VL Algorithmische BioInformatik (19710) WS2013/2014 Woche 3 - Mittwoch

Size: px
Start display at page:

Download "VL Algorithmische BioInformatik (19710) WS2013/2014 Woche 3 - Mittwoch"

Transcription

1 VL Algorithmische BioInformatik (19710) WS2013/2014 Woche 3 - Mittwoch Tim Conrad AG Medical Bioinformatics Institut für Mathematik & Informatik, Freie Universität Berlin

2 Vorlesungsthemen Part 1: Background Basics (4) 1. The Nucleic Acid World 2. Protein Structure 3. Dealing with Databases Part 2: Sequence Alignments (2) 4. Producing and Analyzing Sequence Alignments 5. Pairwise Sequence Alignment and Database Searching 6. Patterns, Profiles, and Multiple Alignments Part 3: Evolutionary Processes (3) 7. Recovering Evolutionary History 8. Building Phylogenetic Trees Part 5: Secondary Structures (4) 11. Obtaining Secondary Structure from Sequence 12. Predicting Secondary Structures Part 6: Tertiary Structures (4) 13. Modeling Protein Structure 14. Analyzing Structure-Function Relationships Part 7: Cells and Organisms (8) 15. Proteome and Gene Expression Analysis 16. Clustering Methods and Statistics 17. Systems Biology Part 4: Genome Characteristics (4) 9. Revealing Genome Features 10. Gene Detection and Genome Annotation 2

3 3 H 3. Semester (WS 12/13) DP Paarweises Seq. Align. Needleman/Wunsch Smith-Waterman FastA Blast Multiples Seq. Align. HMMs Heute Letzter Teil im Block Alignment (Wdh.) Buch: 6.1, 6.2, 6.6

4 Alginment scoring matrix Protein matrix: 4

5 Use of a scoring matrix P L S - - C F G G L T - A C H L Score = 3 5

6 Multiple sequence alignment 6

7 Sequence logo 7

8 Profile und Sequenzlogos 8

9 Biological Motives A large number of biological units with common functions tend to exhibit similarities at the sequence level. These include very short motives, such as gene splice sites, DNA regulatory binding sites, recognized by transcription factors (proteins that bind to the promoter and control gene expression), micrornas, and all the way to protein families. Often it is desirable to model such motives, to enable searching for new ones. Probabilistic models are very useful for this task. 9

10 Promoter 10

11 Regulation of Genes Transcription Factor (Protein) RNA polymerase (Protein) DNA Regulatory Element Gene 11

12 Regulation of Genes Transcription Factor (Protein) RNA polymerase DNA Regulatory Element Gene 12

13 Regulation of Genes Transcription Factor New protein RNA polymerase DNA Regulatory Element Gene 13

14 Motif Logo Motifs can mutate on less important bases. The five motifs at top right have mutations in position 3 and 5. Representations called motif logos illustrate the conserved regions of a motif. Position: TGGGGGA TGAGAGA TGGGGGA TGAGAGA TGAGGGA

15 Example: Calmodulin-Binding Motif (calcium-binding proteins) 15

16 PSSM Starting Point A gap-less MSA of known instances of a given motif. Representing the motif by either: 1. Consensus. 2. Position Specific Scoring Matrix (PSSM). 16

17 Sequence logos: Visualizing PSSMs 17

18 Frequency matrix 18

19 Frequency matrices Three uses of frequency matrices Describe a sequence feature Calculate probability of occurrence of feature in a random sequence Calculate degree of match between a new sequence and a feature 19

20 Frequency Matrices, PSSMs, and Profiles A frequency matrix can be converted to a Position-Specific Scoring Matrix (PSSM) by converting frequencies to scores PSSMs also called Position Weight Matrixes (PWMs) or Profiles 20

21 Methods for converting frequency matrices to PSSMs Using log ratio of observed to expected where m(j,i) is the frequency of character j observed at position i and f(j) is the overall frequency of character j (usually in some large set of sequences) Using amino acid substitution matrix (Dayhoff similarity matrix) 21

22 Pseudo-counts How do we get a score for a position with zero counts for a particular character? Can t take log(0). Solution: add a small number to all positions with zero frequency 22

23 Consensus sequences Different ways to describe a consensus, from crude to refined: Consensus site Sequence logos Position Specific Score Matrix (PSSM) Hidden Markov Model (HMM) 23

24 Constructing a consensus 1. Collect sequences 2. Align sequences (consensus sites are descriptions of the alignment) 3. Condense the set of sequences into a consensus (to a consensus, PSSM, HMM). 4. Apply the scoring matrix in alignments/searches. 24

25 Position Specific Score Matrix (PSSM) A position specific scoring matrix (PSSM) is a matrix based on the amino acid frequencies (or nucleic acid frequencies) at every position of a multiple alignment. From these frequencies, the PSSM that will be calculated will result in a matrix that will assign superior scores to residues that appear more often than by chance at a certain position. 25

26 Creating a PSSM: Example NTEGEWI NITRGEW NIAGECC Amino acid frequencies at every position of the alignment: 26

27 Creating a PSSM: Example Amino acids that do not appear at a specific position of a multiple alignment must also be considered in order to model every possible sequence and have calculable log-odds scores. A simple procedure called pseudo-counts assigns minimal scores to residues that do not appear at a certain position of the alignment according to the following equation: Where Frequency is the frequency of residue i in column j (the count of occurances). pseudocount is a number higher or equal to 1. N is the number of sequences in the multiple alignment. 27

28 Creating a PSSM: Example In this example, N = 3 and let s use pseudocount = 1: Score(N) at position 1 = 3/3 = 1. Score(I) at position 1 = 0/3 = 0. Readjust: Score(I) at position 1 -> (0+1) / (3+20) = 1/23 = Score(N) at position 1 -> (3+1) / (3+20) = 4/23 = The PSSM is obtained by taking the logarithm (of the values obtained above divided by the background frequency of the residues). To simplify for this example we ll assume that every amino acid appears equally in protein sequences, i.e. f i = 0.05 for every i): PSSM Score(N) at position 1 = log(0.044 / 0.05) = PSSM Score(I) at position 1 = log(0.174 / 0.05) =

29 Creating a PSSM: Example The matrix assigns positive scores to residues that appear more often than expected by chance and negative scores to residues that appear less often than expected by chance. 29

30 Using a PSSM To search for matches to a PSSM, scan along the sequence using a window the length (L) of the PSSM. The matrix is slid on a sequence one residue at a time and the scores of the residues of every region of length L are added. Scores that are higher than an empirically predetermined threshold are reported. 30

31 Searching with a PSSM Most approaches use the Dynamic Programming Algorithm usually the Smith-Waterman variant Excellent method for finding distantly related sequences Gap model is AFFINE with the Open and Extend Gap Penalties, a function of which position they are in the alignment. Can be used to locate a motif in an alignment and then edit the alignment 31

32 PSI-Blast 32

33 Position-Specific-Iterated-BLAST Intuition substitution matrices should be specific to a particular site. e.g. enalize alanine glycine more in a helix Idea Use BLAST with high stringency to get a set of closely related sequences. Align those sequences to create a new substitution matrix for each position. Then use that matrix to find additional sequences Cycling/iterative method Gives increased sensitivity for detecting distantly related proteins Can give insight into functional relationships Very refined statistical methods Fast still based on BLAST methods Simple to use 33

34 PSI-BLAST Principle 1. First, a standard blastp is performed 2. The highest scoring hits are used to generate a multiple alignment 3. A PSSM is generated from the multiple alignment. Highly conserved residues get high scores Less conserved residues get lower scores Sequences >98% similar not included (avoid biasing the PSSM). 4. Another similarity search is performed, this time using the new PSSM 5. Steps 2-4 can be repeated until convergence No new sequences appear after iteration 34

35 Example Aminoacyl trna Synthetases 20 enzymes for 20 amino acids Each is very different Big, small, monomers, tetramers All bind to their appropriate trnas and amino acids, with high specificity TrpRS and TyrRS share only 13% sequence identity BUT, overall structures of TrpTRS and TyrTRS are similar Structure Function relationship Tryptophanyl-tRNA synthetase Tyrosyl-tRNA synthetase 35

36 Same SCOP family based on catalytic domain Overall structure similarity noted 36

37 So is there sequence similarity between TyrRS and TrpRS? Given structural similarities, we would expect to find sequence similarity BUT! blastp of E.coli TyrRS against bacterial sequences in SwissProt does NOT show similarity with TrpRS at e-value cutoff of 10 37

38 No TrpRS!? 38

39 Try Using PSI-BLAST PSI-BLAST available from BLAST main page Query form just like for blastp BUT: one extra formatting option must be used Format for PSI-BLAST activate the tick box! Second e-value cutoff used to determine which alignments will be used for PSSM build Threshold for inclusion First search using TyrRS as query Db = SwissProt; limit = Bacteria [ORGN] Threshold for inclusion =

40 40

41 41

42 After A Few Iterations 42

43 TyrRS Similarity to TrpRS! 43

44 Power of PSI-BLAST We knew TyrRS and TrpRS were similarly Functionally and structurally BLASTP gave no indication PSI-BLAST was able to detect their weak sequence similarity Words of caution: be sure to inspect and think about the results included in the PSSM build include/exclude sequences on basis of biological knowledge: you are in the driving seat! PSI-BLAST performance varies according to choice of matrix, filter, statistics etc just like BLASTP 44

45 Why (not) PSI-BLAST If the sequences used to construct the Position Specific Scoring Matrices (PSSMs) are all homologous, the sensitivity at a given specificity improves significantly However, if non-homologous sequences are included in the PSSMs, they are corrupted. Then they pull in more non-homologous sequences, and become worse than generic 45

46 Query Does the query really have a relationship with the results? One way to check is to run the search in the opposite direction but often not reversible even when true homology Results 46

47 PSI-BLAST caveats Increased ability to find distant homologues Cost of additional required care to prevent nonhomologous sequences from being included in the PSSM calculation When in doubt, leave it out! Examine sequences with moderate similarity carefully. Be particularly cautious about matches to sequences with highly biased amino acid content Low complexity regions, transmembrane regions and coiled-coil regions often display significant similarity without homology Screen them out of your query sequences! 47

48 Profil HMMs (Hidden Markov Modelle) 48

49 Markov Chains Rain Sunny Cloudy States : Three states - sunny, cloudy, rainy. State transition matrix : The probability of the weather given the previous day's weather. Initial Distribution : Defining the probability of the system being in each of the states at time 0. 49

50 Hidden Markov Models Hidden states : the (TRUE) states of a system that may be described by a Markov process (e.g., the weather). Observable states : the states of the process that are `visible' (e.g., seaweed dampness). 50

51 Components Of HMM Output matrix : containing the probability of observing a particular observable state given that the hidden model is in a particular hidden state. Initial Distribution : contains the probability of the (hidden) model being in a particular hidden state at time t = 1. State transition matrix : holding the probability of a hidden state given the previous hidden state. 51

52 Building from an existing alignment ACA ATG TCA ACT ATC ACA C - - AGC AGA ATC ACC G - - ATC Output Probabilities insertion Transition probabilities A HMM model for a DNA motif alignments, The transitions are shown with arrows whose thickness indicate their probability. In each state, the histogram shows the probabilities of the four bases. 52

53 Query a new sequence Suppose I have a query protein sequence, and I am interested in which family it belongs to? There can be many paths leading to the generation of this sequence. Need to find all these paths and sum the probabilities. Consensus sequence: ACAC - - ATC P (ACACATC) = 0.8x1 x 0.8x1 x 0.8x0.6 x 0.4x0.6 x 1x1 x 0.8x1 x 0.8 = 4.7 x

54 Profile Hidden Markov Models Statistical models of multiple sequence alignments Capture position-specific information about how conserved each column of the alignment is which residues are likely use position-specific scores for amino acids (or nucleotides) position specific penalties for opening and extending an insertion or deletion. 54

55 Advantages of using HMMs HMMs have a formal probabilistic basis use probability theory to guide how all the scoring parameters should be set can do things that more heuristic methods cannot do easily For example, a profile HMM can be trained from unaligned sequences, if a trusted alignment isn t yet known HMMs have a consistent theory behind gap and insertion scores 55

56 Advantages of using HMMs In most details, profile HMMs are a slight improvement over a carefully constructed profile but less skill and manual intervention are necessary to use profile HMMs HMMs can produce true global alignments, unlike BLAST 56

57 Limitations of HMMs Do not capture any higher-order correlations assumes that the identity of a particular position is independent of the identity of all other positions make poor models of RNAs because an HMM cannot describe base pairs. compared to protein threading methods which usually include scoring terms for nearby amino acids in a three-dimensional protein structure. Slower than and less user-friendly than PSI-BLAST 57

58 Applications of profile HMMs Database searching for weak homologies Alternative to PSI-BLAST Automated annotation of the domain structure of proteins 58

59 Applications of profile HMMs Useful for organizing sequences into evolutionarily related families Databases like Pfam constructed by distinguishing between a stable curated seed alignment of a small number of representative sequences full alignments of all detectable homologs HMMER used to make a model of the seed search the database for homologs automatically produce the full alignment by aligning every sequence to the seed consensus 59

60 Constructing a profile HMM Multiple sequence alignment is made of known members of a given protein family quality of alignment, number and diversity of the sequences crucial for success Profile HMM of family built from the alignment model-building program uses the alignment together with its prior knowledge of the general nature of proteins Model-scoring program used to assign a score with respect to the model to any sequence of interest better the score, the higher the chance that query sequence is homologous to protein family in the model. each sequence in a database scored to find the members of the family present in the database. 60

61 HMMER structure/topology M = match state; I = insertion (w.r.t profile - insert gap characters in profile) D = deletion (w.r.t sequence - insert gap characters in sequence) N = N-terminal un-aligned C = C-terminal un-aligned J = Tim Joining Conrad, VL Algorithmische segment, Bioinformatik, un-aligned WS2013/

62 Profile HMM programs HMMER Developed by Sean Eddy Freely available under GNU General Public License Includes model-building and model-scoring programs relevant to homology detection Contains a program that calibrates a model by scoring it against a set of random sequences fitting an extreme value distribution to the resultant raw scores parameters of this distribution then used to calculate accurate E-values for sequences of interest. 62

63 Programs in the HMMER 2 package hmmalign Align sequences to existing model hmmbuild Build a model from multiple sequence alignment. hmmcalibrate Takes an HMM and empirically determines parameters used to make searches more sensitive by calculating more accurate E-values hmmconvert Convert a model file into different formats, including a compact HMMER 2 binary format, and best effort emulation of GCG profiles. hmmemit Emit sequences probabilistically from a profile HMM. hmmfetch Get a single model from an HMM database. hmmindex Index an HMM database. hmmpfam Search an HMM database for matches to a query sequence. hmmsearch Search a sequence database for matches to an HMM. 63

64 PSI-Blast vs. phmms PSI-BLAST Input: SEQUENCE Database: SEQUENCES Algorithm: Constructs a PSSM from an initial pass and uses this in the next pass Output: Distantly related sequences + sensitive, -specific HMMs More sensitive But less user-friendly than PSI-BLAST and slower 64

65 Zusammenfassung 65

66 66 Mehr Informationen im Internet unter medicalbioinformaticsgroup.de/teaching Vielen Dank! Tim Conrad AG Medical Bioinformatics Weitere Fragen

Protein Sequence Analysis. BME 110: CompBio Tools Todd Lowe April 19, 2007 (Slide Presentation: Carol Rohl)

Protein Sequence Analysis. BME 110: CompBio Tools Todd Lowe April 19, 2007 (Slide Presentation: Carol Rohl) Protein Sequence Analysis BME 110: CompBio Tools Todd Lowe April 19, 2007 (Slide Presentation: Carol Rohl) Linear Sequence Analysis What can you learn from a (single) protein sequence? Calculate it s physical

More information

Hidden Markov Models. Some applications in bioinformatics

Hidden Markov Models. Some applications in bioinformatics Hidden Markov Models Some applications in bioinformatics Hidden Markov models Developed in speech recognition in the late 1960s... A HMM M (with start- and end-states) defines a regular language L M of

More information

Textbook Reading Guidelines

Textbook Reading Guidelines Understanding Bioinformatics by Marketa Zvelebil and Jeremy Baum Last updated: May 1, 2009 Textbook Reading Guidelines Preface: Read the whole preface, and especially: For the students with Life Science

More information

BLAST. compared with database sequences Sequences with many matches to high- scoring words are used for final alignments

BLAST. compared with database sequences Sequences with many matches to high- scoring words are used for final alignments BLAST 100 times faster than dynamic programming. Good for database searches. Derive a list of words of length w from query (e.g., 3 for protein, 11 for DNA) High-scoring words are compared with database

More information

Creation of a PAM matrix

Creation of a PAM matrix Rationale for substitution matrices Substitution matrices are a way of keeping track of the structural, physical and chemical properties of the amino acids in proteins, in such a fashion that less detrimental

More information

Dynamic Programming Algorithms

Dynamic Programming Algorithms Dynamic Programming Algorithms Sequence alignments, scores, and significance Lucy Skrabanek ICB, WMC February 7, 212 Sequence alignment Compare two (or more) sequences to: Find regions of conservation

More information

An Overview of Probabilistic Methods for RNA Secondary Structure Analysis. David W Richardson CSE527 Project Presentation 12/15/2004

An Overview of Probabilistic Methods for RNA Secondary Structure Analysis. David W Richardson CSE527 Project Presentation 12/15/2004 An Overview of Probabilistic Methods for RNA Secondary Structure Analysis David W Richardson CSE527 Project Presentation 12/15/2004 RNA - a quick review RNA s primary structure is sequence of nucleotides

More information

Sequence Analysis. II: Sequence Patterns and Matrices. George Bell, Ph.D. WIBR Bioinformatics and Research Computing

Sequence Analysis. II: Sequence Patterns and Matrices. George Bell, Ph.D. WIBR Bioinformatics and Research Computing Sequence Analysis II: Sequence Patterns and Matrices George Bell, Ph.D. WIBR Bioinformatics and Research Computing Sequence Patterns and Matrices Multiple sequence alignments Sequence patterns Sequence

More information

Methods and tools for exploring functional genomics data

Methods and tools for exploring functional genomics data Methods and tools for exploring functional genomics data William Stafford Noble Department of Genome Sciences Department of Computer Science and Engineering University of Washington Outline Searching for

More information

The String Alignment Problem. Comparative Sequence Sizes. The String Alignment Problem. The String Alignment Problem.

The String Alignment Problem. Comparative Sequence Sizes. The String Alignment Problem. The String Alignment Problem. Dec-82 Oct-84 Aug-86 Jun-88 Apr-90 Feb-92 Nov-93 Sep-95 Jul-97 May-99 Mar-01 Jan-03 Nov-04 Sep-06 Jul-08 May-10 Mar-12 Growth of GenBank 160,000,000,000 180,000,000 Introduction to Bioinformatics Iosif

More information

Outline. Evolution. Adaptive convergence. Common similarity problems. Chapter 7: Similarity searches on sequence databases

Outline. Evolution. Adaptive convergence. Common similarity problems. Chapter 7: Similarity searches on sequence databases Chapter 7: Similarity searches on sequence databases All science is either physics or stamp collection. Ernest Rutherford Outline Why is similarity important BLAST Protein and DNA Interpreting BLAST Individualizing

More information

Textbook Reading Guidelines

Textbook Reading Guidelines Understanding Bioinformatics by Marketa Zvelebil and Jeremy Baum Last updated: January 16, 2013 Textbook Reading Guidelines Preface: Read the whole preface, and especially: For the students with Life Science

More information

Sequence Based Function Annotation

Sequence Based Function Annotation Sequence Based Function Annotation Qi Sun Bioinformatics Facility Biotechnology Resource Center Cornell University Sequence Based Function Annotation 1. Given a sequence, how to predict its biological

More information

Getting To Know Your Protein

Getting To Know Your Protein Getting To Know Your Protein Comparative Protein Analysis: Part II. Protein Domain Identification & Classification Robert Latek, PhD Sr. Bioinformatics Scientist Whitehead Institute for Biomedical Research

More information

Match the Hash Scores

Match the Hash Scores Sort the hash scores of the database sequence February 22, 2001 1 Match the Hash Scores February 22, 2001 2 Lookup method for finding an alignment position 1 2 3 4 5 6 7 8 9 10 11 protein 1 n c s p t a.....

More information

G4120: Introduction to Computational Biology

G4120: Introduction to Computational Biology ICB Fall 2009 G4120: Computational Biology Oliver Jovanovic, Ph.D. Columbia University Department of Microbiology & Immunology Copyright 2009 Oliver Jovanovic, All Rights Reserved. Analysis of Protein

More information

G4120: Introduction to Computational Biology

G4120: Introduction to Computational Biology ICB Fall 2004 G4120: Computational Biology Oliver Jovanovic, Ph.D. Columbia University Department of Microbiology Copyright 2004 Oliver Jovanovic, All Rights Reserved. Analysis of Protein Sequences Coding

More information

Sequence Databases and database scanning

Sequence Databases and database scanning Sequence Databases and database scanning Marjolein Thunnissen Lund, 2012 Types of databases: Primary sequence databases (proteins and nucleic acids). Composite protein sequence databases. Secondary databases.

More information

Why learn sequence database searching? Searching Molecular Databases with BLAST

Why learn sequence database searching? Searching Molecular Databases with BLAST Why learn sequence database searching? Searching Molecular Databases with BLAST What have I cloned? Is this really!my gene"? Basic Local Alignment Search Tool How BLAST works Interpreting search results

More information

A Hidden Markov Model for Identification of Helix-Turn-Helix Motifs

A Hidden Markov Model for Identification of Helix-Turn-Helix Motifs A Hidden Markov Model for Identification of Helix-Turn-Helix Motifs CHANGHUI YAN and JING HU Department of Computer Science Utah State University Logan, UT 84341 USA cyan@cc.usu.edu http://www.cs.usu.edu/~cyan

More information

Basic Local Alignment Search Tool

Basic Local Alignment Search Tool 14.06.2010 Table of contents 1 History History 2 global local 3 Score functions Score matrices 4 5 Comparison to FASTA References of BLAST History the program was designed by Stephen W. Altschul, Warren

More information

Comparative Bioinformatics. BSCI348S Fall 2003 Midterm 1

Comparative Bioinformatics. BSCI348S Fall 2003 Midterm 1 BSCI348S Fall 2003 Midterm 1 Multiple Choice: select the single best answer to the question or completion of the phrase. (5 points each) 1. The field of bioinformatics a. uses biomimetic algorithms to

More information

Motif Discovery from Large Number of Sequences: a Case Study with Disease Resistance Genes in Arabidopsis thaliana

Motif Discovery from Large Number of Sequences: a Case Study with Disease Resistance Genes in Arabidopsis thaliana Motif Discovery from Large Number of Sequences: a Case Study with Disease Resistance Genes in Arabidopsis thaliana Irfan Gunduz, Sihui Zhao, Mehmet Dalkilic and Sun Kim Indiana University, School of Informatics

More information

Data Mining for Biological Data Analysis

Data Mining for Biological Data Analysis Data Mining for Biological Data Analysis Data Mining and Text Mining (UIC 583 @ Politecnico di Milano) References Data Mining Course by Gregory-Platesky Shapiro available at www.kdnuggets.com Jiawei Han

More information

Designing Filters for Fast Protein and RNA Annotation. Yanni Sun Dept. of Computer Science and Engineering Advisor: Jeremy Buhler

Designing Filters for Fast Protein and RNA Annotation. Yanni Sun Dept. of Computer Science and Engineering Advisor: Jeremy Buhler Designing Filters for Fast Protein and RNA Annotation Yanni Sun Dept. of Computer Science and Engineering Advisor: Jeremy Buhler 1 Outline Background on sequence annotation Protein annotation acceleration

More information

Advanced topics in bioinformatics

Advanced topics in bioinformatics Feinberg Graduate School of the Weizmann Institute of Science Advanced topics in bioinformatics Shmuel Pietrokovski & Eitan Rubin Spring 2003 Course WWW site: http://bioinformatics.weizmann.ac.il/courses/atib

More information

CAP 5510/CGS 5166: Bioinformatics & Bioinformatic Tools GIRI NARASIMHAN, SCIS, FIU

CAP 5510/CGS 5166: Bioinformatics & Bioinformatic Tools GIRI NARASIMHAN, SCIS, FIU CAP 5510/CGS 5166: Bioinformatics & Bioinformatic Tools GIRI NARASIMHAN, SCIS, FIU !2 Sequence Alignment! Global: Needleman-Wunsch-Sellers (1970).! Local: Smith-Waterman (1981) Useful when commonality

More information

Database Searching and BLAST Dannie Durand

Database Searching and BLAST Dannie Durand Computational Genomics and Molecular Biology, Fall 2013 1 Database Searching and BLAST Dannie Durand Tuesday, October 8th Review: Karlin-Altschul Statistics Recall that a Maximal Segment Pair (MSP) is

More information

Applying Hidden Markov Model to Protein Sequence Alignment

Applying Hidden Markov Model to Protein Sequence Alignment Applying Hidden Markov Model to Protein Sequence Alignment Er. Neeshu Sharma #1, Er. Dinesh Kumar *2, Er. Reet Kamal Kaur #3 # CSE, PTU #1 RIMT-MAEC, #3 RIMT-MAEC CSE, PTU DAVIET, Jallandhar Abstract----Hidden

More information

Typically, to be biologically related means to share a common ancestor. In biology, we call this homologous

Typically, to be biologically related means to share a common ancestor. In biology, we call this homologous Typically, to be biologically related means to share a common ancestor. In biology, we call this homologous. Two proteins sharing a common ancestor are said to be homologs. Homologyoften implies structural

More information

Biology 644: Bioinformatics

Biology 644: Bioinformatics Processes Activation Repression Initiation Elongation.... Processes Splicing Editing Degradation Translation.... Transcription Translation DNA Regulators DNA-Binding Transcription Factors Chromatin Remodelers....

More information

ESSENTIAL BIOINFORMATICS

ESSENTIAL BIOINFORMATICS ESSENTIAL BIOINFORMATICS Essential Bioinformatics is a concise yet comprehensive textbook of bioinformatics that provides a broad introduction to the entire field. Written specifically for a life science

More information

03-511/711 Computational Genomics and Molecular Biology, Fall

03-511/711 Computational Genomics and Molecular Biology, Fall 03-511/711 Computational Genomics and Molecular Biology, Fall 2011 1 Study questions These study problems are intended to help you to review for the final exam. This is not an exhaustive list of the topics

More information

Christian Sigrist. January 27 SIB Protein Bioinformatics course 2016 Basel 1

Christian Sigrist. January 27 SIB Protein Bioinformatics course 2016 Basel 1 Christian Sigrist January 27 SIB Protein Bioinformatics course 2016 Basel 1 General Definition on Conserved Regions Conserved regions in proteins can be classified into 5 different groups: Domains: specific

More information

Bioinformatics Practical Course. 80 Practical Hours

Bioinformatics Practical Course. 80 Practical Hours Bioinformatics Practical Course 80 Practical Hours Course Description: This course presents major ideas and techniques for auxiliary bioinformatics and the advanced applications. Points included incorporate

More information

03-511/711 Computational Genomics and Molecular Biology, Fall

03-511/711 Computational Genomics and Molecular Biology, Fall 03-511/711 Computational Genomics and Molecular Biology, Fall 2010 1 Study questions These study problems are intended to help you to review for the final exam. This is not an exhaustive list of the topics

More information

Sequence Based Function Annotation. Qi Sun Bioinformatics Facility Biotechnology Resource Center Cornell University

Sequence Based Function Annotation. Qi Sun Bioinformatics Facility Biotechnology Resource Center Cornell University Sequence Based Function Annotation Qi Sun Bioinformatics Facility Biotechnology Resource Center Cornell University Usage scenarios for sequence based function annotation Function prediction of newly cloned

More information

Comparative Genomics. Page 1. REMINDER: BMI 214 Industry Night. We ve already done some comparative genomics. Loose Definition. Human vs.

Comparative Genomics. Page 1. REMINDER: BMI 214 Industry Night. We ve already done some comparative genomics. Loose Definition. Human vs. Page 1 REMINDER: BMI 214 Industry Night Comparative Genomics Russ B. Altman BMI 214 CS 274 Location: Here (Thornton 102), on TV too. Time: 7:30-9:00 PM (May 21, 2002) Speakers: Francisco De La Vega, Applied

More information

BIOINFORMATICS Introduction

BIOINFORMATICS Introduction BIOINFORMATICS Introduction Mark Gerstein, Yale University bioinfo.mbb.yale.edu/mbb452a 1 (c) Mark Gerstein, 1999, Yale, bioinfo.mbb.yale.edu What is Bioinformatics? (Molecular) Bio -informatics One idea

More information

Machine Learning. HMM applications in computational biology

Machine Learning. HMM applications in computational biology 10-601 Machine Learning HMM applications in computational biology Central dogma DNA CCTGAGCCAACTATTGATGAA transcription mrna CCUGAGCCAACUAUUGAUGAA translation Protein PEPTIDE 2 Biological data is rapidly

More information

Bioinformatics & Protein Structural Analysis. Bioinformatics & Protein Structural Analysis. Learning Objective. Proteomics

Bioinformatics & Protein Structural Analysis. Bioinformatics & Protein Structural Analysis. Learning Objective. Proteomics The molecular structures of proteins are complex and can be defined at various levels. These structures can also be predicted from their amino-acid sequences. Protein structure prediction is one of the

More information

Homework 4. Due in class, Wednesday, November 10, 2004

Homework 4. Due in class, Wednesday, November 10, 2004 1 GCB 535 / CIS 535 Fall 2004 Homework 4 Due in class, Wednesday, November 10, 2004 Comparative genomics 1. (6 pts) In Loots s paper (http://www.seas.upenn.edu/~cis535/lab/sciences-loots.pdf), the authors

More information

Bioinformatics Tools. Stuart M. Brown, Ph.D Dept of Cell Biology NYU School of Medicine

Bioinformatics Tools. Stuart M. Brown, Ph.D Dept of Cell Biology NYU School of Medicine Bioinformatics Tools Stuart M. Brown, Ph.D Dept of Cell Biology NYU School of Medicine Bioinformatics Tools Stuart M. Brown, Ph.D Dept of Cell Biology NYU School of Medicine Overview This lecture will

More information

Comparative Protein Analysis. Getting To Know Your Protein. Syllabus. Protein Domains. Proteins As Modules

Comparative Protein Analysis. Getting To Know Your Protein. Syllabus. Protein Domains. Proteins As Modules omparative Protein nalysis Getting To Know our Protein omparative Protein nalysis: Part II. Protein omain Identification & lassification Robert Latek, Ph Sr. Bioinformatics Scientist Whitehead Institute

More information

Course Information. Introduction to Algorithms in Computational Biology Lecture 1. Relations to Some Other Courses

Course Information. Introduction to Algorithms in Computational Biology Lecture 1. Relations to Some Other Courses Course Information Introduction to Algorithms in Computational Biology Lecture 1 Meetings: Lecture, by Dan Geiger: Mondays 16:30 18:30, Taub 4. Tutorial, by Ydo Wexler: Tuesdays 10:30 11:30, Taub 2. Grade:

More information

Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14: Eddy SR (2008) A Probabilistic Model of Local Sequence Alignment That

Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14: Eddy SR (2008) A Probabilistic Model of Local Sequence Alignment That HMMER3 : http://hmmer.janelia.org/ Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14:755-763 Eddy SR (2008) A Probabilistic Model of Local Sequence Alignment That Simplifies Statistical Significance

More information

Making Sense of DNA and Protein Sequences. Lily Wang, PhD Department of Biostatistics Vanderbilt University

Making Sense of DNA and Protein Sequences. Lily Wang, PhD Department of Biostatistics Vanderbilt University Making Sense of DNA and Protein Sequences Lily Wang, PhD Department of Biostatistics Vanderbilt University 1 Outline Biological background Major biological sequence databanks Basic concepts in sequence

More information

Question 2: There are 5 retroelements (2 LINEs and 3 LTRs), 6 unclassified elements (XDMR and XDMR_DM), and 7 satellite sequences.

Question 2: There are 5 retroelements (2 LINEs and 3 LTRs), 6 unclassified elements (XDMR and XDMR_DM), and 7 satellite sequences. Bio4342 Exercise 1 Answers: Detecting and Interpreting Genetic Homology (Answers prepared by Wilson Leung) Question 1: Low complexity DNA can be described as sequences that consist primarily of one or

More information

Data Retrieval from GenBank

Data Retrieval from GenBank Data Retrieval from GenBank Peter J. Myler Bioinformatics of Intracellular Pathogens JNU, Feb 7-0, 2009 http://www.ncbi.nlm.nih.gov (January, 2007) http://ncbi.nlm.nih.gov/sitemap/resourceguide.html Accessing

More information

Representation in Supervised Machine Learning Application to Biological Problems

Representation in Supervised Machine Learning Application to Biological Problems Representation in Supervised Machine Learning Application to Biological Problems Frank Lab Howard Hughes Medical Institute & Columbia University 2010 Robert Howard Langlois Hughes Medical Institute What

More information

Giri Narasimhan. CAP 5510: Introduction to Bioinformatics. ECS 254; Phone: x3748

Giri Narasimhan. CAP 5510: Introduction to Bioinformatics. ECS 254; Phone: x3748 CAP 5510: Introduction to Bioinformatics Giri Narasimhan ECS 254; Phone: x3748 giri@cis.fiu.edu www.cis.fiu.edu/~giri/teach/bioinfs07.html 2/8/07 CAP5510 1 Pattern Discovery 2/8/07 CAP5510 2 What we have

More information

Introduction to Algorithms in Computational Biology Lecture 1

Introduction to Algorithms in Computational Biology Lecture 1 Introduction to Algorithms in Computational Biology Lecture 1 Background Readings: The first three chapters (pages 1-31) in Genetics in Medicine, Nussbaum et al., 2001. This class has been edited from

More information

Identifying Regulatory Regions using Multiple Sequence Alignments

Identifying Regulatory Regions using Multiple Sequence Alignments Identifying Regulatory Regions using Multiple Sequence Alignments Prerequisites: BLAST Exercise: Detecting and Interpreting Genetic Homology. Resources: ClustalW is available at http://www.ebi.ac.uk/tools/clustalw2/index.html

More information

Scoring Alignments. Genome 373 Genomic Informatics Elhanan Borenstein

Scoring Alignments. Genome 373 Genomic Informatics Elhanan Borenstein Scoring Alignments Genome 373 Genomic Informatics Elhanan Borenstein A quick review Course logistics Genomes (so many genomes) The computational bottleneck Python: Programs, input and output Number and

More information

Lecture 7 Motif Databases and Gene Finding

Lecture 7 Motif Databases and Gene Finding Introduction to Bioinformatics for Medical Research Gideon Greenspan gdg@cs.technion.ac.il Lecture 7 Motif Databases and Gene Finding Motif Databases & Gene Finding Motifs Recap Motif Databases TRANSFAC

More information

May 16. Gene Finding

May 16. Gene Finding Gene Finding j T[j,k] k i Q is a set of states T is a matrix of transition probabilities T[j,k]: probability of moving from state j to state k Σ is a set of symbols e j (S) is the probability of emitting

More information

VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING QUESTION BANK VII SEMESTER BM6005 BIO INFORMATICS Regulation 2013 Academic Year 2018-19 Prepared

More information

What I hope you ll learn. Introduction to NCBI & Ensembl tools including BLAST and database searching!

What I hope you ll learn. Introduction to NCBI & Ensembl tools including BLAST and database searching! What I hope you ll learn Introduction to NCBI & Ensembl tools including BLAST and database searching What do we learn from database searching and sequence alignments What tools are available at NCBI What

More information

1.1 What is bioinformatics? What is computational biology?

1.1 What is bioinformatics? What is computational biology? Algorithms in Bioinformatics I, WS 06, ZBIT, D. Huson, October 16, 2006 3 1 Introduction 1.1 What is bioinformatics? What is computational biology? Bioinformatics and computational biology are multidisciplinary

More information

Epigenetics and DNase-Seq

Epigenetics and DNase-Seq Epigenetics and DNase-Seq BMI/CS 776 www.biostat.wisc.edu/bmi776/ Spring 2018 Anthony Gitter gitter@biostat.wisc.edu These slides, excluding third-party material, are licensed under CC BY-NC 4.0 by Anthony

More information

Bacterial Genome Annotation

Bacterial Genome Annotation Bacterial Genome Annotation Bacterial Genome Annotation For an annotation you want to predict from the sequence, all of... protein-coding genes their stop-start the resulting protein the function the control

More information

3D Structure Prediction with Fold Recognition/Threading. Michael Tress CNB-CSIC, Madrid

3D Structure Prediction with Fold Recognition/Threading. Michael Tress CNB-CSIC, Madrid 3D Structure Prediction with Fold Recognition/Threading Michael Tress CNB-CSIC, Madrid MREYKLVVLGSGGVGKSALTVQFVQGIFVDEYDPTIEDSY RKQVEVDCQQCMLEILDTAGTEQFTAMRDLYMKNGQGFAL VYSITAQSTFNDLQDLREQILRVKDTEDVPMILVGNKCDL

More information

Introduction to Cellular Biology and Bioinformatics. Farzaneh Salari

Introduction to Cellular Biology and Bioinformatics. Farzaneh Salari Introduction to Cellular Biology and Bioinformatics Farzaneh Salari Outline Bioinformatics Cellular Biology A Bioinformatics Problem What is bioinformatics? Computer Science Statistics Bioinformatics Mathematics...

More information

Imaging informatics computer assisted mammogram reading Clinical aka medical informatics CDSS combining bioinformatics for diagnosis, personalized

Imaging informatics computer assisted mammogram reading Clinical aka medical informatics CDSS combining bioinformatics for diagnosis, personalized 1 2 3 Imaging informatics computer assisted mammogram reading Clinical aka medical informatics CDSS combining bioinformatics for diagnosis, personalized medicine, risk assessment etc Public Health Bio

More information

Introduction to Bioinformatics Finish. Johannes Starlinger

Introduction to Bioinformatics Finish. Johannes Starlinger Introduction to Bioinformatics Finish Johannes Starlinger This Lecture Genomics Sequencing Gene prediction Evolutionary relationships Motifs - TFBS Transcriptomics Alignment Proteomics Structure prediction

More information

Tutorial for Stop codon reassignment in the wild

Tutorial for Stop codon reassignment in the wild Tutorial for Stop codon reassignment in the wild Learning Objectives This tutorial has two learning objectives: 1. Finding evidence of stop codon reassignment on DNA fragments. 2. Detecting and confirming

More information

MATH 5610, Computational Biology

MATH 5610, Computational Biology MATH 5610, Computational Biology Lecture 2 Intro to Molecular Biology (cont) Stephen Billups University of Colorado at Denver MATH 5610, Computational Biology p.1/24 Announcements Error on syllabus Class

More information

Applications of HMMs in Computational Biology. BMI/CS Colin Dewey

Applications of HMMs in Computational Biology. BMI/CS Colin Dewey Applications of HMMs in Computational Biology BMI/CS 576 www.biostat.wisc.edu/bmi576.html Colin Dewey cdewey@biostat.wisc.edu Fall 2008 The Gene Finding Task Given: an uncharacterized DNA sequence Do:

More information

Single alignment: FASTA. 17 march 2017

Single alignment: FASTA. 17 march 2017 Single alignment: FASTA 17 march 2017 FASTA is a DNA and protein sequence alignment software package first described (as FASTP) by David J. Lipman and William R. Pearson in 1985.[1] FASTA is pronounced

More information

Applicazioni biotecnologiche

Applicazioni biotecnologiche Applicazioni biotecnologiche Analisi forense Sintesi di proteine ricombinanti Restriction Fragment Length Polymorphism (RFLP) Polymorphism (more fully genetic polymorphism) refers to the simultaneous occurrence

More information

GenBank Growth. In 2003 ~ 31 million sequences ~ 37 billion base pairs

GenBank Growth. In 2003 ~ 31 million sequences ~ 37 billion base pairs Gene Finding GenBank Growth GenBank Growth In 2003 ~ 31 million sequences ~ 37 billion base pairs GenBank: Exponential Growth Growth of GenBank in billions of base pairs from release 3 in April of 1994

More information

G4120: Introduction to Computational Biology

G4120: Introduction to Computational Biology G4120: Introduction to Computational Biology Oliver Jovanovic, Ph.D. Columbia University Department of Microbiology Lecture 3 February 13, 2003 Copyright 2003 Oliver Jovanovic, All Rights Reserved. Bioinformatics

More information

Evolutionary Genetics. LV Lecture with exercises 6KP

Evolutionary Genetics. LV Lecture with exercises 6KP Evolutionary Genetics LV 25600-01 Lecture with exercises 6KP HS2017 >What_is_it? AATGATACGGCGACCACCGAGATCTACACNNNTC GTCGGCAGCGTC 2 NCBI MegaBlast search (09/14) 3 NCBI MegaBlast search (09/14) 4 Submitted

More information

Challenging algorithms in bioinformatics

Challenging algorithms in bioinformatics Challenging algorithms in bioinformatics 11 October 2018 Torbjørn Rognes Department of Informatics, UiO torognes@ifi.uio.no What is bioinformatics? Definition: Bioinformatics is the development and use

More information

Grundlagen der Bioinformatik Summer Lecturer: Prof. Daniel Huson

Grundlagen der Bioinformatik Summer Lecturer: Prof. Daniel Huson Grundlagen der Bioinformatik, SoSe 11, D. Huson, April 11, 2011 1 1 Introduction Grundlagen der Bioinformatik Summer 2011 Lecturer: Prof. Daniel Huson Office hours: Thursdays 17-18h (Sand 14, C310a) 1.1

More information

CS273B: Deep learning for Genomics and Biomedicine

CS273B: Deep learning for Genomics and Biomedicine CS273B: Deep learning for Genomics and Biomedicine Lecture 2: Convolutional neural networks and applications to functional genomics 09/28/2016 Anshul Kundaje, James Zou, Serafim Batzoglou Outline Anatomy

More information

Collect, analyze and synthesize. Annotation. Annotation for D. virilis. Evidence Based Annotation. GEP goals: Evidence for Gene Models 08/22/2017

Collect, analyze and synthesize. Annotation. Annotation for D. virilis. Evidence Based Annotation. GEP goals: Evidence for Gene Models 08/22/2017 Annotation Annotation for D. virilis Chris Shaffer July 2012 l Big Picture of annotation and then one practical example l This technique may not be the best with other projects (e.g. corn, bacteria) l

More information

Profile HMMs. 2/10/05 CAP5510/CGS5166 (Lec 10) 1 START STATE 1 STATE 2 STATE 3 STATE 4 STATE 5 STATE 6 END

Profile HMMs. 2/10/05 CAP5510/CGS5166 (Lec 10) 1 START STATE 1 STATE 2 STATE 3 STATE 4 STATE 5 STATE 6 END Profile HMMs START STATE 1 STATE 2 STATE 3 STATE 4 STATE 5 STATE 6 END 2/10/05 CAP5510/CGS5166 (Lec 10) 1 Profile HMMs with InDels Insertions Deletions Insertions & Deletions DELETE 1 DELETE 2 DELETE 3

More information

Computational gene finding

Computational gene finding Computational gene finding Devika Subramanian Comp 470 Outline (3 lectures) Lec 1 Lec 2 Lec 3 The biological context Markov models and Hidden Markov models Ab-initio methods for gene finding Comparative

More information

Motif Search CMSC 423

Motif Search CMSC 423 Motif Search CMSC 423 Central Dogma of Biology proteins Translation mrna (T U) Transcription Genome DNA = double-stranded, linear molecule each strand is string over {A,C,G,T} strands are complements of

More information

Finding Regularity in Protein Secondary Structures using a Cluster-based Genetic Algorithm

Finding Regularity in Protein Secondary Structures using a Cluster-based Genetic Algorithm Finding Regularity in Protein Secondary Structures using a Cluster-based Genetic Algorithm Yen-Wei Chu 1,3, Chuen-Tsai Sun 3, Chung-Yuan Huang 2,3 1) Department of Information Management 2) Department

More information

Analysis of Biological Sequences SPH

Analysis of Biological Sequences SPH Analysis of Biological Sequences SPH 140.638 swheelan@jhmi.edu nuts and bolts meet Tuesdays & Thursdays, 3:30-4:50 no exam; grade derived from 3-4 homework assignments plus a final project (open book,

More information

Collect, analyze and synthesize. Annotation. Annotation for D. virilis. GEP goals: Evidence Based Annotation. Evidence for Gene Models 12/26/2018

Collect, analyze and synthesize. Annotation. Annotation for D. virilis. GEP goals: Evidence Based Annotation. Evidence for Gene Models 12/26/2018 Annotation Annotation for D. virilis Chris Shaffer July 2012 l Big Picture of annotation and then one practical example l This technique may not be the best with other projects (e.g. corn, bacteria) l

More information

Bioinformatics: Sequence Analysis. COMP 571 Luay Nakhleh, Rice University

Bioinformatics: Sequence Analysis. COMP 571 Luay Nakhleh, Rice University Bioinformatics: Sequence Analysis COMP 571 Luay Nakhleh, Rice University Course Information Instructor: Luay Nakhleh (nakhleh@rice.edu); office hours by appointment (office: DH 3119) TA: Leo Elworth (DH

More information

Gene Prediction Chengwei Luo, Amanda McCook, Nadeem Bulsara, Phillip Lee, Neha Gupta, and Divya Anjan Kumar

Gene Prediction Chengwei Luo, Amanda McCook, Nadeem Bulsara, Phillip Lee, Neha Gupta, and Divya Anjan Kumar Gene Prediction Chengwei Luo, Amanda McCook, Nadeem Bulsara, Phillip Lee, Neha Gupta, and Divya Anjan Kumar Gene Prediction Introduction Protein-coding gene prediction RNA gene prediction Modification

More information

Protein Structure Prediction. christian studer , EPFL

Protein Structure Prediction. christian studer , EPFL Protein Structure Prediction christian studer 17.11.2004, EPFL Content Definition of the problem Possible approaches DSSP / PSI-BLAST Generalization Results Definition of the problem Massive amounts of

More information

FACULTY OF BIOCHEMISTRY AND MOLECULAR MEDICINE

FACULTY OF BIOCHEMISTRY AND MOLECULAR MEDICINE FACULTY OF BIOCHEMISTRY AND MOLECULAR MEDICINE BIOMOLECULES COURSE: COMPUTER PRACTICAL 1 Author of the exercise: Prof. Lloyd Ruddock Edited by Dr. Leila Tajedin 2017-2018 Assistant: Leila Tajedin (leila.tajedin@oulu.fi)

More information

B L A S T! BLAST: Basic local alignment search tool 11/23/2010. Copyright notice. November 29, Outline of today s lecture BLAST. Why use BLAST?

B L A S T! BLAST: Basic local alignment search tool 11/23/2010. Copyright notice. November 29, Outline of today s lecture BLAST. Why use BLAST? November 29, 2010 BLAST: Basic local alignment search tool B L A S T! Jonathan Pevsner, Ph.D. Bioinformatics pevsner@kennedykrieger.org Johns Hopkins School of Medicine Copyright notice Many of the images

More information

UNIVERSITY OF KWAZULU-NATAL EXAMINATIONS: MAIN, SUBJECT, COURSE AND CODE: GENE 320: Bioinformatics

UNIVERSITY OF KWAZULU-NATAL EXAMINATIONS: MAIN, SUBJECT, COURSE AND CODE: GENE 320: Bioinformatics UNIVERSITY OF KWAZULU-NATAL EXAMINATIONS: MAIN, 2010 SUBJECT, COURSE AND CODE: GENE 320: Bioinformatics DURATION: 3 HOURS TOTAL MARKS: 125 Internal Examiner: Dr. Ché Pillay External Examiner: Prof. Nicola

More information

Protein Bioinformatics Part I: Access to information

Protein Bioinformatics Part I: Access to information Protein Bioinformatics Part I: Access to information 260.655 April 6, 2006 Jonathan Pevsner, Ph.D. pevsner@kennedykrieger.org Outline [1] Proteins at NCBI RefSeq accession numbers Cn3D to visualize structures

More information

Exploring Similarities of Conserved Domains/Motifs

Exploring Similarities of Conserved Domains/Motifs Exploring Similarities of Conserved Domains/Motifs Sotiria Palioura Abstract Traditionally, proteins are represented as amino acid sequences. There are, though, other (potentially more exciting) representations;

More information

CS273: Algorithms for Structure Handout # 5 and Motion in Biology Stanford University Tuesday, 13 April 2004

CS273: Algorithms for Structure Handout # 5 and Motion in Biology Stanford University Tuesday, 13 April 2004 CS273: Algorithms for Structure Handout # 5 and Motion in Biology Stanford University Tuesday, 13 April 2004 Lecture #5: 13 April 2004 Topics: Sequence motif identification Scribe: Samantha Chui 1 Introduction

More information

Chapter 4 DNA Structure & Gene Expression

Chapter 4 DNA Structure & Gene Expression Biology 12 Name: Cell Biology Per: Date: Chapter 4 DNA Structure & Gene Expression Complete using BC Biology 12, pages 108-153 4.1 DNA Structure pages 112-114 1. DNA stands for and is the genetic material

More information

Prokaryotic Annotation Pipeline SOP HGSC, Baylor College of Medicine

Prokaryotic Annotation Pipeline SOP HGSC, Baylor College of Medicine 1 Abstract A prokaryotic annotation pipeline was developed to automatically annotate draft and complete bacterial genomes. The protein coding genes in the genomes are predicted by the combination of Glimmer

More information

Gene Prediction in Eukaryotes

Gene Prediction in Eukaryotes Gene Prediction in Eukaryotes Jan-Jaap Wesselink Biomol Informatics, S.L. jjw@biomol-informatics.com June 2010/Madrid jjw@biomol-informatics.com (BI) Gene Prediction June 2010/Madrid 1 / 34 Outline 1 Gene

More information

Molecular Modeling Lecture 8. Local structure Database search Multiple alignment Automated homology modeling

Molecular Modeling Lecture 8. Local structure Database search Multiple alignment Automated homology modeling Molecular Modeling 2018 -- Lecture 8 Local structure Database search Multiple alignment Automated homology modeling An exception to the no-insertions-in-helix rule Actual structures (myosin)! prolines

More information

Problem Set 4. I) I) Briefly describe the two major goals of this paper. (2 pts)

Problem Set 4. I) I) Briefly describe the two major goals of this paper. (2 pts) Problem 1: Clustering (33 points) Problem Set 4 Microarray and DNA chip technologies have made it possible to study expression patterns of thousand of genes simultaneously. The amount of data coming out

More information

Ana Teresa Freitas 2016/2017

Ana Teresa Freitas 2016/2017 Finding Regulatory Motifs in DNA Sequences Ana Teresa Freitas 2016/2017 Combinatorial Gene Regulation A recent microarray experiment showed that when gene X is knocked out, 20 other genes are not expressed

More information

Optimization of Process Parameters of Global Sequence Alignment Based Dynamic Program - an Approach to Enhance the Sensitivity.

Optimization of Process Parameters of Global Sequence Alignment Based Dynamic Program - an Approach to Enhance the Sensitivity. Optimization of Process Parameters of Global Sequence Alignment Based Dynamic Program - an Approach to Enhance the Sensitivity of Alignment Dr.D.Chandrakala 1, Dr.T.Sathish Kumar 2, S.Preethi 3, D.Sowmya

More information

Cascaded walks in protein sequence space: Use of artificial sequences in remote homology detection between natural proteins

Cascaded walks in protein sequence space: Use of artificial sequences in remote homology detection between natural proteins Supporting text Cascaded walks in protein sequence space: Use of artificial sequences in remote homology detection between natural proteins S. Sandhya, R. Mudgal, C. Jayadev, K.R. Abhinandan, R. Sowdhamini

More information