Molecular Evolution. H.J. Muller. A.H. Sturtevant. H.J. Muller. A.H. Sturtevant

Size: px
Start display at page:

Download "Molecular Evolution. H.J. Muller. A.H. Sturtevant. H.J. Muller. A.H. Sturtevant"

Transcription

1 Molecular Evolution Arose as a distinct sub-discipline of evolutionary biology in the 1960 s Arose from the conjunction of a debate in theoretical population genetics and two types of data that became readily available in the 1960 s Will exam first the theoretical debate: GENETIC LOAD The Genetic Load Debate Had Its Origins In a Debate That Arose Early in the 20 th Century: A Debate Arising From A Single Drosophila Laboratory: T. H. Morgan s Pithecanthropus A.H. Sturtevant H.J. Muller 1919 This Debate Was Strongly Influenced By The Techniques Available for Scoring Genetic Variation: A Recurrent Theme in Molecular Evolution Pithecanthropus A.H. Sturtevant H.J. Muller

2 Morgan & Muller Scored Variation By Inbreeding Drosophila To Reveal Single Locus Variants With Visible Morphological Effects Inbreeding Wild-Caught Drosophila Revealed Little Variation In Natural Populations For Such Single Locus Visible Variants Classical School Natural Populations Have Very Little Polymorphism. Most Individuals Are Homozygous for a Wildtype Allele. Very Rarely, An Individual Is Heterozygous For A Mutant Allele, Which Is Usually Deleterious. Rarely, A Beneficial Mutation Arises and Then Goes Rapidly To Fixation. Therefore, the Phase of Transient Polymorphism Is Brief. Therefore, The Population Can Be Characterized By A Single Homozygous Wildtype At Most Loci, With Rare Mutants, And Occassional Bursts of Evolution Limited By The Input of New, Beneficial Mutations. 2

3 Sturtevant, As An Undergrad, Came Up With The Idea of A Chromosome Map. He Soon Discovered That Different Strains Had Different Gene Orders: He Had Discovered Paracentric Inversions By Mapping. By the 1930 s, Cytological Techniques Had Been Developed That Allowed The Rapid Scoring of Large Numbers of Individuals for Paracentric Inversions. Sturtevant Recruited A Russian Immigrant, Th. Dobzhansky, To Score Natural Populations With This Technique

4 Dobzhansky & Sturtevant (1936): An Inversion Tree for Drosophila pseudoobscura (A) and D.persimilis (B) Much Intraspecific Polymorphism Each Inversion Mutation Ideally Occurs Only Once in Tree and Tree Minimizes Total Number Of Mutations -- Maximum Parsimony 4

5 Maximum Parsimony (and other techniques) allow you to infer the state of extinct ancestral states. Tree Is Rooted By Looking At a Closely Related Species That Is Known To Be Phylogenetically Outside the Groups of Interest Outgroup Rooting The Inversion Tree Is Not Always The Same As A Tree of Species Or Populations, In This Case Because of: Transpecific Polymorphism 5

6 Balanced School Regarding Each Chromosome Arm As A Locus, Sturtevant and Dobzhansky Concluded That There Is Much Intraspecific Polymorphism. There Are Multiple Alleles, Maintained By Balancing Selection, And No Wildtype. Therefore, Natural Populations Are Highly Polymorphic And Can Rapidly Adapt to Changing And Spatially Heterogeneous Environments By Using This Vast Pool of Polymorphic Variation. Genetic Load In 1950, Muller Wrote A Highly Influential Paper Entitled Our Load of Mutations Muller s Model Mutation: From Wildtype A to Deleterious Mutant a: A a at rate µ Fitness Model: AA Aa aa» s Assuming Random Mating, Input Rate of a is µ, and Output Rate Is sq 2 At Equilibrium, Input = Output µ = sq 2 q eq = µ/s W=p 2 (1)+2pq(1)+q 2 (1-s)=1-q 2 s=1- µ at Equil. 6

7 Muller s Model Load Is Independent of s and Is A Function Only Of µ Haldane: Substitutional Load Mutation: From Wildtype a to Beneficial Mutant A: a A Fitness Model: AA Aa aa» 1+s 1+s/2 1 Assuming Random Mating, At Equilibrium, p=1 W max =1+s Load=W max -W L=1+s-[1+p 2 s+pqs] L=s(1-p) L=Excess Reproduction Needed To Go From p to p eq =1 Haldane: Substitutional Load Load Is Independent of s! 7

8 Haldane: Substitutional Load p 0 =1/(2N) for a new mutant. Letting p 0 =10-6 (N=500,000) The Load = 30. Haldane argued that a population could tolerate no more than a 10% demand of excess reproduction. Using L=30, this means a population can tolerate no more than one locus undergoing a beneficial substitution every 300 generations. This means that very few transient polymorphisms can exist in a population at any given time. Crow & Kimura: Balanced Load Fitness Model: AA Aa aa» 1-s 1 1-t Assuming Random Mating, At Equilibrium, p eq =t/(s+t) W max =1 (fitness of Aa) Load=(W max -W)/W max =sp 2 +tq 2 At Equilibrium, L=st/(s+t) Letting s=t=0.1, L=0.05 (5% fitness reduction) For n balanced, independently acting loci: This means that very few balanced polymorphisms can exist in a population at any given time. Genetic Load The Conclusions From Load Theory Strongly Supported The Classical School and Were Against The Balanced School 8

9 Two Types Of Data Became Widely Available in the 1960 s Amino Acid Sequence Data (Primarily documenting substitutions between species) Protein Electrophoresis Data (Primarily documenting polymorphisms within species) Amino Acid Sequence Data There were two many substitutions to be consistent with load theory Motto Kimura solved this problem with load theory (Nat. 217: , 1968) Neutral Theory The Classical School Allowed Two Types of Mutations: Rarely Occurring Deleterious Mutations Extremely Rare Beneficial Mutations That Go To Rapid Fixation and Become the Wildtype Allele Kimura s Neutral Theory Added A Third Mutational Class To The Classical School Model: Neutral Mutations Of The Wildtype Allele That Have No Impact on Fitness As A Result, The Wildtype Allele Is Now Replaced By A Set of Functionally Equivalent Alleles; That is, there is no longer a wildtype allele, but a wildtype set of neutral alleles Note: The Neutral Model Does NOT Assume That All Mutations Are Neutral, But Rather Accepts The Classical School Model for Non-Neutral Mutations. 9

10 Neutral Theory Genetic Drift Determines the Rate of Loss = 1 / 2N Mutation Determines the Rate of Input = (2N)µ Rate of Evolution =Rate of Input X Rate of Loss = (2N)µ 1 / 2N = µ Note: The Rate of Neutral Evolution Does Not Depend upon Population Size. All populations, regardless of size, have an innate tendency to evolve as driven by mutation and drift. Moreover, if the neutral mutations rates are comparable, this tendency is just as strong in a large population as in a small population. GENETIC DRIFT IS IMPORTANT FOR ALL POPULATIONS! ALSO, THE NEUTRAL MODEL EXPLAINS THE HIGH RATE OF AMINO ACID SUBSTITUTION IN A LOAD- FREE FASHION! Because The Neutral Theory Accepts That Many Mutations Are Deleterious, This Theory Could Also Explain the Heterogeneity In Substitution Rates Observed in Different Proteins Neutral Theory Amino Acid Sequence Data α-hb Data The Substitutions Seemed To Define A Molecular Clock (King & Jukes, Sci. 154: ,1969). This Also Seemed To Support Kimura s Theory Because It Predicted The Rate of Substitution= µ, which was usually treated as a constant. 10

11 Protein Electrophoresis Data Protein Electrophoresis Data Lewontin & Hubby (Genetics 54: , 1966), Johnson et al. (Studies in Genetics. III: , 1966), and Harris (Proceedings of the Royal Society of London B 164: ) showed that about 1/3 of all protein coding loci were polymorphic for electrophoretically detectable alleles in Drosophila and in humans This frequency was much too high for Load Theory Kimura and Ohta (Nat. 229: , 1971) once again rescued the Classical School with the Neutral Theory Kimura & Ohta Time Period of Transient Polymorphism 1/(2N) of Neutral Mutations Go To Fixation and Transiently Contribute To Polymorphism Levels Most Neutral Mutations Are Lost and Contribute Little to Polymorphism Levels 11

12 Kimura & Ohta The Neutral Theory Dominated The Field of Molecular Evolution Throughout the 70 s and Motivated Studies Both Pro and Con Difficulties For The Neutral Theory J. Maynard Smith (Am. Nat. 104: , 1970): Substitution Rate Studies Required µ between 10-5 to If N=10-6, Then H eq =40/(40+1)=0.98. Therefore, there was too little heterozygosity under the neutral theory. There was also too little a range in heterozygosity under the neutral theory. 12

13 Difficulties For The Neutral Theory Most Observations Below This Threshold This Implies A Small Range of Population Sizes, and That Almost All Species Have N < 5,000 (Including Insects & Bacteria). Ohta ( ) Created The Nearly Neutral Theory To Explain The Heterozygosity Observations Showed That Genetic Drift Determines Evolutionary Dynamics For Any Mutation With s <1/(2N ev ) Let µ(s) describe the probability of a mutation having selection coefficient s, then The neutral mutation rate=µ neutral = As N ev, µ neutral This explains why Heterozygosity levels off and has a narrow range (recall θ=4nµ neutral ) Unfortunately, this also means you lose the molecular clock because the rate of substitution is now a function of N ev Kimura At First Strongly Opposed Ohta s Departure From Pure Neutrality, But Embraced It in 1979 Kimura (PNAS 76: , 1979): Assume µ is constant per generation (previously, he had assumed it was constant in absolute time in order to explain the clock) Let t = generation time, so µ/t is the mutation rate in absolute time Assuming a specific model for µ(s) (on the basis of no data), and assuming that Can get µ neutral /t = Constant and Therefore Have Clock This paper was poorly received because of the highly contrived nature of its assumptions. Kimura even removed this paper from his lifetime list of papers. 13

14 Molecular Evolution Is Thriving, But Genetic Load Has Been Discredited Much of the theory was an artifact of using relative fitnesses and ridiculous W max s (e.g., the future population with p=1 in substitutional load; the individual heterozygous for all loci in the balanced load) More realistic fitness models have no load at all Molecular Evolution Is No Longer Dominated By the Neutral Theory Much of the good fit of the clock was an artifact; More rigorous tests show frequent violations of Kimura s Poisson Clock Still Cannot Simultaneously Explain Substitution Rates and Heterozygosity Now Have Better Tests of Selection: E.g., Fay et al (Nature 415: ) Found evidence for positive and balancing selection in 60% of the protein coding genes in D. melanogaster, far higher than permitted by the neutral theory of molecular evolution. The neutral theory is still a widely used null hypothesis in molecular evolution Molecular Evolution Now Focuses On Problem Areas Without A Single Dogma Dominating the Field 1) Gene and Genome Evolution What kinds of evolutionary changes occur in various genes and genome types and what evolutionary forces are involved? 2) Organismal Evolution Use the results of studies on genes and genomes to study and test hypotheses about organismal micro- and macro-evolution 3) Population Genetics Describe the amount and distribution of molecular variation within a species and test and detect the evolutionary forces responsible 4) Quantitative Genetics Use molecular genetics to understand the genetic basis of phenotypic variation 5) Phylogenetics Reconstruct the evolutionary history of species, and help determine species status 14

15 The Field of Molecular Evolution Has Undergone A Metamorphosis, And It Is Much Stronger For It And More Relevant Than Ever To Many Basic Problems in Biology 15

Review. Molecular Evolution and the Neutral Theory. Genetic drift. Evolutionary force that removes genetic variation

Review. Molecular Evolution and the Neutral Theory. Genetic drift. Evolutionary force that removes genetic variation Molecular Evolution and the Neutral Theory Carlo Lapid Sep., 202 Review Genetic drift Evolutionary force that removes genetic variation from a population Strength is inversely proportional to the effective

More information

homology - implies common ancestry. If you go back far enough, get to one single copy from which all current copies descend (premise 1).

homology - implies common ancestry. If you go back far enough, get to one single copy from which all current copies descend (premise 1). Drift in Large Populations -- the Neutral Theory Recall that the impact of drift as an evolutionary force is proportional to 1/(2N) for a diploid system. This has caused many people to think that drift

More information

February 10, 2005 Bio 107/207 Winter 2005 Lecture 12 Molecular population genetics. I. Neutral theory

February 10, 2005 Bio 107/207 Winter 2005 Lecture 12 Molecular population genetics. I. Neutral theory February 10, 2005 Bio 107/207 Winter 2005 Lecture 12 Molecular population genetics. I. Neutral theory Classical versus balanced views of genome structure - like many controversies in evolutionary biology,

More information

The neutral theory of molecular evolution

The neutral theory of molecular evolution The neutral theory of molecular evolution Objectives the neutral theory detecting natural selection exercises 1 - learn about the neutral theory 2 - be able to detect natural selection at the molecular

More information

Lecture 10 Molecular evolution. Jim Watson, Francis Crick, and DNA

Lecture 10 Molecular evolution. Jim Watson, Francis Crick, and DNA Lecture 10 Molecular evolution Jim Watson, Francis Crick, and DNA Molecular Evolution 4 characteristics 1. c-value paradox 2. Molecular evolution is sometimes decoupled from morphological evolution 3.

More information

Chapter 5. Genetic Drift in Large Populations and Coalescence

Chapter 5. Genetic Drift in Large Populations and Coalescence Chapter 5 Genetic Drift in Large Populations and Coalescence 5-1 As shown in the previous chapter, the impact of drift as an evolutionary force is proportional to 1/(2N) for a diploid system in an idealized

More information

Molecular variation. Joe Felsenstein. GENOME 453, Autumn Molecular variation p.1/32

Molecular variation. Joe Felsenstein. GENOME 453, Autumn Molecular variation p.1/32 Molecular variation Joe Felsenstein GENOME 453, Autumn 2009 Molecular variation p.1/32 Views of genetic variation before 1966 The Classical view The Balancing Selection view Hermann Joseph Muller Most

More information

University of York Department of Biology B. Sc Stage 2 Degree Examinations

University of York Department of Biology B. Sc Stage 2 Degree Examinations Examination Candidate Number: Desk Number: University of York Department of Biology B. Sc Stage 2 Degree Examinations 2016-17 Evolutionary and Population Genetics Time allowed: 1 hour and 30 minutes Total

More information

PopGen1: Introduction to population genetics

PopGen1: Introduction to population genetics PopGen1: Introduction to population genetics Introduction MICROEVOLUTION is the term used to describe the dynamics of evolutionary change in populations and species over time. The discipline devoted to

More information

What is molecular evolution? BIOL2007 Molecular Evolution. Modes of molecular evolution. Modes of molecular evolution

What is molecular evolution? BIOL2007 Molecular Evolution. Modes of molecular evolution. Modes of molecular evolution BIOL2007 Molecular Evolution What is molecular evolution? Evolution at the molecular level Kanchon Dasmahapatra k.dasmahapatra@ucl.ac.uk Modes of molecular evolution INDELS: insertions and deletions Modes

More information

Neutrality Test. Neutrality tests allow us to: Challenges in neutrality tests. differences. data. - Identify causes of species-specific phenotype

Neutrality Test. Neutrality tests allow us to: Challenges in neutrality tests. differences. data. - Identify causes of species-specific phenotype Neutrality Test First suggested by Kimura (1968) and King and Jukes (1969) Shift to using neutrality as a null hypothesis in positive selection and selection sweep tests Positive selection is when a new

More information

Genetic drift. 1. The Nature of Genetic Drift

Genetic drift. 1. The Nature of Genetic Drift Genetic drift. The Nature of Genetic Drift To date, we have assumed that populations are infinite in size. This assumption enabled us to easily calculate the expected frequencies of alleles and genotypes

More information

Variation Chapter 9 10/6/2014. Some terms. Variation in phenotype can be due to genes AND environment: Is variation genetic, environmental, or both?

Variation Chapter 9 10/6/2014. Some terms. Variation in phenotype can be due to genes AND environment: Is variation genetic, environmental, or both? Frequency 10/6/2014 Variation Chapter 9 Some terms Genotype Allele form of a gene, distinguished by effect on phenotype Haplotype form of a gene, distinguished by DNA sequence Gene copy number of copies

More information

Park /12. Yudin /19. Li /26. Song /9

Park /12. Yudin /19. Li /26. Song /9 Each student is responsible for (1) preparing the slides and (2) leading the discussion (from problems) related to his/her assigned sections. For uniformity, we will use a single Powerpoint template throughout.

More information

Exam 1, Fall 2012 Grade Summary. Points: Mean 95.3 Median 93 Std. Dev 8.7 Max 116 Min 83 Percentage: Average Grade Distribution:

Exam 1, Fall 2012 Grade Summary. Points: Mean 95.3 Median 93 Std. Dev 8.7 Max 116 Min 83 Percentage: Average Grade Distribution: Exam 1, Fall 2012 Grade Summary Points: Mean 95.3 Median 93 Std. Dev 8.7 Max 116 Min 83 Percentage: Average 79.4 Grade Distribution: Name: BIOL 464/GEN 535 Population Genetics Fall 2012 Test # 1, 09/26/2012

More information

Distinguishing Among Sources of Phenotypic Variation in Populations

Distinguishing Among Sources of Phenotypic Variation in Populations Population Genetics Distinguishing Among Sources of Phenotypic Variation in Populations Discrete vs. continuous Genotype or environment (nature vs. nurture) Phenotypic variation - Discrete vs. Continuous

More information

COMPUTER SIMULATIONS AND PROBLEMS

COMPUTER SIMULATIONS AND PROBLEMS Exercise 1: Exploring Evolutionary Mechanisms with Theoretical Computer Simulations, and Calculation of Allele and Genotype Frequencies & Hardy-Weinberg Equilibrium Theory INTRODUCTION Evolution is defined

More information

2. Write an essay on reinforcement and its relationship to sympatric speciation.

2. Write an essay on reinforcement and its relationship to sympatric speciation. BIOL B242 Evolutionary and Population Genetics Exam 2006 Model Answers 2. Write an essay on reinforcement and its relationship to sympatric speciation. Reinforcement Suppose some adaptation has led to

More information

Molecular Evolution. COMP Fall 2010 Luay Nakhleh, Rice University

Molecular Evolution. COMP Fall 2010 Luay Nakhleh, Rice University Molecular Evolution COMP 571 - Fall 2010 Luay Nakhleh, Rice University Outline (1) The neutral theory (2) Measures of divergence and polymorphism (3) DNA sequence divergence and the molecular clock (4)

More information

HARDY WEIBERG EQUILIBRIUM & BIOMETRY

HARDY WEIBERG EQUILIBRIUM & BIOMETRY 1 HARDY WEIBERG EQUILIBRIUM & BIOMETRY DR. KOFI OWUSU-DAAKU POPULATION GENETICS AND EVOLUTION LECTURE V Hardy- Weinberg Law The Hardy-Weinberg Law is a basic concept in the population genetics developed

More information

Genetic drift 10/13/2014. Random factors in evolution. Sampling error. Genetic drift. Random walk. Genetic drift

Genetic drift 10/13/2014. Random factors in evolution. Sampling error. Genetic drift. Random walk. Genetic drift Random factors in evolution Mutation is random is random is random fluctuations in frequencies of alleles or haplotypes Due to violation of HW assumption of large population size Can result in nonadaptive

More information

1. BASICS OF POPULATION GENETICS.

1. BASICS OF POPULATION GENETICS. Bio 312, Fall 2016 Exam 3 ( 1 ) Name: Please write the first letter of your last name in the box; 5 points will be deducted if your name is hard to read or the box does not contain the correct letter.

More information

Molecular variation. Joe Felsenstein. GENOME 453, Autumn Molecular variation p.1/34

Molecular variation. Joe Felsenstein. GENOME 453, Autumn Molecular variation p.1/34 Molecular variation Joe Felsenstein GENOME 453, Autumn 2015 Molecular variation p.1/34 Views of genetic variation before 1966 The Classical view The Balancing Selection view Hermann Joseph Muller Most

More information

B. Incorrect! 64% is all non-mm types, including both MN and NN. C. Incorrect! 84% is all non-nn types, including MN and MM types.

B. Incorrect! 64% is all non-mm types, including both MN and NN. C. Incorrect! 84% is all non-nn types, including MN and MM types. Genetics Problem Drill 23: Population Genetics No. 1 of 10 1. For Polynesians of Easter Island, the population has MN blood group; Type M and type N are homozygotes and type MN is the heterozygous allele.

More information

Lecture 19: Hitchhiking and selective sweeps. Bruce Walsh lecture notes Synbreed course version 8 July 2013

Lecture 19: Hitchhiking and selective sweeps. Bruce Walsh lecture notes Synbreed course version 8 July 2013 Lecture 19: Hitchhiking and selective sweeps Bruce Walsh lecture notes Synbreed course version 8 July 2013 1 Hitchhiking When an allele is linked to a site under selection, its dynamics are considerably

More information

Michelle Wang Department of Biology, Queen s University, Kingston, Ontario Biology 206 (2008)

Michelle Wang Department of Biology, Queen s University, Kingston, Ontario Biology 206 (2008) An investigation of the fitness and strength of selection on the white-eye mutation of Drosophila melanogaster in two population sizes under light and dark treatments over three generations Image Source:

More information

1) (15 points) Next to each term in the left-hand column place the number from the right-hand column that best corresponds:

1) (15 points) Next to each term in the left-hand column place the number from the right-hand column that best corresponds: 1) (15 points) Next to each term in the left-hand column place the number from the right-hand column that best corresponds: natural selection 21 1) the component of phenotypic variance not explained by

More information

Evolutionary Genetics

Evolutionary Genetics Evolutionary Genetics LV 25600-01 Lecture with exercises 6KP Genetic Drift 1 HS2018 A Primer of Ecological Genetics Chapter 3 - Genetic Drift - Page 52-55!2 Population tn Population tn+1 In each generation,

More information

Evolutionary Mechanisms

Evolutionary Mechanisms Evolutionary Mechanisms Tidbits One misconception is that organisms evolve, in the Darwinian sense, during their lifetimes Natural selection acts on individuals, but only populations evolve Genetic variations

More information

1 (1) 4 (2) (3) (4) 10

1 (1) 4 (2) (3) (4) 10 1 (1) 4 (2) 2011 3 11 (3) (4) 10 (5) 24 (6) 2013 4 X-Center X-Event 2013 John Casti 5 2 (1) (2) 25 26 27 3 Legaspi Robert Sebastian Patricia Longstaff Günter Mueller Nicolas Schwind Maxime Clement Nararatwong

More information

EXERCISE 1. Testing Hardy-Weinberg Equilibrium. 1a. Fill in Table 1. Calculate the initial genotype and allele frequencies.

EXERCISE 1. Testing Hardy-Weinberg Equilibrium. 1a. Fill in Table 1. Calculate the initial genotype and allele frequencies. Biology 152/153 Hardy-Weinberg Mating Game EXERCISE 1 Testing Hardy-Weinberg Equilibrium Hypothesis: The Hardy-Weinberg Theorem says that allele frequencies will not change over generations under the following

More information

Introduction to Population Genetics. Spezielle Statistik in der Biomedizin WS 2014/15

Introduction to Population Genetics. Spezielle Statistik in der Biomedizin WS 2014/15 Introduction to Population Genetics Spezielle Statistik in der Biomedizin WS 2014/15 What is population genetics? Describes the genetic structure and variation of populations. Causes Maintenance Changes

More information

Why do we need statistics to study genetics and evolution?

Why do we need statistics to study genetics and evolution? Why do we need statistics to study genetics and evolution? 1. Mapping traits to the genome [Linkage maps (incl. QTLs), LOD] 2. Quantifying genetic basis of complex traits [Concordance, heritability] 3.

More information

Molecular Evolution Course #27615

Molecular Evolution Course #27615 Molecular Evolution Course #27615 Anders Gorm Pedersen Molecular Evolution Group Center for Biological Sequence Analysis Technical University of Denmark (DTU) gorm@cbs.dtu.dk Neutral Theory of Molecular

More information

Bio 312, Exam 3 ( 1 ) Name:

Bio 312, Exam 3 ( 1 ) Name: Bio 312, Exam 3 ( 1 ) Name: Please write the first letter of your last name in the box; 5 points will be deducted if your name is hard to read or the box does not contain the correct letter. Written answers

More information

b. (3 points) The expected frequencies of each blood type in the deme if mating is random with respect to variation at this locus.

b. (3 points) The expected frequencies of each blood type in the deme if mating is random with respect to variation at this locus. NAME EXAM# 1 1. (15 points) Next to each unnumbered item in the left column place the number from the right column/bottom that best corresponds: 10 additive genetic variance 1) a hermaphroditic adult develops

More information

Local effects of limited recombination in Drosophila

Local effects of limited recombination in Drosophila University of Iowa Iowa Research Online Theses and Dissertations Spring 2010 Local effects of limited recombination in Drosophila Anna Ouzounian Williford University of Iowa Copyright 2010 Anna Ouzounian

More information

Random Allelic Variation

Random Allelic Variation Random Allelic Variation AKA Genetic Drift Genetic Drift a non-adaptive mechanism of evolution (therefore, a theory of evolution) that sometimes operates simultaneously with others, such as natural selection

More information

Evolutionary Genetics: Part 1 Polymorphism in DNA

Evolutionary Genetics: Part 1 Polymorphism in DNA Evolutionary Genetics: Part 1 Polymorphism in DNA S. chilense S. peruvianum Winter Semester 2012-2013 Prof Aurélien Tellier FG Populationsgenetik Color code Color code: Red = Important result or definition

More information

How Populations Evolve. Chapter 15

How Populations Evolve. Chapter 15 How Populations Evolve Chapter 15 Populations Evolve Biological evolution does not change individuals It changes a population Traits in a population vary among individuals Evolution is change in frequency

More information

The Evolution of Populations

The Evolution of Populations The Evolution of Populations What you need to know How and reproduction each produce genetic. The conditions for equilibrium. How to use the Hardy-Weinberg equation to calculate allelic and to test whether

More information

The Evolution of Populations

The Evolution of Populations Microevolution The Evolution of Populations C H A P T E R 2 3 Change in allele frequencies over generations Three mechanisms cause allele frequency change: Natural selection (leads to adaptation) Genetic

More information

Balancing and disruptive selection The HKA test

Balancing and disruptive selection The HKA test Natural selection The time-scale of evolution Deleterious mutations Mutation selection balance Mutation load Selection that promotes variation Balancing and disruptive selection The HKA test Adaptation

More information

Chapter 3: Evolutionary genetics of natural populations

Chapter 3: Evolutionary genetics of natural populations Chapter 3: Evolutionary genetics of natural populations What is Evolution? Change in the frequency of an allele within a population Evolution acts on DIVERSITY to cause adaptive change Ex. Light vs. Dark

More information

V SEMESTER ZOOLOGY HARDY-WEINBERG S LAW

V SEMESTER ZOOLOGY HARDY-WEINBERG S LAW V SEMESTER ZOOLOGY HARDY-WEINBERG S LAW The most fundamental idea in a population genetics was proposed by English-man G.H. Hardy and German W. Weinberg simultaneously in the year 1908. At that time it

More information

The Evolution of Populations

The Evolution of Populations Chapter 23 The Evolution of Populations PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

POPULATION GENETICS Winter 2005 Lecture 18 Quantitative genetics and QTL mapping

POPULATION GENETICS Winter 2005 Lecture 18 Quantitative genetics and QTL mapping POPULATION GENETICS Winter 2005 Lecture 18 Quantitative genetics and QTL mapping - from Darwin's time onward, it has been widely recognized that natural populations harbor a considerably degree of genetic

More information

Population Genetics Sequence Diversity Molecular Evolution. Physiology Quantitative Traits Human Diseases

Population Genetics Sequence Diversity Molecular Evolution. Physiology Quantitative Traits Human Diseases Population Genetics Sequence Diversity Molecular Evolution Physiology Quantitative Traits Human Diseases Bioinformatics problems in medicine related to physiology and quantitative traits Note: Genetics

More information

Papers for 11 September

Papers for 11 September Papers for 11 September v Kreitman M (1983) Nucleotide polymorphism at the alcohol-dehydrogenase locus of Drosophila melanogaster. Nature 304, 412-417. v Hishimoto et al. (2010) Alcohol and aldehyde dehydrogenase

More information

5/18/2017. Genotypic, phenotypic or allelic frequencies each sum to 1. Changes in allele frequencies determine gene pool composition over generations

5/18/2017. Genotypic, phenotypic or allelic frequencies each sum to 1. Changes in allele frequencies determine gene pool composition over generations Topics How to track evolution allele frequencies Hardy Weinberg principle applications Requirements for genetic equilibrium Types of natural selection Population genetic polymorphism in populations, pp.

More information

Chapter 25 Population Genetics

Chapter 25 Population Genetics Chapter 25 Population Genetics Population Genetics -- the discipline within evolutionary biology that studies changes in allele frequencies. Population -- a group of individuals from the same species that

More information

POPULATION GENETICS. Evolution Lectures 1

POPULATION GENETICS. Evolution Lectures 1 POPULATION GENETICS Evolution Lectures 1 POPULATION GENETICS The study of the rules governing the maintenance and transmission of genetic variation in natural populations. Population: A freely interbreeding

More information

Population Genetics. If we closely examine the individuals of a population, there is almost always PHENOTYPIC

Population Genetics. If we closely examine the individuals of a population, there is almost always PHENOTYPIC 1 Population Genetics How Much Genetic Variation exists in Natural Populations? Phenotypic Variation If we closely examine the individuals of a population, there is almost always PHENOTYPIC VARIATION -

More information

Algorithms for Genetics: Introduction, and sources of variation

Algorithms for Genetics: Introduction, and sources of variation Algorithms for Genetics: Introduction, and sources of variation Scribe: David Dean Instructor: Vineet Bafna 1 Terms Genotype: the genetic makeup of an individual. For example, we may refer to an individual

More information

Two-locus models. Two-locus models. Two-locus models. Two-locus models. Consider two loci, A and B, each with two alleles:

Two-locus models. Two-locus models. Two-locus models. Two-locus models. Consider two loci, A and B, each with two alleles: The human genome has ~30,000 genes. Drosophila contains ~10,000 genes. Bacteria contain thousands of genes. Even viruses contain dozens of genes. Clearly, one-locus models are oversimplifications. Unfortunately,

More information

Chapter 23: The Evolution of Populations

Chapter 23: The Evolution of Populations AP Biology Reading Guide Name Chapter 23: The Evolution of Populations This chapter begins with the idea that we focused on as we closed the last chapter: Individuals do not evolve! Populations evolve.

More information

Explaining the evolution of sex and recombination

Explaining the evolution of sex and recombination Explaining the evolution of sex and recombination Peter Keightley Institute of Evolutionary Biology University of Edinburgh Sexual reproduction is ubiquitous in eukaryotes Syngamy Meiosis with recombination

More information

The Evolution of Populations

The Evolution of Populations Chapter 23 The Evolution of Populations PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

Questions we are addressing. Hardy-Weinberg Theorem

Questions we are addressing. Hardy-Weinberg Theorem Factors causing genotype frequency changes or evolutionary principles Selection = variation in fitness; heritable Mutation = change in DNA of genes Migration = movement of genes across populations Vectors

More information

Mutation and genetic variation

Mutation and genetic variation Mutation and genetic variation Thymidine dimer Point mutations 1. transitions (e.g., A G, C T) 2. transversions (e.g., T A, C G) Models of Point mutation dynamics α A G α A G α α α α β β β β C T α Jukes-Cantor

More information

Population Genetics. Chapter 16

Population Genetics. Chapter 16 Population Genetics Chapter 16 Populations and Gene Pools Evolution is the change of genetic composition of populations over time. Microevolution is change within species which can occur over dozens of

More information

LAB. POPULATION GENETICS. 1. Explain what is meant by a population being in Hardy-Weinberg equilibrium.

LAB. POPULATION GENETICS. 1. Explain what is meant by a population being in Hardy-Weinberg equilibrium. Period Date LAB. POPULATION GENETICS PRE-LAB 1. Explain what is meant by a population being in Hardy-Weinberg equilibrium. 2. List and briefly explain the 5 conditions that need to be met to maintain a

More information

Conifer Translational Genomics Network Coordinated Agricultural Project

Conifer Translational Genomics Network Coordinated Agricultural Project Conifer Translational Genomics Network Coordinated Agricultural Project Genomics in Tree Breeding and Forest Ecosystem Management ----- Module 3 Population Genetics Nicholas Wheeler & David Harry Oregon

More information

Lecture #8 2/4/02 Dr. Kopeny

Lecture #8 2/4/02 Dr. Kopeny Lecture #8 2/4/02 Dr. Kopeny Lecture VI: Molecular and Genomic Evolution EVOLUTIONARY GENOMICS: The Ups and Downs of Evolution Dennis Normile ATAMI, JAPAN--Some 200 geneticists came together last month

More information

Overview of using molecular markers to detect selection

Overview of using molecular markers to detect selection Overview of using molecular markers to detect selection Bruce Walsh lecture notes Uppsala EQG 2012 course version 5 Feb 2012 Detailed reading: WL Chapters 8, 9 Detecting selection Bottom line: looking

More information

LAB ACTIVITY ONE POPULATION GENETICS AND EVOLUTION 2017

LAB ACTIVITY ONE POPULATION GENETICS AND EVOLUTION 2017 OVERVIEW In this lab you will: 1. learn about the Hardy-Weinberg law of genetic equilibrium, and 2. study the relationship between evolution and changes in allele frequency by using your class to represent

More information

POPULATION GENETICS. Evolution Lectures 4

POPULATION GENETICS. Evolution Lectures 4 POPULATION GENETICS Evolution Lectures 4 POPULATION GENETICS The study of the rules governing the maintenance and transmission of genetic variation in natural populations. Population: A freely interbreeding

More information

AP BIOLOGY Population Genetics and Evolution Lab

AP BIOLOGY Population Genetics and Evolution Lab AP BIOLOGY Population Genetics and Evolution Lab In 1908 G.H. Hardy and W. Weinberg independently suggested a scheme whereby evolution could be viewed as changes in the frequency of alleles in a population

More information

Neutral mutations in ideal populations. The null model in population genetics The Fisher-Wright population model

Neutral mutations in ideal populations. The null model in population genetics The Fisher-Wright population model eutral mutations in ideal populations The null model in population genetics The Fisher-Wright population model ardy-weinberg equilibrium Stochastic changes in allele frequency The decay of heterozygosity

More information

A brief introduction to population genetics

A brief introduction to population genetics A brief introduction to population genetics Population genetics Definition studies distributions & changes of allele frequencies in populations over time effects considered: natural selection, genetic

More information

Forces Determining Amount of Genetic Diversity

Forces Determining Amount of Genetic Diversity Forces Determining Amount of Genetic Diversity The following are major factors or forces that determine the amount of diversity in a population. They also determine the rate and pattern of evolutionary

More information

7-1. Read this exercise before you come to the laboratory. Review the lecture notes from October 15 (Hardy-Weinberg Equilibrium)

7-1. Read this exercise before you come to the laboratory. Review the lecture notes from October 15 (Hardy-Weinberg Equilibrium) 7-1 Biology 1001 Lab 7: POPULATION GENETICS PREPARTION Read this exercise before you come to the laboratory. Review the lecture notes from October 15 (Hardy-Weinberg Equilibrium) OBECTIVES At the end of

More information

Constancy of allele frequencies: -HARDY WEINBERG EQUILIBRIUM. Changes in allele frequencies: - NATURAL SELECTION

Constancy of allele frequencies: -HARDY WEINBERG EQUILIBRIUM. Changes in allele frequencies: - NATURAL SELECTION THE ORGANIZATION OF GENETIC DIVERSITY Constancy of allele frequencies: -HARDY WEINBERG EQUILIBRIUM Changes in allele frequencies: - MUTATION and RECOMBINATION - GENETIC DRIFT and POPULATION STRUCTURE -

More information

Selection and genetic drift

Selection and genetic drift Selection and genetic drift Introduction There are three basic facts about genetic drift that I really want you to remember, even if you forget everything else I ve told you about it: 1. Allele frequencies

More information

Chapter 23: The Evolution of Populations. 1. Populations & Gene Pools. Populations & Gene Pools 12/2/ Populations and Gene Pools

Chapter 23: The Evolution of Populations. 1. Populations & Gene Pools. Populations & Gene Pools 12/2/ Populations and Gene Pools Chapter 23: The Evolution of Populations 1. Populations and Gene Pools 2. Hardy-Weinberg Equilibrium 3. A Closer Look at Natural Selection 1. Populations & Gene Pools Chapter Reading pp. 481-484, 488-491

More information

Bi/Ge105: Evolution Homework 3 Due Date: Thursday, March 01, Problem 1: Genetic Drift as a Force of Evolution

Bi/Ge105: Evolution Homework 3 Due Date: Thursday, March 01, Problem 1: Genetic Drift as a Force of Evolution Bi/Ge105: Evolution Homework 3 Due Date: Thursday, March 01, 2018 1 Problem 1: Genetic Drift as a Force of Evolution 1.1 Simulating the processes of evolution In class we learned about the mathematical

More information

An Introduction to Population Genetics

An Introduction to Population Genetics An Introduction to Population Genetics THEORY AND APPLICATIONS f 2 A (1 ) E 1 D [ ] = + 2M ES [ ] fa fa = 1 sf a Rasmus Nielsen Montgomery Slatkin Sinauer Associates, Inc. Publishers Sunderland, Massachusetts

More information

UNIT 4: EVOLUTION Chapter 11: The Evolution of Populations

UNIT 4: EVOLUTION Chapter 11: The Evolution of Populations CORNELL NOTES Directions: You must create a minimum of 5 questions in this column per page (average). Use these to study your notes and prepare for tests and quizzes. Notes will be stamped after each assigned

More information

POPULATION GENETICS: The study of the rules governing the maintenance and transmission of genetic variation in natural populations.

POPULATION GENETICS: The study of the rules governing the maintenance and transmission of genetic variation in natural populations. POPULATION GENETICS: The study of the rules governing the maintenance and transmission of genetic variation in natural populations. DARWINIAN EVOLUTION BY NATURAL SELECTION Many more individuals are born

More information

2. The rate of gene evolution (substitution) is inversely related to the level of functional constraint (purifying selection) acting on the gene.

2. The rate of gene evolution (substitution) is inversely related to the level of functional constraint (purifying selection) acting on the gene. NEUTRAL THEORY TOPIC 3: Rates and patterns of molecular evolution Neutral theory predictions A particularly valuable use of neutral theory is as a rigid null hypothesis. The neutral theory makes a wide

More information

Edexcel (B) Biology A-level

Edexcel (B) Biology A-level Edexcel (B) Biology A-level Topic 8: Origins of Genetic Variation Notes Meiosis is reduction division. The main role of meiosis is production of haploid gametes as cells produced by meiosis have half the

More information

Lecture 23: Causes and Consequences of Linkage Disequilibrium. November 16, 2012

Lecture 23: Causes and Consequences of Linkage Disequilibrium. November 16, 2012 Lecture 23: Causes and Consequences of Linkage Disequilibrium November 16, 2012 Last Time Signatures of selection based on synonymous and nonsynonymous substitutions Multiple loci and independent segregation

More information

Molecular Signatures of Natural Selection

Molecular Signatures of Natural Selection Annu. Rev. Genet. 2005. 39:197 218 First published online as a Review in Advance on August 31, 2005 The Annual Review of Genetics is online at http://genet.annualreviews.org doi: 10.1146/ annurev.genet.39.073003.112420

More information

Measurement of Molecular Genetic Variation. Forces Creating Genetic Variation. Mutation: Nucleotide Substitutions

Measurement of Molecular Genetic Variation. Forces Creating Genetic Variation. Mutation: Nucleotide Substitutions Measurement of Molecular Genetic Variation Genetic Variation Is The Necessary Prerequisite For All Evolution And For Studying All The Major Problem Areas In Molecular Evolution. How We Score And Measure

More information

Lesson: Measuring Microevolution

Lesson: Measuring Microevolution Lesson: Measuring Microevolution Recall that a GENE is a unit of inheritance. Different forms of the same gene are called LLELES (uh-leelz ) lleles arise from an original gene via the process of MUTTION.

More information

Ecological genomics and molecular adaptation: state of the Union and some research goals for the near future.

Ecological genomics and molecular adaptation: state of the Union and some research goals for the near future. Ecological genomics and molecular adaptation: state of the Union and some research goals for the near future. Louis Bernatchez Genomics and Conservation of Aquatic Resources Université LAVAL! Molecular

More information

What is genetic variation?

What is genetic variation? enetic Variation Applied Computational enomics, Lecture 05 https://github.com/quinlan-lab/applied-computational-genomics Aaron Quinlan Departments of Human enetics and Biomedical Informatics USTAR Center

More information

Hardy Weinberg Equilibrium

Hardy Weinberg Equilibrium Gregor Mendel Hardy Weinberg Equilibrium Lectures 4-11: Mechanisms of Evolution (Microevolution) Hardy Weinberg Principle (Mendelian Inheritance) Genetic Drift Mutation Sex: Recombination and Random Mating

More information

Lecture WS Evolutionary Genetics Part I - Jochen B. W. Wolf 1

Lecture WS Evolutionary Genetics Part I - Jochen B. W. Wolf 1 N µ s m r - - - Mutation Effect on allele frequencies We have seen that both genotype and allele frequencies are not expected to change by Mendelian inheritance in the absence of any other factors. We

More information

MSc in Genetics. Population Genomics of model species. Antonio Barbadilla. Course

MSc in Genetics. Population Genomics of model species. Antonio Barbadilla. Course Group Genomics, Bioinformatics & Evolution Institut Biotecnologia I Biomedicina Departament de Genètica i Microbiologia UAB 1 Course 2012-13 Outline Cataloguing nucleotide variation at the genome scale

More information

-Is change in the allele frequencies of a population over generations -This is evolution on its smallest scale

-Is change in the allele frequencies of a population over generations -This is evolution on its smallest scale Remember: -Evolution is a change in species over time -Heritable variations exist within a population -These variations can result in differential reproductive success -Over generations this can result

More information

Liberating genetic variance through sex

Liberating genetic variance through sex Liberating genetic variance through sex Andrew D. Peters and Sarah P. Otto* Summary Genetic variation in fitness is the fundamental prerequisite for adaptive evolutionary change. If there is no variation

More information

CHAPTER 12 MECHANISMS OF EVOLUTION

CHAPTER 12 MECHANISMS OF EVOLUTION CHAPTER 12 MECHANISMS OF EVOLUTION 12.1 Genetic Variation DNA biological code for inheritable traits GENES units of DNA molecule in a chromosome LOCI location of specific gene on DNA molecules DIPLOID

More information

The role of genomic islands of divergence during speciation. Connor Morgan-Lang November 18th

The role of genomic islands of divergence during speciation. Connor Morgan-Lang November 18th The role of genomic islands of divergence during speciation Connor Morgan-Lang November 18th Outline 1) Review of speciation 2) Genomic architectures 3) Genomic islands of divergence 4) Methods for identification

More information

Lab 2: Mathematical Modeling: Hardy-Weinberg 1. Overview. In this lab you will:

Lab 2: Mathematical Modeling: Hardy-Weinberg 1. Overview. In this lab you will: AP Biology Name Lab 2: Mathematical Modeling: Hardy-Weinberg 1 Overview In this lab you will: 1. learn about the Hardy-Weinberg law of genetic equilibrium, and 2. study the relationship between evolution

More information

Evolution of species range limits. Takuji Usui (Angert Lab) BIOL Nov 2017

Evolution of species range limits. Takuji Usui (Angert Lab) BIOL Nov 2017 Evolution of species range limits Takuji Usui (Angert Lab) BIOL 509 28 Nov 2017 Range limits often occur on continuous ecological gradients Range maps modified from Sheth et al. (2014). J Biogeogr., 41,

More information

STAT 536: Genetic Statistics

STAT 536: Genetic Statistics STAT 536: Genetic Statistics Karin S. Dorman Department of Statistics Iowa State University August 22, 2006 What is population genetics? A quantitative field of biology, initiated by Fisher, Haldane and

More information

Assumptions of Hardy-Weinberg equilibrium

Assumptions of Hardy-Weinberg equilibrium Migration and Drift Assumptions of Hardy-Weinberg equilibrium 1. Mating is random 2. Population size is infinite (i.e., no genetic drift) 3. No migration 4. No mutation 5. No selection An example of directional

More information

TEST FORM A. 2. Based on current estimates of mutation rate, how many mutations in protein encoding genes are typical for each human?

TEST FORM A. 2. Based on current estimates of mutation rate, how many mutations in protein encoding genes are typical for each human? TEST FORM A Evolution PCB 4673 Exam # 2 Name SSN Multiple Choice: 3 points each 1. The horseshoe crab is a so-called living fossil because there are ancient species that looked very similar to the present-day

More information

of heritable factor ). 1. The alternative versions of genes are called alleles. Chapter 9 Patterns of Inheritance

of heritable factor ). 1. The alternative versions of genes are called alleles. Chapter 9 Patterns of Inheritance Chapter 9 Biology and Society: Our Longest-Running Genetic Experiment: Dogs Patterns of Inheritance People have selected and mated dogs with preferred traits for more than 15,000 years. Over thousands

More information