Fast Reactor Operating Experience in the U.S.

Size: px
Start display at page:

Download "Fast Reactor Operating Experience in the U.S."

Transcription

1 Fast Reactor Operating Experience in the U.S. Harold F. McFarlane Deputy Associate Laboratory Director for Nuclear Science and Technology 3 March 2010 [insert optional photo(s) here]

2 Thanks to John Sackett and Jim Cahalan for providing the material for this summary Fast Reactors Database, IAEA International Working Group on Fast Reactors, see also IAEA-TECDOC-866. R. Loftness, Nuclear Power Plants, Van Nostrand Co., L. J. Koch, Experimental Breeder Reactor-II, An Integrated Experimental Fast Reactor Nuclear Power Station, Argonne National Laboratory. (Available on-line at G. Billuris, et al., SEFOR Plant Design, Fast Reactors National Topical Meeting, American Nuclear Society, San Francisco, April, A Summary Description of the Fast Flux Test Facility, HEDL-400, Hanford Engineering Development Laboratory, December, S. H. Fistedis, Ed., The Experimental Breeder Reactor-II Inherent Safety Demonstration, Nucl. Eng. Des., Vol. 101, No. 1,

3 US Fast Reactors Built and Operated Facility Location Mission Dates Power (MWt) EBR-I Idaho R&D EBR-II Idaho R&D Fermi-1 Michigan Power SEFOR Arkansas Safety Test FFTF Washington Fuel & Material Test Experimental Breeder Reactor-I (EBR-I) was built to demonstrate fuel breeding Experimental Breeder Reactor-II (EBR-II) was built to demonstrate closure of the metallic fuel cycle and recycling of reactor fuel Fermi-1 was built as a metallic uranium-fueled reactor on a utility grid Southwest Experimental Fast Oxide Reactor (SEFOR) was built to demonstrate the safety properties of the Doppler feedback for oxide fuel Fast Flux Test Facility (FFTF) was built to test fuel and cladding materials for the Liquid Metal Fast Breeder Reactor (LMFBR) program 3

4 EBR-I produced electricity 21 December 1951

5 Experimental Breeder Reactor-1 (EBR-I) From 1951 to 1963, EBR-I was operated with four core designs to demonstrate breeding and to develop an understanding of liquid metal fast reactor performance Pu breeding demonstrated by February, 1952 Testing platform for reactor physics, fluid dynamics, and power generation. Generated 200 kw of electricity for NRTS NaK cooled, U-235 (94% enriched) metal fuel in stainless steel cladding 217 pin locations, in. OD, 4.25 in. core height 227 o C inlet, 316 o C outlet, 20 psig Mark III core used hexagonal tubes and wire wraps for fuel pin positioning Mark IV core used Pu fuel (1962) In November, 1955, during a test to investigate a prompt positive component of the power coefficient, an unanticipated power excursion resulted in fuel melting. Core was replaced and operation continued through

6 Assembly of EBR-I Core Inner Tank 6

7 Mark III Inner Tank Assembly Outer blanket 7

8 Experimental Breeder Reactor-II (EBR-II) From 1964 through 1994, EBR-II operated as a prototype breeder power station demonstrating fuel cycle closure Dry critical September 1961; wet critical November MWt with 3 MWe to INEL in August, 1964; 50 MWt August 1965; 62.5 MWt September 1969 Sodium cooled, 371 o C inlet, 473 o C outlet, 47 psig Fuel pins 0.17 in. OD, 13.5 in. core height; metal fuel in SS cladding First fuel processed in Fuel Cycle Facility in September 1964; recycled fuel irradiation in April 1965 Mission oriented to irradiation testing in 1969; supporting FFTF and CRBRP oxide fuel testing and development Integral Fast Reactor (IFR) program began in mid 1980 s Testing and demonstration of high burnup metallic fuels Shutdown Heat Removal Test series ; natural circulation decay heat removal and passive shutdown in ATWS events (unprotected loss-of-flow and loss-of-heat-sink) Operated through

9 EBR-II Site 9

10 EBR-II pool layout

11 Fermi-I 200 MWt power station located on the western shore of Lake Erie south of Detroit Designed by Atomic Power Development Associates (APDA) and constructed by Power Reactor Development Co. (PRDC) for Detroit Edison Critical August 1963, first power August 1966 Sodium cooled, 288 o C inlet, 427 o C outlet, 120 psia Metal fuel, Zr cladding in. OD, 31 in. height, square pin pitch Subassembly flow blockage and fuel melting accident during power ascension on October 5, 1966 Metal fuel core removed and replaced with oxide core; full power 1969 Operation ceased in

12 Fermi-I site

13 Fermi-I primary system

14 Southwest Experimental Fast Oxide Reactor (SEFOR) Southwest Experimental Fast Oxide Reactor (SEFOR) was designed and built by General Electric for the USAEC, with participation by EURATOM, Kernforschungszentrum Karlsruhe, and seventeen US utilities 20 MWt sodium cooled transient test reactor Designed for power oscillations, sub-prompt critical excursions, and super-prompt critical excursions to demonstrate the safety characteristics of the Doppler coefficient for oxide fuel Located 20 miles south of Fayetteville, Arkansas. Built in Began operation in Mission completed in fuel assemblies, each with six fuel rods and a spacer rod Fuel rods 0.97 in. OD, core height 36 9/16 in. 20% PuO 2 -UO 2 fuel, clad with SS Axially segmented core to reduce transient axial expansion Coolant inlet 371 o C, outlet 438 o C Ex-vessel moveable reflector for reactivity control 14

15 Construction of SEFOR

16 Fast Flux Test Facility (FFTF) FFTF was built as a fuels and materials test facility for the US breeder reactor program, principally supporting oxide fuel development for the Clinch River Breeder Reactor Plant (CRBRP) 400 MWt, sodium cooled, 360 o C inlet, 527 o C outlet, 133 psig nominal MOX fueled, SS cladding, 0.23 in. OD pin: 217 pin fuel assembly First critical February 1980, full power December 1980, shutdown December 1993 Provided verification of the CRBRP fuel design Test bed for Investigation of advanced, low-swelling fuel cladding materials Verification of large-scale component designs (pumps, heat exchangers) Mission extension: safety testing Natural circulation shutdown heat removal Passive power reduction in unprotected loss-of-flow sequence 16

17 FFTF Site Hanford, Washington 17

18 FFTF Containment Building View 18

19 Thermal/Hydraulic Safety Demonstrations Sodium fast reactor thermal/hydraulic safety margins were demonstrated in two test programs conducted at EBR-II and FFTF The EBR-II Shutdown Heat Removal Test (SHRT) series was conducted in Fifty-eight tests of reactor and balance-of-plant transients Focus on natural circulation cooling margins Sequence initiators ranged from normal shutdown to total loss of forced coolant flow at full power without reactor scram Test results showed that EBR-II, and plants with similar design features, are capable of inherent self-protection The FFTF Inherent Safety Test series was conducted in 1986 Reactivity feedback characteristics were measured in static tests, followed by loss of forced flow test from 10% to 50% power Focus on inherent reactor power reduction due to loss of forced flow Test results verified that FFTF design features provided inherent self-protection 19

20 Liquid Metal Fast Reactor Experience Liquid sodium was initially selected as the coolant for fast reactors on the basis of 1) low pumping power requirement, 2) high volumetric heat capacity, and 3) high thermal conductivity. Other favorable properties include low neutron absorption and very good compatibility (negligible corrosion) with structural materials Many reactor years (~300) of experience in the US and internationally have demonstrated the effectiveness of the liquid metal fast reactor concept for electricity generation and fuel production, as originally conceived by Fermi, Szilard, and Wigner The US reactor development program has also demonstrated that liquid metal cooling contributes to excellent inherent safety reactor performance, through Natural circulation decay heat removal Passive reactor power reduction in beyond-design-basis 20

21 U.S. and International Experience in Fast Reactor Operation Has Shown Many Benefits Fast reactor fuel is reliable and safe, whether metal or oxide. Cladding failure does not lead to progressive fuel failure. High burnup of fast reactor fuel is achievable, whether metal or oxide. Sodium is not corrosive to stainless steel or components within it. Leakage in steam generating systems with resultant sodium-water reactions does not lead to serious safety problems. Such reactions are not catastrophic, as previously believed, and can be detected, contained and isolated. Leakage of high-temperature sodium coolant, leading to a sodium fire, is not catastrophic and can be contained, suppressed and extinguished. There have been no injuries form sodium leakage and fire. Fast reactors can be self-protecting against Anticipated Transients Without Scram.

22 Lessons From Fast Reactor Operation (contd.) Passive transition to natural convective core-cooling and passive rejection of decay heat has been demonstrated. Reliable control and safety-system response has been demonstrated. Low radiation exposures are the norm for operating and plant maintenance personnel. Emissions are quite low from sodium cooled fast reactors, in part because sodium reacts chemically with many fission products if fuel cladding is breached. Maintenance and repair techniques are well developed and straightforward.

23 Lessons From Fast Reactor Operation (contd.) Several aspects of design and operation have highlighted challenges in fast reactor designs Thermal shock to structures is a major design challenge. Problems with handling fuel in sodium systems have occurred. Failure of in-sodium components without adequate means for removal and repair has resulted in costly and time-consuming repair. Reactivity anomalies have occurred in a number of fast reactors, requiring careful attention to core restraint system design. Operational problems have been encountered at the sodium/covergas interface, resulting from formation of sodium-oxide deposits and can lead to binding of rotating machinery, control-rod drives and contamination of the sodium coolant

24 Conclusion: U.S. Experience has advanced progress toward Generation-IV goals ~ 60 Years of U.S Experience, coupled with International experience, has demonstrated reliability of fast reactor technology Much has been learned through the U.S. technology development programs that support advanced fast reactor designs. Reliable, sustainable and safe operation has been demonstrated and the impact of design choices clarified. Areas for further development include: Development and demonstration of integrated fuel recycle technology Reduction in costs

Trends in Transmutation Performance and Safety Parameters Versus TRU Conversion Ratio of Sodium-Cooled Fast Reactors

Trends in Transmutation Performance and Safety Parameters Versus TRU Conversion Ratio of Sodium-Cooled Fast Reactors Trends in Transmutation Performance and Safety Parameters Versus TRU Conversion Ratio of Sodium-Cooled Fast Reactors The Tenth OECD Nuclear Energy Agency Information Exchange Meeting on Actinide and Fission

More information

Sodium Fast Reactor. DOE/HQ October 31, (Rev. 1, October, 2008)

Sodium Fast Reactor. DOE/HQ October 31, (Rev. 1, October, 2008) Sodium Fast Reactor Safety #2 DOE/HQ October 31, 2007 NRC/White Flint November 1, 2007 (Rev. 1, October, 2008) Presented by: Jim Cahalan Notice This presentation has been revised to remove citations to

More information

Design and Safety Aspect of Lead and Lead-Bismuth Cooled Long-Life Small Safe Fast Reactors for Various Core Configurations

Design and Safety Aspect of Lead and Lead-Bismuth Cooled Long-Life Small Safe Fast Reactors for Various Core Configurations Journal of NUCLEAR SCIENCE and TECHNOLOGY, 32[9], pp. 834-845 (September 1995). Design and Safety Aspect of Lead and Lead-Bismuth Cooled Long-Life Small Safe Fast Reactors for Various Core Configurations

More information

AEN WPRS Sodium Fast Reactor Core Definitions (version 1.2 September 19 th )

AEN WPRS Sodium Fast Reactor Core Definitions (version 1.2 September 19 th ) AEN WPRS Sodium Fast Reactor Core Definitions (version 1.2 September 19 th ) David BLANCHET, Laurent BUIRON, Nicolas STAUFF CEA Cadarache Email: laurent.buiron@cea.fr 1. Introduction and main objectives

More information

LFR core design. for prevention & mitigation of severe accidents

LFR core design. for prevention & mitigation of severe accidents LFR core design for prevention & mitigation of severe accidents Giacomo Grasso UTFISSM Technical Unit for Reactor Safety and Fuel Cycle Methods Coordinator of Core Design Work Package in the EURATOM FP7

More information

The US Fast Breeder Reactor Development Programme

The US Fast Breeder Reactor Development Programme The US Fast Breeder Reactor Development Programme U.S. CIVILIAN REACTOR DEVELOPMENT STRATEGY* The world energy problem has spared few nations from its effects. While there are many common aspects of the

More information

Unprotected Transient Analyses of Natural Circulation LBE-Cooled Accelerator. Driven Sub-critical System. Abstract:

Unprotected Transient Analyses of Natural Circulation LBE-Cooled Accelerator. Driven Sub-critical System. Abstract: Unprotected Transient Analyses of Natural Circulation LBE-Cooled Accelerator Driven Sub-critical System Gang Wang 1*, Zhen Wang 1,2, Ming Jin 1 Yunqing Bai 1 Yong Song 1 1 Key Laboratory of Neutronics

More information

Safety Analysis Results of Representative DEC Accidental Transients for the ALFRED Reactor

Safety Analysis Results of Representative DEC Accidental Transients for the ALFRED Reactor FR13 - TECHNICAL SESSION 3.5: Fast reactor safety: post-fukushima lessons and goals for next-generation reactors Paper n. IAEA-CN-199/260 Safety Analysis Results of Representative DEC Accidental Transients

More information

Advanced Reactor Technology

Advanced Reactor Technology Advanced Reactor Technology Robert N. Hill Nuclear Engineering Division Argonne National Laboratory 2012 Nanonuclear Workshop Gaithersburg, Maryland June 6, 2012 Outline Advanced Reactor Trends Small Modular

More information

Module 11 Liquid Metal Fast Breeder Reactors (LMFBR) Atominstitute of the Austrian Universities Stadionallee 2, 1020 Vienna, Austria

Module 11 Liquid Metal Fast Breeder Reactors (LMFBR) Atominstitute of the Austrian Universities Stadionallee 2, 1020 Vienna, Austria Module 11 Liquid Metal Fast Breeder Reactors (LMFBR) Prof.Dr. H. Böck Atominstitute of the Austrian Universities Stadionallee 2, 1020 Vienna, Austria boeck@ati.ac.at LMFBR Basics A fast breeder reactor

More information

PRESENT STATUS OF THE HIGH TEMPERATURE ENGINEERING TEST REACTOR (HTTR)

PRESENT STATUS OF THE HIGH TEMPERATURE ENGINEERING TEST REACTOR (HTTR) PRESENT STATUS OF THE HIGH TEMPERATURE ENGINEERING TEST REACTOR (HTTR) Shusaku Shiozawa * Department of HTTR Project Japan Atomic Energy Research Institute (JAERI) Japan Abstract It is essentially important

More information

ELFR The European Lead Fast Reactor DESIGN, SAFETY APPROACH AND SAFETY CHARACTERISTICS. Alessandro Alemberti

ELFR The European Lead Fast Reactor DESIGN, SAFETY APPROACH AND SAFETY CHARACTERISTICS. Alessandro Alemberti ELFR The European Lead Fast Reactor DESIGN, SAFETY APPROACH AND SAFETY CHARACTERISTICS Alessandro Alemberti Alessandro.Alemberti@ann.ansaldo.it TECHNICAL MEETING ON IMPACT OF FUKUSHIMA EVENT ON CURRENT

More information

An Introduction to the Engineering of Fast Nuclear Reactors

An Introduction to the Engineering of Fast Nuclear Reactors An Introduction to the Engineering of Fast Nuclear Reactors This book is a resource for both graduate-level engineering students and practicing nuclear engineers who want to expand their knowledge of fast

More information

Natural Circulation Level Optimization and the Effect during ULOF Accident in the SPINNOR Reactor

Natural Circulation Level Optimization and the Effect during ULOF Accident in the SPINNOR Reactor Natural Circulation Level Optimization and the Effect during ULOF Accident in the SPINNOR Reactor Ade Gafar Abdullah 1,2,*, Zaki Su ud 2, Rizal Kurniadi 2, Neny Kurniasih 2, Yanti Yulianti 2,3 1 Electrical

More information

LOS ALAMOS AQUEOUS TARGET/BLANKET SYSTEM DESIGN FOR THE ACCELERATOR TRANSMUTATION OF WASTE CONCEPT

LOS ALAMOS AQUEOUS TARGET/BLANKET SYSTEM DESIGN FOR THE ACCELERATOR TRANSMUTATION OF WASTE CONCEPT LOS ALAMOS AQUEOUS TARGET/BLANKET SYSTEM DESIGN FOR THE ACCELERATOR TRANSMUTATION OF WASTE CONCEPT M. Cappiello, J. Ireland, J. Sapir, and B. Krohn Reactor Design and Analysis Group Los Alamos National

More information

Safety design approach for JSFR toward the realization of GEN-IV SFR

Safety design approach for JSFR toward the realization of GEN-IV SFR Safety design approach for JSFR toward the realization of GEN-IV SFR Advanced Fast Reactor Cycle System R&D Center Japan Atomic Energy Agency (JAEA) Shigenobu KUBO Contents 1. Introduction 2. Safety design

More information

Severe Accident Countermeasures of SFR (on Monju)

Severe Accident Countermeasures of SFR (on Monju) Severe Accident Countermeasures of SFR (on Monju) Mamoru Konomura FBR Plant Engineering Center Japan Atomic Energy Agency 1. Safety Approach of Monju Safety Approaches in early LMFBR There were several

More information

Full MOX Core Design in ABWR

Full MOX Core Design in ABWR GENES4/ANP3, Sep. -9, 3, Kyoto, JAPAN Paper 8 Full MOX Core Design in ABWR Toshiteru Ihara *, Takaaki Mochida, Sadayuki Izutsu 3 and Shingo Fujimaki 3 Nuclear Power Department, Electric Power Development

More information

PROBABILISTIC SAFETY ASSESSMENT OF JAPANESE SODIUM- COOLED FAST REACTOR IN CONCEPTUAL DESIGN STAGE

PROBABILISTIC SAFETY ASSESSMENT OF JAPANESE SODIUM- COOLED FAST REACTOR IN CONCEPTUAL DESIGN STAGE PROBABILISTIC SAFETY ASSESSMENT OF JAPANESE SODIUM- COOLED FAST REACT IN CONCEPTUAL DESIGN STAGE Kurisaka K. 1 1 Japan Atomic Energy Agency, Ibaraki, Japan Abstract Probabilistic safety assessment was

More information

Irradiation Facilities at the Advanced Test Reactor International Topical Meeting on Research Reactor Fuel Management Lyon, France

Irradiation Facilities at the Advanced Test Reactor International Topical Meeting on Research Reactor Fuel Management Lyon, France Irradiation Facilities at the Advanced Test Reactor International Topical Meeting on Research Reactor Fuel Management Lyon, France S. Blaine Grover Idaho National Laboratory March 12, 2007 Agenda Advanced

More information

LFR safety features. through intrinsic negative reactivity feedbacks

LFR safety features. through intrinsic negative reactivity feedbacks LFR safety features through intrinsic negative reactivity feedbacks Giacomo Grasso UTFISSM Technical Unit for Reactor Safety and Fuel Cycle Methods Leader of Core Design Work Package in the EURATOM FP7

More information

Georgia Tech s SYMPOSIUM ON THE FUTURE OF NUCLEAR ENERGY Nuclear Energy in the Near-Term November 1, 2012

Georgia Tech s SYMPOSIUM ON THE FUTURE OF NUCLEAR ENERGY Nuclear Energy in the Near-Term November 1, 2012 Georgia Tech s SYMPOSIUM ON THE FUTURE OF NUCLEAR ENERGY Nuclear Energy in the Near-Term November 1, 2012 1 Sodium Reactor Experience Heritage Built and operated EBR-I FFTF SEFOR CRBR Seawolf EBR-II PRISM

More information

Design Features, Economics and Licensing of the 4S Reactor

Design Features, Economics and Licensing of the 4S Reactor PSN Number: PSN-2010-0577 Document Number: AFT-2010-000133 rev.000(2) Design Features, Economics and Licensing of the 4S Reactor ANS Annual Meeting June 13 17, 2010 San Diego, California Toshiba Corporation:

More information

Thermal Fluid Characteristics for Pebble Bed HTGRs.

Thermal Fluid Characteristics for Pebble Bed HTGRs. Thermal Fluid Characteristics for Pebble Bed HTGRs. Frederik Reitsma IAEA Course on High temperature Gas Cooled Reactor Technology Beijing, China Oct 22-26, 2012 Overview Background Key T/F parameters

More information

Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production

Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production Idaho National Engineering and Environmental Laboratory Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production Nuclear Energy Research Initiative

More information

A HELIUM COOLED PARTICLE FUEL REACTOR FOR FUEL SUSTAINABILITY. T D Newton, P J Smith and Y Askan SERCO Assurance, Winfrith, Dorset, England * Abstract

A HELIUM COOLED PARTICLE FUEL REACTOR FOR FUEL SUSTAINABILITY. T D Newton, P J Smith and Y Askan SERCO Assurance, Winfrith, Dorset, England * Abstract A HELIUM COOLED PARTICLE FUEL REACTOR FOR FUEL SUSTAINABILITY T D Newton, P J Smith and Y Askan SERCO Assurance, Winfrith, Dorset, England * Abstract Sustainability is a key goal for future reactor systems.

More information

Current Activities on the 4S Reactor Deployment

Current Activities on the 4S Reactor Deployment PSN Number: PSN-2010-0586 Document Number: AFT-2010-000134 rev.000(1) Current Activities on the 4S Reactor Deployment The 4th Annual Asia-Pacific Nuclear Energy Forum on Small and Medium Reactors: Benefits

More information

ELECTRA-FCC: An R&D centre for Generation IV systems in Sweden. Janne Wallenius Professor Reactor Physics, KTH

ELECTRA-FCC: An R&D centre for Generation IV systems in Sweden. Janne Wallenius Professor Reactor Physics, KTH ELECTRA-FCC: An R&D centre for Generation IV systems in Sweden Janne Wallenius Professor Reactor Physics, KTH What do Generation IV nuclear systems offer? Recycle of U-238 from spent fuel and enrichment

More information

The Traveling Wave Reactor Working Together for a Bright Future. John Gilleland. September 2017

The Traveling Wave Reactor Working Together for a Bright Future. John Gilleland. September 2017 The Traveling Wave Reactor Working Together for a Bright Future John Gilleland September 2017 2 A closer look at a Beautiful Planet 3 But with a Need to Act 4 Electric Energy is Essential to Quality of

More information

Conversion of MNSR (PARR-2) from HEU to LEU Fuel

Conversion of MNSR (PARR-2) from HEU to LEU Fuel Conversion of MNSR (PARR-2) from HEU to LEU Fuel Malik Tayyab Mahmood Nuclear Engineering Division Pakistan Institute of Nuclear Science & Technology, Islamabad PAKISTAN Pakistan Institute of Nuclear Science

More information

Module 06 Boiling Water Reactors (BWR)

Module 06 Boiling Water Reactors (BWR) Module 06 Boiling Water Reactors (BWR) 1.3.2017 Prof.Dr. Böck Technical University Vienna Atominstitut Stadionallee 2, 1020 Vienna, Austria ph: ++43-1-58801 141368 boeck@ati.ac.at Contents BWR Basics Technical

More information

Evolution of Nuclear Energy Systems

Evolution of Nuclear Energy Systems ALLEGRO Project 2 Evolution of Nuclear Energy Systems 3 General objectives Gas cooled fast reactors (GFR) represent one of the three European candidate fast reactor types. Allegro Gas Fast Reactor (GFR)

More information

U.S. Department of Energy Advanced Reactor Research and Development Program for Fast Reactors

U.S. Department of Energy Advanced Reactor Research and Development Program for Fast Reactors 資料 1 U.S. Department of Energy Advanced Reactor Research and Development Program for Fast Reactors John W. Herczeg Deputy Assistant Secretary for Nuclear Technology Research and Development Office of Nuclear

More information

Module 06 Boiling Water Reactors (BWR)

Module 06 Boiling Water Reactors (BWR) Module 06 Boiling Water Reactors (BWR) 1.10.2015 Prof.Dr. Böck Vienna University oftechnology Atominstitute Stadionallee 2 A-1020 Vienna, Austria ph: ++43-1-58801 141368 boeck@ati.ac.at Contents BWR Basics

More information

Transmutation of nuclear wastes by metal fuel fast reactors

Transmutation of nuclear wastes by metal fuel fast reactors PSN Number: PSNN-2014-0979 Document Number: AFT-2014-000359 Rev.000(0) Transmutation of nuclear wastes by metal fuel fast reactors International Symposium on Present Status and Future Perspective for Reducing

More information

NATURAL CONVECTION IN SECONDARY SODIUM CIRCUIT OF FAST BREEDER TEST REACTOR

NATURAL CONVECTION IN SECONDARY SODIUM CIRCUIT OF FAST BREEDER TEST REACTOR International Journal on Design and Manufacturing Technologies, Vol. 5, No.1, January 2011 1 NATURAL CONVECTION IN SECONDARY SODIUM CIRCUIT OF FAST BREEDER TEST REACTOR Abstract Vaidyanathan G. 1, Kasinathan

More information

Simulation of large and small fast reactors with SERPENT

Simulation of large and small fast reactors with SERPENT Simulation of large and small fast reactors with SERPENT Janne Wallenius, Erdenechimeg Suvdantsetseg, Sara Bortot Milan Tesinsky & Youpeng Zhang Reactor Physics Kungliga Tekniska Högskolan R&D activities

More information

Design features of Advanced Sodium Cooled Fast Reactors with Emphasis on Economics

Design features of Advanced Sodium Cooled Fast Reactors with Emphasis on Economics FR09 7-11 December 2009 Kyoto, Japan Design features of Advanced Sodium Cooled Fast Reactors with Emphasis on Economics B. Riou AREVA NP D. Verwaerde EDF-R&D G. Mignot CEA Cadarache French SFR program

More information

Flexible Conversion Ratio Fast Reactor

Flexible Conversion Ratio Fast Reactor American Nuclear Society Student Conference March 29-31, 2007, Oregon State University, Corvallis, OR Flexible Conversion Ratio Fast Reactor Anna Nikiforova Massachusetts Institute of Technology Center

More information

Flexibility of the Gas Cooled Fast Reactor to Meet the Requirements of the 21 st Century

Flexibility of the Gas Cooled Fast Reactor to Meet the Requirements of the 21 st Century Flexibility of the Gas Cooled Fast Reactor to Meet the Requirements of the 21 st Century T D Newton and P J Smith Serco Assurance (Sponsored by BNFL) Winfrith, Dorset, England, DT2 8ZE Telephone : (44)

More information

Bhabha Atomic Research Centre

Bhabha Atomic Research Centre Bhabha Atomic Research Centre Department of Atomic Energy Mumbai, INDIA An Acrylic Model of AHWR to Scale 1:50 Threat of climate change and importance of sustainable development has brought nuclear power

More information

Irradiation of Metallic Fuels With Rare Earth Additions for Actinide Transmutation in the ATR Experiment Description for AFC-2A and AFC-2B

Irradiation of Metallic Fuels With Rare Earth Additions for Actinide Transmutation in the ATR Experiment Description for AFC-2A and AFC-2B INL/EXT-06-11707 Irradiation of Metallic Fuels With Rare Earth Additions for Actinide Transmutation in the ATR Experiment Description for AFC-2A and AFC-2B S.L. Hayes T.A. Hyde W.J. Carmack November 2006

More information

Core Management and Fuel handling for Research Reactors

Core Management and Fuel handling for Research Reactors Core Management and Fuel handling for Research Reactors W. Kennedy, Research Reactor Safety Section Division of Nuclear Installation Safety Yogyakarta, Indonesia 23/09/2013 Outline Introduction Safety

More information

Passive Complementary Safety Devices for ASTRID severe accident prevention

Passive Complementary Safety Devices for ASTRID severe accident prevention 1 IAEA-CN245-138 Passive Complementary Safety Devices for ASTRID severe accident prevention M. Saez 1, R. Lavastre 1, Ph. Marsault 1 1 Commissariat à l Énergie Atomique et aux Énergies Alternatives (CEA),

More information

Analysis of Unprotected Transients in the Lead-Cooled ALFRED Reactor

Analysis of Unprotected Transients in the Lead-Cooled ALFRED Reactor Analysis of Unprotected Transients in the Lead-Cooled ALFRED Reactor G. Bandini (ENEA/Bologna) E. Bubelis, M. Schikorr (KIT/Karlsruhe) A. Alemberti, L. Mansani (Ansaldo Nucleare/Genova) Consultants Meeting:

More information

Safety Practices in Chemical and Nuclear Industries

Safety Practices in Chemical and Nuclear Industries Lecture 10 Safety Practices in Chemical and Nuclear Industries Fast Breeder Reactor (FBR) & Sodium-Water Reaction (SWR) Dr. Raghuram Chetty Department of Chemical Engineering Indian Institute of Technology

More information

LEU Conversion of the University of Wisconsin Nuclear Reactor

LEU Conversion of the University of Wisconsin Nuclear Reactor LEU Conversion of the University of Wisconsin Nuclear Reactor Paul Wilson U. Wisconsin-Madison Russian-American Symposium on the Conversion of Research Reactors to Low Enriched Uranium Fuel 8-10 June 2011

More information

Fast Neutron Reactors & Sustainable Development

Fast Neutron Reactors & Sustainable Development International Conference on Fast Reactors and Related Fuel Cycles December 7th 11th, 2009, Kyoto, Japan Fast Neutron Reactors & Sustainable Development Jacques BOUCHARD Chairman of the Generation IV International

More information

Passive Safety Features and Severe Accident Scenarios of the small metal-fueled fast reactor system

Passive Safety Features and Severe Accident Scenarios of the small metal-fueled fast reactor system Report to the Sasakawa Peace Foundation Passive Safety Features and Severe Accident Scenarios of the small metal-fueled fast reactor system Hiroshi SAKABA 22.8.2016 2016 MITSUBISHI HEAVY INDUSTRIES, LTD.

More information

HTGR Safety Design Fundamental Safety Functions Safety Analysis Decay heat removal Criticality

HTGR Safety Design Fundamental Safety Functions Safety Analysis Decay heat removal Criticality HTGR Safety Design Fundamental Safety Functions Safety Analysis Decay heat removal Criticality Frederik Reitsma IAEA Course on High temperature Gas Cooled Reactor Technology Oct 22-26, 2012 Content / Overview

More information

Reactor Physics Design Parameters for GFRs

Reactor Physics Design Parameters for GFRs Reactor Physics Design Parameters for GFRs 22.39 Elements of Reactor Design, Operations, and Safety Fall 2005 Pavel Hejzlar Massachusetts Institute of Technology Department of Nuclear Science and Engineering

More information

Comparison of characteristics of fast and thermal reactors, Role of fast reactors in Indian Nuclear Programme

Comparison of characteristics of fast and thermal reactors, Role of fast reactors in Indian Nuclear Programme Comparison of characteristics of fast and thermal reactors, Role of fast reactors in Indian Nuclear Programme K.S. Rajan Professor, School of Chemical & Biotechnology SASTRA University Joint Initiative

More information

Chemical Engineering 412

Chemical Engineering 412 Chemical Engineering 412 Introductory Nuclear Engineering Lecture 20 Nuclear Power Plants II Nuclear Power Plants: Gen IV Reactors Spiritual Thought 2 Typical PWR Specs Reactor Core Fuel Assembly Steam

More information

SEALER: A small lead-cooled reactor for power production in the Canadian Arctic

SEALER: A small lead-cooled reactor for power production in the Canadian Arctic 1 IAEA-CN245-431 SEALER: A small lead-cooled reactor for power production in the Canadian Arctic J. Wallenius 1, S. Qvist 1, I. Mickus 1, S. Bortot 1, J. Ejenstam 1,2, P. Szakalos 1 1 LeadCold Reactors,

More information

A Comparison of the PARET/ANL and RELAP5/MOD3 Codes for the Analysis of IAEA Benchmark Transients

A Comparison of the PARET/ANL and RELAP5/MOD3 Codes for the Analysis of IAEA Benchmark Transients A Comparison of the /ANL and 5/MOD3 Codes for the Analysis of IAEA Benchmark Transients W. L. Woodruff, N. A. Hanan, R. S. Smith and J. E. Matos Argonne National Laboratory Argonne, Illinois 439-4841 U.S.A.

More information

Reactor Boiler and Auxiliaries - Course 133 REACTOR CLASSIFICATIONS - FAST & THERMAL REACTORS

Reactor Boiler and Auxiliaries - Course 133 REACTOR CLASSIFICATIONS - FAST & THERMAL REACTORS Lesson 133.10-2 Reactor Boiler and Auxiliaries - Course 133 REACTOR CLASSIFICATIONS - FAST & THERMAL REACTORS Development of nuclear power in various countries has depended on a variety of factors not

More information

Lecture (3) on. Nuclear Reactors. By Dr. Emad M. Saad. Mechanical Engineering Dept. Faculty of Engineering. Fayoum University

Lecture (3) on. Nuclear Reactors. By Dr. Emad M. Saad. Mechanical Engineering Dept. Faculty of Engineering. Fayoum University 1 Lecture (3) on Nuclear Reactors By Dr. Emad M. Saad Mechanical Engineering Dept. Faculty of Engineering Fayoum University Faculty of Engineering Mechanical Engineering Dept. 2015-2016 2 Nuclear Fission

More information

Thermal Response of a High Temperature Reactor during Passive Cooldown under Pressurized and Depressurized Conditions

Thermal Response of a High Temperature Reactor during Passive Cooldown under Pressurized and Depressurized Conditions 2nd International Topical Meeting on HIGH TEMPERATURE REACTOR TECHNOLOGY Beijing, CHINA, September 22-24, 2004 #Paper F02 Thermal Response of a High Temperature Reactor during Passive Cooldown under Pressurized

More information

Core Management and Fuel Handling for Research Reactors

Core Management and Fuel Handling for Research Reactors Core Management and Fuel Handling for Research Reactors A. M. Shokr Research Reactor Safety Section Division of Nuclear Installation Safety International Atomic Energy Agency Outline Introduction Safety

More information

Nuclear Reactor Types. An Environment & Energy FactFile provided by the IEE. Nuclear Reactor Types

Nuclear Reactor Types. An Environment & Energy FactFile provided by the IEE. Nuclear Reactor Types Nuclear Reactor Types An Environment & Energy FactFile provided by the IEE Nuclear Reactor Types Published by The Institution of Electrical Engineers Savoy Place London WC2R 0BL November 1993 This edition

More information

Safety Design Requirements and design concepts for SFR

Safety Design Requirements and design concepts for SFR Safety Design Requirements and design concepts for SFR Reflection of lessons learned from the Fukushima Dai-ichi accident Advanced Nuclear System Research & Development Directorate Japan Atomic Energy

More information

Experimental Measurements for Plate Temperatures of MTR Fuel Elements at Sudden Loss of Flow Accident and Comparison with Computed Results

Experimental Measurements for Plate Temperatures of MTR Fuel Elements at Sudden Loss of Flow Accident and Comparison with Computed Results Experimental Measurements for Plate Temperatures of MTR Fuel Elements at Sudden Loss of Flow Accident and Comparison with Computed Results Dr. Bülent SEVDIK TR 2 Reactor Unit Head Turkish Atomic Energy

More information

Advanced SFR Concept Design Studies at KAERI

Advanced SFR Concept Design Studies at KAERI Advanced SFR Concept Design Studies at KAERI International Conference on Fast Reactors and Related Fuel Cycles (FR09), Kyoto, Japan 7 December 2009 Yeong-il KIM and Dohee HAHN 1 FR09, Kyoto, 7-11 December

More information

Naturally Safe HTGR in the response to the Fukushima Daiichi NPP accident

Naturally Safe HTGR in the response to the Fukushima Daiichi NPP accident IAEA Technical Meeting on on Re evaluation of Maximum Operating Temperatures and Accident Conditions for High Temperature Reactor Fuel and Structural Materials, 10 12 July 2012, Vienna, Austria Naturally

More information

Numerical Benchmark Results for 1000MWth Sodium-cooled Fast Reactor

Numerical Benchmark Results for 1000MWth Sodium-cooled Fast Reactor Numerical Benchmark Results for 1000MWth Sodium-cooled Fast Reactor T. K. Kim and T. A. Taiwo Argonne National Laboratory February 13, 2012 Second Meeting of SFR Benchmark Task Force of Working Party on

More information

VVER-440/213 - The reactor core

VVER-440/213 - The reactor core VVER-440/213 - The reactor core The fuel of the reactor is uranium dioxide (UO2), which is compacted to cylindrical pellets of about 9 height and 7.6 mm diameter. In the centreline of the pellets there

More information

UNIT- III NUCLEAR POWER PLANTS Basics of Nuclear Engineering, Layout and subsystems of Nuclear Power Plants, Working of Nuclear Reactors: Boiling Water Reactor (BWR), Pressurized Water Reactor (PWR), CANada

More information

Safety Analysis of Pb-208 Cooled 800 MWt Modified CANDLE Reactors

Safety Analysis of Pb-208 Cooled 800 MWt Modified CANDLE Reactors Journal of Physics: Conference Series PAPER OPEN ACCESS Safety Analysis of Pb-208 Cooled 800 MWt Modified CANDLE Reactors To cite this article: Zaki Su'ud et al 2017 J. Phys.: Conf. Ser. 799 012013 View

More information

Neutronics, Thermal Hydraulics and Safety Parameter Studies of the 3 MW TRIGA Research Reactor at AERE, Savar

Neutronics, Thermal Hydraulics and Safety Parameter Studies of the 3 MW TRIGA Research Reactor at AERE, Savar Neutronics, Thermal Hydraulics and Safety Parameter Studies of the 3 MW TRIGA Research Reactor at AERE, Savar Md. Quamrul HUDA Energy Institute Atomic Energy Research Establishment Bangladesh Atomic Energy

More information

German SFR Research and European Sodium Fast Reactor Project

German SFR Research and European Sodium Fast Reactor Project German SFR Research and European Sodium Fast Reactor Project B. Merk Institute of Resource Ecology (FWO) Helmholtz-Zentrum Dresden-Rossendorf with special thanks to E. Fridman, G. Gerbeth (FWD), A. Vasile

More information

MYRRHA FUEL TRANSIENT TESTS PROJECT AT THE TRIGA-ACPR REACTOR

MYRRHA FUEL TRANSIENT TESTS PROJECT AT THE TRIGA-ACPR REACTOR MYRRHA FUEL TRANSIENT TESTS PROJECT AT THE TRIGA-ACPR REACTOR CSABA ROTH, BRIAN BOER*, MIREA MLADIN, ADRIAN DATCU, GEORGIANA BUDRIMAN, CALIN TRUTA Institute for Nuclear Research Pitesti, Romania * SCK

More information

Power Stations Nuclear power stations

Power Stations Nuclear power stations Power Stations Nuclear power stations Introduction A nuclear power plant is a thermal power station in which the heat source is a nuclear reactor. The heat is used to generate steam which drives a steam

More information

Chemical Engineering 693R

Chemical Engineering 693R Chemical Engineering 693R Reactor Design and Analysis Lecture 11 Nuclear Safety Spiritual Thought 2 2 Kings 6:16 And he answered, Fear not: for they that be with us are more than they that be with them.

More information

Advanced Reactors Mission, History and Perspectives

Advanced Reactors Mission, History and Perspectives wwwinlgov Advanced Reactors Mission, History and Perspectives Phillip Finck, PhD Idaho National Laboratory Senior Scientific Advisor June 17, 2016 A Brief History 1942 CP1 First Controlled Chain Reaction

More information

Fast and High Temperature Reactors for Improved Thermal Efficiency and Radioactive Waste Management

Fast and High Temperature Reactors for Improved Thermal Efficiency and Radioactive Waste Management What s New in Power Reactor Technologies, Cogeneration and the Fuel Cycle Back End? A Side Event in the 58th General Conference, 24 Sept 2014 Fast and High Temperature Reactors for Improved Thermal Efficiency

More information

Nuclear Power Plants (NPPs)

Nuclear Power Plants (NPPs) (NPPs) Laboratory for Reactor Physics and Systems Behaviour Weeks 1 & 2: Introduction, nuclear physics basics, fission, nuclear reactors Critical size, nuclear fuel cycles, NPPs (CROCUS visit) Week 3:

More information

A Versatile Coupled Test Reactor Concept

A Versatile Coupled Test Reactor Concept 1 IAEA-CN-245-145 A Versatile Coupled Test Reactor Concept S. Sen, G. Youinou, M. Salvatores, G. Palmiotti, P. Finck, C. Davis Idaho National Laboratory, Idaho, USA E-mail contact of main author: sonat.sen@inl.gov

More information

UNIT-5 NUCLEAR POWER PLANT. Joining of light nuclei Is not a chain reaction. Cannot be controlled

UNIT-5 NUCLEAR POWER PLANT. Joining of light nuclei Is not a chain reaction. Cannot be controlled UNIT-5 NUCLEAR POWER PLANT Introduction Nuclear Energy: Nuclear energy is the energy trapped inside each atom. Heavy atoms are unstable and undergo nuclear reactions. Nuclear reactions are of two types

More information

Passive Heat Removal System Testing Supporting the Modular HTGR Safety Basis

Passive Heat Removal System Testing Supporting the Modular HTGR Safety Basis Passive Heat Removal System Testing Supporting the Modular HTGR Safety Basis Various U.S. Facilities Office of Nuclear Energy U.S. Department of Energy Jim Kinsey Idaho National Laboratory IAEA Technical

More information

Transmutation of Transuranic Elements and Long Lived Fission Products in Fusion Devices Y. Gohar

Transmutation of Transuranic Elements and Long Lived Fission Products in Fusion Devices Y. Gohar Transmutation of Transuranic Elements and Long Lived Fission Products in Fusion Devices Y. Gohar Fusion Power Program Technology Division Argonne National Laboratory 9700 S. Cass Avenue, Argonne, IL 60439,

More information

European LEad-Cooled TRAining reactor: structural materials and design issues

European LEad-Cooled TRAining reactor: structural materials and design issues Technical Meeting on Liquid Metal Reactor Concepts: Core Design and Structural Materials 12-14 JUNE 2013 IAEA HQ, VIENNA, AUSTRIA European LEad-Cooled TRAining reactor: structural materials and design

More information

Ability of New Concept Passive-Safety Reactor "KAMADO" - Safety, Economy and Hydrogen Production -

Ability of New Concept Passive-Safety Reactor KAMADO - Safety, Economy and Hydrogen Production - GENES4/ANP2003, Sep. 15-19, 2003, Kyoto, JAPAN Paper 1092 Ability of New Concept Passive-Safety Reactor "KAMADO" - Safety, Economy and Hydrogen Production - Tetsuo MATSUMURA*, Takanori KAMEYAMA, Yasushi

More information

FOR A FUTURE WE CAN BELIEVE IN. International Thorium Energy Conference 2015

FOR A FUTURE WE CAN BELIEVE IN. International Thorium Energy Conference 2015 FOR A FUTURE WE CAN BELIEVE IN International Thorium Energy Conference 2015 ( 10-13 - 2015 ) LFTR: In search of the Ideal Pathway to Thorium Utilization Development Program Update. Current Status Benjamin

More information

Design of High Power Density Annular Fuel Rod Core for Advanced Heavy Water. Reactor

Design of High Power Density Annular Fuel Rod Core for Advanced Heavy Water. Reactor Design of High Power Density Annular Fuel Rod Core for Advanced Heavy Water Reactor For the deployment of annular fuel rod cluster in AHWR, whole core calculations with annular fuel rod are necessary.

More information

Journal of American Science 2014;10(2) Burn-up credit in criticality safety of PWR spent fuel.

Journal of American Science 2014;10(2)  Burn-up credit in criticality safety of PWR spent fuel. Burn-up credit in criticality safety of PWR spent fuel Rowayda F. Mahmoud 1, Mohamed K.Shaat 2, M. E. Nagy 3, S. A. Agamy 3 and Adel A. Abdelrahman 1 1 Metallurgy Department, Nuclear Research Center, Atomic

More information

Systematic Evaluation of Uranium Utilization in Nuclear Systems

Systematic Evaluation of Uranium Utilization in Nuclear Systems Systematic Evaluation of Uranium Utilization in Nuclear Systems Taek K. Kim and T. A. Taiwo 11 th Information Exchange Meeting on Actinide and Fission Product Partitioning and Transmutation San Francisco,

More information

System Analysis of Pb-Bi Cooled Fast Reactor PEACER

System Analysis of Pb-Bi Cooled Fast Reactor PEACER OE-INES-1 International Symposium on Innovative Nuclear Energy Systems for Sustainable Development of the World Tokyo, Japan, October 31 - November 4, 2004 System Analysis of Pb-Bi ooled Fast Reactor PEAER

More information

An Overview of the ACR Design

An Overview of the ACR Design An Overview of the ACR Design By Stephen Yu, Director, ACR Development Project Presented to US Nuclear Regulatory Commission Office of Nuclear Reactor Regulation September 25, 2002 ACR Design The evolutionary

More information

THE NEW 10 MW(T) MULTIPURPOSE TRIGA REACTOR IN THAILAND

THE NEW 10 MW(T) MULTIPURPOSE TRIGA REACTOR IN THAILAND THE NEW 10 MW(T) MULTIPURPOSE TRIGA REACTOR IN THAILAND J. RAZVI, J.M. BOLIN, A.R. VECA, W.L. WHITTEMORE TRIGA Reactors Group, General Atomics, San Diego, California, United States of America S. PROONGMUANG

More information

GT-MHR OVERVIEW. Presented to IEEE Subcommittee on Qualification

GT-MHR OVERVIEW. Presented to IEEE Subcommittee on Qualification GT-MHR OVERVIEW Presented to IEEE Subcommittee on Qualification Arkal Shenoy, Ph.D Director, Modular Helium Reactors General Atomics, San Diego April 2005 Shenoy@gat.com GT-MHR/LWR COMPARISON Item GT-MHR

More information

Case Study of Lessons Learned from the Operation of the Fast Flux Test Facility

Case Study of Lessons Learned from the Operation of the Fast Flux Test Facility Case Study of Lessons Learned from the Operation of the Fast Flux Test Facility D. W. WOOTAN, R. P. OMBERG Pacific Northwest National Laboratory C. GRANDY Argonne National Laboratory IAEA/OECD Third International

More information

Modelling an Unprotected Loss-of-Flow Accident in Research Reactors using the Eureka-2/Rr Code

Modelling an Unprotected Loss-of-Flow Accident in Research Reactors using the Eureka-2/Rr Code Journal of Physical Science, Vol. 26(2), 73 87, 2015 Modelling an Unprotected Loss-of-Flow Accident in Research Reactors using the Eureka-2/Rr Code Badrun Nahar Hamid, 1* Md. Altaf Hossen, 1 Sheikh Md.

More information

UKEPR Issue 04

UKEPR Issue 04 Title: PCSR Sub-chapter 4.1 Summary description Total number of pages: 16 Page No.: I / III Chapter Pilot: D. PAGE BLAIR Name/Initials Date 29-06-2012 Approved for EDF by: A. PETIT Approved for AREVA by:

More information

Module 12 Generation IV Nuclear Power Plants. Atominstitute of the Austrian Universities Stadionallee 2, 1020 Vienna, Austria

Module 12 Generation IV Nuclear Power Plants. Atominstitute of the Austrian Universities Stadionallee 2, 1020 Vienna, Austria Module 12 Generation IV Nuclear Power Plants Prof.Dr. H. Böck Atominstitute of the Austrian Universities Stadionallee 2, 1020 Vienna, Austria boeck@ati.ac.at Generation IV Participants Evolution of Nuclear

More information

Rocketdyne Liquid Metal and Molten Salt Component Development and Test History

Rocketdyne Liquid Metal and Molten Salt Component Development and Test History Rocketdyne Liquid Metal and Molten Salt Component Development and Test History Mike McDowell Program Manager Solar & Liquid Metal Systems Page 1 Rocketdyne Energy Heritage Fast Flux Nuclear Test Facility

More information

Effect of Nuclear Reactor Accidents on Modern Nuclear Power Plant Design Eric P. Loewen, Ph.D. Past President American Nuclear Society

Effect of Nuclear Reactor Accidents on Modern Nuclear Power Plant Design Eric P. Loewen, Ph.D. Past President American Nuclear Society Effect of Nuclear Reactor Accidents on Modern Nuclear Power Plant Design Eric P. Loewen, Ph.D. Past President American Nuclear Society April 22, 2013 United States Naval Academy Who? Esquire Magazine,

More information

Thermal Hydraulic Analysis of 3 MW TRIGA Research Reactor of Bangladesh Considering Different Cycles of Burnup

Thermal Hydraulic Analysis of 3 MW TRIGA Research Reactor of Bangladesh Considering Different Cycles of Burnup M.H. Altaf and Atom N.H. Badrun Indonesia / Atom Vol. 40 Indonesia No. 3 (2014) Vol. 40107 No. - 112 3 (2014) 107-112 Thermal Hydraulic Analysis of 3 MW TRIGA Research Reactor of Bangladesh Considering

More information

Westinghouse-UK Partnership for Development of a Small Modular Reactor Nuclear Programme

Westinghouse-UK Partnership for Development of a Small Modular Reactor Nuclear Programme Westinghouse-UK Partnership for Development of a Small Modular Reactor Nuclear Programme Simon Marshall UK Business & Project Development Director Nuclear Power Plants 1 The Westinghouse Small Modular

More information

Molten Salt Reactor Technology for Thorium- Fueled Small Reactors

Molten Salt Reactor Technology for Thorium- Fueled Small Reactors Molten Salt Reactor Technology for Thorium- Fueled Small Reactors Dr. Jess C. Gehin Senior Nuclear R&D Manager Reactor and Nuclear Systems Division gehinjc@ornl.gov, 865-576-5093 Advanced SMR Technology

More information

Design Study of Sodium Cooled Small Fast Reactor

Design Study of Sodium Cooled Small Fast Reactor GENES4/ANP2003, Sep. 15-19, 2003, Kyoto, JAPAN Paper 1114 Design Study of Sodium Cooled Small Fast Reactor Nobuyuki UEDA 1, Izumi KINOSHITA 1, Akio MINATO 1, Shigeo KASAI 2 and Shigeki MARUYAMA 2 1 Central

More information