Problem Statement. Design and construct a small wind turbine to produce as much power as possible while

Size: px
Start display at page:

Download "Problem Statement. Design and construct a small wind turbine to produce as much power as possible while"

Transcription

1 Problem Statement Design and construct a small wind turbine to produce as much power as possible while still maintaining efficiency. One must be able to measure the output of the turbine, the design must be creative, must be powered by wind, and must be safe to use. Plexiglass, metal, and other heavy or dangerous blades are highly discouraged. The design must be economical, the maximum rotor blade diameter allowed is 200 cm, and premade turbine blades or airfoils may not be used. Research Statement Wind is caused by air flowing from high pressure to low pressure. Because the earth is rotating, the air does not flow directly from high to low pressure, and is deflected to the right in the northern hemisphere and to the left in the southern hemisphere. As a result, the wind flows around high and low pressure areas rather than simply directly from one to another. The closer the high and low pressure areas are the together, the stronger the winds. Wind plays a large role in the creation of electricity and is a primary renewable energy source. As a whole, electricity is considered to be a secondary energy source. Electricity is generated from the conversion of primary sources of energy such as fossil fuels (coal, natural gas, oil, etc.), nuclear power, and renewable sources (wind, solar, geothermal, etc.). The process of producing electricity is quite complex, but in simple terms, it starts with the initial energy source that creates movement in a turbine or piston which then rotates the rotor in a generator. The activation of a generator produces an electrical current that then gets carried into communities by power lines. Specifically regarding the transformation of wind power to electricity, certain devices such as windmills and wind turbines are used. Windmills harness wind energy to

2 produce mechanical power in the form of torque. This power is then used for the purposes of milling grain or pumping water. Windmills can also be modified for the purposes of providing heat and light. As opposed to producing mechanical energy, a modern type of windmill, using the kinetic energy of wind, produces electrical energy. This modern type of windmill is known as a wind turbine. Wind turbines are more advanced and efficient than windmills. Wind turbines transform wind power through the rotation of rotor blades around a central hub. The wind rotates the rotor blades on a wind turbine, which then turns a gearbox shaft that powers a generator to make electricity. Finally, the electrical generator converts the kinetic energy of the rotating blades into electrical energy that can be carried in electrical cables. For wind turbines there are two main types of designs: vertical axis turbine and horizontal axis turbine. The main rotor shaft of a vertical-axis wind turbine is set to be transverse to the wind whereas for horizontal-axis wind turbines the rotating axis is parallel to the ground. Airfoil shaped rotor blades are popular amongst modern wind turbines, however, windmills typically use flat blades or sails. The purpose of either variation of blades is to harness the combination of both lift and drag to cause the rotation of the blades. Wind power is one of the fastest-growing energy sources in the world as it offers many advantages. One significant advantage is that wind power is cost effective. Land-based utility-scale wind is one of the lowest-priced energy sources and costs between two to six cents per kilowatt hour. Wind energy also mitigates the price uncertainty that fuel costs add to traditional sources of energy. Furthermore, wind is a clean fuel source as it does not cause pollution and does not produce atmospheric emissions that cause things such as acid rain, smog, or greenhouse gases. Wind power is also sustainable as it does not exploit natural resources and its functionality is based simply on wind. Wind power has also contributed to industry growth in the U.S. as it has an annual economic impact of roughly $20 billion and has employed more

3 than 100,000 workers in With ever-growing environmental problems, the importance of harnessing wind power has grown as it can contribute to mitigating the impacts of climate change. While there are many advantages, there are also some disadvantages to wind power. Although wind power is relatively cost efficient, its high initial investment costs compared to fossil-fueled generators should be noted. Also, good wind sites are often located in rural and remote locations, far away from cities where the electricity is needed, so a means of transporting the electricity is needed. Another disadvantage is that wind power might not be the most profitable use of land resulting in high opportunity costs for those harnessing wind power. Turbine blades can also damage local wildlife as some birds have been killed by flying into spinning turbine blades. The power of wind is defined as follows: The variables that impact the power of wind are air density, wind speed, and the area swept which is affected by blade length. This affects the design and placement of turbines because they can be optimized by being located where air density and wind speeds are at a max and designed to have an efficient area swept value. There is a disadvantage to using wind power that traditional sources such as oil and coal do not have: the wind is not constant, but varies in direction and intensity with time. To deal with wind variability, the builders of wind turbines must adapt their turbines to be able to handle various wind conditions. Some designers are working on developing components within the turbine to store energy, so that excess energy produced in periods of high wind can be stored up and drawn away during periods of low wind, thus making the overall output of the turbine more regular and dependable. There remains the question of how we pay for wind power development. Currently, the

4 government subsidizes wind power production, which angers many who feel it is unfair for taxpayers to pay this price. However, it is projected that eventually these subsidies will lead to cheaper energy. As technology advances, wind turbines become less expensive to build and more efficient at producing power, which leads to lower energy prices. Additionally, wind power is not subject to the sort of price volatility that affects other sources of power, such as oil. It is therefore likely that, if wind technology continues to develop, its stability and efficiency will ultimately lead it to become become actually less expensive than coal or oil power, and thus be a worthwhile investment. However, beyond potential costs, there are some negative impacts of wind power that must be addressed if it is to be expanded further and used to meet a greater percentage of energy needs. For example, wind turbines can produce a great deal of sound, leading residents of local areas to complain about the effects of the sound on their lives and health. To deal with this problem, turbines can be built farther away from centers of human population. This can be achieved by building turbines offshore. Technology can also be developed which allows wind turbines to operate less noisily, such as serrations along the trailing edges of the blades which help control the air flow and reduce the noise produced by the turbine. Additionally, while the overall environmental impact of wind turbines is less than that of burning fossil fuels, there is an impact on the natural environment stemming from potential damage to local habitats and the killing of flying animals such as birds. In order to lessen this impact, the design and location of wind turbines could be modified. Again, turbines build over water might help to solve this problem, as fewer birds fly far offshore and there is not much of a local ecosystem above the surface of the water. Finally, there are some people who complain about the implementation of wind turbines because they see them as ugly, or damaging the landscape in some way. In order to address this concern, it is important to consider implementing local variability in design. This

5 variability would allow residents to have some say in which wind turbine design was installed in their community, rather than a standardized design which residents of a certain area may find unattractive being automatically installed. In order to implement this local variability, designers could develop a few different styles of wind turbine similar to one another in power production, efficiency, and ease to build, and allow residents to choose between them so that they are more satisfied with the aesthetics of the wind turbine. Despite these problems still to be worked out, the wind power industry offers a significant number of job opportunities to a great many people. Jobs in the industry include scientists and engineers, who research potential materials and designs for the turbine blades, and various machinists, assemblers, inspectors, and managers who work in the process of actually constructing the turbine. Specific types of engineers that often work in the wind power industry include aerospace engineers, who are experts in the behavior of air and thus qualified to work on designing blades, as well as electrical and mechanical engineers, who might deal with the internal components of the turbine, and environmental engineers, who help to mitigate any potential environmental damage caused by the turbines. Overall, wind energy displays a great deal of promise as a future large-scale source of energy. Projections for the future of wind energy generally predict successful expansion into a larger share of the global energy market. By 2050, according to the Wind Vision report conducted by the Department of Energy, wind energy could provide upwards of 600,000 jobs nationally and prevent over 12 gigatons of greenhouse gases by preventing the burning of fossil fuels. Currently, some of the areas of wind power that are being revolutionized include developing new coatings to protect the blades from the elements, allowing them to last longer and function more efficiently, as well as continuing to work on the development of offshore wind farms which have several advantages over land-based farms. All of these developments should only increase the

6 already immense potential that wind power has to sustainably meet our energy needs as we move into the future. Short Report To create our own wind turbine, we made use of a gearbox, four blades, and the Kidwind base. The wind turbine we created utilizes a pringle can cut into four separate curved blades attached to dowel rods as the main component of power generation. We used a pringles can due to the precurved nature of the can, which provided a way to make air foils without having to curve our own cardboard. We used the airfoil shape because this shape allows for a higher lift force while simultaneously decreasing the drag force on the blade. We also chose to use the pringles can because it is made of a very light weight cardboard material which decreases the drag force on the blades. We chose to use four blades because the KidWind kit we used as the stand for the turbine allowed only for a number of blades that 12 is evenly divisible by (it provided 12 blade locations, so to keep the blades evenly spaced the number of blades had to be a factor of 12). We felt that six blades added too much weight and therefore drag force to the blades so the power generated would not increase significantly. We decided that four blades was the correct amount over three because adding one blade would not increase the drag force significantly, but would increase the power generated. Our wind turbine utilizes a gearbox, a pringles can, and the kidwind kit to generate power. The wind turbine we designed and produced went through several changes in order to find the maximum power output possible. We tested both the effects of the pitch of the blades and lengths of the blades to generate the optimal amount of power. In order to find the best angle of attack for our turbine we conducted a series of tests to observe which angle generated the most power. We began by first facing the blades directly towards the fan and tested the power generated from this angle, and then we continued

7 to change the angle of attack and test

8 the power generated at the various angles until we found the highest power generated. This angle created the best rotational speed at the fan speed we were using. We tested the length of the blades in a similar way. With the knowledge that the length of the wind turbine blades may increase the power as length increases, but an increase in blade length will cause an increase in the drag force on the blades, we decided to increase the length of our blades slightly to see if the advantages of increasing the length outweighed the disadvantages. We decided to first increase the length by 5 cm, an increase of approximately 25%. After we increased the length we tested the amount of power generated by this increase. The increase in length produced about a 7% decrease in power. After analyzing the data it was clear that the optimal length was the original length of our blades (about 20 cm). We know this because the increase in length produced a drop in power and although we could have decreased the percentage we changed length by, we determined that any change in length lower than 25% would be too small to create a significant change in power and thus not be worth the excess material we would have to add to the blades. After conducting research and several tests we were able to maximize the power output of the wind turbine. Our wind turbine uses a pringles can as the blades in order to create the airfoil shape that is optimal for power generation. The pitch and length of the blades were changed several times and then tested to find the best possible blade arrangement. The final wind turbine we created has been built to use the wind generated by a box fan (wind speed of 3.0 m/s) to create a power of mw. Works Consulted The Cost of Wind Energy in the U.S. AWEA, American Wind Energy Association,

9 org/falling-wind-energy-costs. Hamilton, James, and Drew Liming. Overview of a Wind-Farm Project. U.S. Bureau of Labor Statistics, U.S. Bureau of Labor Statistics, Just Energy > Learning Center > Electricity. Just Energy, Just Energy, learning-center/electricity. National Geographic Society. Where Does Electricity Come From? National Geographic Society, National Geographic, 20 Feb. 2013, University of Texas at Austin. Dealing With Wind Variability On The Wind Farm. ScienceDaily, ScienceDaily, 24 Oct. 2007, The Way to More Efficient, Quieter Wind Turbines. Phys.org - News and Articles on Science and Technology, Phys.org, 1 Oct. 2015, phys.org/news/ efficient-quieter-turbines.html.

10 Wind Energy Converts the Winds Power into Electricity. Alternative Energy Tutorials, Alternative Energy Tutorials, html. Wind Vision. Department of Energy, Office of Energy Efficiency and Renewable Energy, Wolfe, Michael. Devices Used to Harness Wind Energy. Sciencing, Sciencing, 24 Apr. 2017, sciencing.com/devices-used-harness-wind-energy html.

An overview of Wind Power development in the Midwest

An overview of Wind Power development in the Midwest An overview of Wind Power development in the Midwest Douglas J. Reinemann, Ph.D. Professor of Biological Systems Engineering University of Wisconsin Madison Wind is one of the fastest growing Renewable

More information

James T okishi CEE491 5/5/2009

James T okishi CEE491 5/5/2009 James Tokishi CEE491 5/5/2009 General term for any use of the wind to generate usable power Sailing ships (>5500 years) Windmills (>1300 years) Electricity generation (~100 years) Wind causes turbine blade

More information

Section 2: Sources of Energy

Section 2: Sources of Energy Section 2: Sources of Energy Types of Energy¹ All the things we use every day to meet our needs and wants are provided through the use of natural resources.natural resources are either renewable or nonrenewable.

More information

Turbine subsystems include: What is wind energy? What is a wind turbine and how does it work?

Turbine subsystems include: What is wind energy? What is a wind turbine and how does it work? What is wind energy? In reality, wind energy is a converted form of solar energy. The sun's radiation heats different parts of the earth at different rates-most notably during the day and night, but also

More information

Designing the Most Energy Efficient. Wind Turbine Blades. Secondary Subjects Physical Science, Social Studies, Technology, Math, Art

Designing the Most Energy Efficient. Wind Turbine Blades. Secondary Subjects Physical Science, Social Studies, Technology, Math, Art Designing the Most Energy Efficient Wind Turbine Blades Lesson Plan By Shay Motalebi Primary Subject Earth Science Secondary Subjects Physical Science, Social Studies, Technology, Math, Art Grade levels

More information

WIND POWER. Presented By: M Rameez Ur Rahman Khawar ramzan Farooq usman zia Ateeq ahmad Zohaib Bs(EE) 5B

WIND POWER. Presented By: M Rameez Ur Rahman Khawar ramzan Farooq usman zia Ateeq ahmad Zohaib Bs(EE) 5B WIND POWER Presented By: M Rameez Ur Rahman Khawar ramzan Farooq usman zia Ateeq ahmad Zohaib Bs(EE) 5B CONTENTS 1. What is Energy 2. Sources of Energy 3. Introduction to Wind Energy 4. History 5. Types

More information

WIND ENERGY ECOSUSTAINABILITY ENGINEERING SOLUTION

WIND ENERGY ECOSUSTAINABILITY ENGINEERING SOLUTION WIND ENERGY ECOSUSTAINABILITY ENGINEERING SOLUTION Lecturer PhD Roxana Gabriela POPA Associate Professor Maria CALINOIU University,,Constantin Brancusi,, of Tg- Jiu, roxanna_popa@yahoo.com Abstract: Renewables

More information

FLATE Hillsborough Community College - Brandon (813)

FLATE Hillsborough Community College - Brandon (813) The Florida Advanced Technological Education (FLATE) Center wishes to make available, for educational and noncommercial purposes only, materials relevant to the EST1830 Introduction to Alternative/Renewable

More information

DIRECTORATE FOR FUEL AND ENERGY SECTOR. Development of Wind Energy Technology in the World

DIRECTORATE FOR FUEL AND ENERGY SECTOR. Development of Wind Energy Technology in the World DIRECTORATE FOR FUEL AND ENERGY SECTOR Development of Wind Energy Technology in the World INFORMATION REFERENCE October 2013 I N F O R M A T I O N R E F E R E N C E General Information on Wind Energy Wind

More information

Solar Energy III. Wind Power. Original slides provided by Dr. Daniel Holland

Solar Energy III. Wind Power. Original slides provided by Dr. Daniel Holland Solar Energy III Wind Power. Original slides provided by Dr. Daniel Holland Would you like to see and increase in wind power production? Yes 2.No 1. Audio Link Which statement best captures your opinion

More information

Your Guide to Wind Generation

Your Guide to Wind Generation Your Guide to Wind Generation The Statistics Wind energy is one of the fastest growing renewable energy sources in the world. The UK installed 1.7GW of new offshore wind capacity in 2017, growing by 25%

More information

Selection of Twist and Chord Distribution of Horizontal Axis Wind Turbine in Low Wind Conditions

Selection of Twist and Chord Distribution of Horizontal Axis Wind Turbine in Low Wind Conditions IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Selection of Twist and Chord Distribution of Horizontal Axis Wind Turbine in Low Wind Conditions To cite this article: M Purusothaman

More information

POWER GENERATION IN VERTICAL AXIS WIND MILL

POWER GENERATION IN VERTICAL AXIS WIND MILL POWER GENERATION IN VERTICAL AXIS WIND MILL P.Vijayamohan*,R.Chinnasamy 1,M.Gobi 2,M.Hariprasth 3. * Assistant professor of Gnanamani College Of Technology, Namakkal, Tamil nadu, India, Asia Abstract It

More information

Ch 13 Achieving Energy Sustainability

Ch 13 Achieving Energy Sustainability Ch 13 Achieving Energy Sustainability Module 38 Biomass and Water Module 39 Solar, Wind, Geothermal, and Hydrogen 4/16/18 Variation in Solar Radiation Potential Active Solar Energy captured from sunlight

More information

LESSON: Engineering Better Blades GRADE: 4 SUMMARY:

LESSON: Engineering Better Blades GRADE: 4 SUMMARY: LESSON: GRADE: 4 SUMMARY: Working in groups, students will design mini wind turbine blades from recycled materials, and measure the energy generated. After each trial, they will refine their design and

More information

Chapter 13 Achieving Energy Sustainability. Monday, February 26, 18

Chapter 13 Achieving Energy Sustainability. Monday, February 26, 18 Chapter 13 Achieving Energy Sustainability Module 37 Conservation, Efficiency, and Renewable Energy After reading this module you should be able to describe strategies to conserve energy and increase energy

More information

Wind Energy for Educators. The Kidwind Project St. Paul, MN

Wind Energy for Educators. The Kidwind Project St. Paul, MN Wind Energy for Educators The Kidwind Project St. Paul, MN joe@kidwind.org www.kidwind.org KidWind Project www.kidwind.org KidWind Project www.kidwind.org http://www.gwec.net/index.php?id=180&l=0%2findex.php%3fid%3d

More information

Feasibility of Wind Power Technology Schemes in St. Martin s Island of Bangladesh

Feasibility of Wind Power Technology Schemes in St. Martin s Island of Bangladesh Paper ID: ET-P19 Feasibility of Wind Power Technology Schemes in St. Martin s Island of Bangladesh Rasedul Hasan 1, Md. Abu Saaklayen 2, Farjana Nasim 3, Md. Tajul Islam 4, Md. Abu Shahab Mollah 5 1,2,3

More information

Activity Guide. MacGyver Windmill Class Pack. Materials for 15 Windmills or Students. Time Required. Grades. Objectives.

Activity Guide. MacGyver Windmill Class Pack. Materials for 15 Windmills or Students. Time Required. Grades. Objectives. MacGyver Windmill Class Pack Activity Guide Materials for 15 Windmills or 15 45 Students Grades 5 8, 9 12 (Extension Activity) Concepts Energy and Transformations Forces and Motion Engineering, Art, and

More information

APPENDIX B: Example Lab Preparation Guide and Manual. The University of Texas at Austin. Mechanical Engineering Department

APPENDIX B: Example Lab Preparation Guide and Manual. The University of Texas at Austin. Mechanical Engineering Department APPENDIX B: Example Lab Preparation Guide and Manual ME 130L 17905 17990 The University of Texas at Austin Mechanical Engineering Department Spring 12 Dr. Hidrovo Lab #4 Preparation Guide - Dimensional

More information

Carbon Carbon economy: Energy Consumption Consumption in the United States,

Carbon Carbon economy: Energy Consumption Consumption in the United States, THE HYDROGEN ECONOMY (Harnessing wind energy) Ifejesu Eni olorunda Department of Chemical Engineering Aim of presentation Overview of current carbon economy Link hydrogen production with energy generation

More information

FLOATING WINDMILLS. Department of Mechanical Engineering (MECH) Andhra University College of Engineering, Visakhapatnam, (INDIA)

FLOATING WINDMILLS. Department of Mechanical Engineering (MECH) Andhra University College of Engineering, Visakhapatnam, (INDIA) FLOATING WINDMILLS D C Chaarshani (B.E.) 1, S Yamuna (B.E) 2 1,2 Department of Mechanical Engineering (MECH) Andhra University College of Engineering, Visakhapatnam, (INDIA) ABSTRACT A few hundred meters

More information

DESIGN AND ANALYSIS OF HORIZONTAL AXIS WIND TURBINE BLADE

DESIGN AND ANALYSIS OF HORIZONTAL AXIS WIND TURBINE BLADE DESIGN AND ANALYSIS OF HORIZONTAL AXIS WIND TURBINE BLADE R.Rajprethive 1 and A.Vimal Nath 2 1,2 Final Year Students, Department of Mechanical Engineering, CK College of Engineering & Technology, Cuddalore,Tamilnadu

More information

Enhancement of the Efficiency of Windmill Using Helical Designed Savonius Turbine

Enhancement of the Efficiency of Windmill Using Helical Designed Savonius Turbine Enhancement of the Efficiency of Windmill Using Helical Designed Savonius Turbine M. Ganesh Karthikeyan 1, Shanmugasundaram K 2, Shree Bubesh Kumaar S 3, Siddhath K 4, Srinath B 5 Assistant Professor,

More information

Wind Power. Jamie Eppolite

Wind Power. Jamie Eppolite Wind Power Jamie Eppolite September 30, 2008 As the demand for alternative, sustainable forms of energy increases, more companies, homeowners, and industries are considering the use of wind power. Wind

More information

Windmill Generator Project

Windmill Generator Project Windmill Generator Project November 30, 2009 Nick Jones Michael Potts John Riser Emily Curtis Wrinn Jennifer Young Team 3 EF 152 - B1 Abstract The purpose of this project is to work as team to build a

More information

1. You can generate electricity for use in your own home using a wind turbine fixed above the roof.

1. You can generate electricity for use in your own home using a wind turbine fixed above the roof. Generating electricity 1. You can generate electricity for use in your own home using a wind turbine fixed above the roof. (a) Wind is a renewable energy source. Which one of the following is not a renewable

More information

Use of Wind and Solar Energy

Use of Wind and Solar Energy Faculty of Electrical Engineering University of Žilina Use of Wind and Solar Energy Conversion technologies & grid integration Marek Höger www.fel.uniza.sk Marek.Hoger@fel.uniza.sk Use of Wind and Solar

More information

Renewable Energy Sources

Renewable Energy Sources Renewable Energy Sources Municipality of Grey Highlands Submitted by The Jones Consulting Group Ltd. Submitted to Wind Power Committee 24 th November 2004 Table of Contents 1.0 INTRODUCTION:...1 2.0 ENERGY

More information

Vertical Axis Wind Turbines

Vertical Axis Wind Turbines Goals ᄏᄏ ᄏᄏ ᄏᄏ Assemble a vertical-axis wind turbine Modify it to change its efficiency Make calculations based on data Background Wind turbines are quickly becoming a major source of electricity in countries

More information

Why Renewable Energy?

Why Renewable Energy? Wind Energy Why Renewable Energy? o Clean, zero emissions onox, SO2, CO, CO2 oair quality, water quality oclimate Change oreduce fossil fuel dependence oenergy independence odomestic energy national security

More information

Question # 1: Write true or false with correcting the wrong statement

Question # 1: Write true or false with correcting the wrong statement Answer all the following questions. Number of questions: 4 Illustrate your answers with sketches when necessary. The exam consists of three pages. Total mark: 210 marks Question # 1: Write true or false

More information

Highway Wind Turbine (Quite Revolution Turbine)

Highway Wind Turbine (Quite Revolution Turbine) International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 6, Number 6 (2013), pp. 789-794 International Research Publication House http://www.irphouse.com Highway Wind Turbine

More information

WIND-DIESEL-STORAGE PROJECT AT KASABONIKA LAKE FIRST NATION

WIND-DIESEL-STORAGE PROJECT AT KASABONIKA LAKE FIRST NATION WIND-DIESEL-STORAGE PROJECT AT KASABONIKA LAKE FIRST NATION [1] Professor David A. Johnson Wind Energy Group Department of Mechanical and Mechatronics Engineering University of Waterloo 2009 Wind-Diesel

More information

DESIGN OF EXPERIMENTAL SETUP OF 1KW WIND TURBINE BLADE TESTING

DESIGN OF EXPERIMENTAL SETUP OF 1KW WIND TURBINE BLADE TESTING DESIGN OF EXPERIMENTAL SETUP OF 1KW WIND TURBINE BLADE TESTING Chanchal Narkhede 1, Nilesh Nikale 2, Sushant Howal 3 Raviraj Mulaje 4, Prof.S.R.Sandanshiv 5 1,2,3 Mech, G.S.Moze College of Engineering,

More information

RENEWABLE SOURCES OF ENERGY. Ajay Kumar Jakhar

RENEWABLE SOURCES OF ENERGY. Ajay Kumar Jakhar RENEWABLE SOURCES OF ENERGY Ajay Kumar Jakhar Renewable energy is energy that comes from resources which are continually replenished such as sunlight, wind, rain, tides, waves and geothermal heat. In

More information

CHAPTER 4 WIND TURBINE MODELING AND SRG BASED WIND ENERGY CONVERSION SYSTEM

CHAPTER 4 WIND TURBINE MODELING AND SRG BASED WIND ENERGY CONVERSION SYSTEM 85 CHAPTER 4 WIND TURBINE MODELING AND SRG BASED WIND ENERGY CONVERSION SYSTEM 4.1 INTRODUCTION Wind energy is one of the fastest growing renewable energies in the world. The generation of wind power is

More information

RETScreen. International CLEAN ENERGY PROJECT ANALYSIS: WIND ENERGY PROJECT ANALYSIS CHAPTER RETSCREEN ENGINEERING & CASES TEXTBOOK

RETScreen. International CLEAN ENERGY PROJECT ANALYSIS: WIND ENERGY PROJECT ANALYSIS CHAPTER RETSCREEN ENGINEERING & CASES TEXTBOOK RETScreen International Clean Energy Decision Support Centre www.retscreen.net CLEAN ENERGY PROJECT ANALYSIS: RETSCREEN ENGINEERING & CASES TEXTBOOK WIND ENERGY PROJECT ANALYSIS CHAPTER Disclaimer This

More information

TEAMS Competition 2015

TEAMS Competition 2015 TEAMS Competition 2015 Generating Power from Wind Introduction W ind can be defined as a natural movement of air at any velocity. Along the earth s surface, wind typically occurs blowing horizontally across

More information

Each Siemens STEM Day classroom activity highlights one or more components of the engineering design cycle and an essential 21st-century skill.

Each Siemens STEM Day classroom activity highlights one or more components of the engineering design cycle and an essential 21st-century skill. Level of Difficulty: 2 Grade Range: 9-12 Activity Time: 45-60 min Career Path: Energy Topic: Energy OVERVIEW In this lesson, students will examine wind power a renewable energy resource with increasing

More information

Wind to Hydrogen Earth Sci. Lab

Wind to Hydrogen Earth Sci. Lab Wind to Hydrogen Earth Sci. Lab Name: Class: Date: Earth Sciences Middle School 8 hours Objective To explore wind and hydrogen fuel cell power sources and try to improve the power output of both. Materials

More information

STUDY OF DIFFERENT ISSUES AND CHALLENGES OF WIND ENERGY GENERATION

STUDY OF DIFFERENT ISSUES AND CHALLENGES OF WIND ENERGY GENERATION STUDY OF DIFFERENT ISSUES AND CHALLENGES OF WIND ENERGY GENERATION Sushant Rastogi 1, Abhishek Singh 2, Mon Prakash Upadhyay 3 1,2 B.Tech. (EE) Students, Invertis University Bareilly (India) 3 Assistant

More information

Coal is obtained from mines. It's a black solid material that must be transported by ships, trains or big trucks to the power plants where it's burnt

Coal is obtained from mines. It's a black solid material that must be transported by ships, trains or big trucks to the power plants where it's burnt Energy Sources Fossil Fuels Coal, Oil and Gas are called "fossil fuels" because they have been formed from the fossilized remains of prehistoric plants and animals. They provide most of the world's total

More information

Lesson 5 Energy. OAA Science Lesson 5 52

Lesson 5 Energy. OAA Science Lesson 5 52 Lesson 5 Energy OAA Science Lesson 5 52 Name Date Period Student Lesson 5: Energy Reference Sheet: Energy - is the ability to do work or cause change - can be changed from one form to another - cannot

More information

Sources of Electricity

Sources of Electricity Sources of Electricity S C I E N C E L I N K S 9 U N I T 4 T O P I C 4. 1 B R A I N P O P S : E N E R G Y S O U R C E S N U C L E A R E N E R G Y W I N D E N E R G Y S O L A R E N E R G Y F O S S I L F

More information

Use words from the box to answer the questions below. chemical electrical gravitational potential. kinetic light sound thermal

Use words from the box to answer the questions below. chemical electrical gravitational potential. kinetic light sound thermal Energy Transfer Exam Practice Q1. In a power station, coal can be used to generate electricity. Drayton Manor High School (a) Use words from the box to answer the questions below. chemical electrical gravitational

More information

Off-Shore Wind Blue Ribbon Panel Energy and Wind Systems 101 The Basics

Off-Shore Wind Blue Ribbon Panel Energy and Wind Systems 101 The Basics Off-Shore Wind Blue Ribbon Panel Energy and Wind Systems 101 The Basics 1 This Report is a summary of the general energy generation information and general information on wind energy systems. For more

More information

Wind Power Surpasses Hydroelectric in a Crucial Measure

Wind Power Surpasses Hydroelectric in a Crucial Measure Wind Power Surpasses Hydroelectric in a Crucial Measure By DIANE CARDWELL FEB. 9, 2017 Photo A wind turbine farm in Colorado City, Tex. Credit Spencer Platt/Getty Images The wind industry crossed an important

More information

Windmill Activity. The Volcanic Hazards & City Planning Board Game. Description: Using this Lesson: Background: Levels:

Windmill Activity. The Volcanic Hazards & City Planning Board Game. Description: Using this Lesson: Background: Levels: Windmill Activity The Volcanic Hazards & City Planning Board Game Levels: Grades 6-8 Content Areas: Engineering; Physics Lesson Time: 80 Minutes Next Generation Science Standards: MS - ETS 1 - MS - PS

More information

Welcome to Engineering Design Session #3

Welcome to Engineering Design Session #3 Welcome to Engineering Design Session #3 Review Job Expectations of a Professional Design Engineer Background Knowledge of Robotics Criteria of Windmill Challenge Key Steps of Engineering Design Process:

More information

Focus: This lesson will provide a basic overview of wind energy and wind turbines. Grade Level: 9 th Grade to 12 th Grade Time: 50 minutes

Focus: This lesson will provide a basic overview of wind energy and wind turbines. Grade Level: 9 th Grade to 12 th Grade Time: 50 minutes Wind Energy 101 Focus: This lesson will provide a basic overview of wind energy and wind turbines. Grade Level: 9 th Grade to 12 th Grade Time: 50 minutes 1. Have students brainstorm a list of ways we

More information

WIND POWER TECHONOLOGY

WIND POWER TECHONOLOGY WIND POWER TECHONOLOGY Department of Electrical & Electronics Engineering PACE Institute of Technology and Sciences, NH-5,ONGOLE, Prakasam(Dt Batch Members 13KQ1A0201 13KQ1A0206 13KQ1A0214 13KQ1A0217 13KQ1A0219

More information

Energy in Agricultural Systems

Energy in Agricultural Systems Energy in Agricultural Systems MODULE 5: WIND ENERGY IN AGRICULTURE Funding provided by The Minnesota Environment and Natural Resources Trust Fund as recommended by the Legislative-Citizen Commission on

More information

Renewable resources are materials that can be replaced through natural and/or human processes.

Renewable resources are materials that can be replaced through natural and/or human processes. Section 1: Sources of Energy Types of Energy¹ All the things we use every day to meet our needs and wants are provided through the use of natural resources. Natural resources are either renewable or nonrenewable.

More information

Pinwheel to Windmill. Grade Level: 4-5

Pinwheel to Windmill. Grade Level: 4-5 Pinwheel to Windmill Grade Level: 4-5 Lesson Overview Objectives: Students will be able to Explain where energy comes from and how we use it Define renewable and nonrenewable, and provide examples Preparation/Materials:

More information

Section 2: Sources of Energy

Section 2: Sources of Energy Section 2: Sources of Energy Types of Energy¹ All the things we use every day to meet our needs and wants are provided through the use of natural resources.natural resources are either renewable or nonrenewable.

More information

Wind. Wind Basics. The Daily Wind Cycle

Wind. Wind Basics. The Daily Wind Cycle Wind Electrieit7 Generation from Wind Where Wind is Harnessed >) Types of Wind Turbines ~> History of Wind Power )> Wind Energy & the Environment Wind Basics Energy from Moving Air How Uneven Heating of

More information

Exploring Energy Science Texts for Close Reading

Exploring Energy Science Texts for Close Reading Science Texts for Close Reading Solar Energy Solar energy is a way to harness sunlight for heating or electricity. There are different ways to convert sunlight into usable energy. Concentrated solar power

More information

Renewable & Low Carbon Technologies

Renewable & Low Carbon Technologies Services and Utilities Renewable & Low Carbon Technologies An overview Recommended Reading BSRIA Illustrated Guide to Renewable Technologies. What do we mean by renewable technologies? Generating electricity

More information

"Coal, gas and oil will not be the three kings of the energy world for ever. It is no longer folly to look up to the sun and wind, down into the

Coal, gas and oil will not be the three kings of the energy world for ever. It is no longer folly to look up to the sun and wind, down into the It Blows You Away "Coal, gas and oil will not be the three kings of the energy world for ever. It is no longer folly to look up to the sun and wind, down into the sea's waves" Introduction Energy is a

More information

A Seminar report On

A Seminar report On A Seminar report On Tidal Energy Submitted in partial fulfillment of the requirement for the award of degree Of Computer Science SUBMITTED TO: SUBMITTED BY: www.studymafia.org www.studymafia.org Preface

More information

Photovoltaic cells transfer light energy to electrical energy. The electricity company pays the householder for the energy transferred.

Photovoltaic cells transfer light energy to electrical energy. The electricity company pays the householder for the energy transferred. Q1.Solar panels are often seen on the roofs of houses. (a) Describe the action and purpose of a solar panel............. (b) Photovoltaic cells transfer light energy to electrical energy. In the UK, some

More information

Unit 2 Lesson 4 Effects of Energy Transfer. Copyright Houghton Mifflin Harcourt Publishing Company

Unit 2 Lesson 4 Effects of Energy Transfer. Copyright Houghton Mifflin Harcourt Publishing Company Check the Source! How do people use energy? Energy is the capacity to do work. People use energy to heat and cool their homes, provide light, manufacture goods, produce and prepare food, and move vehicles.

More information

Lesson Plan Time Requirements: Objectives: Materials: Methods: Lesson Information: Clean, Green Power (Target: Grades 1-4)

Lesson Plan Time Requirements: Objectives: Materials: Methods: Lesson Information: Clean, Green Power (Target: Grades 1-4) Lesson Plan 050106 Clean, Green Power (Target: Grades 1-4) Time Requirements: 1. 30-minutes during science or reading time Objectives: 1. Create awareness for alternative energies 2. Create awareness for

More information

Technology Exploration-II

Technology Exploration-II Technology Exploration-II Module 2 Renewable Energy PREPARED BY Academic Services Unit January 2012 Institute of Applied Technology, 2012 Module Objectives Module 2: Renewable Energy After the completion

More information

Period 25: Energy from Wind and Biomass

Period 25: Energy from Wind and Biomass Period 25: Energy from Wind and Biomass Activity 25.1: Causes of Winds 1) The Earth s winds a) What causes wind circulation from the equator to the high latitudes? The uneven heating of the Earth s surface

More information

Wind 101. An Introduction to Wind Energy Richard Lawrence Cape & Islands Self-Reliance

Wind 101. An Introduction to Wind Energy Richard Lawrence Cape & Islands Self-Reliance Wind 101 An Introduction to Wind Energy Richard Lawrence Cape & Islands Self-Reliance Windmills have fascinated us for centuries and will continue to do so. Like campfires or falling water, they re mesmerizing;

More information

Digging Deeper SOLAR ENERGY. Forms of Solar Energy

Digging Deeper SOLAR ENERGY. Forms of Solar Energy a) Is the wind speed the same in the morning; the afternoon; the evening? b) Move your anemometer to another location. Is it windier in other places? c) Do trees or buildings block the wind? 7. Back in

More information

Explain how energy is conserved within a closed system. Explain the law of conservation of energy.

Explain how energy is conserved within a closed system. Explain the law of conservation of energy. Section 3 Conservation of Energy Objectives Explain how energy is conserved within a closed system. Explain the law of conservation of energy. Give examples of how thermal energy is always a result of

More information

TECHNIQUES FOR IMPROVING THE EFFICIENCY OF WIND TURBINES Rajnish Anand 1, Himanshu Kumar Mohit 2.

TECHNIQUES FOR IMPROVING THE EFFICIENCY OF WIND TURBINES Rajnish Anand 1, Himanshu Kumar Mohit 2. International Journal of Mechanical, Robotics and Production Engineering. Volume VI, Special Issue, 2016, ISSN 2349-3534, www.ijmpe.com, email editor@ijmpe.com TECHNIQUES FOR IMPROVING THE EFFICIENCY OF

More information

GE Power & Water Renewable Energy. Introducing GE s 2.85 MW Wind Turbines Increased customer value through product evolution

GE Power & Water Renewable Energy. Introducing GE s 2.85 MW Wind Turbines Increased customer value through product evolution GE Power & Water Renewable Energy Introducing GE s 2.85 MW Wind Turbines 2.85-100 2.85-103 Increased customer value through product evolution Introducing GE s 2.85-100 and 2.85-103 Product evolution. It

More information

RENEWABLE ENERGY SYSTEMS WIND ENERGY (1) Prof. Ibrahim El-mohr Prof. Ahmed Anas. Lec. 5

RENEWABLE ENERGY SYSTEMS WIND ENERGY (1) Prof. Ibrahim El-mohr Prof. Ahmed Anas. Lec. 5 RENEWABLE ENERGY SYSTEMS WIND ENERGY (1) Prof. Ibrahim El-mohr Prof. Ahmed Anas Lec. 5 Outline 2 Wind Energy Outlook Introduction to Wind Energy Conversion History of Wind Turbines Classifications of Wind

More information

Aerodynamic Analysis of Horizontal Axis Wind Turbine Using Blade Element Momentum Theory for Low Wind Speed Conditions

Aerodynamic Analysis of Horizontal Axis Wind Turbine Using Blade Element Momentum Theory for Low Wind Speed Conditions Aerodynamic Analysis of Horizontal Axis Wind Turbine Using Blade Element Momentum Theory for Low Wind Speed Conditions Esam Abubaker Efkirn, a,b,* Tholudin Mat Lazim, a W. Z. Wan Omar, a N. A. R. Nik Mohd,

More information

Energy. Solar Energy. Energy Resource A natural resource that. humans use to generate energy. Can be renewable are nonrenewable.

Energy. Solar Energy. Energy Resource A natural resource that. humans use to generate energy. Can be renewable are nonrenewable. Energy Solar Energy Energy Resource A natural resource that humans use to generate energy. Can be renewable are nonrenewable. energy sources are replaced by natural processes at least as quickly as they

More information

WIND TURBINE SYSTEMS- REVIEW & RESEARCH PROPOSAL

WIND TURBINE SYSTEMS- REVIEW & RESEARCH PROPOSAL WIND TURBINE SYSTEMS- REVIEW & RESEARCH PROPOSAL JANUARY 25, 2015 Objective: The aim of the present research report is to provide a glimpse of the wind energy potential and introduce a research methodology

More information

Electric Power from Sun and Wind

Electric Power from Sun and Wind Electric Power from Sun and Wind Fred Loxsom Eastern Connecticut State University Willimantic, Connecticut Many environmental problems are related to energy consumption. A college-level environmental science

More information

Environmental Impact Assessment

Environmental Impact Assessment The Project Hoben International Ltd proposes to develop a single 500kW wind turbine at their Manystones Lane site near Brassington. The turbine will be located approximately 350m to the south east of the

More information

ScienceDirect. An experimental study on the performance of Savonius wind turbines related with the number of blades

ScienceDirect. An experimental study on the performance of Savonius wind turbines related with the number of blades Available online at www.sciencedirect.com ScienceDirect Energy Procedia 68 (2015 ) 297 304 2nd International Conference on Sustainable Energy Engineering and Application, ICSEEA 2014 An experimental study

More information

Generating Electricity

Generating Electricity Worksheet 3 Generating Electricity In most power stations, electricity is generated by burning fuels. Coal, oil and natural gas are the common fuels for generating electricity. Major parts of a power station

More information

KS3 Renewable Energy. EcoStyle.co.uk. Introductory Presentation

KS3 Renewable Energy. EcoStyle.co.uk. Introductory Presentation Introductory Presentation Energy Energy is a vital to our way of life. Here are a some examples of where energy is used: Homes: central heating, powering electrical appliances, and heating water Public

More information

Small Wind Electric Systems. A U.S. Consumer s Guide

Small Wind Electric Systems. A U.S. Consumer s Guide A U.S. Consumer s Guide 1 A U.S. Consumer s Guide Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for affordable and reliable sources

More information

Measuring Electricity Class Activity

Measuring Electricity Class Activity Measuring Electricity Class Activity Materials Needed: 1. 6 Kill A Watt devices (note: these can be obtained from a variety of sources, i.e., local hardware stores, internet [average cost is $19.99; available

More information

Reliant on fossil fuels (coal, oil, natural gas)

Reliant on fossil fuels (coal, oil, natural gas) Reliant on fossil fuels (coal, oil, natural gas) Those will not last forever, need to have a back up plan Using fossil fuels creates greenhouse gases, which impact climate change Renewable energy is better

More information

Section 1: Renewable Energy Today

Section 1: Renewable Energy Today Section 1: Renewable Energy Today Preview Bellringer Objectives Renewable Energy Solar Energy-Power from the Sun Passive Solar Heating Active Solar Heating Photovoltaic Cells Section 1: Renewable Energy

More information

Table of contents. 1 What is alternative energy? 2 Electricity and the environment: Why should we care? 3 Alternative technologies

Table of contents. 1 What is alternative energy? 2 Electricity and the environment: Why should we care? 3 Alternative technologies ALTERNATIVE ENERGY Table of contents 1 What is alternative energy? 2 Electricity and the environment: Why should we care? 2.1 Environmental factors 2.2 Conventional energy sources 3 Alternative technologies

More information

7/2/2017. On the energy concept. Outline. On the energy concept: Society. Description of main idea. How to harvest wind energy

7/2/2017. On the energy concept. Outline. On the energy concept: Society. Description of main idea. How to harvest wind energy Outline Description of main idea On the energy concept Wind energy How to harvest wind energy Wind energy harnessing HAWT Wind Energy Control By: Majid Firouzbahrami Supervisor: Dr. Amin Nobakhti 2 On

More information

FIGURE L22.1 A long line at a gas station in Maryland as a result of the 1979 oil crisis

FIGURE L22.1 A long line at a gas station in Maryland as a result of the 1979 oil crisis Conservation of Energy and Wind Turbines How Can We Maximize the Amount of Electrical Energy That Will Be Generated by a Wind Turbine Based on the Design of Its Blades? Lab Handout Lab 22. Conservation

More information

Judging Guide & Sheets

Judging Guide & Sheets Judging Guide & Sheets KidWind Challenge Advisory Panel We would like to thank the KidWind Challenge Advisory Panel for their past and continued service in helping KidWind go further than we ever thought

More information

Refresh. What is non-renewable energy? What are some examples? What are some good things about renewable energy?

Refresh. What is non-renewable energy? What are some examples? What are some good things about renewable energy? Refresh What is non-renewable energy? What are some examples? What are some good things about renewable energy? What are some bad things about renewable energy? Renewable Energy Sources https://sites.google.com/site/sciencesvn3e/home/chapter-4-using-energy-in-our-lives

More information

Fabrication and Study of the Parameters Affecting the Efficiency of a Bladeless Turbine

Fabrication and Study of the Parameters Affecting the Efficiency of a Bladeless Turbine 2017 IJSRST Volume 3 Issue 3 Print ISSN: 2395-6011 Online ISSN: 2395-602X Themed Section: Engineering and Technology Fabrication and Study of the Parameters Affecting the Efficiency of a Bladeless Turbine

More information

Electricity generation by using high velocity wind produced due to motion of vehicle.

Electricity generation by using high velocity wind produced due to motion of vehicle. Electricity generation by using high velocity wind produced due to motion of vehicle. Vaibhav Rangrao Kumbhar 1, Pushkar Rajendra Bahirat 2, Atharva Chandrashekhar Kale 3, Sagar Vitthal Garad 4 1,2,4Scholar,

More information

SAMPLE PAGE. Sustainable Energy Sources By: Sue Peterson

SAMPLE PAGE. Sustainable Energy Sources By: Sue Peterson Page 38 Objective sight words (consumption, terrain, integral, orbit, originated, contemporary, remote); concepts (sustainable, renewable, photovoltaics, gasification) Vocabulary consumption originated

More information

DETERMINATION OF POWER GENERATION CAPACITY OF WIND TURBINE

DETERMINATION OF POWER GENERATION CAPACITY OF WIND TURBINE DETERMINATION OF POWER GENERATION CAPACITY OF WIND TURBINE HARMON EBI OKILO AND ONITA CHUKWUKA LOVEDAY Department of Electrical Engineering, Federal Polytechnic, Ekowe, Bayelsa State, Nigeria. Abstract

More information

Wind energy is available in the country situated on bank of the sea. Both type of plant large scale and small scale can be constructed.

Wind energy is available in the country situated on bank of the sea. Both type of plant large scale and small scale can be constructed. WIND POWER PLANT INRODUCTION- Energy is an important part of any country s economy. Today major energy need in a country is achieved by using conventional sources of energy. It includes coal, natural gas,

More information

University of Tennessee EF 152 A 2. The Wind O Nator. Team A 2 7. Richard Ammons, Rachel Dunlap, Kayla Hughes, and Uchung Whang 12/2/2009

University of Tennessee EF 152 A 2. The Wind O Nator. Team A 2 7. Richard Ammons, Rachel Dunlap, Kayla Hughes, and Uchung Whang 12/2/2009 1 University of Tennessee EF 152 A 2 The Wind O Nator Team A 2 7 Richard Ammons, Rachel Dunlap, Kayla Hughes, and Uchung Whang 12/2/2009 2 Abstract The main objective was to create a generator that was

More information

FOSSIL FUELS THEY PROVIDE AROUND 66% OF THE WORLD'S ELECTRICAL POWER, AND 95% OF THE WORLD'S TOTAL ENERGY DEMANDS.

FOSSIL FUELS THEY PROVIDE AROUND 66% OF THE WORLD'S ELECTRICAL POWER, AND 95% OF THE WORLD'S TOTAL ENERGY DEMANDS. ENERGY SOURCES FOSSIL FUELS COAL, OIL AND NATURAL GAS ARE CALLED "FOSSIL FUELS" BECAUSE THEY HAVE BEEN FORMED FROM THE FOSSILIZED REMAINS OF PREHISTORIC PLANTS AND ANIMALS. THEY PROVIDE AROUND 66% OF THE

More information

Sixth Grade Energy and Conservation Unit Parent Background Information

Sixth Grade Energy and Conservation Unit Parent Background Information Sixth Grade Energy and Conservation Unit Parent Background Information WHAT IS ENERGY? The nature of energy is very complex, but it is best described by these characteristics: energy is the ability to

More information

Topic: Alternative energy A-level exam

Topic: Alternative energy A-level exam ALTERNATIVE ENERGY Name: Schneeberger Bernhard Class: 3 / 4 AEB 2000 / 2001 Examiner: Prof. Wurzinger Riedl GREEN Seite 1 von 1 Table of contents 1 What is alternative energy? 2 Electricity and the environment:

More information

Name: Date: Block: IP 670 Conservation of Energy Notes

Name: Date: Block: IP 670 Conservation of Energy Notes Name: Date: Block: IP 670 Conservation of Energy Notes The Law of Conservation of Energy states! energy cannot be or! Energy can only be changed in form (transformed from one type to another) For a bouncing

More information