University of Technology, RWTH Aachen Y. Radovcic; SAMTECH Germany GmbH, Hamburg EXTERNAL ARTICLE English

More information

Volodymyr Okorokov et al. / Procedia Engineering 213 (2018)

Volodymyr Okorokov et al. / Procedia Engineering 213 (2018) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 213 (2018) 674 681 7 th International Conference on Fatigue Design, Fatigue Design 2017, 29-30 November 2017, Senlis, France

More information

3. MECHANICAL PROPERTIES OF STRUCTURAL MATERIALS

3. MECHANICAL PROPERTIES OF STRUCTURAL MATERIALS 3. MECHANICAL PROPERTIES OF STRUCTURAL MATERIALS Igor Kokcharov 3.1 TENSION TEST The tension test is the most widely used mechanical test. Principal mechanical properties are obtained from the test. There

More information

Constitutive models: Elasto-Plastic Models

Constitutive models: Elasto-Plastic Models Plasticity is the property of the solid body to deform under applied external force and to possess permanent or temporal residual deformation after applied load is removed. Main feature of plasticity:

More information

FATIGUE BEHAVIOR OF RC BEAMS UNDER FIXED PULSATING AND MOVING LOADS

FATIGUE BEHAVIOR OF RC BEAMS UNDER FIXED PULSATING AND MOVING LOADS - Technical Paper - FATIGUE BEHAVIOR OF RC BEAMS UNDER FIXED PULSATING AND MOVING LOADS Esayas GEBREYOUHANNES *1, Nobuhiro CHIJIWA *2,Chikako FUJIYAMA *3,Koichi MAEKAWA *4 ABSTRACT Shear Fatigue behavior

More information

Structures should be designed in such a way that they do not fail during their expected / predicted safe-life

Structures should be designed in such a way that they do not fail during their expected / predicted safe-life Structures Any structure is built for a particular purpose Aircraft, Ship, Bus, Train Oil Platforms Bridgesand Buildings Towers for Wind energy, Electricaltransmission etc. Structures and Materials Structuresare

More information

SMM 3622 Materials Technology 3.1 Fatigue

SMM 3622 Materials Technology 3.1 Fatigue SMM 3622 Materials Technology 3.1 Fatigue ISSUES TO ADDRESS... MECHANICAL FAILURE FATIGUE What is fatigue? Types of fatigue loading? Empirical data Estimating endurance/fatigue strength Strategies for

More information

Corrosion fatigue small-scale and full-scale tests

Corrosion fatigue small-scale and full-scale tests Wolaxim final meeting 24 th -25 th October 2012 Corrosion fatigue small-scale and full-scale tests S. BERETTA, A. LO CONTE Politecnico di Milano, Department of Mechanical Engineering Open points at the

More information

1. ASSIGNMENT GUIDELINE

1. ASSIGNMENT GUIDELINE Reg. No. 98/07367/07 VAT Reg. No. 4490189489 1. ASSIGNMENT GUIDELINE The following points are important to remember: 1. You must complete the assignment in this MS Word document, and rename the file as:

More information

NDT Deflection Measurement Devices: Benkelman Beam (BB) Sri Atmaja P. Rosyidi, Ph.D., P.E. Associate Professor

NDT Deflection Measurement Devices: Benkelman Beam (BB) Sri Atmaja P. Rosyidi, Ph.D., P.E. Associate Professor NDT Deflection Measurement Devices: Benkelman Beam (BB) Sri Atmaja P. Rosyidi, Ph.D., P.E. Associate Professor NDT Deflection Measurement Devices on Pavement Structure NDT measurement of pavement surface

More information

Prediction of fatigue crack propagation in aluminum alloy with local yield strength gradient at the crack path

Prediction of fatigue crack propagation in aluminum alloy with local yield strength gradient at the crack path Proceedings of 14 th International Conference on Mesomechanics, Budapest, Hungary, Sept. 25-28. 2012 Prediction of fatigue crack propagation in aluminum alloy with local yield strength gradient at the

More information

CHAPTER 4 STRENGTH AND STIFFNESS PREDICTIONS OF COMPOSITE SLABS BY FINITE ELEMENT MODEL

CHAPTER 4 STRENGTH AND STIFFNESS PREDICTIONS OF COMPOSITE SLABS BY FINITE ELEMENT MODEL CHAPTER 4 STRENGTH AND STIFFNESS PREDICTIONS OF COMPOSITE SLABS BY FINITE ELEMENT MODEL 4.1. General Successful use of the finite element method in many studies involving complex structures or interactions

More information

Increased resistance to buckling of piston rods through induction hardening

Increased resistance to buckling of piston rods through induction hardening Increased resistance to buckling through IH Page 1(6) Increased resistance to buckling of piston rods through induction hardening Summary Induction hardening of hydraulic cylinder piston rods engenders

More information

Fatigue and Accelerated Testing of Structural Components. Steffen Haslev Sørensen

Fatigue and Accelerated Testing of Structural Components. Steffen Haslev Sørensen Fatigue and Accelerated Testing of Structural Components Steffen Haslev Sørensen May 20, 2014 Topics Introduction Testing as part of other verification activities Fatigue Damage of structural component

More information

Mechanical Engineering Dept. CEME NUST 1

Mechanical Engineering Dept. CEME NUST 1 Mechanical Engineering Dept. CEME NUST 1 o A shaft is a rotating member, o usually of circular cross section, o used to transmit power or motion. o Provides the axis of rotation, or oscillation, of elements

More information

Subcycle Fatigue Crack Growth Formulation. for Constant and Variable Amplitude Loading. Karthik Rajan Venkatesan

Subcycle Fatigue Crack Growth Formulation. for Constant and Variable Amplitude Loading. Karthik Rajan Venkatesan Subcycle Fatigue Crack Growth Formulation for Constant and Variable Amplitude Loading by Karthik Rajan Venkatesan A Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of

More information

Design and processing of composite products from renewable resources can they compete with non-renewable composites?

Design and processing of composite products from renewable resources can they compete with non-renewable composites? Design and processing of composite products from renewable resources can they compete with non-renewable composites? B. Nyström 12/6/07 Swerea SICOMP AB,Box 271, 94126 Piteå, Sweden 1/3/08 The Swerea Group

More information

Materiaalkunde NMC113 Materials Science Probleme vir Hfstk. 6 / Problems for Chap. 6

Materiaalkunde NMC113 Materials Science Probleme vir Hfstk. 6 / Problems for Chap. 6 Materiaalkunde NMC113 Materials Science Probleme vir Hfstk. 6 / Problems for Chap. 6 2009/03/30 STRESS AND STRAIN (See answers on p S2 of Callister) 1. Callister prob. 6.4 2. Callister prob. 6.7 3. Callister

More information

COSMOS. Design to Prevent Fatigue. COSMOSWorks. SolidWorks Corporation. Introduction. What is Fatigue?

COSMOS. Design to Prevent Fatigue. COSMOSWorks. SolidWorks Corporation. Introduction. What is Fatigue? WHITE PAPER Design to Prevent Fatigue COSMOSWorks CONTENTS Introduction What is Fatigue? 1 Determining the fatigue strength of materials 2 Methods for calculating fatigue life 4 Fatigue life calculation

More information

Dual Phase steels. Extract from the product catalogue -European edition

Dual Phase steels. Extract from the product catalogue -European edition Automotive Worldwide Dual Phase steels Extract from the product catalogue -European edition Note: Information contained in this catalogue is subject to change. Please contact our sales team whenever you

More information

Cold Spray Coatings for Prevention and Mitigation of Stress Corrosion Cracking

Cold Spray Coatings for Prevention and Mitigation of Stress Corrosion Cracking Cold Spray Coatings for Prevention and Mitigation of Stress Corrosion Cracking Arash Parsi 1, Jack Lareau 1 Brian Gabriel 2, Victor Champagne 2 1 Westinghouse Electric Co LLC, 1340 Beulah Road, Pittsburgh,

More information

EFFECT OF MEAN STRESS ON SHORT CRACK GROWTH IN FATIGUED 316L STAINLESS STEEL

EFFECT OF MEAN STRESS ON SHORT CRACK GROWTH IN FATIGUED 316L STAINLESS STEEL EFFECT OF MEAN STRESS ON SHORT CRACK GROWTH IN FATIGUED 316L STAINLESS STEEL Karel OBRTLÍK Jiří MAN Jaroslav POLÁK Institute of Physics of Materials, Academy of Sciences of the Czech Republic Žižkova 22,

More information

Quiz 1 - Mechanical Properties and Testing Chapters 6 and 8 Callister

Quiz 1 - Mechanical Properties and Testing Chapters 6 and 8 Callister Quiz 1 - Mechanical Properties and Testing Chapters 6 and 8 Callister You need to be able to: Name the properties determined in a tensile test including UTS,.2% offset yield strength, Elastic Modulus,

More information