Gene Prediction Chengwei Luo, Amanda McCook, Nadeem Bulsara, Phillip Lee, Neha Gupta, and Divya Anjan Kumar

Size: px
Start display at page:

Download "Gene Prediction Chengwei Luo, Amanda McCook, Nadeem Bulsara, Phillip Lee, Neha Gupta, and Divya Anjan Kumar"

Transcription

1 Gene Prediction Chengwei Luo, Amanda McCook, Nadeem Bulsara, Phillip Lee, Neha Gupta, and Divya Anjan Kumar

2 Gene Prediction Introduction Protein-coding gene prediction RNA gene prediction Modification and finishing Project schema

3 Gene Prediction Introduction Protein-coding gene prediction RNA gene prediction Modification and finishing Project schema

4 Why gene prediction? experimental way?

5 Why gene prediction? Exponential growth of sequences New sequencing technology Metagenomics: ~1% grow in lab

6 How to do it?

7 How to do it? It is a complicated task, let s break it into parts

8 How to do it? It is a complicated task, let s break it into parts Genome

9 How to do it? It is a complicated task, let s break it into parts Genome

10 How to do it? Protein-coding gene prediction Homology Search Phillip Lee & Divya Anjan Kumar ab initio approach Nadeem Bulsara & Neha Gupta

11 How to do it? RNA gene prediction Amanda McCook & Chengwei Luo trna rrna srna

12 Gene Prediction Introduction Protein-coding gene prediction RNA gene prediction Modification and finishing Project schema

13 Homology Search

14 Homology Search

15 Strategy

16 open reading frame(orf)

17 How/Why find ORF?

18 BLAST

19 BLAST

20 BLAST

21 Protein Database Searches

22 SWISSPROT- statistics

23 Pfam-Statistics 11,912 families, with 1,808 new families and 236 families deleted Updated to include metagenomic samples Involves MSA and HMM Only 63%of the Pfam families match the proteins in SWISSPROT and TrEMBL

24 Domain searches

25 Integrating the results 3 possible outcomes: Complete consensus Partial consensus No consensus How do we choose? Scores like E-values Percentage similarity Relevance

26 Limitations of Extrinsic Prediction

27 ab initio Prediction

28 Homology Search is not Enough! Biased and incomplete Database Sequenced genomes are not evenly distributed on the tree of life, and does not reflect the diversity accordingly either. Number of sequenced genomes clustered here

29 ab initio Gene Prediction

30 Features

31 ORFs (6 frames)

32 Codon Statistics

33 Features (Contd.)

34 Probabilistic View

35 Supervised Techniques

36 Unsupervised Techniques

37 Usually Used Tools GeneMark GLIMMER EasyGene PRODIGAL

38 GeneMark Developed in 1993 at Georgia Institute of Technology as the first gene finding tool. Used markov chain to represent the statistics of coding and noncoding reading frames using dicodon statistics. Shortcomings Inability to find exact gene boundaries

39 GeneMark.hmm

40 GeneMark.hmm 9 hidden states were defined Typical gene in the direct strand Typical gene in the reverse strand Atypical gene in the direct strand Atypical gene in the reverse strand Non-coding (intergenic) region Start codons in the direct strand Stop codons in the direct strand Start codons in the reverse strand Stop codons in the reverse strand Probability of any sequence S underlying functional sequence X is calculated as P(X S)=P(x 1,x 2,,x L b 1,b 2,,b L ) Viterbi algorithm then calculates the functional sequence X * such that P(X * S) is the largest among all possible values of X. Ribosome binding site model was also added to augment accuracy in the prediction of translational start sites.

41 GeneMark Even in prokaryotic genomes gene overlaps are quite common RBS feature overcomes this problem by defining a % position nucleotide matrix based on alignment of 325 E coli genes whose RBS signals have already been annotated. Uses a consensus sequence AGGAG to search upstream of any alternative start codons for genes predicted by HMM. GeneMarkS GENEMARKS Considered the best gene prediction tool. Based on unsupervised learning.

42 GLIMMER Maintained by Steven Salzberg, Art Delcher at the University of Maryland, College Park Used IMM (Interpolated Markov Models) for the first time. Predictions based on variable context (oligomers of variable lengths). More flexible than the fixed order Markov models. Principle IMM combines probability based on 0,1..k previous bases, in this case k=8 is used. But this is for oligomers that occur frequently. However, for rarely occurring oligomers, 5th order or lower may also be used.

43 Glimmer development Glimmer 2 (1999) Increased the sensitivity of prediction by adding concept of ICM (Interpolated Context Model) Glimmer 3 (2007) Overcomes the shortcomings of previous models by taking in account sum of RBS score, IMM coding potentials and a score for start codons which is dependent on relative frequency of each possible start codon in the same training set used for RBS determination. Algorithm used reverse scoring of IMM by scoring all ORF (open reading frames) in reverse, from the stop codon to start codon. Score being the sum of log likelihood of the bases contained in the ORF.

44 Glimmer3.02

45 PRODIGAL Prokaryotic Dynamic Programming Gene Finding Algorithm Developed at Oak Ridge National Laboratory and the University of Tennessee

46 PRODIGAL-Features

47 PRODIGAL-Features

48 EasyGene Developed at University of Copenhagen Statistical significance is the measure for gene prediction. High quality data set based on similarity in SwissPRot is extracted from genome. Data set used to estimate the HMM where based on ORF score and length statistical significance is calculated. Problem: No standalone version available

49 Comparison of Different Tools

50 Gene Prediction Introduction Protein-coding gene prediction RNA gene prediction Modification and finishing Project schema

51 RNA Gene Prediction

52 Why Predict RNA?

53 Regulatory srna

54 srna Challenges

55 Fundamental Methodology

56 RFAM

57 What Is Covariance? Fig: Christian Weile et al. BMC Genomics (2007) 8:244

58 Noncomparative Prediction Fig: James A. Goodrich & Jennifer F. Kugel, Nature Rev. Mol. Cell Biol. (2006) 7:612

59 Noncomparative Prediction *Rolf Backofen & Wolfgang R. Hess, RNA Biol. (2010) 7:1

60 Comparative+Noncomparative Effective srna prediction in V. cholerae Non-enterobacteria srnapredict2 32 novel srnas predicted 9 tested 6 confirmed Jonathan Livny et al. Nucleic Acids Res. (2005) 33:4096

61 Software *Rolf Backofen & Wolfgang R. Hess, RNA Biol. (2010) 7:1 Eva K. Freyhult et al. Genome Res. (2007) 17:117

62 Gene Prediction Introduction Protein-coding gene prediction RNA gene prediction Modification and finishing Project schema

63 Modification & Finishing Consensus strategy to integrate ab initio results Broken gene recruiting TIS correcting IS calling operon annotating Gene presence/absence analysis

64 Modification & Finishing Consensus strategy Broken gene recruiting pass pass fail candidate fragments homology search ab initio results

65 Modification & Finishing TIS correcting Start codon redundancy:atg, GTG, TTG, CTG Leaderless genes Markov iteration, experimental verified data

66 Modification & Finishing IS calling Operon annotating IS Finder DB

67 Modification & Finishing Gene Presence/absence analysis

68 Gene Prediction Introduction Protein-coding gene prediction RNA gene prediction Modification and finishing Project schema

69 Schema (proposed)

70 Schema (proposed) assembly group

71 Schema (proposed) assembly group

GeneMarkS-2: Raising Standards of Accuracy in Gene Recognition

GeneMarkS-2: Raising Standards of Accuracy in Gene Recognition GeneMarkS-2: Raising Standards of Accuracy in Gene Recognition Alexandre Lomsadze 1^, Shiyuyun Tang 2^, Karl Gemayel 3^ and Mark Borodovsky 1,2,3 ^ joint first authors 1 Wallace H. Coulter Department of

More information

Small Genome Annotation and Data Management at TIGR

Small Genome Annotation and Data Management at TIGR Small Genome Annotation and Data Management at TIGR Michelle Gwinn, William Nelson, Robert Dodson, Steven Salzberg, Owen White Abstract TIGR has developed, and continues to refine, a comprehensive, efficient

More information

Computational gene finding. Devika Subramanian Comp 470

Computational gene finding. Devika Subramanian Comp 470 Computational gene finding Devika Subramanian Comp 470 Outline (3 lectures) The biological context Lec 1 Lec 2 Lec 3 Markov models and Hidden Markov models Ab-initio methods for gene finding Comparative

More information

Outline. Gene Finding Questions. Recap: Prokaryotic gene finding Eukaryotic gene finding The human gene complement Regulation

Outline. Gene Finding Questions. Recap: Prokaryotic gene finding Eukaryotic gene finding The human gene complement Regulation Tues, Nov 29: Gene Finding 1 Online FCE s: Thru Dec 12 Thurs, Dec 1: Gene Finding 2 Tues, Dec 6: PS5 due Project presentations 1 (see course web site for schedule) Thurs, Dec 8 Final papers due Project

More information

UCSC Genome Browser. Introduction to ab initio and evidence-based gene finding

UCSC Genome Browser. Introduction to ab initio and evidence-based gene finding UCSC Genome Browser Introduction to ab initio and evidence-based gene finding Wilson Leung 06/2006 Outline Introduction to annotation ab initio gene finding Basics of the UCSC Browser Evidence-based gene

More information

Leonardo Mariño-Ramírez, PhD NCBI / NLM / NIH. BIOL 7210 A Computational Genomics 2/18/2015

Leonardo Mariño-Ramírez, PhD NCBI / NLM / NIH. BIOL 7210 A Computational Genomics 2/18/2015 Leonardo Mariño-Ramírez, PhD NCBI / NLM / NIH BIOL 7210 A Computational Genomics 2/18/2015 The $1,000 genome is here! http://www.illumina.com/systems/hiseq-x-sequencing-system.ilmn Bioinformatics bottleneck

More information

Genscan. The Genscan HMM model Training Genscan Validating Genscan. (c) Devika Subramanian,

Genscan. The Genscan HMM model Training Genscan Validating Genscan. (c) Devika Subramanian, Genscan The Genscan HMM model Training Genscan Validating Genscan (c) Devika Subramanian, 2009 96 Gene structure assumed by Genscan donor site acceptor site (c) Devika Subramanian, 2009 97 A simple model

More information

Genes and gene finding

Genes and gene finding Genes and gene finding Ben Langmead Department of Computer Science You are free to use these slides. If you do, please sign the guestbook (www.langmead-lab.org/teaching-materials), or email me (ben.langmead@gmail.com)

More information

Genome annotation. Erwin Datema (2011) Sandra Smit (2012, 2013)

Genome annotation. Erwin Datema (2011) Sandra Smit (2012, 2013) Genome annotation Erwin Datema (2011) Sandra Smit (2012, 2013) Genome annotation AGACAAAGATCCGCTAAATTAAATCTGGACTTCACATATTGAAGTGATATCACACGTTTCTCTAAT AATCTCCTCACAATATTATGTTTGGGATGAACTTGTCGTGATTTGCCATTGTAGCAATCACTTGAA

More information

Baum-Welch and HMM applications. November 16, 2017

Baum-Welch and HMM applications. November 16, 2017 Baum-Welch and HMM applications November 16, 2017 Markov chains 3 states of weather: sunny, cloudy, rainy Observed once a day at the same time All transitions are possible, with some probability Each state

More information

Gene Identification in silico

Gene Identification in silico Gene Identification in silico Nita Parekh, IIIT Hyderabad Presented at National Seminar on Bioinformatics and Functional Genomics, at Bioinformatics centre, Pondicherry University, Feb 15 17, 2006. Introduction

More information

Glossary of Commonly used Annotation Terms

Glossary of Commonly used Annotation Terms Glossary of Commonly used Annotation Terms Akela a general use server for the annotation group as well as other groups throughout TIGR. Annotation Notebook a link from the gene list page that is associated

More information

Outline. Introduction to ab initio and evidence-based gene finding. Prokaryotic gene predictions

Outline. Introduction to ab initio and evidence-based gene finding. Prokaryotic gene predictions Outline Introduction to ab initio and evidence-based gene finding Overview of computational gene predictions Different types of eukaryotic gene predictors Common types of gene prediction errors Wilson

More information

A comparative genomic method for computational identification of prokaryotic translation initiation sites

A comparative genomic method for computational identification of prokaryotic translation initiation sites A comparative genomic method for computational identification of prokaryotic translation initiation sites Megon Walker, Vladimir Pavlovic, and Simon Kasif* Bioinformatics Department Boston University Boston,

More information

Roseobacter denitrificans genome annotation using Manatee

Roseobacter denitrificans genome annotation using Manatee Roseobacter denitrificans genome annotation using Manatee Chaitanya R. Acharya Computational Biosciences Arizona State University May 3, 2006 Acknowledgements Thanks to my project advisor Dr. Robert Blankenship,

More information

Ab initio gene identification in metagenomic sequences

Ab initio gene identification in metagenomic sequences Nucleic Acids Research Advance Access published April 19, 2010 Nucleic Acids Research, 2010, 1 15 doi:10.1093/nar/gkq275 Ab initio gene identification in metagenomic sequences Wenhan Zhu 1, Alexandre Lomsadze

More information

Sequence Based Function Annotation. Qi Sun Bioinformatics Facility Biotechnology Resource Center Cornell University

Sequence Based Function Annotation. Qi Sun Bioinformatics Facility Biotechnology Resource Center Cornell University Sequence Based Function Annotation Qi Sun Bioinformatics Facility Biotechnology Resource Center Cornell University Usage scenarios for sequence based function annotation Function prediction of newly cloned

More information

A Novel Bacterial Gene-Finding System with Improved Accuracy in Locating Start Codons

A Novel Bacterial Gene-Finding System with Improved Accuracy in Locating Start Codons DNA Research 8, 97 106 (2001) A Novel Bacterial Gene-Finding System with Improved Accuracy in Locating Start Codons Tetsushi Yada, 1, Yasushi Totoki, 1 Toshihisa Takagi, 2 and Kenta Nakai 2, Genomic Sciences

More information

Computational analysis of non-coding RNA. Andrew Uzilov BME110 Tue, Nov 16, 2010

Computational analysis of non-coding RNA. Andrew Uzilov BME110 Tue, Nov 16, 2010 Computational analysis of non-coding RNA Andrew Uzilov auzilov@ucsc.edu BME110 Tue, Nov 16, 2010 1 Corrected/updated talk slides are here: http://tinyurl.com/uzilovrna redirects to: http://users.soe.ucsc.edu/~auzilov/bme110/fall2010/

More information

Genomics and Gene Recognition Genes and Blue Genes

Genomics and Gene Recognition Genes and Blue Genes Genomics and Gene Recognition Genes and Blue Genes November 1, 2004 Prokaryotic Gene Structure prokaryotes are simplest free-living organisms studying prokaryotes can give us a sense what is the minimum

More information

Motif Discovery from Large Number of Sequences: a Case Study with Disease Resistance Genes in Arabidopsis thaliana

Motif Discovery from Large Number of Sequences: a Case Study with Disease Resistance Genes in Arabidopsis thaliana Motif Discovery from Large Number of Sequences: a Case Study with Disease Resistance Genes in Arabidopsis thaliana Irfan Gunduz, Sihui Zhao, Mehmet Dalkilic and Sun Kim Indiana University, School of Informatics

More information

RNA folding & ncrna discovery

RNA folding & ncrna discovery I519 Introduction to Bioinformatics RNA folding & ncrna discovery Yuzhen Ye (yye@indiana.edu) School of Informatics & Computing, IUB Contents Non-coding RNAs and their functions RNA structures RNA folding

More information

Genomics and Gene Recognition Genes and Blue Genes

Genomics and Gene Recognition Genes and Blue Genes Genomics and Gene Recognition Genes and Blue Genes November 3, 2004 Eukaryotic Gene Structure eukaryotic genomes are considerably more complex than those of prokaryotes eukaryotic cells have organelles

More information

Themes: RNA and RNA Processing. Messenger RNA (mrna) What is a gene? RNA is very versatile! RNA-RNA interactions are very important!

Themes: RNA and RNA Processing. Messenger RNA (mrna) What is a gene? RNA is very versatile! RNA-RNA interactions are very important! Themes: RNA is very versatile! RNA and RNA Processing Chapter 14 RNA-RNA interactions are very important! Prokaryotes and Eukaryotes have many important differences. Messenger RNA (mrna) Carries genetic

More information

Ch. 10 Notes DNA: Transcription and Translation

Ch. 10 Notes DNA: Transcription and Translation Ch. 10 Notes DNA: Transcription and Translation GOALS Compare the structure of RNA with that of DNA Summarize the process of transcription Relate the role of codons to the sequence of amino acids that

More information

MATH 5610, Computational Biology

MATH 5610, Computational Biology MATH 5610, Computational Biology Lecture 2 Intro to Molecular Biology (cont) Stephen Billups University of Colorado at Denver MATH 5610, Computational Biology p.1/24 Announcements Error on syllabus Class

More information

RNA Genomics II. BME 110: CompBio Tools Todd Lowe & Andrew Uzilov May 17, 2011

RNA Genomics II. BME 110: CompBio Tools Todd Lowe & Andrew Uzilov May 17, 2011 RNA Genomics II BME 110: CompBio Tools Todd Lowe & Andrew Uzilov May 17, 2011 1 TIME Why RNA? An evolutionary perspective The RNA World hypotheses: life arose as self-replicating non-coding RNA (ncrna)

More information

Annotating Fosmid 14p24 of D. Virilis chromosome 4

Annotating Fosmid 14p24 of D. Virilis chromosome 4 Lo 1 Annotating Fosmid 14p24 of D. Virilis chromosome 4 Lo, Louis April 20, 2006 Annotation Report Introduction In the first half of Research Explorations in Genomics I finished a 38kb fragment of chromosome

More information

ABSTRACT METHODS FOR MICROBIAL GENOMICS. Professor Steven L. Salzberg Department of Computer Science

ABSTRACT METHODS FOR MICROBIAL GENOMICS. Professor Steven L. Salzberg Department of Computer Science ABSTRACT Title of Dissertation: COMPARATIVE AND COMPUTATIONAL METHODS FOR MICROBIAL GENOMICS Derrick Edward Wood, Doctor of Philosophy, 2014 Directed by: Professor Steven L. Salzberg Department of Computer

More information

VL Algorithmische BioInformatik (19710) WS2013/2014 Woche 3 - Mittwoch

VL Algorithmische BioInformatik (19710) WS2013/2014 Woche 3 - Mittwoch VL Algorithmische BioInformatik (19710) WS2013/2014 Woche 3 - Mittwoch Tim Conrad AG Medical Bioinformatics Institut für Mathematik & Informatik, Freie Universität Berlin Vorlesungsthemen Part 1: Background

More information

Outline. Evolution. Adaptive convergence. Common similarity problems. Chapter 7: Similarity searches on sequence databases

Outline. Evolution. Adaptive convergence. Common similarity problems. Chapter 7: Similarity searches on sequence databases Chapter 7: Similarity searches on sequence databases All science is either physics or stamp collection. Ernest Rutherford Outline Why is similarity important BLAST Protein and DNA Interpreting BLAST Individualizing

More information

Genome Annotation. What Does Annotation Describe??? Genome duplications Genes Mobile genetic elements Small repeats Genetic diversity

Genome Annotation. What Does Annotation Describe??? Genome duplications Genes Mobile genetic elements Small repeats Genetic diversity Genome Annotation Genome Sequencing Costliest aspect of sequencing the genome o But Devoid of content Genome must be annotated o Annotation definition Analyzing the raw sequence of a genome and describing

More information

Post-assembly Data Analysis

Post-assembly Data Analysis Assembled transcriptome Post-assembly Data Analysis Quantification: the expression level of each gene in each sample DE genes: genes differentially expressed between samples Clustering/network analysis

More information

Protein Sequence Analysis. BME 110: CompBio Tools Todd Lowe April 19, 2007 (Slide Presentation: Carol Rohl)

Protein Sequence Analysis. BME 110: CompBio Tools Todd Lowe April 19, 2007 (Slide Presentation: Carol Rohl) Protein Sequence Analysis BME 110: CompBio Tools Todd Lowe April 19, 2007 (Slide Presentation: Carol Rohl) Linear Sequence Analysis What can you learn from a (single) protein sequence? Calculate it s physical

More information

DNA is the genetic material. DNA structure. Chapter 7: DNA Replication, Transcription & Translation; Mutations & Ames test

DNA is the genetic material. DNA structure. Chapter 7: DNA Replication, Transcription & Translation; Mutations & Ames test DNA is the genetic material Chapter 7: DNA Replication, Transcription & Translation; Mutations & Ames test Dr. Amy Rogers Bio 139 General Microbiology Hereditary information is carried by DNA Griffith/Avery

More information

Analysis of Biological Sequences SPH

Analysis of Biological Sequences SPH Analysis of Biological Sequences SPH 140.638 swheelan@jhmi.edu nuts and bolts meet Tuesdays & Thursdays, 3:30-4:50 no exam; grade derived from 3-4 homework assignments plus a final project (open book,

More information

Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training

Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training Methods Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training Vardges Ter-Hovhannisyan, 1,4 Alexandre Lomsadze, 2,4 Yury O. Chernoff, 1 and Mark Borodovsky 2,3,5

More information

Eukaryotic Gene Prediction. Wei Zhu May 2007

Eukaryotic Gene Prediction. Wei Zhu May 2007 Eukaryotic Gene Prediction Wei Zhu May 2007 In nature, nothing is perfect... - Alice Walker Gene Structure What is Gene Prediction? Gene prediction is the problem of parsing a sequence into nonoverlapping

More information

BIO 311C Spring Lecture 36 Wednesday 28 Apr.

BIO 311C Spring Lecture 36 Wednesday 28 Apr. BIO 311C Spring 2010 1 Lecture 36 Wednesday 28 Apr. Synthesis of a Polypeptide Chain 5 direction of ribosome movement along the mrna 3 ribosome mrna NH 2 polypeptide chain direction of mrna movement through

More information

COMPUTER RESOURCES II:

COMPUTER RESOURCES II: COMPUTER RESOURCES II: Using the computer to analyze data, using the internet, and accessing online databases Bio 210, Fall 2006 Linda S. Huang, Ph.D. University of Massachusetts Boston In the first computer

More information

What happens after DNA Replication??? Transcription, translation, gene expression/protein synthesis!!!!

What happens after DNA Replication??? Transcription, translation, gene expression/protein synthesis!!!! What happens after DNA Replication??? Transcription, translation, gene expression/protein synthesis!!!! Protein Synthesis/Gene Expression Why do we need to make proteins? To build parts for our body as

More information

Genie Gene Finding in Drosophila melanogaster

Genie Gene Finding in Drosophila melanogaster Methods Gene Finding in Drosophila melanogaster Martin G. Reese, 1,2,4 David Kulp, 2 Hari Tammana, 2 and David Haussler 2,3 1 Berkeley Drosophila Genome Project, Department of Molecular and Cell Biology,

More information

Gene and Translation Initiation Site Prediction in Metagenomic Sequences

Gene and Translation Initiation Site Prediction in Metagenomic Sequences Bioinformatics Advance Access published July 12, 2012 Gene and Translation Initiation Site Prediction in genomic Sequences Doug Hyatt 1,2*, Philip F. LoCascio 1, Loren J. Hauser 1,2,and Edward C. Uberbacher

More information

Chapter 12. DNA TRANSCRIPTION and TRANSLATION

Chapter 12. DNA TRANSCRIPTION and TRANSLATION Chapter 12 DNA TRANSCRIPTION and TRANSLATION 12-3 RNA and Protein Synthesis WARM UP What are proteins? Where do they come from? From DNA to RNA to Protein DNA in our cells carry the instructions for making

More information

Name: Class: Date: ID: A

Name: Class: Date: ID: A Class: _ Date: _ CH 12 Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. How many codons are needed to specify three amino acids? a. 6 c. 3 b. 12

More information

Relationship between nucleotide sequence and 3D protein structure of six genes in Escherichia coli, by analysis of DNA sequence using a Markov model

Relationship between nucleotide sequence and 3D protein structure of six genes in Escherichia coli, by analysis of DNA sequence using a Markov model Relationship between nucleotide sequence and 3D protein structure of six genes in Escherichia coli, by analysis of DNA sequence using a Markov model Yuko Ohfuku 1,, 3*, Hideo Tanaka and Masami Uebayasi

More information

Genome sequence of Brucella abortus vaccine strain S19 compared to virulent strains yields candidate virulence genes

Genome sequence of Brucella abortus vaccine strain S19 compared to virulent strains yields candidate virulence genes Fig. S2. Additional information supporting the use case Application to Comparative Genomics: Erythritol Utilization in Brucella. (A) Genes encoding enzymes involved in erythritol transport and catabolism

More information

DNA Structure and Replication, and Virus Structure and Replication Test Review

DNA Structure and Replication, and Virus Structure and Replication Test Review DNA Structure and Replication, and Virus Structure and Replication Test Review What does DNA stand for? Deoxyribonucleic Acid DNA is what type of macromolecule? DNA is a nucleic acid The building blocks

More information

Protein Synthesis: Transcription and Translation

Protein Synthesis: Transcription and Translation Protein Synthesis: Transcription and Translation Proteins In living things, proteins are in charge of the expression of our traits (hair/eye color, ability to make insulin, predisposition for cancer, etc.)

More information

Methods and Algorithms for Gene Prediction

Methods and Algorithms for Gene Prediction Methods and Algorithms for Gene Prediction Chaochun Wei 韦朝春 Sc.D. ccwei@sjtu.edu.cn http://cbb.sjtu.edu.cn/~ccwei Shanghai Jiao Tong University Shanghai Center for Bioinformation Technology 5/12/2011 K-J-C

More information

Bio11 Announcements. Ch 21: DNA Biology and Technology. DNA Functions. DNA and RNA Structure. How do DNA and RNA differ? What are genes?

Bio11 Announcements. Ch 21: DNA Biology and Technology. DNA Functions. DNA and RNA Structure. How do DNA and RNA differ? What are genes? Bio11 Announcements TODAY Genetics (review) and quiz (CP #4) Structure and function of DNA Extra credit due today Next week in lab: Case study presentations Following week: Lab Quiz 2 Ch 21: DNA Biology

More information

RNA & PROTEIN SYNTHESIS

RNA & PROTEIN SYNTHESIS RNA & PROTEIN SYNTHESIS DNA & RNA Genes are coded DNA instructions that control the production of proteins within the cell. The first step in decoding these genetic messages is to copy part of the nucleotide

More information

Gene Structure & Gene Finding Part II

Gene Structure & Gene Finding Part II Gene Structure & Gene Finding Part II David Wishart david.wishart@ualberta.ca 30,000 metabolite Gene Finding in Eukaryotes Eukaryotes Complex gene structure Large genomes (0.1 to 10 billion bp) Exons and

More information

Genome Annotation Genome annotation What is the function of each part of the genome? Where are the genes? What is the mrna sequence (transcription, splicing) What is the protein sequence? What does

More information

From DNA to Protein: Genotype to Phenotype

From DNA to Protein: Genotype to Phenotype 12 From DNA to Protein: Genotype to Phenotype 12.1 What Is the Evidence that Genes Code for Proteins? The gene-enzyme relationship is one-gene, one-polypeptide relationship. Example: In hemoglobin, each

More information

Genome sequence of Acinetobacter baumannii MDR-TJ

Genome sequence of Acinetobacter baumannii MDR-TJ JB Accepts, published online ahead of print on 11 March 2011 J. Bacteriol. doi:10.1128/jb.00226-11 Copyright 2011, American Society for Microbiology and/or the Listed Authors/Institutions. All Rights Reserved.

More information

PRiB - Mandatory Project 2. Gene finding using HMMs

PRiB - Mandatory Project 2. Gene finding using HMMs PRiB - Mandatory Project 2 Gene finding using HMMs Viterbi decoding >NC_002737.1 Streptococcus pyogenes M1 GAS TTGTTGATATTCTGTTTTTTCTTTTTTAGTTTTCCACATGAAAAATAGTTGAAAACAATA GCGGTGTCCCCTTAAAATGGCTTTTCCACAGGTTGTGGAGAACCCAAATTAACAGTGTTA

More information

DNA RNA PROTEIN. Professor Andrea Garrison Biology 11 Illustrations 2010 Pearson Education, Inc. unless otherwise noted

DNA RNA PROTEIN. Professor Andrea Garrison Biology 11 Illustrations 2010 Pearson Education, Inc. unless otherwise noted DNA RNA PROTEIN Professor Andrea Garrison Biology 11 Illustrations 2010 Pearson Education, Inc. unless otherwise noted DNA Molecule of heredity Contains all the genetic info our cells inherit Determines

More information

Why learn sequence database searching? Searching Molecular Databases with BLAST

Why learn sequence database searching? Searching Molecular Databases with BLAST Why learn sequence database searching? Searching Molecular Databases with BLAST What have I cloned? Is this really!my gene"? Basic Local Alignment Search Tool How BLAST works Interpreting search results

More information

Transcription Gene regulation

Transcription Gene regulation Transcription Gene regulation The machine that transcribes a gene is composed of perhaps 50 proteins, including RNA polymerase, the enzyme that converts DNA code into RNA code. A crew of transcription

More information

Molecular Cell Biology - Problem Drill 01: Introduction to Molecular Cell Biology

Molecular Cell Biology - Problem Drill 01: Introduction to Molecular Cell Biology Molecular Cell Biology - Problem Drill 01: Introduction to Molecular Cell Biology Question No. 1 of 10 1. Which statement describes how an organism is organized from most simple to most complex? Question

More information

Genome Sequence Assembly

Genome Sequence Assembly Genome Sequence Assembly Learning Goals: Introduce the field of bioinformatics Familiarize the student with performing sequence alignments Understand the assembly process in genome sequencing Introduction:

More information

M I C R O B I O L O G Y WITH DISEASES BY TAXONOMY, THIRD EDITION

M I C R O B I O L O G Y WITH DISEASES BY TAXONOMY, THIRD EDITION M I C R O B I O L O G Y WITH DISEASES BY TAXONOMY, THIRD EDITION Chapter 7 Microbial Genetics Lecture prepared by Mindy Miller-Kittrell, University of Tennessee, Knoxville The Structure and Replication

More information

Year III Pharm.D Dr. V. Chitra

Year III Pharm.D Dr. V. Chitra Year III Pharm.D Dr. V. Chitra 1 Genome entire genetic material of an individual Transcriptome set of transcribed sequences Proteome set of proteins encoded by the genome 2 Only one strand of DNA serves

More information

Self-test Quiz for Chapter 12 (From DNA to Protein: Genotype to Phenotype)

Self-test Quiz for Chapter 12 (From DNA to Protein: Genotype to Phenotype) Self-test Quiz for Chapter 12 (From DNA to Protein: Genotype to Phenotype) Question#1: One-Gene, One-Polypeptide The figure below shows the results of feeding trials with one auxotroph strain of Neurospora

More information

DNA Function: Information Transmission

DNA Function: Information Transmission DNA Function: Information Transmission DNA is called the code of life. What does it code for? *the information ( code ) to make proteins! Why are proteins so important? Nearly every function of a living

More information

Bundle 5 Test Review

Bundle 5 Test Review Bundle 5 Test Review DNA vs. RNA DNA Replication Gene Mutations- Protein Synthesis 1. Label the different components and complete the complimentary base pairing. What is this molecule called? _Nucleic

More information

Protein Synthesis. DNA to RNA to Protein

Protein Synthesis. DNA to RNA to Protein Protein Synthesis DNA to RNA to Protein From Genes to Proteins Processing the information contained in DNA into proteins involves a sequence of events known as gene expression and results in protein synthesis.

More information

Antisense RNA Insert Design for Plasmid Construction to Knockdown Target Gene Expression

Antisense RNA Insert Design for Plasmid Construction to Knockdown Target Gene Expression Vol. 1:7-15 Antisense RNA Insert Design for Plasmid Construction to Knockdown Target Gene Expression Ji, Tom, Lu, Aneka, Wu, Kaylee Department of Microbiology and Immunology, University of British Columbia

More information

Chapter 13. From DNA to Protein

Chapter 13. From DNA to Protein Chapter 13 From DNA to Protein Proteins All proteins consist of polypeptide chains A linear sequence of amino acids Each chain corresponds to the nucleotide base sequenceof a gene The Path From Genes to

More information

Annotating 7G24-63 Justin Richner May 4, Figure 1: Map of my sequence

Annotating 7G24-63 Justin Richner May 4, Figure 1: Map of my sequence Annotating 7G24-63 Justin Richner May 4, 2005 Zfh2 exons Thd1 exons Pur-alpha exons 0 40 kb 8 = 1 kb = LINE, Penelope = DNA/Transib, Transib1 = DINE = Novel Repeat = LTR/PAO, Diver2 I = LTR/Gypsy, Invader

More information

Three-Way Comparison and Investigation of Annotated Halorhabdus utahensis Genome

Three-Way Comparison and Investigation of Annotated Halorhabdus utahensis Genome Three-Way Comparison and Investigation of Annotated Halorhabdus utahensis Genome Peter Bakke, Nick Carney, Will DeLoache, Mary Gearing, Matt Lotz, Jay McNair, Pallavi Penumetcha, Samantha Simpson, Laura

More information

DNA makes RNA makes Proteins. The Central Dogma

DNA makes RNA makes Proteins. The Central Dogma DNA makes RNA makes Proteins The Central Dogma TRANSCRIPTION DNA RNA transcript RNA polymerase RNA PROCESSING Exon RNA transcript (pre-mrna) Intron Aminoacyl-tRNA synthetase NUCLEUS CYTOPLASM FORMATION

More information

CHAPTER 21 LECTURE SLIDES

CHAPTER 21 LECTURE SLIDES CHAPTER 21 LECTURE SLIDES Prepared by Brenda Leady University of Toledo To run the animations you must be in Slideshow View. Use the buttons on the animation to play, pause, and turn audio/text on or off.

More information

Independent Study Guide The Blueprint of Life, from DNA to Protein (Chapter 7)

Independent Study Guide The Blueprint of Life, from DNA to Protein (Chapter 7) Independent Study Guide The Blueprint of Life, from DNA to Protein (Chapter 7) I. General Principles (Chapter 7 introduction) a. Morse code distinct series of dots and dashes encode the 26 letters of the

More information

DNA - DEOXYRIBONUCLEIC ACID

DNA - DEOXYRIBONUCLEIC ACID DNA - DEOXYRIBONUCLEIC ACID blueprint of life (has the instructions for making an organism) established by James Watson and Francis Crick codes for your genes shape of a double helix made of repeating

More information

Protein Synthesis Notes

Protein Synthesis Notes Protein Synthesis Notes Protein Synthesis: Overview Transcription: synthesis of mrna under the direction of DNA. Translation: actual synthesis of a polypeptide under the direction of mrna. Transcription

More information

TRANSCRIPTION AND PROCESSING OF RNA

TRANSCRIPTION AND PROCESSING OF RNA TRANSCRIPTION AND PROCESSING OF RNA 1. The steps of gene expression. 2. General characterization of transcription: steps, components of transcription apparatus. 3. Transcription of eukaryotic structural

More information

Single Nucleotide Variant Analysis. H3ABioNet May 14, 2014

Single Nucleotide Variant Analysis. H3ABioNet May 14, 2014 Single Nucleotide Variant Analysis H3ABioNet May 14, 2014 Outline What are SNPs and SNVs? How do we identify them? How do we call them? SAMTools GATK VCF File Format Let s call variants! Single Nucleotide

More information

Sequence Analysis Lab Protocol

Sequence Analysis Lab Protocol Sequence Analysis Lab Protocol You will need this handout of instructions The sequence of your plasmid from the ABI The Accession number for Lambda DNA J02459 The Accession number for puc 18 is L09136

More information

RNA secondary structure prediction and analysis

RNA secondary structure prediction and analysis RNA secondary structure prediction and analysis 1 Resources Lecture Notes from previous years: Takis Benos Covariance algorithm: Eddy and Durbin, Nucleic Acids Research, v22: 11, 2079 Useful lecture slides

More information

Programmed Ribosomal Frameshifts as Synthetic Biology Tools. University of Lethbridge Lethbridge, AB, Canada November 2, 2013.

Programmed Ribosomal Frameshifts as Synthetic Biology Tools. University of Lethbridge Lethbridge, AB, Canada November 2, 2013. c F h R a A n M g E er Programmed Ribosomal Frameshifts as Synthetic Biology Tools University of Lethbridge Lethbridge, AB, Canada November 2, 2013 FRAMEchanger Project Goals Design a new class of regulatory

More information

Name Class Date. Practice Test

Name Class Date. Practice Test Name Class Date 12 DNA Practice Test Multiple Choice Write the letter that best answers the question or completes the statement on the line provided. 1. What do bacteriophages infect? a. mice. c. viruses.

More information

BIOINFORMATICS Introduction

BIOINFORMATICS Introduction BIOINFORMATICS Introduction Mark Gerstein, Yale University bioinfo.mbb.yale.edu/mbb452a 1 (c) Mark Gerstein, 1999, Yale, bioinfo.mbb.yale.edu What is Bioinformatics? (Molecular) Bio -informatics One idea

More information

Teaching Principles of Enzyme Structure, Evolution, and Catalysis Using Bioinformatics

Teaching Principles of Enzyme Structure, Evolution, and Catalysis Using Bioinformatics KBM Journal of Science Education (2010) 1 (1): 7-12 doi: 10.5147/kbmjse/2010/0013 Teaching Principles of Enzyme Structure, Evolution, and Catalysis Using Bioinformatics Pablo Sobrado Department of Biochemistry,

More information

Fig Ch 17: From Gene to Protein

Fig Ch 17: From Gene to Protein Fig. 17-1 Ch 17: From Gene to Protein Basic Principles of Transcription and Translation RNA is the intermediate between genes and the proteins for which they code Transcription is the synthesis of RNA

More information

Lecture 2: Central Dogma of Molecular Biology & Intro to Programming

Lecture 2: Central Dogma of Molecular Biology & Intro to Programming Lecture 2: Central Dogma of Molecular Biology & Intro to Programming Central Dogma of Molecular Biology Proteins: workhorse molecules of biological systems Proteins are synthesized from the genetic blueprints

More information

DNA. translation. base pairing rules for DNA Replication. thymine. cytosine. amino acids. The building blocks of proteins are?

DNA. translation. base pairing rules for DNA Replication. thymine. cytosine. amino acids. The building blocks of proteins are? 2 strands, has the 5-carbon sugar deoxyribose, and has the nitrogen base Thymine. The actual process of assembling the proteins on the ribosome is called? DNA translation Adenine pairs with Thymine, Thymine

More information

Review of Protein (one or more polypeptide) A polypeptide is a long chain of..

Review of Protein (one or more polypeptide) A polypeptide is a long chain of.. Gene expression Review of Protein (one or more polypeptide) A polypeptide is a long chain of.. In a protein, the sequence of amino acid determines its which determines the protein s A protein with an enzymatic

More information

TRANSCRIPTION AND TRANSLATION

TRANSCRIPTION AND TRANSLATION TRANSCRIPTION AND TRANSLATION Bell Ringer (5 MINUTES) 1. Have your homework (any missing work) out on your desk and ready to turn in 2. Draw and label a nucleotide. 3. Summarize the steps of DNA replication.

More information

ABSTRACT COMPUTATIONAL METHODS TO IMPROVE GENOME ASSEMBLY AND GENE PREDICTION. David Kelley, Doctor of Philosophy, 2011

ABSTRACT COMPUTATIONAL METHODS TO IMPROVE GENOME ASSEMBLY AND GENE PREDICTION. David Kelley, Doctor of Philosophy, 2011 ABSTRACT Title of dissertation: COMPUTATIONAL METHODS TO IMPROVE GENOME ASSEMBLY AND GENE PREDICTION David Kelley, Doctor of Philosophy, 2011 Dissertation directed by: Professor Steven Salzberg Department

More information

Creation of a PAM matrix

Creation of a PAM matrix Rationale for substitution matrices Substitution matrices are a way of keeping track of the structural, physical and chemical properties of the amino acids in proteins, in such a fashion that less detrimental

More information

TERTIARY MOTIF INTERACTIONS ON RNA STRUCTURE

TERTIARY MOTIF INTERACTIONS ON RNA STRUCTURE 1 TERTIARY MOTIF INTERACTIONS ON RNA STRUCTURE Bioinformatics Senior Project Wasay Hussain Spring 2009 Overview of RNA 2 The central Dogma of Molecular biology is DNA RNA Proteins The RNA (Ribonucleic

More information

DNA Transcription. Dr Aliwaini

DNA Transcription. Dr Aliwaini DNA Transcription 1 DNA Transcription-Introduction The synthesis of an RNA molecule from DNA is called Transcription. All eukaryotic cells have five major classes of RNA: ribosomal RNA (rrna), messenger

More information

Adv Biology: DNA and RNA Study Guide

Adv Biology: DNA and RNA Study Guide Adv Biology: DNA and RNA Study Guide Chapter 12 Vocabulary -Notes What experiments led up to the discovery of DNA being the hereditary material? o The discovery that DNA is the genetic code involved many

More information

MODULE 1: INTRODUCTION TO THE GENOME BROWSER: WHAT IS A GENE?

MODULE 1: INTRODUCTION TO THE GENOME BROWSER: WHAT IS A GENE? MODULE 1: INTRODUCTION TO THE GENOME BROWSER: WHAT IS A GENE? Lesson Plan: Title Introduction to the Genome Browser: what is a gene? JOYCE STAMM Objectives Demonstrate basic skills in using the UCSC Genome

More information

DNA. Is a molecule that encodes the genetic instructions used in the development and functioning of all known living organisms and many viruses.

DNA. Is a molecule that encodes the genetic instructions used in the development and functioning of all known living organisms and many viruses. Is a molecule that encodes the genetic instructions used in the development and functioning of all known living organisms and many viruses. Genetic information is encoded as a sequence of nucleotides (guanine,

More information

RNA-Seq with the Tuxedo Suite

RNA-Seq with the Tuxedo Suite RNA-Seq with the Tuxedo Suite Monica Britton, Ph.D. Sr. Bioinformatics Analyst September 2015 Workshop The Basic Tuxedo Suite References Trapnell C, et al. 2009 TopHat: discovering splice junctions with

More information

AP Biology Gene Expression/Biotechnology REVIEW

AP Biology Gene Expression/Biotechnology REVIEW AP Biology Gene Expression/Biotechnology REVIEW Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Gene expression can be a. regulated before transcription.

More information

Nucleic acids deoxyribonucleic acid (DNA) ribonucleic acid (RNA) nucleotide

Nucleic acids deoxyribonucleic acid (DNA) ribonucleic acid (RNA) nucleotide Nucleic Acids Nucleic acids are molecules that store information for cellular growth and reproduction There are two types of nucleic acids: - deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) These

More information