Cre Stoplight with Living Colors is a faster, brighter

Size: px
Start display at page:

Download "Cre Stoplight with Living Colors is a faster, brighter"

Transcription

1 Cre Stoplight with Living Colors is a faster, brighter reporter for Cre recombinase. Drago A Guggiana-Nilo 1, Anne Marie Quinn 2,Thomas E. Hughes 1 1 Department of Cell Biology and Neuroscience, Montana State University, Bozeman MT Montana Molecular, LLC, Bozeman MT Corresponding author address: Anne Marie Quinn: amq@montanamolecular.com - 1 -

2 Introduction Cre recombinase is a powerful and widely used tool for manipulating the genome. The enzyme targets areas of the chromosome that are flanked by specific loxp recognition sites and can either delete genes, or release new gene expression in a transgenic animal. Cre can introduce mutations that can be specifically activated (the inducible knockout), or targeted to specific cells. Many new genetic strains of mice have become available that either express Cre recombinase in particular cells and tissues, or that harbor the loxp sites that Cre recognizes (1). The Cre enzyme is a 38kD recombinase that recognizes a 34 bp sequence, the loxp site, in the target DNA. By a series of staggered cuts, recombination occurs between the two loxp sites and the enzyme releases the DNA. When the loxp sites are positioned in opposite orientations, the intervening DNA is inverted, and when the sites are oriented head to tail, the DNA in between is excised. Cre is powerful because the reaction it catalyzes is robust, it does not require additional proteins, it can manipulate large regions of the genome, and it can be targeted to specific cell types (2). The ability to detect exactly which cells have been manipulated by Cre, in any experimental setting, is essential to verifying and interpreting Cre-mediated events. Using color as a reporter The Cre Stoplight plasmid switches color to report Cre activity by conditionally expressing two different fluorescent proteins (3). The original reporter uses the red fluorescent protein DsRed (4) followed by a transcription terminator. These two elements are flanked by loxp and loxh sites, which are followed by - 2 -

3 egfp (enhanced Green Fluorescent Protein). Cells transiently transfected with only the original Cre Stoplight produce red fluorescence. However, if Cre is also expressed, DsRed is excised, along with the transcription terminator, and egfp is expressed. The loxp and variant loxh sites make this reaction irreversible (5). The original Cre Stoplight has been widely used since it was published (6-8) and we recently reengineered the plasmid to use Living Colors fluorescent proteins. Cre Stoplight with Living Colors is brighter, faster and more useful. We improved the original Cre Stoplight by 1) using optimized fluorescent proteins that mature quickly and produce strong fluorescence, 2) swapping the arrangement of the fluorescent proteins, 3) removing superfluous elements of the plasmid. The original Cre Stoplight expresses a tetrameric DsRed (9) in the absence of Cre. The arrangement of red as the default and green as the Cre indicator limits the utility of the original reporter in the context of cell lines and animal strains that already contain a green fluorescent protein (10). To address this, we inverted the order of the fluorescent proteins such that green fluorescence would be expressed in cells without Cre, and red would indicate functional Cre. After testing a series of fluorescent proteins, we identified Zsgreen1 (4) and Mcherry (11) to be the brightest combinations in this expression context. The original Cre Stoplight also contained a variety of arbitrary tags, cloning sites, and vector sequence that had accumulated during the history of the plasmid. We removed all of these extra elements to create a more compact and efficient reporter system

4 Conclusions A new and improved version of the Cre Stoplight reporter is now available that is brighter, faster and more compatible with current techniques. Cre Stoplight with Living Colors employs ZsGreen1 and mcherry to yield bright fluorescence 24 hours post transfection. This new version of the original reporter detects Cre activity both qualitatively and quantitatively in living cells when co-expressed with the Cre enzyme. References 1. J. Livet, T. A. Weissman, H. Kang, R. W. Draft, et al., Nature 450, (2007). 2. A. Nagy, Genesis 26, (2000). 3. Y. S. Yang, T. E. Hughes, Biotechniques 31, 1036, 1038, (2001). 4. M. V. Matz, A. F. Fradkov, Y. A. Labas, A. P. Savitsky, et al., Nat Biotechnol 17, (1999). 5. F. Buchholz, A. F. Stewart, Nat Biotechnol 19, (2001). 6. G. Briones, D. Hofreuter, J. E. Galán, Infect Immun 74, (2006). 7. R. G. Harris, E. L. Herzog, E. M. Bruscia, J. E. Grove, et al., Science 305, 90-3 (2004). 8. H. Li, X. Zhou, D. R. Davis, D. Xu, C. D. Sigmund, Am J Physiol Renal Physiol 294, F (2008). 9. G. S. Baird, D. A. Zacharias, R. Y. Tsien, Proc Natl Acad Sci U S A 97, (2000)

5 10. T. Yoshimizu, N. Sugiyama, M. De Felice, Y. I. Yeom, et al., Development, Growth & Differentiation 41, (1999). 11. N. C. Shaner, R. E. Campbell, P. A. Steinbach, B. N. G. Giepmans, et al., Nature biotechnology 22, (2004). BGH poly A CMV promoter loxh ZsGreen1 loxp site T7 transcription termination A mcherry SV40 poly A B 100 pg of pbs hrs A.T. Control - No pbs hrs A.T. C D 1 ug of pbs hrs A.T. 1 ug of pbs hrs A.T. Figure 1. Cre Stoplight 2.4 with Living Colors is a brighter option to the original Cre Stoplight. Above: DNA map of the improved Cre Stoplight. Below: testing Cre Stoplight ng of the Cre Stoplight 2.4 were cotransfected into HEK 293 cells with varying amounts of the Cre expression vector, and imaged at different times after transfection. A: Control experiment, no Cre expression vector added, 24 hours after transfection; B: 100 pg of Cre -5-

6 expression vector added, 24 hours after transfection; C: 1 µg of Cre expression vector added, 24 hours after transfection; D: 1 µg of Cre expression vector added, 48 hours after transfection

Introducing new DNA into the genome requires cloning the donor sequence, delivery of the cloned DNA into the cell, and integration into the genome.

Introducing new DNA into the genome requires cloning the donor sequence, delivery of the cloned DNA into the cell, and integration into the genome. Key Terms Chapter 32: Genetic Engineering Cloning describes propagation of a DNA sequence by incorporating it into a hybrid construct that can be replicated in a host cell. A cloning vector is a plasmid

More information

Supplementary Figure S1. Np95 interacts with de novo methyltransferases Dnmt3a and 3b. (A) Co-immunoprecipitation of endogenous Dnmt3a2 (left and

Supplementary Figure S1. Np95 interacts with de novo methyltransferases Dnmt3a and 3b. (A) Co-immunoprecipitation of endogenous Dnmt3a2 (left and Supplementary Figure S1. Np95 interacts with de novo methyltransferases Dnmt3a and 3b. (A) Co-immunoprecipitation of endogenous Dnmt3a2 (left and right), Dnmt3b isoforms (left) and Dnmt1 (right) with GFP-Np95

More information

Genome manipulation by homologous recombination in Drosophila Xiaolin Bi and Yikang S. Rong Date received (in revised form): 9th May 2003

Genome manipulation by homologous recombination in Drosophila Xiaolin Bi and Yikang S. Rong Date received (in revised form): 9th May 2003 Xiaolin Bi is a post doctoral research fellow at the Laboratory of Molecular Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA. Yikang S. Rong is the principal

More information

Molecular Biology Techniques Supporting IBBE

Molecular Biology Techniques Supporting IBBE Molecular Biology Techniques Supporting IBBE Jared Cartwright Protein Production Lab Head Contact Details: email jared.cartwright@york.ac.uk Phone 01904 328797 Presentation Aims Gene synthesis Cloning

More information

Supplementary Figures and Figure legends

Supplementary Figures and Figure legends Supplementary Figures and Figure legends 3 Supplementary Figure 1. Conditional targeting construct for the murine Satb1 locus with a modified FLEX switch. Schematic of the wild type Satb1 locus; the conditional

More information

ksierzputowska.com Research Title: Using novel TALEN technology to engineer precise mutations in the genome of D. melanogaster

ksierzputowska.com Research Title: Using novel TALEN technology to engineer precise mutations in the genome of D. melanogaster Research Title: Using novel TALEN technology to engineer precise mutations in the genome of D. melanogaster Research plan: Specific aims: 1. To successfully engineer transgenic Drosophila expressing TALENs

More information

Color-Switch CRE recombinase stable cell line

Color-Switch CRE recombinase stable cell line Color-Switch CRE recombinase stable cell line Catalog Number Product Name / Description Amount SC018-Bsd CRE reporter cell line (Bsd): HEK293-loxP-GFP- RFP (Bsd). RFP" cassette with blasticidin antibiotic

More information

Experimental genetics - 2 Partha Roy

Experimental genetics - 2 Partha Roy Partha Roy Experimental genetics - 2 Making genetically altered animal 1) Gene knock-out k from: a) the entire animal b) selected cell-type/ tissue c) selected cell-type/tissue at certain time 2) Transgenic

More information

species- Mus musculus Engineering the mouse genome David Ornitz

species- Mus musculus Engineering the mouse genome David Ornitz species- Mus musculus Engineering the mouse genome David Ornitz How do we analyze gene function in mice? Gene addition (transgenic approach) Permits GOF, DN and knockdown experiments Ectopic (spatial or

More information

CRISPR/Cas9 Gene Editing Tools

CRISPR/Cas9 Gene Editing Tools CRISPR/Cas9 Gene Editing Tools - Guide-it Products for Successful CRISPR/Cas9 Gene Editing - Why choose Guide-it products? Optimized methods designed for speed and ease of use Complete kits that don t

More information

Certificate of Analysis

Certificate of Analysis Certificate of Analysis Catalog No. Amount Lot Number 631986 10 μg Specified on product label. Product Information plvx-ef1α-mcherry-n1 is a lentiviral expression vector that can be used to generate high-titer

More information

Non-coding Function & Variation, MPRAs. Mike White Bio5488 3/5/18

Non-coding Function & Variation, MPRAs. Mike White Bio5488 3/5/18 Non-coding Function & Variation, MPRAs Mike White Bio5488 3/5/18 Outline MONDAY Non-coding function and variation The barcode Basic versions of MRPA technology WEDNESDAY More varieties of MRPAs Some key

More information

SUPPLEMENTARY NOTE 2. Supplememtary Note 2, Wehr et al., Monitoring Regulated Protein-Protein Interactions Using Split-TEV 1

SUPPLEMENTARY NOTE 2. Supplememtary Note 2, Wehr et al., Monitoring Regulated Protein-Protein Interactions Using Split-TEV 1 SUPPLEMENTARY NOTE 2 A recombinase reporter system for permanent reporter activation We made use of the Cre-loxP recombinase system for a maximal amplification and complete kinetic uncoupling within single

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature10163 Supplementary Table 1 Efficiency of vector construction. Process wells recovered efficiency (%) Recombineering* 480 461 96 Intermediate plasmids 461 381 83 Recombineering efficiency

More information

Biosc10 schedule reminders

Biosc10 schedule reminders Biosc10 schedule reminders Review of molecular biology basics DNA Is each person s DNA the same, or unique? What does DNA look like? What are the three parts of each DNA nucleotide Which DNA bases pair,

More information

Chapter 6 - Molecular Genetic Techniques

Chapter 6 - Molecular Genetic Techniques Chapter 6 - Molecular Genetic Techniques Two objects of molecular & genetic technologies For analysis For generation Molecular genetic technologies! For analysis DNA gel electrophoresis Southern blotting

More information

CRISPR/Cas9 Gene Editing Tools

CRISPR/Cas9 Gene Editing Tools CRISPR/Cas9 Gene Editing Tools - Separations Simply Spectacular INDELS Identify indels Determine if one or both copies of your gene have indels The Guide-it Genotype Confirmation Kit: Simple detection

More information

A. Incorrect! This statement is true. Transposable elements can cause chromosome rearrangements.

A. Incorrect! This statement is true. Transposable elements can cause chromosome rearrangements. Genetics - Problem Drill 17: Transposable Genetic Elements No. 1 of 10 1. Which of the following statements is NOT true? (A) Transposable elements can cause chromosome rearrangements. (B) Transposons can

More information

Biological consequences of site specific recombination: integration, excision, deletion

Biological consequences of site specific recombination: integration, excision, deletion Biological consequences of site specific recombination: integration, excision, deletion The types of DNA rearrangements promoted by a large number of site specific recombination systems and their physiological

More information

Genome research in eukaryotes

Genome research in eukaryotes Functional Genomics Genome and EST sequencing can tell us how many POTENTIAL genes are present in the genome Proteomics can tell us about proteins and their interactions The goal of functional genomics

More information

Chapter 20 Recombinant DNA Technology. Copyright 2009 Pearson Education, Inc.

Chapter 20 Recombinant DNA Technology. Copyright 2009 Pearson Education, Inc. Chapter 20 Recombinant DNA Technology Copyright 2009 Pearson Education, Inc. 20.1 Recombinant DNA Technology Began with Two Key Tools: Restriction Enzymes and DNA Cloning Vectors Recombinant DNA refers

More information

Certificate of Analysis

Certificate of Analysis Certificate of Analysis Table of Contents Product Information... 1 Description... 2 Location of Features... 3 Additional Information... 3 Quality Control Data... 4 Catalog No. Amount Lot Number 631972

More information

Genome Sequence Assembly

Genome Sequence Assembly Genome Sequence Assembly Learning Goals: Introduce the field of bioinformatics Familiarize the student with performing sequence alignments Understand the assembly process in genome sequencing Introduction:

More information

BIOTECHNOLOGY AGRICULTURE

BIOTECHNOLOGY AGRICULTURE Syllabus BIOTECHNOLOGY AGRICULTURE - 73534 Last update 19-10-2017 HU Credits: 3 Degree/Cycle: 2nd degree (Master) Responsible Department: biotechnology Academic year: 0 Semester: 2nd Semester Teaching

More information

TRANSGENIC ANIMALS. -transient transfection of cells -stable transfection of cells. - Two methods to produce transgenic animals:

TRANSGENIC ANIMALS. -transient transfection of cells -stable transfection of cells. - Two methods to produce transgenic animals: TRANSGENIC ANIMALS -transient transfection of cells -stable transfection of cells - Two methods to produce transgenic animals: 1- DNA microinjection - random insertion 2- embryonic stem cell-mediated gene

More information

CHAPTERS 16 & 17: DNA Technology

CHAPTERS 16 & 17: DNA Technology CHAPTERS 16 & 17: DNA Technology 1. What is the function of restriction enzymes in bacteria? 2. How do bacteria protect their DNA from the effects of the restriction enzymes? 3. How do biologists make

More information

pbroad3-lacz An optimized vector for mouse and rat transgenesis Catalog # pbroad3-lacz

pbroad3-lacz An optimized vector for mouse and rat transgenesis Catalog # pbroad3-lacz pbroad3-lacz An optimized vector for mouse and rat transgenesis Catalog # pbroad3-lacz For research use only Version # 03B04-MT PRODUCT INFORMATION Content: - 20 µg of pbroad3-lacz provided as lyophilized

More information

Biotechnology. Chapter 20. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Biotechnology. Chapter 20. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 20 Biotechnology PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Copyright

More information

Supplemental Information. Role of phosphatase of regenerating liver 1 (PRL1) in spermatogenesis

Supplemental Information. Role of phosphatase of regenerating liver 1 (PRL1) in spermatogenesis Supplemental Information Role of phosphatase of regenerating liver 1 (PRL1) in spermatogenesis Yunpeng Bai ;, Lujuan Zhang #, Hongming Zhou #, Yuanshu Dong #, Qi Zeng, Weinian Shou, and Zhong-Yin Zhang

More information

Genome Editing: Cas9 Stable Cell Lines for CRISPR sgrna Validation, Library Screening, and More. Ed Davis, Ph.D.

Genome Editing: Cas9 Stable Cell Lines for CRISPR sgrna Validation, Library Screening, and More. Ed Davis, Ph.D. TECHNICAL NOTE Genome Editing: Cas9 Stable Cell Lines for CRISPR sgrna Validation, Library Screening, and More Introduction Ed Davis, Ph.D. The CRISPR-Cas9 system has become greatly popular for genome

More information

Hybridization - the act or process of mating organisms of varieties or species to create a hybrid. Insecticide crops

Hybridization - the act or process of mating organisms of varieties or species to create a hybrid. Insecticide crops Genetic Engineering Genetic engineering is the alteration of genetic code by means, and is therefore different from traditional selective breeding. Only allowing desired characteristics to reproduce. Scorpion

More information

Supplementary Information for Synthetic circuits integrating logic and memory in living cells

Supplementary Information for Synthetic circuits integrating logic and memory in living cells Supplementary Information for Synthetic circuits integrating logic and memory in living cells Piro Siuti, John Yazbek and Timothy K. Lu a b AND + None AND + AHL c d AND + atc AND + atc GFP Supplementary

More information

Adenoviral Expression Systems. Lentivirus is not the only choice for gene delivery. Adeno-X

Adenoviral Expression Systems. Lentivirus is not the only choice for gene delivery. Adeno-X Adenoviral Expression Systems Lentivirus is not the only choice for gene delivery 3 Adeno-X Why choose adenoviral gene delivery? Table I: Adenoviral vs. Lentiviral Gene Delivery Lentivirus Adenovirus Infects

More information

Molecular Cell Biology - Problem Drill 11: Recombinant DNA

Molecular Cell Biology - Problem Drill 11: Recombinant DNA Molecular Cell Biology - Problem Drill 11: Recombinant DNA Question No. 1 of 10 1. Which of the following statements about the sources of DNA used for molecular cloning is correct? Question #1 (A) cdna

More information

The RRPA knock-in allele was generated by homologous recombination in TC1 ES cells.

The RRPA knock-in allele was generated by homologous recombination in TC1 ES cells. Supplemental Materials Materials & Methods Generation of RRPA and RAPA Knock-in Mice The RRPA knock-in allele was generated by homologous recombination in TC1 ES cells. Targeted ES clones in which the

More information

Certificate of Analysis

Certificate of Analysis Certificate of Analysis Table of Contents Product Information... 1 Description... 2 Location of Features... 3 Additional Information... 3 Quality Control Data... 4 Catalog No. Amount Lot Number 631982

More information

Mouse Engineering Technology. Musculoskeletal Research Center 2016 Summer Educational Series David M. Ornitz Department of Developmental Biology

Mouse Engineering Technology. Musculoskeletal Research Center 2016 Summer Educational Series David M. Ornitz Department of Developmental Biology Mouse Engineering Technology Musculoskeletal Research Center 2016 Summer Educational Series David M. Ornitz Department of Developmental Biology Core service and new technologies Mouse ES core Discussions

More information

Construct Design and Cloning Guide for Cas9-triggered homologous recombination

Construct Design and Cloning Guide for Cas9-triggered homologous recombination Construct Design and Cloning Guide for Cas9-triggered homologous recombination Written by Dan Dickinson (ddickins@live.unc.edu) and last updated December 2013. Reference: Dickinson DJ, Ward JD, Reiner

More information

13-1 Changing the Living World

13-1 Changing the Living World 13-1 Changing the Living World In the past, variation was limited to the variations already in nature or random variations that resulted from mutations. Now, scientists can change DNA and swap genes from

More information

A Lot of Cutting and Pasting Going on Here Recombinant DNA and Biotechnology

A Lot of Cutting and Pasting Going on Here Recombinant DNA and Biotechnology A Lot of Cutting and Pasting Going on Here Recombinant DNA and Biotechnology How Are Large DNA Molecules Analyzed? Naturally occurring enzymes that cleave and repair DNA are used in the laboratory to manipulate

More information

Schematic representation of the endogenous PALB2 locus and gene-disruption constructs

Schematic representation of the endogenous PALB2 locus and gene-disruption constructs Supplementary Figures Supplementary Figure 1. Generation of PALB2 -/- and BRCA2 -/- /PALB2 -/- DT40 cells. (A) Schematic representation of the endogenous PALB2 locus and gene-disruption constructs carrying

More information

Bart Williams, PhD Van Andel Research Center

Bart Williams, PhD Van Andel Research Center A History of Genome Editing in the Laboratory Implications for Translational Applications Bart Williams, PhD Van Andel Research Center Introduction by Matthew Denenberg, MD DeVos Childrens Hospital Disclosures:

More information

Genetics and Biotechnology. Section 1. Applied Genetics

Genetics and Biotechnology. Section 1. Applied Genetics Section 1 Applied Genetics Selective Breeding! The process by which desired traits of certain plants and animals are selected and passed on to their future generations is called selective breeding. Section

More information

Genome annotation & EST

Genome annotation & EST Genome annotation & EST What is genome annotation? The process of taking the raw DNA sequence produced by the genome sequence projects and adding the layers of analysis and interpretation necessary

More information

Supplemental Figure 1

Supplemental Figure 1 Supplemental Figure 1 Supplemental figure 1. Generation of gene targeted mice expressing an anti-id BCR. (A,B) Generation of the VDJ aid H KI mouse. (A) Targeting Construct. Top: Targeting construct for

More information

Genome editing. Knock-ins

Genome editing. Knock-ins Genome editing Knock-ins Experiment design? Should we even do it? In mouse or rat, the HR-mediated knock-in of homologous fragments derived from a donor vector functions well. However, HR-dependent knock-in

More information

Molecular Genetics of Disease and the Human Genome Project

Molecular Genetics of Disease and the Human Genome Project 9 Molecular Genetics of Disease and the Human Genome Project Fig. 1. The 23 chromosomes in the human genome. There are 22 autosomes (chromosomes 1 to 22) and two sex chromosomes (X and Y). Females inherit

More information

Applicazioni biotecnologiche

Applicazioni biotecnologiche Applicazioni biotecnologiche Analisi forense Sintesi di proteine ricombinanti Restriction Fragment Length Polymorphism (RFLP) Polymorphism (more fully genetic polymorphism) refers to the simultaneous occurrence

More information

Custom AAV Vector Production Request Form

Custom AAV Vector Production Request Form Oregon National Primate Research Center ONPRC Request Date: Mail Code L584-505 N.W. 185th Avenue, Beaverton, OR 97006 Lab Tel: 503-629-4042, Web: goo.gl/3kyai Custom AAV Vector Production Request Form

More information

How To Choose a GeneCopoeia Luciferase System. Ed Davis, Ph.D.

How To Choose a GeneCopoeia Luciferase System. Ed Davis, Ph.D. TECHNICAL NOTE How To Choose a GeneCopoeia Luciferase System Ed Davis, Ph.D. Introduction Luciferase reporter systems are invaluable tools for several applications, including regulation of gene expression

More information

Red Type Indicates Unique Site

Red Type Indicates Unique Site 3600 G0605 pscaavmcmvmcsbghpa Plasmid Features: Coordinates Feature 980-1084 AAV2 5 ITR 1144-1666 modified CMV 1667-1761 MCS 1762-1975 BgHpA 1987-2114 AAV2 3 ITR 3031-3891 B-lactamase (Ampicillin) Antibiotic

More information

Supplementary Figure 1

Supplementary Figure 1 Supplementary Figure 1 Supplementary Figure 1. Activation capacity of tettale-ad compared to tet trans-activator (ttas) using different teto variants. (A) HeLa cells were co-transfected with activation

More information

Genetics Lecture 21 Recombinant DNA

Genetics Lecture 21 Recombinant DNA Genetics Lecture 21 Recombinant DNA Recombinant DNA In 1971, a paper published by Kathleen Danna and Daniel Nathans marked the beginning of the recombinant DNA era. The paper described the isolation of

More information

Red type indicates unique restriction site. Antibiotic Resistance: Ampicillin and Gentamicin Bacterial Backbone: pfastbac (Invitrogen)

Red type indicates unique restriction site. Antibiotic Resistance: Ampicillin and Gentamicin Bacterial Backbone: pfastbac (Invitrogen) G0619 pfbaavmcscmvegfp SV40pA Plasmid Features: Coordinates Feature 194-348 Tn7L 376-511 SV40pA (complementary-remnant of pfb cloning) 678-818 AAV2 ITR (141bp) 877-969 MCS 970-1549 CMV Promoter 1569-2288

More information

REGISTRATION DOCUMENT FOR RECOMBINANT DNA RESEARCH

REGISTRATION DOCUMENT FOR RECOMBINANT DNA RESEARCH EHRS Date Received: Reg. Doc. No.: REGISTRATION DOCUMENT FOR RECOMBINANT DNA RESEARCH Principal Investigator: Penn ID#: Position Title: School: Department: Mailing Address: Mail Code: Telephone: FAX: E-mail:

More information

Product Manual. RFP ELISA Kit. Catalog Number. FOR RESEARCH USE ONLY Not for use in diagnostic procedures

Product Manual. RFP ELISA Kit. Catalog Number. FOR RESEARCH USE ONLY Not for use in diagnostic procedures Product Manual RFP ELISA Kit Catalog Number AKR-122 96 assays FOR RESEARCH USE ONLY Not for use in diagnostic procedures Introduction Red fluorescent protein (DsRed) is a spontaneously fluorescent protein

More information

By two mechanisms: Mutation Genetic Recombination

By two mechanisms: Mutation Genetic Recombination Genetics (see text pages 257-259, 267-298) Remember what it is we want to address: How is it that prokaryotes gain new genetic ability? The cells are haploid and reproduce by fission...so how does an genetic

More information

CHAPTER 20 DNA TECHNOLOGY AND GENOMICS. Section A: DNA Cloning

CHAPTER 20 DNA TECHNOLOGY AND GENOMICS. Section A: DNA Cloning Section A: DNA Cloning 1. DNA technology makes it possible to clone genes for basic research and commercial applications: an overview 2. Restriction enzymes are used to make recombinant DNA 3. Genes can

More information

Use of In-Fusion Cloning for Simple and Efficient Assembly of Gene Constructs No restriction enzymes or ligation reactions necessary

Use of In-Fusion Cloning for Simple and Efficient Assembly of Gene Constructs No restriction enzymes or ligation reactions necessary No restriction enzymes or ligation reactions necessary Background The creation of genetic circuits and artificial biological systems typically involves the use of modular genetic components biological

More information

Molecular Cloning. Restriction Enzymes and Ligases

Molecular Cloning. Restriction Enzymes and Ligases Tools in Genetic engineering The science of using living systems to benefit humankind is called biotechnology. Technically speaking, the domestication of plants and animals through farming and breeding

More information

Historical Perspective

Historical Perspective Genetic transformation of E.Coli and selection, DNA recombination without ligase: topoisomerase, cre-lox recombination, Gate way method etc. DNA library: genomic library, cdna library, expression library,

More information

Antibiotic Resistance: Ampicillin and Gentamicin Bacterial Backbone: pfastbac (Invitrogen)

Antibiotic Resistance: Ampicillin and Gentamicin Bacterial Backbone: pfastbac (Invitrogen) G01066 pfbaavmcswtiresmcherrybghpa Plasmid Features: Coordinates Feature 194-348 Tn7L 377-617 SV40pA Complementary 678-818 AAV2 ITR (141bp) 860-955 mcs 956-1542 wtires 1543-2253 mcherry 2268-2481 BgHpA

More information

Human Molecular Genetics Assignment 3 (Week 3)

Human Molecular Genetics Assignment 3 (Week 3) Human Molecular Genetics Assignment 3 (Week 3) Q1. Which one of the following is an effect of a genetic mutation? a. Prevent the synthesis of a normal protein. b. Alters the function of the resulting protein

More information

TRANSGENIC ANIMALS. transient. stable. - Two methods to produce transgenic animals:

TRANSGENIC ANIMALS. transient. stable. - Two methods to produce transgenic animals: Only for teaching purposes - not for reproduction or sale CELL TRANSFECTION transient stable TRANSGENIC ANIMALS - Two methods to produce transgenic animals: 1- DNA microinjection 2- embryonic stem cell-mediated

More information

Antibiotic Resistance: Ampicillin and Gentamicin Bacterial Backbone: pfastbac (Invitrogen)

Antibiotic Resistance: Ampicillin and Gentamicin Bacterial Backbone: pfastbac (Invitrogen) G01067 pfbaavcagmcswtiresmcherrybghpa Plasmid Features: Coordinates Feature 194-348 Tn7L 377-617 SV40pA Complementary 678-818 AAV2 ITR (141bp) 938-2607 CAG 2600-2685 mcs 2687-3273 wtires 3274-3984 mcherry

More information

7.1 Techniques for Producing and Analyzing DNA. SBI4U Ms. Ho-Lau

7.1 Techniques for Producing and Analyzing DNA. SBI4U Ms. Ho-Lau 7.1 Techniques for Producing and Analyzing DNA SBI4U Ms. Ho-Lau What is Biotechnology? From Merriam-Webster: the manipulation of living organisms or their components to produce useful usually commercial

More information

How fast? How fast can you clone your gene into a small puc based shuttle plasmid and prepare 100ug plasmid DNA? Add 7 to 10 days to that!

How fast? How fast can you clone your gene into a small puc based shuttle plasmid and prepare 100ug plasmid DNA? Add 7 to 10 days to that! AdMax AdMax Hi-IQ Helper Dependent Adenovirus AdCre NautCell Price List Ordering Info Technical Support AdMax "We continue to have great success with the AdMax system for producing a wide range of vectors

More information

Programmable Sequence-Specific Transcriptional Regulation of Mammalian Genome Using Designer TAL Effectors

Programmable Sequence-Specific Transcriptional Regulation of Mammalian Genome Using Designer TAL Effectors Supplementary Information Programmable Sequence-Specific Transcriptional Regulation of Mammalian Genome Using Designer TAL Effectors Feng Zhang 1,2,3,5,7 *,±, Le Cong 2,3,4 *, Simona Lodato 5,6, Sriram

More information

Revised: RG-RV2 by Fukuhara et al.

Revised: RG-RV2 by Fukuhara et al. Supplemental Figure 1 The generation of Spns2 conditional knockout mice. (A) Schematic representation of the wild type Spns2 locus (Spns2 + ), the targeted allele, the floxed allele (Spns2 f ) and the

More information

Ch.15 Section 4 Regulation of Gene Expression pgs Complete the attached Active Reading Guides for the above sections.

Ch.15 Section 4 Regulation of Gene Expression pgs Complete the attached Active Reading Guides for the above sections. AP Biology 2018-2019 Summer Assignment Due Wednesday 9/5/2018 Text Book Reading Ch.13 The Molecular Basis of Life pgs. 245-267 Ch.15 Section 4 Regulation of Gene Expression pgs. 307-309 Active Reading

More information

CONSTRUCTION OF GENOMIC LIBRARY

CONSTRUCTION OF GENOMIC LIBRARY MODULE 4-LECTURE 4 CONSTRUCTION OF GENOMIC LIBRARY 4-4.1. Introduction A genomic library is an organism specific collection of DNA covering the entire genome of an organism. It contains all DNA sequences

More information

Genetics - Problem Drill 19: Dissection of Gene Function: Mutational Analysis of Model Organisms

Genetics - Problem Drill 19: Dissection of Gene Function: Mutational Analysis of Model Organisms Genetics - Problem Drill 19: Dissection of Gene Function: Mutational Analysis of Model Organisms No. 1 of 10 1. The mouse gene knockout is based on. (A) Homologous recombination (B) Site-specific recombination

More information

Test Bank for Molecular Cell Biology 7th Edition by Lodish

Test Bank for Molecular Cell Biology 7th Edition by Lodish Test Bank for Molecular Cell Biology 7th Edition by Lodish Link download full: http://testbankair.com/download/test-bank-formolecular-cell-biology-7th-edition-by-lodish/ Chapter 5 Molecular Genetic Techniques

More information

MicroRNA Expression Plasmids

MicroRNA Expression Plasmids MicroRNA Expression Plasmids Application Guide Table of Contents Package Contents and Related Products... 2 Related, Optional Reagents... 2 Related OriGene Products... 2 Cloning vector:... 3 Vector map

More information

DNA Cloning with Cloning Vectors

DNA Cloning with Cloning Vectors Cloning Vectors A M I R A A. T. A L - H O S A R Y L E C T U R E R O F I N F E C T I O U S D I S E A S E S F A C U L T Y O F V E T. M E D I C I N E A S S I U T U N I V E R S I T Y - E G Y P T DNA Cloning

More information

Comparing Sequences of Fluorescent Proteins Using BLAST (Basic Local Alignment Search Tool)

Comparing Sequences of Fluorescent Proteins Using BLAST (Basic Local Alignment Search Tool) Comparing Sequences of Fluorescent Proteins Using BLAST (Basic Local Alignment Search Tool) Mice expressing GFP under UV light (left & right), compared to normal mouse (center). Source: Wikipedia. Researcher

More information

pore) 5 -CACTCGATACAGGCAGCCCA-3 pri-vecprobe2 5 -

pore) 5 -CACTCGATACAGGCAGCCCA-3 pri-vecprobe2 5 - : 577.218:577.29 CRE/loxP 35S ARABIDOPSIS THALIANA,.,,, Cre/loxP, Arabidopsis thaliana.,. : Cre/loxP,,,..,,,.,,., [3, 7]. nptii,, [5]. (, ) 50 [15]...,,. -..., [6, 14]. Cre/loxP 1. Cre. lox (locus of crossing-over)

More information

CRISPR Applications: Mouse

CRISPR Applications: Mouse CRISPR Applications: Mouse Lin He UC-Berkeley Advantages of mouse as a model organism similar to human Can be genetically manipulated Isogenic and congenic genetic background An accelerated lifespan. Well-characterized

More information

SUPPLEMENTAL MATERIAL

SUPPLEMENTAL MATERIAL SUPPLEMENTAL MATERIAL MATERIALS AND METHODS Generation of TSPOΔ/Δ murine embryonic fibroblasts Embryos were harvested from 13.5-day pregnant TSPOfl/fl mice. After dissection to eviscerate and remove the

More information

Lecture 25 (11/15/17)

Lecture 25 (11/15/17) Lecture 25 (11/15/17) Reading: Ch9; 328-332 Ch25; 990-995, 1005-1012 Problems: Ch9 (study-guide: applying); 1,2 Ch9 (study-guide: facts); 7,8 Ch25 (text); 1-3,5-7,9,10,13-15 Ch25 (study-guide: applying);

More information

Biotechnology (Chapter 20) Objectives

Biotechnology (Chapter 20) Objectives Biotechnology (Chapter 20) Objectives Understand the background science behind the technology applications Understand the tools and details of the technology Develop familiarity with performing the select

More information

Chapter 20: Biotechnology

Chapter 20: Biotechnology Name Period The AP Biology exam has reached into this chapter for essay questions on a regular basis over the past 15 years. Student responses show that biotechnology is a difficult topic. This chapter

More information

G0202 pfbaavmcsbghpa MCS. Red type indicates unique restriction site. Plasmid Features:

G0202 pfbaavmcsbghpa MCS. Red type indicates unique restriction site. Plasmid Features: G0202 pfbaavmcsbghpa Plasmid Features: Coordinates Feature 183-348 Tn7L 377-617 SV40pA Complementary 678-818 AAV2 ITR (141bp) 820-975 MCS 976-1189 BgHpA 1243-1372 AAV2 ITR (130bp) 1929-2462 Gentamicin

More information

7.012 Problem Set 5. Question 1

7.012 Problem Set 5. Question 1 Name Section 7.012 Problem Set 5 Question 1 While studying the problem of infertility, you attempt to isolate a hypothetical rabbit gene that accounts for the prolific reproduction of rabbits. After much

More information

Lecture 8: Transgenic Model Systems and RNAi

Lecture 8: Transgenic Model Systems and RNAi Lecture 8: Transgenic Model Systems and RNAi I. Model systems 1. Caenorhabditis elegans Caenorhabditis elegans is a microscopic (~1 mm) nematode (roundworm) that normally lives in soil. It has become one

More information

Fluorescent Protein Vectors

Fluorescent Protein Vectors Fluorescent Protein Vectors Living Colors vectors for easy cloning, expression, and subcellular localization applications Visualize a variety of targets with our subcellular localization vectors Establish

More information

Molecular Biology (2)

Molecular Biology (2) Molecular Biology (2) Restriction endonucleases, RFLP, and gene cloning Mamoun Ahram, PhD Second semester, 2017-2018 Resources This lecture Cooper, pp 120-124 Endonucleases Enzymes that degrade DNA within

More information

Supplemental Material: Rev1 promotes replication through UV lesions in conjunction with DNA

Supplemental Material: Rev1 promotes replication through UV lesions in conjunction with DNA Supplemental Material: Rev1 promotes replication through UV lesions in conjunction with DNA polymerases,, and, but not with DNA polymerase Jung-Hoon Yoon, Jeseong Park, Juan Conde, Maki Wakamiya, Louise

More information

Molecular Biology Midterm Exam 2

Molecular Biology Midterm Exam 2 Molecular Biology Midterm Exam 2 1. The experiments by Frank Stahl and Matthew Messelson demonstrated that DNA strands separate during DNA replication. They showed that DNA replication is what kind of

More information

Genetics Faculty of Agriculture and Veterinary Medicine. Instructor: Dr. Jihad Abdallah Topic 16: Biotechnology

Genetics Faculty of Agriculture and Veterinary Medicine. Instructor: Dr. Jihad Abdallah Topic 16: Biotechnology Genetics 10201232 Faculty of Agriculture and Veterinary Medicine Instructor: Dr. Jihad Abdallah Topic 16: Biotechnology 1 Biotechnology is defined as the technology that involves the use of living organisms

More information

Chapter 13: Biotechnology

Chapter 13: Biotechnology Chapter Review 1. Explain why the brewing of beer is considered to be biotechnology. The United Nations defines biotechnology as any technological application that uses biological system, living organism,

More information

SV40pA. Plasmid Features: Antibiotic Resistance: Ampicillin Backbone: pbr322

SV40pA. Plasmid Features: Antibiotic Resistance: Ampicillin Backbone: pbr322 G1072 pacad5cagmcswtiresmcherry- SV40pA Plasmid Features: Coordinates Feature ITR: 16-118 Ad5: 16-368 and 897-3361 CAG 441-2112 MCS: 2121-2177 wtires 2179-2769 mcherry 2765-3475 SV40pA: 3484-3923 Ampicillin:

More information

Researchers use genetic engineering to manipulate DNA.

Researchers use genetic engineering to manipulate DNA. Section 2: Researchers use genetic engineering to manipulate DNA. K What I Know W What I Want to Find Out L What I Learned Essential Questions What are the different tools and processes used in genetic

More information

SUPPLEMENTARY INFORMATION. Tolerance of a knotted near infrared fluorescent protein to random circular permutation

SUPPLEMENTARY INFORMATION. Tolerance of a knotted near infrared fluorescent protein to random circular permutation SUPPLEMENTARY INFORMATION Tolerance of a knotted near infrared fluorescent protein to random circular permutation Naresh Pandey 1,3, Brianna E. Kuypers 2,4, Barbara Nassif 1, Emily E. Thomas 1,3, Razan

More information

Cat. #FP981. Vector description

Cat. #FP981. Vector description p2fp-rnai vector Cat. #FP981 Vector description p2fp-rnai vector is a mammalian expression vector designed for RNA interference studies. The vector encodes two fluorescent proteins: and JRedneomycin phosphotransferase

More information

Concept 13.1 Recombinant DNA Can Be Made in the Laboratory

Concept 13.1 Recombinant DNA Can Be Made in the Laboratory 13 Biotechnology Concept 13.1 Recombinant DNA Can Be Made in the Laboratory It is possible to modify organisms with genes from other, distantly related organisms. Recombinant DNA is a DNA molecule made

More information

Mutagenesis for Studying Gene Function Spring, 2007 Guangyi Wang, Ph.D. POST103B

Mutagenesis for Studying Gene Function Spring, 2007 Guangyi Wang, Ph.D. POST103B Mutagenesis for Studying Gene Function Spring, 2007 Guangyi Wang, Ph.D. POST103B guangyi@hawaii.edu http://www.soest.hawaii.edu/marinefungi/ocn403webpage.htm Overview of Last Lecture DNA microarray hybridization

More information

Bi 8 Lecture 4. Ellen Rothenberg 14 January Reading: from Alberts Ch. 8

Bi 8 Lecture 4. Ellen Rothenberg 14 January Reading: from Alberts Ch. 8 Bi 8 Lecture 4 DNA approaches: How we know what we know Ellen Rothenberg 14 January 2016 Reading: from Alberts Ch. 8 Central concept: DNA or RNA polymer length as an identifying feature RNA has intrinsically

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary figure 1: List of primers/oligonucleotides used in this study. 1 Supplementary figure 2: Sequences and mirna-targets of i) mcherry expresses in transgenic fish used

More information

Protocols for cell lines using CRISPR/CAS

Protocols for cell lines using CRISPR/CAS Protocols for cell lines using CRISPR/CAS Procedure overview Map Preparation of CRISPR/CAS plasmids Expression vectors for guide RNA (U6-gRNA) and Cas9 gene (CMV-p-Cas9) are ampicillin-resist ant and stable

More information