Control of Dislocations and Stress in AlGaN on Sapphire Using a Low Temperature Interlayer

Size: px
Start display at page:

Download "Control of Dislocations and Stress in AlGaN on Sapphire Using a Low Temperature Interlayer"

Transcription

1 H. Amano et al.: Dislocations and Stress in AlGaN on Sapphire 683 phys. stat. sol. (b) 216, 683 (1999) Subject classification: Jk; S7.14; S7.15 Control of Dislocations and Stress in AlGaN on Sapphire Using a Low Temperature Interlayer H. Amano 1 ) (a, b), M. Iwaya (b), N. Hayashi (b), T. Kashima (b), S. Nitta (b), C. Wetzel (a), and I. Akasaki (a, b) (a) High-Tech Research Center, Meijo University, Shiogamaguchi, Tempaku-ku, Nagoya , Japan (b) Department of Electrical and Electronic Engineering, Meijo University, Shiogamaguchi, Tempaku-ku, Nagoya , Japan (Received July 4, 1999) In organometallic vapor phase epitaxial growth of AlGaN on sapphire, the role of the low-temperature-deposited interlayers on a high-temperature-grown GaN layer was investigated by in-situ stress measurement, X-ray diffraction, and transmission electron microscopy. Crack-free and lowdislocation-density AlGaN with the whole compositional range has been realized on the sapphire substrate. 1. Introduction Al x Ga 1 ±x N thick films are inevitable for application to key parts in many novel devices such as window layers for UV light emitting diodes [1, 2], cladding layers for violet and UV laser diodes, insulating gate for FETs, widegap emitters for HBTs and in major parts of UV photodetectors [3 to 6]. In order to fabricate such novel devices, films with high-crystalline quality free of cracks are essential. There are several reports concerning the crystalline quality of AlGaN films. Koide et al. reported that the crystalline quality of AlGaN films on sapphire has been greatly improved by growing on a low-temperature-deposited AlN buffer layer (LT-AlN) [7]. Itoh reported in his doctoral thesis that the crystalline quality of AlGaN films grown on sapphire covered with LT-AlN becomes progressively worse with increasing AlN molar fraction [8]. He also reported that by growing AlGaN on GaN/LT-AlN/Sapphire, the optical quality could be significantly improved, which had been proved by cathodoluminescence (CL). At the same time, however, cracks were generated at high density due to the lattice mismatch between AlGaN and GaN. Recently, we found that the insertion of a low-temperature-deposited interlayer between high-temperature-grown GaN layers significantly reduces the density of threading dislocations in the upper GaN layer [9, 10]. In this paper, details of the process of lowtemperature interlayers are shown. Next, we applied a technique wherein Al x Ga 1 ±x N films with x ranging from 0 to 1 were grown on an LT-AlN interlayer. The effect of the low-temperature interlayer on the crystalline quality of AlGaN is discussed. 1 ) Corresponding author; Tel.: ; Fax: ; amano@meijo-u.ac.jp

2 684 H. Amano et al. 2. Process of GaN Growth on a Low-Temperature Interlayer At first, AlN about 25 nm in thickness was deposited at 500 C on a sapphire (0001) substrate by organometallic vapor phase epitaxy. After the deposition, the wafer was heated up to C. During ramping of the wafer temperature, the LT-AlN was annealed in a flow of hydrogen and ammonia. Figs. 1a and b show the cross sectional TEM pictures of the as-deposited AlN (Fig. 1a) and that of annealed LT-AlN (Fig. 1b). As-deposited LT-AlN is composed of very fine crystallites with a size of about a few nm in diameter. When it is annealed, grain growth occurred and the size of the crystallites becomes larger. The surface of both as-deposited and annealed LT-AlN layers is rough. GaN 1mm in thickness was grown at around C to cover LT-AlN as shown in Fig. 1b. Then, the wafer was cooled down to about 500 C to deposit either AlN or GaN about 25 nm in thickness. After the deposition, the wafer temperature was raised to C. Figs. 1c and d show the cross sectional TEM picture of the as-deposited AlN on GaN (Fig. 1c) and that of annealed AlN on GaN. The structure of as-deposited AlN on GaN is almost the same as that deposited on sapphire. Clear difference is observed when it is annealed. Annealed AlN shows an atomically flat surface. A lattice image observation showed that several threading dislocations in the underlying GaN Fig. 1. a) As-deposited AlN on sapphire. b) Annealed AlN on sapphire. HT-GaN has been already grown on it. HT-GaN growth does not affect the structure of annealed LT-AlN. c) As-deposited AlN on GaN. d) Annealed AlN on GaN

3 Dislocations and Stress in AlGaN on Sapphire 685 bend horizontally at the annealed AlN. By using a temperature controllable sample holder during TEM observation, mass transport and step flow reconstruction on the (0001) surface was observed. In case of annealed GaN, the process is almost the same except for the temperature at which each event occurred. Sometimes, a phase transition from amorphous-like to cubic, and then from cubic to wurtzite was observed. Next, GaN 1 mm in thickness was grown on annealed AlN shown in Fig. 1d or on annealed GaN. The process of low-temperature deposition and high-temperature growth (LT/HT) was repeated several times. The macroscopic stress of the film was either monitored in-situ by a multi-beam optical stress sensor system (MOSS) [10 to 13] or characterized at room temperature by high resolution X-ray diffraction (XRD). Fig. 2 shows the stress of the HT-GaN layer grown as the top layer. Thermal stress caused by the difference between nitrides and sapphire is the same for all the samples [12], therefore we can plot the results of MOSS and XRD in the same picture. In the case of LT-GaN, a series of LT-interlayers increases the stress during growth, which resulted in the cracking of the film [10]. On the contrary, the stress is almost constant in the case of the LT-AlN interlayers. Fig. 3 schematically shows the diagram of the change of the in-plane-lattice-constant of GaN grown on sapphire using LT-GaN interlayers. Solid lines denoted ªfree-standing GaNº and ªsapphireº are the change of inplane-lattice-constant of free-standing GaN and sapphire, respectively. In this figure, the as-deposited LT-buffer layer on sapphire is assumed to be free of strain. The MOSS observation showed that constant stress is applied to the top GaN layer during growth [10, 12]. In the following we describe the stress cycle during the process. Position 1 to 2: When the wafer is heated to the growth temperature, the LT-buffer layer is tensilely strained due to the difference of the thermal expansion between buffer layer and sapphire. This annealed buffer layer acts as the template of the upper GaN. Position 2 to 3: If the thickness of GaN is much smaller than that of sapphire, lines 1 to 2 and 2 to 3 should be anti-paralleled. At position 3, the LT-interlayer is deposited. If the LT-interlayer is epitaxially grown, it should follow line 3 to 2. However, actually, tensile stress is accumulated and it follows line 3 to 4. Fig. 2. Biaxial stress of the top GaN layer as a function of composite of LT-interlayer and number of series of LT-interlater/HTgrowth. XRD: Biaxial stress measured by X-ray diffraction. MOSS: Biaxial stress measured by multi beam optical stress sensor system

4 686 H. Amano et al. Fig. 3. Diagram of the change of in-plane lattice constant of GaN on sapphire using a) LT-GaN interlayer and b) LT-AlN interlayer. The as-deposited low temperature buffer layer on sapphire is assumed to be strain free. In case of LT-GaN interlayer, the process proceeds from the position labeled 1! 2! 3! 4! 5! 6, while in case of LT-AlN interlayer, the process is repeated from 1! 2! 3! 2! 3! 2 In the case of LT-AlN interlayers, the stress changes during the growth of HT-GaN. At the initial stage of the growth, HT-GaN is under compressive stress. After growing HT-GaN less than one micron thick, it changes to tensile stress [13]. This process is repeated during the series of the LT-interlayer/HT growth, therefore the final stress is the same for all the GaN layers. This LT-interlayer method tailors the film stress and is suitable to optimize the film quality by reducing the threading dislocations. For example, six series of this method achieved the reduction of threading dislocations by two orders of magnitude [10]. 3. The Growth of AlGaN Using Low Temperature Interlayers Al x Ga 1 ±x N films with various composition x, ranging from 0 to 1, were also grown on the HT-GaN/LT-AlN/Sap. For comparison, two other series of Al x Ga 1 ±x N films were grown. One is grown on sapphire covered with a LT-AlN buffer layer, and the other is

5 Dislocations and Stress in AlGaN on Sapphire 687 Fig. 4. SEM photographs of the surface of the following structures: a) Al 0.45 Ga 0.55 N/LT-AlN/HT- GaN/LT-AlN/Sap., b) Al 0.45 Ga 0.55 N/LT-GaN/HT-GaN/LT-AlN/Sap., c) Al 0.45 Ga 0.55 N/LT-AlN/Sap., d) Al 0.45 Ga 0.55 N/HT-GaN/LT-AlN/Sap. grown on HT-GaN/LT-AlN/Sap. The thickness of each layer are as follows: Al x Ga 1 ±x N: 1 mm, LT-AlN: 25 nm, HT-GaN: 1 mm. Scanning electron micrographs of Al 0.45 Ga 0.55 N layers grown on different surfaces are shown in Figs. 4a through d. An Al 0.45 Ga 0.55 N layer with a flat surface free of cracks was obtained when it was grown on a LT-AlN layer (Figs. 4a and c). When Al 0.45 Ga 0.55 N was grown on a GaN surface, a crack network was formed (Figs. 4b and d). The high-density crack network shown in Figs. 4b and d originates from lattice mismatches between the AlGaN layer and the underlying GaN layer. Itoh compared the near-band-edge (NBE) CLs of Al x Ga 1 ±x N (0 x 0.3) grown on LT-AlN/Sap. and on HT-GaN/LT-AlN/Sap., and found that the FWHM of NBE-CL of AlGaN grown on LT-AlN/Sap. becomes progressively wider with increase of x, while that of AlGaN grown on HT-GaN/LT-AlN/Sap. is almost the same in the compositional range studied [8]. The result showed that CL properties were improved by growing AlGaN on HT-GaN/LT-AlN/Sap. instead of LT-AlN/Sap. He also pointed out that high-density

6 688 H. Amano et al. Fig. 5. FWHM of XRC from (0002) diffraction of Al x Ga 1 ±x N. Solid squares show XRC-FWHM of Al x Ga 1 ±x N grown on LT-AlN/Sap.; solid triangles show those of Al x Ga 1 ±x N grown on LT-AlN/HT- GaN/LT-AlN/Sap. cracks were formed in the AlGaN/HT-GaN/ LT-AlN/Sap. He measured CL from the very tiny portion of the crack-free area of AlGaN islands. Although CL properties were improved by growing AlGaN on HT-GaN/LT- AlN/Sap., from the practical point of view, generation of crack networks should be avoided. The crystalline quality of crack-free AlGaN films with two different structures, examples of which are shown in Figs. 4a and c, was characterized by X-ray diffraction. Fig. 5 shows the compositional dependence of the XRC-FWHM of (0002) diffraction by the w-scan from Al x Ga 1 ±x N. When Al x Ga 1 ±x N was grown on sapphire covered with a LT-AlN layer, the FWHM becomes progressively wider with increase in x, which means that the tilting component of the mosaicity increases with increase in the AlN molar fraction. On the contrary, if Al x Ga 1 ±x N was grown on the LT-AlN interlayer deposited on a HT-GaN, the FWHM of the XRC remains unchanged over the entire compositional range. The same is true for twisting components, which are confirmed by measuring XRC of the (10 10) diffraction. These results clearly show that the crystalline quality of an Al x Ga 1 ±x N film grown on an LT-AlN interlayer is comparable to that of HT-GaN. AFM and cross sectional TEM observation showed that Al x Ga 1 ±x N grown on LT-AlN/ Sap. is composed of three-dimensional stacking of small angle grain boundaries with a size of a few or less than one micrometer, while Al x Ga 1 ±x N grown on LT-AlN interlayer/ht-gan/sap. showed almost the same structure as HT-GaN. Therefore, LT-AlN interlayers transfer the crystalline information of the underlying GaN layer, while they suppress the generation of cracks. 4. Summary The effect of using a technique wherein Al x Ga 1 ±x N films are grown on the LT-AlN interlayer on the improvement in the crystalline quality of Al x Ga 1 ±x N ternary alloys was characterized and confirmed by XRD, AFM and TEM. This technique will surely play a key role in opening the application of nitrides to the UV and vacuum-uv region. Acknowledgements This work was supported in part by the Japan Society for the Promotion of Science Research for the Future Program in the Area of Atomic Scale Surface and Interface Dynamics under the project of ``Dynamical Process and Control of

7 Dislocations and Stress in AlGaN on Sapphire 689 the Buffer Layer at the Interface in a Highly-Mismatched System (JSPS96P00204)º, the Ministry of Education, Science, Sports and Culture of Japan (contract number ), and the Murata Science Foundation. One of the authors (H. A.) would like to show sincere thanks to Drs. J. Han, S. Heane, J. A. Floro and E. Chason of Sandia National Laboratories (USA) for MOSS measurement and fruitful discussions. References [1] A. V. Sakharov, W. V. Lundin, A. Usikov, U. I. Ushakov, Yu. A. Kudriavtsev, A. V. Lunev, Y. M. Sherniakov, and N. N. Ledentsov, MRS Internet J. Nitride Semicond. Res. 3, 28 (1998). [2] J. Han, M. H. Crawford, R. J. Shul, J. J. Figiel, M. Banas, L. Zhang, Y. K. Song, H. Zhou, and A. V. Nurmikko, Appl. Phys. Lett. 73, 1688 (1998). [3] A. Osinsky, S. Gangopadhyay, B. W. Lim, M. Z. Anwar, M. A. Khan, D. Kuksenkov, and H. Tempkin, Appl. Phys. Lett. 72, 742 (1998). [4] D. Walker, X. Zhang, P. Kung, A. Saxler, S. Javadpour, J. Xu, and M. Razeghi, Appl. Phys. Lett. 68, 2100 (1996). [5] G. Y. Zhu, A. Salvador, W. Kim, Z. Fan, C. Lu, H. Tang, H. Morkoc, G. Smith, M. Estes, B. Goldenberg, W. Yang, and S. Krishnankutty, Appl. Phys. Lett. 7, 2154 (1997). [6] E. Monroy, F. Calle, E. MunÄoz, F. Omnes, B. Beaumont, P. Gibart, J. A. MunÄoz, and F. Cusso, MRS Internet J. Nitride Semicond. Res. 3, 9 (1998). [7] Y. Koide, Y. Koide, N. Itoh, K. Itoh, N. Sawaki, and I. Akasaki, Jpn. J. Appl. Phys. 27, 1156 (1988). [8] K. Itoh, Doctor Thesis, School of Engineering, Nagoya University, Nagoya [9] M. Iwaya, T. Takeuchi, S. Yamaguchi, C. Wetzel, H. Amano, and I. Akasaki, Jpn. J. Appl. Phys. 37, L316 (1998). [10] H. Amano, M. Iwaya, T. Kashima, M. Katsuragawa, I. Akasaki, J. Han, S. Hearne, J. A. Floro, E. Chason, and J. Figiel, Jpn. J. Appl. Phys. 37, L1540 (1998). [11] J. Floro, E. Chason, S. Lee, R. Twesten, R. Hwang, and L. Freud, J. Electron. Mater. 26, 969 (1997). [12] S. Hearne, E. E. Chason, J. Han, J. A. Floro, J. Figiel, J. Hunter, H. Amano, and I. Tsong, Appl. Phys. Lett. 74, 356 (1999). [13] J. Han, M. H. Crawford, R. J. Shul, S. J. Hearne, E. Chason, J. J. Figiel, and M. Banas, MRS Internet J. Nitride Semicond. Res. 4S1, G7.7 (1999).

8

IMPROVEMENT OF CRYSTALLINE QUALITY OF GROUP III NITRIDES ON SAPPHIRE USING LOW TEMPERATURE INTERLAYERS

IMPROVEMENT OF CRYSTALLINE QUALITY OF GROUP III NITRIDES ON SAPPHIRE USING LOW TEMPERATURE INTERLAYERS IMPROVEMENT OF CRYSTALLINE QUALITY OF GROUP III NITRIDES ON SAPPHIRE USING LOW TEMPERATURE INTERLAYERS H. Amano, M. Iwaya, N. Hayashi, T. Kashima, M. Katsuragawa, T. Takeuchi, C. Wetzel and I. Akasaki,

More information

Structural and optical properties of AlInN and AlGaInN on GaN grown by metalorganic vapor phase epitaxy

Structural and optical properties of AlInN and AlGaInN on GaN grown by metalorganic vapor phase epitaxy Journal of Crystal Growth 195 (1998) 309 313 Structural and optical properties of AlInN and AlGaInN on GaN grown by metalorganic vapor phase epitaxy Shigeo Yamaguchi*, Michihiko Kariya, Shugo Nitta, Hisaki

More information

GaN Stress Evolution During Metal-Organic Chemical Vapor Deposition

GaN Stress Evolution During Metal-Organic Chemical Vapor Deposition GaN Stress Evolution During Metal-Organic Chemical Vapor Deposition S. Hearnea, E. Chason, J. Han, J. A. Floro, J. Figiel, J. Hunter Sandia National Laboratories, Albuquerque, New Mexico 87185 H. Amano

More information

Pre-treatment of low temperature GaN buffer layer deposited on AlN Si substrate by hydride vapor phase epitaxy

Pre-treatment of low temperature GaN buffer layer deposited on AlN Si substrate by hydride vapor phase epitaxy Ž. Surface and Coatings Technology 131 000 465 469 Pre-treatment of low temperature GaN buffer layer deposited on AlN Si substrate by hydride vapor phase epitaxy Ha Jin Kim, Ho-Sun Paek, Ji-Beom Yoo Department

More information

High-performance III-nitride blue LEDs grown and fabricated on patterned Si substrates

High-performance III-nitride blue LEDs grown and fabricated on patterned Si substrates Journal of Crystal Growth 298 (2007) 725 730 www.elsevier.com/locate/jcrysgro High-performance III-nitride blue LEDs grown and fabricated on patterned Si substrates Baoshun Zhang, Hu Liang, Yong Wang,

More information

Growth and characterization of tensile strained Ge on Ge 1-x Sn x buffers for novel channel layers

Growth and characterization of tensile strained Ge on Ge 1-x Sn x buffers for novel channel layers The 5th International Symposium on Advanced Science and Technology of Silicon Materials (JSPS Si Symposium), Nov. 10-14, 2008, Kona, Hawaii, USA Growth and characterization of tensile strained Ge on Ge

More information

Super widegap nitride semiconductors for UV lasers

Super widegap nitride semiconductors for UV lasers (Registration number: 2001MB047) Super widegap nitride semiconductors for UV lasers Research Coordinator Fernando A. Ponce Research Team Members Hiroshi Amano David Cherns Isamu Akasaki Arizona State University:

More information

Molecular Beam Epitaxial Growth of AlN/GaN Multiple Quantum Wells

Molecular Beam Epitaxial Growth of AlN/GaN Multiple Quantum Wells Mat. Res. Soc. Symp. Proc. Vol. 743 2003 Materials Research Society L6.2.1 Molecular Beam Epitaxial Growth of AlN/GaN Multiple Quantum Wells Hong Wu, William J. Schaff, and Goutam Koley School of Electrical

More information

Structural Analysis in Low-V-defect Blue and Green GaInN/GaN Light Emitting Diodes

Structural Analysis in Low-V-defect Blue and Green GaInN/GaN Light Emitting Diodes Mater. Res. Soc. Symp. Proc. Vol. 1040 2008 Materials Research Society 1040-Q03-02 Structural Analysis in Low-V-defect Blue and Green GaInN/GaN Light Emitting Diodes Mingwei Zhu 1,2, Theeradetch Detchprohm

More information

High Performance AlGaN Heterostructure Field-Effect Transistors

High Performance AlGaN Heterostructure Field-Effect Transistors Kyma Inc. Contract ABR DTD 1/8/07; Prime: FA8650-06-C-5413 1 High Performance AlGaN Heterostructure Field-Effect Transistors Program Objectives The primary objectives of this program were to develop materials

More information

In-Situ Characterization During MOVPE Growth of III-Nitrides using Reflectrometry

In-Situ Characterization During MOVPE Growth of III-Nitrides using Reflectrometry 18 Annual Report 1999, Dept. of Optoelectronics, University of Ulm In-Situ Characterization During MOVPE Growth of III-Nitrides using Reflectrometry Christoph Kirchner and Matthias Seyboth The suitability

More information

Chemical analysis of Ti/Al/Ni/Au ohmic contacts to AlGaN/GaN heterostructures

Chemical analysis of Ti/Al/Ni/Au ohmic contacts to AlGaN/GaN heterostructures Optica Applicata, Vol. XLIII, No. 1, 213 DOI: 1.277/oa1319 Chemical analysis of Ti/Al/Ni/Au ohmic contacts to AlGaN/GaN heterostructures WOJCIECH MACHERZYŃSKI *, KORNELIA INDYKIEWICZ, BOGDAN PASZKIEWICZ

More information

The low dislocation gallium nitride layer by AP-MOCVD. Abstract

The low dislocation gallium nitride layer by AP-MOCVD. Abstract The low dislocation gallium nitride layer by AP-MOCVD Fu-Chuan Chu, Sheng-Fu Yu, Chao-Hung Chen, Chou-Shuang Huang, Ray-Ming Lin* Dept. of Electronics Engineering, Chang Gung University, Taoyuan, Taiwan,

More information

MOVPE growth of GaN and LED on (1 1 1) MgAl

MOVPE growth of GaN and LED on (1 1 1) MgAl Journal of Crystal Growth 189/190 (1998) 197 201 MOVPE growth of GaN and LED on (1 1 1) Shukun Duan *, Xuegong Teng, Yutian Wang, Gaohua Li, Hongxing Jiang, Peide Han, Da-Cheng Lu National Integrated Optoelectronics

More information

Optimization of High-Quality AlN Epitaxially Grown on (0001) Sapphire by Metal-Organic Vapor-Phase Epitaxy

Optimization of High-Quality AlN Epitaxially Grown on (0001) Sapphire by Metal-Organic Vapor-Phase Epitaxy Journal of ELECTRONIC MATERIALS, Vol. 36, No. 4, 2007 DOI: 10.1007/s11664-007-0099-3 Ó 2007 TMS Special Issue Paper Optimization of High-Quality AlN Epitaxially Grown on (0001) Sapphire by Metal-Organic

More information

Relation between Microstructure and 2DEG Properties of AlGaN/GaN Structures

Relation between Microstructure and 2DEG Properties of AlGaN/GaN Structures 2. Experimental The AlGaN/GaN structures have been grown by low-pressure metalorganic vapor phase epitaxy (LP-MOVPE) on c-plane sapphire substrates [2], using ammonia, TMGa and TMAl as precursors. After

More information

ECCI of AlGaN/GaN HEMT structures grown on Si

ECCI of AlGaN/GaN HEMT structures grown on Si ECCI of AlGaN/GaN HEMT structures grown on Si D. Thomson 1, G. Naresh-Kumar 1, B. Hourahine 1, C. Trager-Cowan 1, P. Wright 2 and T. Martin 2 1 Dept. Of Physics, SUPA, University of Strathclyde, Glasgow

More information

AlGaN/GaN HFETs on 100 mm Silicon Substrates for Commercial Wireless Applications

AlGaN/GaN HFETs on 100 mm Silicon Substrates for Commercial Wireless Applications Materials Technology Using Si as a substrate material for GaN based devices enables a variety of applications and manufacturing technologies. The 100 mm Si substrate platform allows use of larger state-of-the-art

More information

TEM Study of the Morphology Of GaN/SiC (0001) Grown at Various Temperatures by MBE

TEM Study of the Morphology Of GaN/SiC (0001) Grown at Various Temperatures by MBE TEM Study of the Morphology Of GaN/SiC (0001) Grown at Various Temperatures by MBE W.L. Sarney 1, L. Salamanca-Riba 1, V. Ramachandran 2, R.M Feenstra 2, D.W. Greve 3 1 Dept. of Materials & Nuclear Engineering,

More information

The Optical Characteristics of Epitaxial Lateral and Vertical Overgrowth of GaN on Stripe-Patterned Si Substrate

The Optical Characteristics of Epitaxial Lateral and Vertical Overgrowth of GaN on Stripe-Patterned Si Substrate Journal of the Korean Physical Society, Vol. 50, No. 3, March 2007, pp. 771 775 The Optical Characteristics of Epitaxial Lateral and Vertical Overgrowth of GaN on Stripe-Patterned Si Substrate H. Y. Yeo,

More information

SCIENCE CHINA Physics, Mechanics & Astronomy. Study on growing thick AlGaN layer on c-plane sapphire substrate and free-standing GaN substrate

SCIENCE CHINA Physics, Mechanics & Astronomy. Study on growing thick AlGaN layer on c-plane sapphire substrate and free-standing GaN substrate SCIENCE CHINA Physics, Mechanics & Astronomy Article December 2012 Vol.55 No.12: 2383 2388 doi: 10.1007/s11433-012-4926-z Study on growing thick AlGaN layer on c-plane sapphire substrate and free-standing

More information

Optimized structural properties of wurtzite GaN on SiC(0001) grown by molecular beam epitaxy

Optimized structural properties of wurtzite GaN on SiC(0001) grown by molecular beam epitaxy Optimized structural properties of wurtzite GaN on SiC(0001) grown by molecular beam epitaxy V. Ramachandran and R. M. Feenstra Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 W.

More information

ARTICLE IN PRESS. Journal of Crystal Growth

ARTICLE IN PRESS. Journal of Crystal Growth Journal of Crystal Growth 312 (2010) 1311 1315 Contents lists available at ScienceDirect Journal of Crystal Growth journal homepage: www.elsevier.com/locate/jcrysgro Abbreviated MOVPE nucleation of III-nitride

More information

Preparation and characterization of Co BaTiO 3 nano-composite films by the pulsed laser deposition

Preparation and characterization of Co BaTiO 3 nano-composite films by the pulsed laser deposition Journal of Crystal Growth 289 (26) 48 413 www.elsevier.com/locate/jcrysgro Preparation and characterization of Co BaTiO 3 nano-composite films by the pulsed laser deposition Wu Weidong a,b,, He Yingjie

More information

Effect of High NH 3 Input Partial Pressure on Hydride Vapor Phase Epitaxy of InN Using Nitrided (0001) Sapphire Substrates

Effect of High NH 3 Input Partial Pressure on Hydride Vapor Phase Epitaxy of InN Using Nitrided (0001) Sapphire Substrates Effect of High NH 3 Input Partial Pressure on Hydride Vapor Phase Epitaxy of InN Using Nitrided (0001) Sapphire Substrates Rie Togashi, Sho Yamamoto, Fredrik K. Karlsson, Hisashi Murakami, Yoshinao Kumagai,

More information

Studies on Si-doped AlGaN Epilayers

Studies on Si-doped AlGaN Epilayers Studies on Si-doped AlGaN Epilayers 47 Studies on Si-doped AlGaN Epilayers Kamran Forghani Growth optimization of Si doped AlGaN epilayers with 20%, 30% and 45%Al content grown on AlGaN-sapphire by MOVPE

More information

Ceramic Processing Research

Ceramic Processing Research Journal of Ceramic Processing Research. Vol. 11, No. 1, pp. 100~106 (2010) J O U R N A L O F Ceramic Processing Research Factors affecting surface roughness of Al 2 O 3 films deposited on Cu substrates

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/327/5961/60/dc1 Supporting Online Material for Polarization-Induced Hole Doping in Wide Band-Gap Uniaxial Semiconductor Heterostructures John Simon, Vladimir Protasenko,

More information

The Effect of Heat Treatment on Ni/Au Ohmic Contacts to p-type GaN

The Effect of Heat Treatment on Ni/Au Ohmic Contacts to p-type GaN Li-Chien Chen et al.: The Effect of Heat Treatment on Ni/Au Ohmic Contacts 773 phys. stat. sol. (a) 176, 773 (1999) Subject classification: 73.40.Cg; S7.14 The Effect of Heat Treatment on Ni/Au Ohmic Contacts

More information

This journal is The Royal Society of Chemistry S 1

This journal is The Royal Society of Chemistry S 1 2013 S 1 Thermochemical analysis on the growth of NiAl 2 O 4 rods Sang Sub Kim, a Yong Jung Kwon, b Gunju Sun, a Hyoun Woo Kim,* b and Ping Wu* c a Department of Materials Science and Engineering, Inha

More information

Optoelectronic characterization of Au/Ni/n-AlGaN photodiodes after annealing at different temperatures

Optoelectronic characterization of Au/Ni/n-AlGaN photodiodes after annealing at different temperatures Optoelectronic characterization of Au/Ni/n-AlGaN photodiodes after annealing at different temperatures PNM Ngoepe *, WE Meyer, M Diale, FD Auret, L van Schalkwyk Department of Physics, University of Pretoria,

More information

Epitaxial growth of gallium nitride thin films on A-plane sapphire by molecular beam epitaxy

Epitaxial growth of gallium nitride thin films on A-plane sapphire by molecular beam epitaxy JOURNAL OF APPLIED PHYSICS VOLUME 85, NUMBER 7 1 APRIL 1999 Epitaxial growth of gallium nitride thin films on A-plane sapphire by molecular beam epitaxy D. Doppalapudi, a) E. Iliopoulos, S. N. Basu, and

More information

Temperature dependence of molecular beam epitaxy of GaN on SiC (0001)

Temperature dependence of molecular beam epitaxy of GaN on SiC (0001) Temperature dependence of molecular beam epitaxy of GaN on SiC (0001) V. Ramachandran a, A. R. Smith a, R. M. Feenstra a and D. W. Greve b a Department of Physics, b Department of Electrical and Computer

More information

CHAPTER 2 GROWTH AND CHARACTERIZATION OF ALUMINUM NITRIDE EPILAYERS GROWN USING HIGH TEMPERATURE HYDRIDE VAPOR PHASE EPITAXY

CHAPTER 2 GROWTH AND CHARACTERIZATION OF ALUMINUM NITRIDE EPILAYERS GROWN USING HIGH TEMPERATURE HYDRIDE VAPOR PHASE EPITAXY 56 CHAPTER 2 GROWTH AND CHARACTERIZATION OF ALUMINUM NITRIDE EPILAYERS GROWN USING HIGH TEMPERATURE HYDRIDE VAPOR PHASE EPITAXY 2.1 INTRODUCTION Aluminum Nitride (AlN) single crystal is a promising substrate

More information

Silver Diffusion Bonding and Layer Transfer of Lithium Niobate to Silicon

Silver Diffusion Bonding and Layer Transfer of Lithium Niobate to Silicon Chapter 5 Silver Diffusion Bonding and Layer Transfer of Lithium Niobate to Silicon 5.1 Introduction In this chapter, we discuss a method of metallic bonding between two deposited silver layers. A diffusion

More information

Detrimental effects of dislocations II

Detrimental effects of dislocations II Detrimental effects of dislocations II Band diagram around a charged dislocation e - - - - - - - - Charged dislocation line Electrons get scattered by charged dislocations Mobility vs. sheet charge in

More information

Micro-Raman Scattering From Hexagonal GaN, AlN, and Al x Ga 1-x N Grown on (111) Oriented Silicon: Stress Mapping of Cracks

Micro-Raman Scattering From Hexagonal GaN, AlN, and Al x Ga 1-x N Grown on (111) Oriented Silicon: Stress Mapping of Cracks Micro-Raman Scattering From Hexagonal GaN, AlN, and Al x Ga 1-x N Grown on (111) Oriented Silicon: Stress Mapping of Cracks C. Ramkumar, T. Prokofyeva, M. Seon, 1 and M. Holtz Department of Physics and

More information

Heterostructures of Oxides and Semiconductors - Growth and Structural Studies

Heterostructures of Oxides and Semiconductors - Growth and Structural Studies Heterostructures of Oxides and Semiconductors - Growth and Structural Studies Beamline 17B1 W20 X-ray Scattering beamline Authors M. Hong and J. R. Kwo National Tsing Hua University, Hsinchu, Taiwan H.

More information

Structures of AlN/VN superlattices with different AlN layer thicknesses

Structures of AlN/VN superlattices with different AlN layer thicknesses Structures of AlN/VN superlattices with different AlN layer thicknesses Quan Li a) Department of Physics, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong I.W. Kim, S.A. Barnett, and

More information

Fascinated Journeys into Blue Light

Fascinated Journeys into Blue Light Fascinated Journeys into Blue Light CONTENTS 1. Introduction 2. Creation of GaN single crystal with excellent quality 3. Development of GaN pn junction Blue LEDs and Laser diodes 4. Summary Isamu AKASAKI

More information

RightCopyright 2006 American Vacuum Soci

RightCopyright 2006 American Vacuum Soci Title Gallium nitride thin films deposite magnetron sputtering Author(s) Maruyama, T; Miyake, H Citation JOURNAL OF VACUUM SCIENCE & (2006), 24(4): 1096-1099 TECHNOL Issue Date 2006 URL http://hdl.handle.net/2433/43541

More information

Nitrides on Si(111) substrates for use in nonlinear optical devices

Nitrides on Si(111) substrates for use in nonlinear optical devices Subproject A4.5 Nitrides on Si(111) substrates for use in nonlinear optical devices Principle Investigator: Daniel Schaadt CFN-Financed Scientists: P. Ganz (1/2 E13, 14 months) Further Scientist: Dr. Dongzhi

More information

Study of Residual Strain in Large Area AlGaN Growth and Characterization Support

Study of Residual Strain in Large Area AlGaN Growth and Characterization Support Study of Residual Strain in Large Area AlGaN Growth and Characterization Support Subcontract to support EMCORE s effort on DARPA s BAA number: 01-35 Wide Bandgap Semiconductor Technology Initiative Technical

More information

InGaN/GaN multi-quantum well and LED growth on wafer-bonded sapphire-on-polycrystalline AlN substrates by metalorganic chemical vapor deposition

InGaN/GaN multi-quantum well and LED growth on wafer-bonded sapphire-on-polycrystalline AlN substrates by metalorganic chemical vapor deposition Journal of Crystal Growth 310 (2008) 2514 2519 www.elsevier.com/locate/jcrysgro InGaN/GaN multi-quantum well and LED growth on wafer-bonded sapphire-on-polycrystalline AlN substrates by metalorganic chemical

More information

Effect of Process Parameters on the Growth of N-polar GaN on Sapphire by MOCVD

Effect of Process Parameters on the Growth of N-polar GaN on Sapphire by MOCVD Effect of Process Parameters on the Growth of N-polar GaN on Sapphire by MOCVD A Thesis Submitted For the Degree of Doctor of Philosophy in the Faculty of Science by G R Krishna Yaddanapudi Department

More information

High-resolution electron microscopy of grain boundary structures in yttria-stabilized cubic zirconia

High-resolution electron microscopy of grain boundary structures in yttria-stabilized cubic zirconia Mat. Res. Soc. Symp. Proc. Vol. 654 2001 Materials Research Society High-resolution electron microscopy of grain boundary structures in yttria-stabilized cubic zirconia K. L. Merkle, L. J. Thompson, G.-R.

More information

Structure Analysis of GaN Thin Film with Inversion Domains by High Voltage Atomic Resolution Microscopy

Structure Analysis of GaN Thin Film with Inversion Domains by High Voltage Atomic Resolution Microscopy Materials Transactions, Vol. 43, No. 7 (2002) pp. 1542 to 1546 Special Issue on Grain Boundaries, Interfaces, Defects and Localized Quantum Structures in Ceramics c 2002 The Japan Institute of Metals Structure

More information

Compositional variation of AlGaN epitaxial films on 6H-SiC substrates determined by cathodoluminescence.

Compositional variation of AlGaN epitaxial films on 6H-SiC substrates determined by cathodoluminescence. Compositional variation of AlGaN epitaxial films on 6H-SiC substrates determined by cathodoluminescence. Petersson, A; Gustafsson, Anders; Samuelson, Lars; Tanaka, S; Aoyagi, Y Published in: MRS Internet

More information

Final Report for AOARD Grant FA Development of direct band gap group-iv. March, 2012

Final Report for AOARD Grant FA Development of direct band gap group-iv. March, 2012 Final Report for AOARD Grant FA2386-11-1-4037 Development of direct band gap group-iv semiconductor with the incorporation of Sn March, 2012 Name of Principal Investigators: Prof. H. H. Cheng - e-mail

More information

Free-standing a-plane GaN substrates grown by HVPE

Free-standing a-plane GaN substrates grown by HVPE Free-standing a-plane GaN substrates grown by HVPE Yin-Hao Wu*, Yen-Hsien Yeh, Kuei-Ming Chen, Yu-Jen Yang, and Wei-I Lee Department of Electrophysics, National Chiao Tung University, Hsinchu City 30010,

More information

Co-Evolution of Stress and Structure During Growth of Polycrystalline Thin Films

Co-Evolution of Stress and Structure During Growth of Polycrystalline Thin Films Co-Evolution of Stress and Structure During Growth of Polycrystalline Thin Films Carl V. Thompson and Hang Z. Yu* Dept. of Materials Science and Engineering MIT, Cambridge, MA, USA Effects of intrinsic

More information

Ruthenium Oxide Films Prepared by Reactive Biased Target Sputtering

Ruthenium Oxide Films Prepared by Reactive Biased Target Sputtering Ruthenium Oxide Films Prepared by Reactive Biased Target Sputtering Hengda Zhang Anthony Githinji 1. Background RuO2 in both crystalline and amorphous forms is of crucial importance for theoretical as

More information

CHARACTERIZATION OF GROUP-III NITRIDE SEMICONDUCTORS BY X-RAY CTR SCATTERING AND REFLECTIVITY MEASUREMENTS

CHARACTERIZATION OF GROUP-III NITRIDE SEMICONDUCTORS BY X-RAY CTR SCATTERING AND REFLECTIVITY MEASUREMENTS The Rigaku Journal Vol. 17/ No. 2/ 2000 CONTRIBUTED PAPERS CHARACTERIZATION OF GROUP-III NITRIDE SEMICONDUCTORS BY X-RAY CTR SCATTERING AND REFLECTIVITY MEASUREMENTS YOSHIKAZU TAKEDA, MASAO TABUCHI, HIROSHI

More information

Structural Properties of GaN Films Grown by Molecular Beam Epitaxy on Singular and Vicinal 6H-SiC(0001)

Structural Properties of GaN Films Grown by Molecular Beam Epitaxy on Singular and Vicinal 6H-SiC(0001) Structural Properties of GaN Films Grown by Molecular Beam Epitaxy on Singular and Vicinal 6H-SiC(0001) C. D. Lee, 1 R. M. Feenstra, 1 O. Shigiltchoff, 2 R. P. Devaty 2 and W. J. Choyke 2 1 Department

More information

III III a IIOI OlD IIO OlD 110 II II III lulu II OI IIi

III III a IIOI OlD IIO OlD 110 II II III lulu II OI IIi (19) United States III III a IIOI OlD IIO 1101 100 1101 OlD 110 II II III lulu II OI IIi US 20060270076A1 (12) Patent Application Publication (10) Pub. No.: US 2006/0270076 Al Imer et al. (43) Pub. Date:

More information

Efficacy of single and double SiNx interlayers on defect reduction in GaN overlayers grown by organometallic vapor-phase epitaxy

Efficacy of single and double SiNx interlayers on defect reduction in GaN overlayers grown by organometallic vapor-phase epitaxy Virginia Commonwealth University VCU Scholars Compass Electrical and Computer Engineering Publications Dept. of Electrical and Computer Engineering 2005 Efficacy of single and double SiNx interlayers on

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP012180 TITLE: Growth of Highly Oriented ZnO Nanorods by Chemical Vapor Deposition DISTRIBUTION: Approved for public release,

More information

Publication VI. Reprinted with permission from the publisher c 2006 Elsevier

Publication VI. Reprinted with permission from the publisher c 2006 Elsevier VI Publication VI T. Lang, M. Odnoblyudov, V. Bougrov, S. Suihkonen, M. Sopanen and H. Lipsanen, Morphology optimization of MOCVD-grown GaN nucleation layers by the multistep technique, Journal of Crystal

More information

ABSORPTION COEFFICIENT AND REFRACTIVE INDEX OF GaN, AlN AND AlGaN ALLOYS

ABSORPTION COEFFICIENT AND REFRACTIVE INDEX OF GaN, AlN AND AlGaN ALLOYS ABSORPTION COEFFICIENT AND REFRACTIVE INDEX OF GaN, AlN AND AlGaN ALLOYS J. F. MUTH **, J. D. BROWN *, M. A. L. JOHNSON *, ZHONGHAI YU *, R. M. KOLBAS **, J. W. COOK, JR *. and J. F. SCHETZINA * * Department

More information

Taiyo Nippon Sanso. Advancing UV LEDs and power devices. The precarious promise of 5G. Evaluating the III-V MOSFET. Smart options for the infrared LED

Taiyo Nippon Sanso. Advancing UV LEDs and power devices. The precarious promise of 5G. Evaluating the III-V MOSFET. Smart options for the infrared LED Volume 22 Issue 3 April / May 2016 @compoundsemi www.compoundsemiconductor.net The precarious promise of 5G Evaluating the III-V MOSFET Smart options for the infrared LED Taiyo Nippon Sanso Advancing UV

More information

Wafer bowing control by polarity management of MOCVD AlN growth

Wafer bowing control by polarity management of MOCVD AlN growth Wafer bowing control by polarity management of MOCVD AlN growth Ritsumeikan University Misaichi Takeuchi Collaboration with Prof. Aoyagi, Ritsumeikan University LayTec seminar, Oct. 18 2009, Jeju, Korea

More information

8. Summary and Outlook

8. Summary and Outlook 8. Summary and Outlook This thesis deals with the synthesis and evaluation of all-nitrogen coordinated complexes of the rare earths such ad Gd, Er, and Y bearing the amidinate and guanidinate class of

More information

Materials Characterization

Materials Characterization Materials Characterization C. R. Abernathy, B. Gila, K. Jones Cathodoluminescence (CL) system FEI Nova NanoSEM (FEG source) with: EDAX Apollo silicon drift detector (TE cooled) Gatan MonoCL3+ FEI SEM arrived

More information

Influence of Underlayer on Crystallography and Roughness of Aluminum Nitride Thin Film Reactively Sputtered by Ion-Beam Kaufman Source

Influence of Underlayer on Crystallography and Roughness of Aluminum Nitride Thin Film Reactively Sputtered by Ion-Beam Kaufman Source Influence of Underlayer on Crystallography and Roughness of Aluminum Nitride Thin Film Reactively Sputtered by Ion-Beam Kaufman Source GABLECH Imrich 1,*, SVATOŠ Vojtěch 1,, PRÁŠEK Jan 1,, HUBÁLEK Jaromír

More information

Investigation of wurtzite (B,Al)N films prepared on polycrystalline diamond

Investigation of wurtzite (B,Al)N films prepared on polycrystalline diamond Available online at www.sciencedirect.com Thin Solid Films 516 (2007) 223 227 www.elsevier.com/locate/tsf Investigation of wurtzite (B,Al)N films prepared on polycrystalline diamond J.H. Song a, J.L. Huang

More information

Pulsed laser deposition of NdNiO 3 thin films

Pulsed laser deposition of NdNiO 3 thin films Solid State Communications 136 (2005) 369 374 www.elsevier.com/locate/ssc Pulsed laser deposition of NdNiO 3 thin films Davinder Kaur a, *, J. Jesudasan b, P. Raychaudhuri b a Department of Physics, Indian

More information

Single Crystal Growth of Aluminum Nitride

Single Crystal Growth of Aluminum Nitride Single Crystal Growth of Aluminum Nitride Hiroyuki Kamata 1, Yuu Ishii 2, Toshiaki Mabuchi 3, Kunihiro Naoe 1, Shoji Ajimura 4, Kazuo Sanada 5 Single crystalline aluminum nitride (AlN) is a promising material

More information

Bulk crystal growth. A reduction in Lg will increase g m and f oper but with some costs

Bulk crystal growth. A reduction in Lg will increase g m and f oper but with some costs Bulk crystal growth The progress of solid state device technology has depended not only on the development of device concepts but also on the improvement of materials. A reduction in Lg will increase g

More information

Thin Film Scattering: Epitaxial Layers

Thin Film Scattering: Epitaxial Layers Thin Film Scattering: Epitaxial Layers 6th Annual SSRL Workshop on Synchrotron X-ray Scattering Techniques in Materials and Environmental Sciences: Theory and Application May 29-31, 2012 Thin films. Epitaxial

More information

Semiconductor Nanostructures

Semiconductor Nanostructures II H. von Känel Laboratorium für Festkörperphysik ETHZ Applications Lighting Field effect transistors Sensors Infrared sensors X-ray detectors Periodic table of elements Comparison of wurtzite and zinc-

More information

LOW TEMPERATURE GROWTH OF SMOOTH INDIUM TIN OXIDE FILMS BY ULTRAVIOLET ASSISTED PULSED LASER DEPOSITION

LOW TEMPERATURE GROWTH OF SMOOTH INDIUM TIN OXIDE FILMS BY ULTRAVIOLET ASSISTED PULSED LASER DEPOSITION Journal of Optoelectronics and Advanced Materials Vol. 4, No. 1, March 2002, p. 21-25 LOW TEMPERATURE GROWTH OF SMOOTH INDIUM TIN OXIDE FILMS BY ULTRAVIOLET ASSISTED PULSED LASER DEPOSITION V. Craciun,

More information

Deposition and characterization of sputtered ZnO films

Deposition and characterization of sputtered ZnO films Superlattices and Microstructures 42 (2007) 89 93 www.elsevier.com/locate/superlattices Deposition and characterization of sputtered ZnO films W.L. Dang, Y.Q. Fu, J.K. Luo, A.J. Flewitt, W.I. Milne Electrical

More information

Blueshift of optical band gap in ZnO thin films grown by metal-organic chemical-vapor deposition

Blueshift of optical band gap in ZnO thin films grown by metal-organic chemical-vapor deposition JOURNAL OF APPLIED PHYSICS 98, 013505 2005 Blueshift of optical band gap in ZnO thin films grown by metal-organic chemical-vapor deposition S. T. Tan, B. J. Chen, X. W. Sun, a and W. J. Fan School of Electrical

More information

Epitaxy of group-iii nitrides. Vanya Darakchieva Tel 5707 Room M323

Epitaxy of group-iii nitrides. Vanya Darakchieva Tel 5707 Room M323 Epitaxy of group-iii nitrides Vanya Darakchieva vanya@ifm.liu.se Tel 5707 Room M323 Group-III nitrides binary compounds: GaN, AlN, InN; ternary: GaInN, AlInN, AlGaN and quaternary alloys AlInGaN Group-III

More information

INTEGRATION OF N- AND P-CONTACTS TO GaN-BASED LIGHT EMITTING DIODES

INTEGRATION OF N- AND P-CONTACTS TO GaN-BASED LIGHT EMITTING DIODES International Journal of High Speed Electronics and Systems Vol. 20, No. 3 (2011) 521 525 World Scientific Publishing Company DOI: 10.1142/S0129156411006817 INTEGRATION OF N- AND P-CONTACTS TO GaN-BASED

More information

Scanning tunneling microscopy observation of surface reconstruction of GaN on sapphire and 6H-SiC

Scanning tunneling microscopy observation of surface reconstruction of GaN on sapphire and 6H-SiC Scanning tunneling microscopy observation of surface reconstruction of GaN on sapphire and 6H-SiC A.R. Smith*, V. Ramachandran*, R.M. Feenstra*, D.W. Greve**, J. Neugebauer***, J.E. Northrup****, M. Shin*****,

More information

FOCUSED ION BEAM MICROMACHINING OF GaN PHOTONIC DEVICES. Irving Chyr and A. J. Steckl

FOCUSED ION BEAM MICROMACHINING OF GaN PHOTONIC DEVICES. Irving Chyr and A. J. Steckl FOCUSED ION BEAM MICROMACHINING OF GaN PHOTONIC DEVICES Irving Chyr and A. J. Steckl Nanoelectronics Laboratory, University of Cincinnati Cincinnati, Ohio 45221-0030 USA, a.steckl@uc.edu Cite this article

More information

Growth and Doping of SiC-Thin Films on Low-Stress, Amorphous Si 3 N 4 /Si Substrates for Robust Microelectromechanical Systems Applications

Growth and Doping of SiC-Thin Films on Low-Stress, Amorphous Si 3 N 4 /Si Substrates for Robust Microelectromechanical Systems Applications Journal of ELECTRONIC MATERIALS, Vol. 31, No. 5, 2002 Special Issue Paper Growth and Doping of SiC-Thin Films on Low-Stress, Amorphous Si 3 N 4 /Si Substrates for Robust Microelectromechanical Systems

More information

TEM Study of Bulk AlN Growth by Physical Vapor Transport

TEM Study of Bulk AlN Growth by Physical Vapor Transport TEM Study of Bulk AlN Growth y Physical Vapor Transport W.L. Sarney 1, L. Salamanca-Ria 1, T. Hossain 2, P. Zhou 2, H.N. Jayatirtha 2, H.H. Kang 1, R.D. Vispute 1, M. Spencer 2, K.A. Jones 3 1 Dept. of

More information

Preparation and structural characterization of thin-film CdTe/CdS heterojunctions

Preparation and structural characterization of thin-film CdTe/CdS heterojunctions JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS Vol. 8, No., June 006, p. 96-940 Preparation and structural characterization of thin-film CdTe/ heterojunctions I. SALAORU a, P. A. BUFFAT b, D. LAUB b,

More information

Laser Annealing of Amorphous Ni-Ti Shape Memory Alloy Thin Films

Laser Annealing of Amorphous Ni-Ti Shape Memory Alloy Thin Films Laser Annealing of Amorphous Ni-Ti Shape Memory Alloy Thin Films Xi Wang, Zhenyu Xue, Joost J. Vlassak Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA, U.S.A. Yves Bellouard

More information

Why does polycrystalline natural diamond turn black after annealing?

Why does polycrystalline natural diamond turn black after annealing? phys. stat. sol. (a) 201, No.11, 2486 2491 (2004) / DOI 10.1002/pssa.200405178 Why does polycrystalline natural diamond turn black after annealing? B. Willems *, 1, K. De Corte 2, and G. Van Tendeloo 1

More information

Optical, microstructural and electrical studies on sol gel derived TiO 2 thin films

Optical, microstructural and electrical studies on sol gel derived TiO 2 thin films Indian Journal of Pure & Applied Physics Vol. 55, January 2017, pp. 81-85 Optical, microstructural and electrical studies on sol gel derived TiO 2 thin films M Bilal Tahir*, S Hajra, M Rizwan & M Rafique

More information

Effect of AlGaAs Buffer Layer on Defect Distribution in Cubic GaN Grown on GaAs (001) by MOVPE

Effect of AlGaAs Buffer Layer on Defect Distribution in Cubic GaN Grown on GaAs (001) by MOVPE Chiang Mai J. Sci. 2013; 40(6) 971 Chiang Mai J. Sci. 2013; 40(6) : 971-977 http://epg.science.cmu.ac.th/ejournal/ Contributed Paper Effect of AlGaAs Buffer Layer on Defect Distribution in Cubic GaN Grown

More information

Effects of N-Type Doping on Algan Material Quality

Effects of N-Type Doping on Algan Material Quality University of South Carolina Scholar Commons Theses and Dissertations 1-1-2013 Effects of N-Type Doping on Algan Material Quality Devendra Diwan University of South Carolina Follow this and additional

More information

3.46 OPTICAL AND OPTOELECTRONIC MATERIALS

3.46 OPTICAL AND OPTOELECTRONIC MATERIALS Badgap Engineering: Precise Control of Emission Wavelength Wavelength Division Multiplexing Fiber Transmission Window Optical Amplification Spectrum Design and Fabrication of emitters and detectors Composition

More information

Microstructure of low temperature grown AlN thin films on Si 111

Microstructure of low temperature grown AlN thin films on Si 111 JOURNAL OF APPLIED PHYSICS VOLUME 85, NUMBER 11 1 JUNE 1999 Microstructure of low temperature grown AlN thin films on Si 111 G. W. Auner a) and F. Jin Electrical and Computer Engineering Department, Wayne

More information

Laser-Induced Crystallization in AgInSbTe Phase-Change Optical Disk

Laser-Induced Crystallization in AgInSbTe Phase-Change Optical Disk Laser-Induced Crystallization in AgInSbTe Phase-Change Optical Disk Yem-Yeu Chang, Lih-Hsin Chou, and Hung-Ta Lin Presented at the 8th International Conference on Electronic Materials (IUMRS-ICEM 2002,

More information

CHAPTER 4. SYNTHESIS OF ALUMINIUM SELENIDE (Al 2 Se 3 ) NANO PARTICLES, DEPOSITION AND CHARACTERIZATION

CHAPTER 4. SYNTHESIS OF ALUMINIUM SELENIDE (Al 2 Se 3 ) NANO PARTICLES, DEPOSITION AND CHARACTERIZATION 40 CHAPTER 4 SYNTHESIS OF ALUMINIUM SELENIDE (Al 2 Se 3 ) NANO PARTICLES, DEPOSITION AND CHARACTERIZATION 4.1 INTRODUCTION Aluminium selenide is the chemical compound Al 2 Se 3 and has been used as a precursor

More information

2014 NOBEL LECTURE IN PHYSICS

2014 NOBEL LECTURE IN PHYSICS Background Story of the Invention of Efficient Blue InGaN Light Emitting Diodes SHUJI NAKAMURA SOLID STATE LIGHTING AND ENERGY ELECTRONICS CENTER MATERIALS AND ECE DEPARTMENTS UNIVERSITY OF CALIFORNIA,

More information

Semiconductor Nanostructures

Semiconductor Nanostructures I H. von Känel Laboratorium für Festkörperphysik ETHZ Moore s Law Doubling of transistor density in less than every 2 years International Roadmap for Semiconductors Evolution of LED performance Haitz law

More information

EPITAXY extended single-crystal film formation on top of a crystalline substrate. Homoepitaxy (Si on Si) Heteroepitaxy (AlAs on GaAs)

EPITAXY extended single-crystal film formation on top of a crystalline substrate. Homoepitaxy (Si on Si) Heteroepitaxy (AlAs on GaAs) extended single-crystal film formation on top of a crystalline substrate Homoepitaxy (Si on Si) Heteroepitaxy (AlAs on GaAs) optoelectronic devices (GaInN) high-frequency wireless communication devices

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION High Electrochemical Activity of the Oxide Phase in Model Ceria- and Ceria-Ni Composite Anodes William C. Chueh 1,, Yong Hao, WooChul Jung, Sossina M. Haile Materials Science, California Institute of Technology,

More information

Continuous Synthesis of Carbon Nanoclusters Using Well-Controlled Thermal Plasmas

Continuous Synthesis of Carbon Nanoclusters Using Well-Controlled Thermal Plasmas Continuous Synthesis of Carbon Nanoclusters Using Well-Controlled Thermal Plasmas T. Ohishi*, Y. Yoshihara and O. Fukumasa Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai,

More information

Polycrystalline Silicon Produced by Joule-Heating Induced Crystallization

Polycrystalline Silicon Produced by Joule-Heating Induced Crystallization Polycrystalline Silicon Produced by Joule-Heating Induced Crystallization So-Ra Park 1,2, Jae-Sang Ro 1 1 Department of Materials Science and Engineering, Hongik University, Seoul, 121-791, Korea 2 EnSilTech

More information

STRUCTURAL AND ELECTRICAL PROPERTIES OF Sb 2 O 3 THIN FILMS

STRUCTURAL AND ELECTRICAL PROPERTIES OF Sb 2 O 3 THIN FILMS STRUCTURAL AND ELECTRICAL PROPERTIES OF Sb 2 O 3 THIN FILMS NICOLAE ÞIGÃU Faculty of Sciences, Dunãrea de Jos University of Galaþi, 47 Domneascã Street, 800201, Romania e-mail: ntigau@ugal.ro Received

More information

Faceted inversion domain boundary in GaN films doped with Mg

Faceted inversion domain boundary in GaN films doped with Mg Faceted inversion domain boundary in GaN films doped with Mg L. T. Romano* and J.E. Northrup Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304 A. J. Ptak and T.H. Myers Department

More information

Microstructural Evolution of Ti-Mo-Ni-C Powder by Mechanical Alloying

Microstructural Evolution of Ti-Mo-Ni-C Powder by Mechanical Alloying Materials Transactions, Vol. 50, No. 1 (2009) pp. 117 to 122 #2009 The Japan Institute of Metals Microstructural Evolution of -Mo-Ni-C Powder by Mechanical Alloying Hiroyuki Hosokawa, Kiyotaka Kato, Koji

More information

DEFECTS IN SILICON-GERMANIUM STRAINED EPITAXIAL LAYERS MARK DYNNA. A Thesis. Submitted to the School of Graduate Studies.

DEFECTS IN SILICON-GERMANIUM STRAINED EPITAXIAL LAYERS MARK DYNNA. A Thesis. Submitted to the School of Graduate Studies. DEFECTS IN SILICON-GERMANIUM STRAINED EPITAXIAL LAYERS By MARK DYNNA A Thesis Submitted to the School of Graduate Studies in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy

More information

High reflectivity and thermal-stability Cr-based Reflectors and. n-type Ohmic Contact for GaN-based flip-chip light-emitting.

High reflectivity and thermal-stability Cr-based Reflectors and. n-type Ohmic Contact for GaN-based flip-chip light-emitting. High reflectivity and thermal-stability Cr-based Reflectors and n-type Ohmic Contact for GaN-based flip-chip light-emitting diodes Kuang-Po Hsueh, a * Kuo-Chun Chiang, a Charles J. Wang, b and Yue-Ming

More information