Transactions on the Built Environment vol 13, 1995 WIT Press, ISSN

Size: px
Start display at page:

Download "Transactions on the Built Environment vol 13, 1995 WIT Press, ISSN"

Transcription

1 Optimum design of welded plate girders subjected to highway bridge loading M. Asghar Bhatti,* A.S. Al-Gahtani^ "Department of Civil and Environmental Engineering, University of 7owa, /owa CzYy, A4 J2242, L%4 ^Department of Civil Engineering, University of Petroleum and Minerals, Dhahran, Saudi Arabia Abstract Optimum design of plate girders subjected to highway bridge loading is presented in this paper. The formulation is capable of handling composite or noncomposite designs, shored or unshored construction, stiffened or unstiffened design, symmetric or unsymmetric cross-section, simple or continuous spans, and prismatic or nonprismatic girders. The bridge loading is applied through influence line functions at selected points along the girder. The design problem is constrained to satisfy the AASHTO specifications. 1 Introduction The use of welded plate girders for short to medium span highway bridges offers greatest flexibility in choosing the most economical section. They offer the following advantages over the standard rolled sections [1]. Welded plate girders can be designed as long and as deep as required by the design and fabrication method. Rolled beams are of constant cross section along their length but in plate girders dimensions can be easily varied if desired. For composite girders, an unsymmetrical section offers considerable savings in weight since typically the top flanges need only be large enough to accommodate the shear connectors. With advancement of welding technology the welded girders can be fabricated on fully automatic welding lines with reasonable cost and uniform quality control. Thus the delivery time for welded girders may be more predictable than that for rolled shapes. Use of optimization techniques is necessary to take advantage of this flexibility in achieving the most economical design. Razani and Goble [2] studied the optimum design of constant-depth plate girders based on 1961 AASHTO specifications. The work was extended by Goble and DeSantis [3] to include the composite sections. Holt and Heithecker [4] presented formulas for optimum proportions for laterally supported symmetrical plate girders. The problem was formulated on the basis of the 1967 American Institute of Steel

2 226 Structural Optimization Construction (AISC) specifications. Schilling [5] presented some numerical ratios for optimum plate girder dimensions based on 1969 AISC specifications. Vachajitpan and Rockey [6] developed a nonlinear programming method to obtain minimum weight design of unstiffened constant depth symmetric plate girders. Burns and Ramamurthy [7] presented a formulation to optimize a uniform plate girder design for composite or noncomposite situation. This study shows the efficiency of using a general formulation which can be used for more than one design. Fleisher [8] presented a mathematical formulation and nomographic design for symmetric plate girders based on the web buckling theory and on the assumption of flange configuration that do not necessitate bending stress reduction in the compressive flange stress under the AISC specifications. Except for few early references, none of the other papers have dealt with optimum design under moving highway loads. In this paper a method for optimum weight/cost design of welded plate girders under AASHTO specifications [9] is presented. The formulation is very general and includes a variety of design options such as: single or continuous span highway bridge girders stiffened or unstiffened girders shored or unshored construction fixed or variable depth along the span symmetrical or unsymmetrical design variable flange thicknesses along span Section 2 briefly reviews analysis and design of composite highway bridge girders. Optimal design formulation is presented in section 3. Section 4 presents few numerical results. 2 Analysis and Design of Highway Bridge Girders From analysis point of view the noncomposite girders and shored composite girders are special cases of the unshored composite case. The unshored composite case involves consideration of three different cross sectional properties under three different loading conditions. Only one of these section properties is needed in the case of noncomposite design and two of them are used in the shored composite design. As shown in Figure 1, a composite welded plate girder consists of four parts; (a) reinforced concrete slab, (b) steel section, (c) shear connectors, and (d) web stiffeners. The purpose of the slab deck is to distribute wheel loads to the girders. The shear connectors are designed to transfer longitudinal shear between the slab and the steel section. They are needed in the positive moment regions only. If the calculated web shear stress exceeds the allowable shear stress of the web, stiffeners may be used to increase the web shear capacity without increasing the web thickness. Analysis of a composite girder A composite beam finite element is used for analysis of the girder. The element consists of unsymmetrical steel section with a concrete slab at the top acting as a cover plate.. The transformed cross-sectional area is calculated by dividing the effective slab area by the modular ratio m = ES/EC, where ES is the modulus

3 Structural Optimization 227 of elasticity of the steel beam and EC is modulus of elasticity of the concrete slab. Based on concrete strength the modular ratio varies between 6 and 11 [9]. The modular ratio is multiplied by a factor KC to approximately account for creep effects. This factor is equal to 3 for sustained dead loads and is equal to 1 for other loads. Corresponding to three different loading conditions, following three different sections properties (moment of inertia and plastic section modulii) must be computed for each element: (a) Steel beam section properties for noncomposite dead loads (b) Composite section properties with creep effects (K^ = 3) for dead loads (c) Composite section properties with K^ = 1 for live loads Each span can be divided into a number of finite elements. For a variable depth girder enough elements must be defined to get a reasonable approximation of the depth using constant depth elements. Since the loads are applied at nodal points, even for a prismatic girder, enough elements must be used to get a fairly smooth influence line. Based on numerical experiments it is suggested to use 10 elements per span. top slab top flange plate -sheer studs web plate- transverse stiff ener bottom flange^ plate I - section Figure 1. Typical Highway Bridge Cross Section Design forces and stresses A composite girder must be analyzed under several different loadings depending upon the construction method. An influence line analysis is required for truck loads. Figures 2 shows typical bending moment diagrams. Bending moments due to four different loadings are shown identified as MS (noncomposite dead loads), Mrj (composite dead loads), M^ (positive live loads), and M~ (negative live loads). The total design forces at any point are

4 228 Structural Optimization the algebraic sum of the forces from different loadings. For additional details see reference [10]. HS20-44 (k-ft.) TOO Bridge length,ft. Bending moments from different loads M ( k-ft.) Bridge length,ft. b. Design bending moments CT0 Figure 2. Typical Design Bending Moments from Different Bridge Loads 3 Optimization Formulation The design of welded plate girders requires determination of six geometrical dimensions; depth and thickness of web, width and thickness of top flange, and width and thickness of bottom flange. Changing the flange thickness along the bridge is more practical and less costly than changing the flange width.

5 Structural Optimization 229 therefore, the flange widths are kept constant along the girder and are not considered as design variables. Thus for each beam element or a group of elements the design variables are defined as: 1) Top flange area (At) 2) bottom flange area (Ay) 3) web depth (d\j 4) web thickness (tw) 5) stiffener spacing (a) in case of stiffened design The volume of the steel beam and the stiffeners is the total weight to be minimized. In most practical bridge designs, the cost is related to the weight of the structure. Cost optimization requires estimation of construction cost that depends on many variables such as, the contractor, construction equipment, method of erection, fabrication, transportation, labor, etc. These variables change continuously with time and differ from one location to another. The volume (or weight) as an objective function is more universal and requires no input or change in input parameters, which allows the designer to try different designs in short time with less difficulty especially at the preliminary design stage. The minimized volume/weight can then be transformed to a cost design if the construction cost is determined. The objective function is minimized subject to the bending stress, shear stress, slenderness ratios, deflection, and depth limitations. It is necessary to set reasonable and practical limits for the design variables to avoid calculations for impractical values. A 5/16 inch plate thickness is the minimum allowed by the AASHTO specifications. The constraints are applied to welded plate beams with welding metal having an equal or greater ultimate strength than the base metal. Flange plates must be joined end to end by full penetration butt welds. The weld metals must conform to AASHTO standard specifications for welding of structural steel for highway bridges. 4 Numerical Results The interior girder of a 100 feet long highway bridge subjected to HS20-44 loading is designed with uniform section over the span. The design information is shown in Figure 3. Different design options under the formulated AASHTO constraints are used. The optimum sections are summarized in Table 1. It can be seen that the unshored composite design reduced the beam cross section area by 20% compared to the noncomposite design. The shored composite design reduced the beam cross section even more by almost 30% of the noncomposite design. More savings could be obtained with shored composite design if narrower top flange is chosen because the flange width to thickness constraint governed the design in this case. The savings will be more with the composite design if the noncomposite design is obtained with the compression flange assumed to be partially supported since the allowable compression stress of the flange will be reduced and a larger flange area would be required for moment resistance. The beam depth also shows wide variation. The composite design as expected offers shallower depth. Shored composite design reduces the depth by more than 25% of the noncomposite design. The unstiffened design in this problem has deeper beam than the stiffened design. This is because the unstiffened design is optimized under both bending and shear stresses while the stiffened design has abundant shear strength and the beam depth is mainly decided by the moment action and is limited by depth to thickness ratio. The unstiffened design requires larger web area for shear resistance and thus thicker and deeper

6 230 Structural Optimization web plates. The stiffened design has smaller web area and larger flange areas than the unstiffened design. 22ft. 8ft. -*- 8ft. Span length,100. ft. Number of lanes, 2 Beam spacing, 8. ft. Steel type,a36 Slab thickness, 7.5 in. Concrete corepressive srength, 4 ksi. Modular ratio, 8 Design live load, HS20-44 Super imposed dead load, 45 Ib/sq. ft. Top flange width, 1 2 i nches Bottom flange width, 20 inches Allowable live load deflection, 1.5 inch Allowable noncomposite dead load deflection, 2. in. Total allowable deflection, 5. in Unsupported flange length, 0.0 in. I. bt j 4 H DESIGN OPTION Unstiffened noncomposite composite unshored composite shored Stiffened noncomposite composite unshored composite shored Figure 3. Data for Numerical Example Table 1 Optimum Design Dimensions of Example 1 dw (in) tw (in) tt (i n) , , tb (in) AS (in2) Stiffeners Spacing ratio (a/dw) 1.5* 1.5* 1.5* Bottom flange width = 20" Top flange width = 12" No. of Iters. The economical design can be selected from these designs based on minimum beam cross section area or minimum depth or other design criteria such as its suitability and applicability to the site conditions and material and labor availability. The most important fact is the availability of these designs in a

7 Structural Optimization 231 very short time. The CPU time for these design ranged from 7 to 12 seconds. The optimization process took about 9 to 12 iterations. Effect of Stiffeners Cost on Beam Design The effect of stiffeners cost on girder design is shown here by designing the girder with different values of stiffener cost coefficient (%) while keeping cost coefficient of plate girder (Ci) constant. Only the noncomposite stiffened design case is used to show this effect. The effect of C2 value on web depth is shown in Figure 4. It can be seen that as the stiffeners cost increases the web depth decrease. This is because the stiffeners are mainly a function of the web depth. Good estimate for stiffeners cost and beam cost will results in an economical beam design accounting for full construction cost. 4 y = beam depth without sitteners cost (.2 C2/C, Figure 4. Change in girder depth with increase in stiffeners cost Effect of Flange Width on the Optimum Beam Cross Section Area Since the beam flange widths are not considered design variables in this paper for the reasons mentioned in reference [10], it is important to study their effect on the optimum girder cross section area. Figure 5 shows changes in the optimum corss-section area with flange width. Concluding Remarks The ability to create and compare different designs for the same structure is the real benefit from a general optimization based formulation. This approach enables the designer to investigate different designs in relatively short time, especially at the preliminary design stage. The efficiency of the formulation presented in this study for optimum design of bridge girders subjected to AASHTO loads is very encouraging. Similar formulations can be applied to other type of bridges, especially long span bridges, where the dead loads are dominant forces in the optimum design. A similar formulation can also be applied to hybrid plate girders, box girders and truss bridges.

8 232 Structural Optimization 1 - Lateral supports spaced at 6 ft. 2- Lateral supports spaced at 12 ft. 3- Lateral supports spaced at 24ft Flange width Jnches Figure 5. Changes in optimum cross-section area with flange width References 1. Douwen, A.A., "Optimum Design of Plate Girders", Proceedings of the International Symposium on Steel Plated Structures, London, Razani, R. and Goble, G.G., "Optimum Design of Constant-Depth Plate Girders", Journal of Structural Division, ASCE, ST2, Vol. 92, April Goble, G.G. and DeSantis, P.V., "Automated Optimum Design of Unstiffened Girder Cross Sections", Journal of the Structural Division, ASCE, ST6, Vol. 92, December Holt, E.C., and Heithecker, G.L., "Minimum Weight Proportions for Steel Girders", Journal of Structural Division, ASCE, ST10, Vol. 95, Schilling, G.C., "Optimum Properties for I-Shaped Beams", Journal of the Structural Division, ASCE, ST12, Vol. 100, December Vachajitapan, P. and Rockey, K.C., "Design Method for Optimum Unstiffened Girders", Journal of the Structural Division, ASCE, ST1, Vol. 104, January Burns, S.A., and Ramamurthy, S., "Mathematical Programming in Structural Design", Journal of the Structural Division, ASCE, ST7, Vol. 109, July Fleisher, W., "Design and Optimization of Plate Girders and Welded Fabricated Beams for Building Construction", Engineering Journal, AISC, No. 1, 1st Quarter, American Association of State Highway and Transportation Officials (AASHTO) Standard Specifications for Highway Bridges. 10. Al-Gahtani, Ahmad Saad, "Optimum Design of Welded I-Beams Subjected to Highway Bridge Loads", Ph.D. thesis, University of Iowa, Iowa City, IA 52242, May 1986.

Design of Short Span Steel Bridges

Design of Short Span Steel Bridges PDHonline Course S122 (3 PDH) Design of Short Span Steel Bridges Instructor: Frank Russo, Ph.D. & John C. Huang, Ph.D., PE 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone

More information

Comparison of haunched and constant depth steel box bridge girders, International Bridge Conference, Pittsburgh, PA., June 1984 (F.L. Publ.

Comparison of haunched and constant depth steel box bridge girders, International Bridge Conference, Pittsburgh, PA., June 1984 (F.L. Publ. Lehigh University Lehigh Preserve Fritz Laboratory Reports Civil and Environmental Engineering 1984 Comparison of haunched and constant depth steel box bridge girders, International Bridge Conference,

More information

Session 2: Basic Load Rating Calculations

Session 2: Basic Load Rating Calculations Agenda Day 1 8:00 am 8:15 am Introductions and House Keeping 8:15 am 8:45 am Session 1: Load Rating Basics 8:45 am 9:30 am Session 2: Basic Load Rating Calculations 9:30 am 9:45 am Break 9:45 am 11:45

More information

SJI Updates Expanded Load Tables for Noncomposite Joists / Joist Girders and Development of New Composite Joist Series

SJI Updates Expanded Load Tables for Noncomposite Joists / Joist Girders and Development of New Composite Joist Series SJI Updates Expanded Load Tables for Noncomposite Joists / Joist Girders and Development of New Composite Joist Series SUMMARY David Samuelson Steel joists are growing in recognition as being a very economical

More information

AASHTOWare BrDR 6.8 Steel Tutorial STL6 Two Span Plate Girder Example

AASHTOWare BrDR 6.8 Steel Tutorial STL6 Two Span Plate Girder Example AASHTOWare BrDR 6.8 Steel Tutorial STL6 Two Span Plate Girder Example STL6 - Two Span Plate Girder Example (BrDR 6.5) 1'-6" 37'-0" 34'-0" 1'-6" 8 1/2" including 1/2" integral wearing surface FWS @ 25 psf

More information

AASHTOWare BrR 6.8 Steel Tutorial Steel Plate Girder Using LRFR Engine

AASHTOWare BrR 6.8 Steel Tutorial Steel Plate Girder Using LRFR Engine AASHTOWare BrR 6.8 Steel Tutorial Steel Plate Girder Using LRFR Engine STL6 - Two Span Plate Girder Example 1'-6" 37'-0" 34'-0" 1'-6" 8 1/2" including 1/2" integral wearing surface FWS @ 25 psf 3'-6" 3

More information

The use of 0.5 and 0.6 in. (13 and 15 mm) diameter

The use of 0.5 and 0.6 in. (13 and 15 mm) diameter Benefits of using.7 in. (18 mm) diameter strands in precast, pretensioned girders: A parametric investigation Jessica Salazar, Hossein Yousefpour, Alex Katz, Roya Alirezaei Abyaneh, Hyun su Kim, David

More information

Bjorhovde, R. Stub Girder Floor Systems Structural Engineering Handbook Ed. Chen Wai-Fah Boca Raton: CRC Press LLC, 1999

Bjorhovde, R. Stub Girder Floor Systems Structural Engineering Handbook Ed. Chen Wai-Fah Boca Raton: CRC Press LLC, 1999 Bjorhovde, R. Stub Girder Floor Systems Structural Engineering Handbook Ed. Chen Wai-Fah Boca Raton: CRC Press LLC, 1999 Stub Girder Floor Systems Reidar Bjorhovde Department of Civil and Environmental

More information

Nonlinear Redundancy Analysis of Truss Bridges

Nonlinear Redundancy Analysis of Truss Bridges Nonlinear Redundancy Analysis of Truss Bridges Analysis Report Dr. Michel Ghosn Ph.D. Graziano Fiorillo The City College of New York / CUNY SEPTEMBER 2013 Acknowledgments This section describes the redundancy

More information

EVALUATION OF STEEL BRIDGE TRUSS SYSTEMS BY CONVERSION TO EQUIVALENT BOX GIRDERS

EVALUATION OF STEEL BRIDGE TRUSS SYSTEMS BY CONVERSION TO EQUIVALENT BOX GIRDERS EVALUATION OF STEEL BRIDGE TRUSS SYSTEMS BY CONVERSION TO EQUIVALENT BOX GIRDERS Assist. Prof. Dr. Gokhan Gelisen, PE, PMP, LEED AP BD+C, ENV SP Bahcesehir University, Faculty of Engineering and Natural

More information

STEEL DECKS FOR RAIL BRIDGES

STEEL DECKS FOR RAIL BRIDGES STEEL DECKS FOR RAIL BRIDGES Duncan Paterson PE PhD HDR Inc. 9987 Carver Rd Cincinnati OH 513-984-7500 duncan.paterson@hdrinc.com Steve Lorek, PE HDR Inc. 9987 Carver Rd Cincinnati OH 513-984-7500 Steve.Lorek@hdrinc.com

More information

151 First Side. Technical Assignment 2 November 16 th, William J. Buchko. AE 481w Senior Thesis The Pennsylvania State University

151 First Side. Technical Assignment 2 November 16 th, William J. Buchko. AE 481w Senior Thesis The Pennsylvania State University November 16 th, 2007 William J. Buchko AE 481w Senior Thesis The Pennsylvania State University Thesis Advisor: Kevin Parfitt Table of Contents Executive Summary... 3 Structural System Overview Foundation...

More information

IBC Evaluation of Modular Press-Brake-Formed Steel Tub Girders for Short Span Bridge Applications

IBC Evaluation of Modular Press-Brake-Formed Steel Tub Girders for Short Span Bridge Applications IBC 16-95 Evaluation of Modular Press-Brake-Formed Steel Tub Girders for Short Span Bridge Applications The International Bridge Conference (Engr. Society of Western PA) June 7-10, 2016 Gregory K. Michaelson,

More information

Composite Beam Design Manual AISC

Composite Beam Design Manual AISC Composite Beam Design Manual AISC 360-10 Composite Beam Design Manual AISC 360-10 For ETABS 2016 ISO ETA122815M54 Rev. 0 Proudly developed in the United States of America December 2015 Copyright Copyright

More information

STATE UNIVERSITY CONSTRUCTION FUND. UNIVERSITY CON DIRECTIVE 5-1 Issue date: October 2014

STATE UNIVERSITY CONSTRUCTION FUND. UNIVERSITY CON DIRECTIVE 5-1 Issue date: October 2014 STATE STRUCTION FUND DIRECTIVE 5-1 Issue date: October 2014 STRUCTURAL STEEL 1. General: It is the Fund's policy that the design of the structural steel is the prime responsibility of the project's Structural

More information

Comprehensive Update to AASHTO LRFD Provisions for Flexural Design of Bridge I-Girders. D.W. White 1 and M.A. Grubb 2

Comprehensive Update to AASHTO LRFD Provisions for Flexural Design of Bridge I-Girders. D.W. White 1 and M.A. Grubb 2 Comprehensive Update to AASHTO LRFD Provisions for Flexural Design of Bridge I-Girders D.W. White 1 and M.A. Grubb 2 1 School of Civil and Environmental Engineering, Georgia Institute of Technology, 790

More information

Title Page: Modeling & Load Rating of Two Bridges Designed with AASHTO and Florida I-Beam Girders

Title Page: Modeling & Load Rating of Two Bridges Designed with AASHTO and Florida I-Beam Girders Catbas, Darwash, Fadul / 0 0 0 Title Page: Modeling & Load Rating of Two Bridges Designed with AASHTO and Florida I-Beam Girders F.N. Catbas, H. Darwash and M. Fadul Dr. F. Necati Catbas, P.E. Associate

More information

North Mountain IMS Medical Office Building

North Mountain IMS Medical Office Building North Mountain IMS Medical Office Building Phoenix, Arizona Michael Hopple Technical Assignment 2 October 29 th, 2007 AE 481W-Senior Thesis The Pennsylvania State University Faculty Adviser: Dr. Ali Memari,

More information

The Pennsylvania State University. The Graduate School. College of Engineering EVALUATION OF BRACING SYSTEMS IN HORIZONTALLY CURVED STEEL I-

The Pennsylvania State University. The Graduate School. College of Engineering EVALUATION OF BRACING SYSTEMS IN HORIZONTALLY CURVED STEEL I- The Pennsylvania State University The Graduate School College of Engineering EVALUATION OF BRACING SYSTEMS IN HORIZONTALLY CURVED STEEL I- GIRDER BRIDGES A Dissertation in Civil Engineering by Mohammadreza

More information

Design and Rating of Steel Bridges

Design and Rating of Steel Bridges 2014 Bentley Systems, Incorporated Parametric and Integrated Bridge Design LEAP Bridge Steel Steve Willoughby Design and Rating of Steel Bridges 2 WWW.BENTLEY.COM 2014 Bentley Systems, Incorporated 1 Discussion

More information

Behavior and Analysis of Horizontally Curved Composite Steel Girder Bridge System

Behavior and Analysis of Horizontally Curved Composite Steel Girder Bridge System e-issn: 2278-1684, p-issn: 232-334X. PP 45-52 Behavior and Analysis of Horizontally Curved Composite Steel Girder Bridge System Gourav Gajrani 1, Dr. L. M. Gupta 2 1,2 (Department of App. Mechanics, VNIT,

More information

Minimum slab thickness of RC slab to prevent undesirable floor vibration. Technology, Dhaka-1000, Bangladesh. 2.

Minimum slab thickness of RC slab to prevent undesirable floor vibration. Technology, Dhaka-1000, Bangladesh. 2. Minimum slab thickness of RC slab to prevent undesirable floor vibration Mohammad Rakibul Islam Khan 1, *Zafrul Hakim Khan 2,Mohammad Fahim Raiyan 3 and Khan Mahmud Amanat 4 1, 2, 3, 4 Department of Civil

More information

Design and Construction of the SH58 Ramp A Flyover Bridge over IH70. Gregg A. Reese, PE, CE, Summit Engineering Group, Inc.

Design and Construction of the SH58 Ramp A Flyover Bridge over IH70. Gregg A. Reese, PE, CE, Summit Engineering Group, Inc. Design and Construction of the SH58 Ramp A Flyover Bridge over IH70 Gregg A. Reese, PE, CE, Summit Engineering Group, Inc., Littleton, CO ABSTRACT: The SH58 Ramp A bridge in Golden, CO is the latest on

More information

Lightweight Steel Framing. Composite DeltaStud Load Tables

Lightweight Steel Framing. Composite DeltaStud Load Tables Lightweight Steel Framing Composite DeltaStud Load Tables January 2011 TABLE OF CONTENTS Introduction and Scope...3 Design Responsibility...3 Design Criteria and Technical Data...3 Composite Action / Materials

More information

Live Load Distribution Factors Suitable For Concrete Bridges Under Ecp 201 And Euro Code 1991 Loading

Live Load Distribution Factors Suitable For Concrete Bridges Under Ecp 201 And Euro Code 1991 Loading Live Load Distribution Factors Suitable For Concrete Bridges Under Ecp 201 And Euro Code 1991 Loading Ahmed M. Saleh, Mohamed Rabie and Ezz-El-Din Kamel Structural Engineering Department, Faculty of Engineerin,g

More information

PORTAL FRAMES 1.0 INTRODUCTION

PORTAL FRAMES 1.0 INTRODUCTION 36 PORTAL FRAMES 1.0 INTRODUCTION The basic structural form of portal frames was developed during the Second World War, driven by the need to achieve the low - cost building envelope. Now they are the

More information

PUNCHING SHEAR STRENGTH OF GFRP REINFORCED DECK SLABS IN SLAB- GIRDER BRIDGES

PUNCHING SHEAR STRENGTH OF GFRP REINFORCED DECK SLABS IN SLAB- GIRDER BRIDGES IV ACMBS MCAPC 4 th International Conference on Advanced Composite Materials in Bridges and Structures 4 ième Conférence Internationale sur les matériaux composites d avant-garde pour ponts et charpentes

More information

DIVISION: METALS SECTION: STEEL DECKING REPORT HOLDER: EPIC METALS CORPORATION 11 TALBOT AVENUE RANKIN, PENNSYLVANIA 15104

DIVISION: METALS SECTION: STEEL DECKING REPORT HOLDER: EPIC METALS CORPORATION 11 TALBOT AVENUE RANKIN, PENNSYLVANIA 15104 0 Most Widely Accepted and Trusted ICC ES Evaluation Report ICC ES 000 (800) 423 6587 (562) 699 0543 www.icc es.org ESR 2047 Reissued 07/207 This report is subject to renewal 07/209. DIVISION: 05 00 00

More information

BrD Superstructure Tutorial

BrD Superstructure Tutorial AASHTOWare BrD 6.8 BrD Superstructure Tutorial PS12 Prestressed Concrete I Beam Using BrD LRFD Engine BrD Superstructure Training PS12 - Prestressed Concrete I Beam Using BrD LRFD Engine 1'-9" 55'-6" Total

More information

DESIGN OF FLYOVER TRANSVERSE VERTICALLY BY USING HYDRAULIC JACK

DESIGN OF FLYOVER TRANSVERSE VERTICALLY BY USING HYDRAULIC JACK DESIGN OF FLYOVER TRANSVERSE VERTICALLY BY USING HYDRAULIC JACK M. Hari Sathish Kumar 1, K. S. Binitha 2, K. Balaji 3 1,2Assistant Professor, Department of Civil Engineering, PERI Institute of Technology,

More information

Assessment of Load Transfer and Load Distribution in Bridges Utilizing FRP Panels

Assessment of Load Transfer and Load Distribution in Bridges Utilizing FRP Panels Assessment of Load Transfer and Load Distribution in Bridges Utilizing FRP Panels Danielle D. Kleinhans, M.ASCE 1 ; John J. Myers, M.ASCE 2 ; and Antonio Nanni, M.ASCE 3 Abstract: A primary means of demonstrating

More information

Optimum Design of a Pultruded FRP Bridge Deck.

Optimum Design of a Pultruded FRP Bridge Deck. Proceedings Advanced Materials for Construction of Bridges, Buildings, and Other Structures III Engineering Conferences International Year 2003 Optimum Design of a Pultruded FRP Bridge Deck. Hyeong-Yeol

More information

HIGH PERFORMANCE CONCRETE. by John J. Roller CTLGroup

HIGH PERFORMANCE CONCRETE. by John J. Roller CTLGroup HIGH PERFORMANCE CONCRETE by John J. Roller CTLGroup Early Louisiana HPC Research Law & Rasoulian (1980) Adelman & Cousins (1990) Bruce, Russell & Roller (1990-1993) Law & Rasoulian (1980) Concrete strengths

More information

After-Fracture Redundancy of Two-Girder Bridge: Testing 1-40 Bridges Over Rio Grande

After-Fracture Redundancy of Two-Girder Bridge: Testing 1-40 Bridges Over Rio Grande After-Fracture Redundancy of Two-Girder Bridge: Testing 1-40 Bridges Over Rio Grande R. L. Idriss, K. R. White, C. B. Woodward, and D. V. Jauregui, Neta Mexico State University The 1-40 bridges over the

More information

Design Aids of NU I-Girders Bridges

Design Aids of NU I-Girders Bridges Nebraska Transportation Center Report SPR-P1(09) P322 Final Report 26-1120-0042-001 Design Aids of NU I-Girders Bridges Kromel E. Hanna, Ph.D. Department of Civil Engineering University of Nebraska-Lincoln

More information

Release Notes MERLIN DASH V10.8 (WIN 6.2)

Release Notes MERLIN DASH V10.8 (WIN 6.2) LRFD Release Notes MERLIN DASH V10.8 (WIN 6.2) July 2017 1. Removed double count of skew effect for reaction. 2. Mor justified fatigue stress categories E & F report. 3. Fixed prestressed beam reportg

More information

Slab Bridge Designer 2.1 Help: Example Analysis

Slab Bridge Designer 2.1 Help: Example Analysis August 21, 2006 Slab Bridge Designer 2.1 Help: Example Analysis Using data from the Portland Cement Association Engineering Bulletin 232, AASHTO LRFD Design of Cast-In-Place Concrete Bridges This example

More information

BUCKLING BEHAVIOR OF U-SHAPED GIRDERS

BUCKLING BEHAVIOR OF U-SHAPED GIRDERS l. Report No. 2. Government Accession No. 3. Recipient's Catalog No. FHWA/TX-97/0-1395-1 4. Title and Subtitle ' 5. Report Date BUCKLING BEHAVIOR OF U-SHAPED GIRDERS I July 1997 Technical Report Documentation

More information

Design of Rigid Pavements

Design of Rigid Pavements Traffic and Highway Engineering (ІІ) CVL 4324 Chapter 20 Design of Rigid Pavements Dr. Sari Abusharar Assistant Professor Civil Engineering Department Faculty of Applied Engineering and Urban Planning

More information

Jerome J. Connor Susan Faraji. Fundamentals of Structural. Engineering. ^ Springer

Jerome J. Connor Susan Faraji. Fundamentals of Structural. Engineering. ^ Springer Jerome J. Connor Susan Faraji Fundamentals of Structural Engineering ^ Springer Contents Part I Statically Determinate Structures 1 Introduction to Structural Engineering 3 1.1 Types of Structures and

More information

AISC Steel & Timber Research for High-Rise Residential Buildings

AISC Steel & Timber Research for High-Rise Residential Buildings AISC Steel & Timber Research for High-Rise Residential Buildings Final Report December 4 th, 2017 SOM Designed Benchmark Concrete Building Skidmore, Owings, and Merrill, LLP 2017 224s Michigan Avenue Suite

More information

Itani, A.M., Reno, M.L. "Horizontally Curved Bridges." Bridge Engineering Handbook. Ed. Wai-Fah Chen and Lian Duan Boca Raton: CRC Press, 2000

Itani, A.M., Reno, M.L. Horizontally Curved Bridges. Bridge Engineering Handbook. Ed. Wai-Fah Chen and Lian Duan Boca Raton: CRC Press, 2000 Itani, A.M., Reno, M.L. "Horizontally Curved Bridges." Bridge Engineering Handbook. Ed. Wai-Fah Chen and Lian Duan Boca Raton: CRC Press, 2000 15 Horizontally Curved Bridges Ahmad M. Itani University of

More information

Structural Technical Report #2 Pro/Con Study of Alternate Floor Systems

Structural Technical Report #2 Pro/Con Study of Alternate Floor Systems Christopher McCune Structural Option Eight Tower Bridge Faculty Advisor: Dr. Hanagan October 31 st, 2005 Structural Technical Report #2 Pro/Con Study of Alternate Floor Systems Executive Summary This technical

More information

Structural Redesign Gravity System

Structural Redesign Gravity System Redesign Gravity System Design Considerations A composite floor system was used for this design to maximize the efficiency of the material being used. This type of system requires less material and provides

More information

Introduction to Structural Analysis TYPES OF STRUCTURES LOADS AND

Introduction to Structural Analysis TYPES OF STRUCTURES LOADS AND AND Introduction to Structural Analysis TYPES OF STRUCTURES LOADS INTRODUCTION What is the role of structural analysis in structural engineering projects? Structural engineering is the science and art

More information

Structural Analysis and Design of Castellated Beam in Fixed Action

Structural Analysis and Design of Castellated Beam in Fixed Action Structural Analysis and Design of Castellated Beam in Fixed Action Ajim S. Shaikh 1 Pankaj B. Autade 2 PG Scholar Department of Civil Engineering PDVVP COE Ahmednagar, India PG Guide Department of Civil

More information

Composite Steel-Concrete Bridges with Double Composite Action

Composite Steel-Concrete Bridges with Double Composite Action Composite Steel-Concrete Bridges with Double Composite Action Telmo Alexandre Alves Mendes IST, Technical University of Lisbon, Portugal Abstract Composite bridge decks usually consist of a steel structure

More information

TxDOT Project : Curved Plate Girder Design for Safe and Economical Construction

TxDOT Project : Curved Plate Girder Design for Safe and Economical Construction 0-5574-P1 GUIDELINES FOR DESIGN AND SAFE HANDLING OF CURVED I-SHAPED STEEL GIRDERS Authors: Jason Stith Brian Petruzzi Todd Helwig Michael Engelhardt Karl Frank Eric Williamson TxDOT Project 0-5574: Curved

More information

Load carrying capacity of composite castellated beams

Load carrying capacity of composite castellated beams Load carrying capacity of composite castellated beams S. Mehdi Zahrai ١, Babak Purdel ٢, Akbar Pirmoz ٣ Abstract Due to unique geometry of castellated steel beams and existence of the web holes, estimation

More information

STRENGTHENING STEEL-CONCRETE COMPOSITE BRIDGES WITH HIGH MODULUS CARBON FIBER REINFORCED POLYMER (CFRP) LAMINATES

STRENGTHENING STEEL-CONCRETE COMPOSITE BRIDGES WITH HIGH MODULUS CARBON FIBER REINFORCED POLYMER (CFRP) LAMINATES Composites in Construction 2005 Third International Conference, Hamelin et al (eds) 2005 ISBN xxxxx Lyon, France, July 11 13, 2005 STRENGTHENING STEEL-CONCRETE COMPOSITE BRIDGES WITH HIGH MODULUS CARBON

More information

Table of Contents.2. Introduction...3 Gravity Loading and Deflections..4. Existing Structural System..8

Table of Contents.2. Introduction...3 Gravity Loading and Deflections..4. Existing Structural System..8 WISCONSIN PLACE RESIDENTIAL TECHNICAL ASSIGNMENT 2 OCTOBER 29, 2007 KURT KRASAVAGE THE PENNSYLVANIA STATE UNIVERSITY STRUCTURAL OPTION FACULTY ADVISOR: DR. ALI MEMARI 1 Table of Contents Table of Contents.2

More information

Non Linear Analysis of Composite Beam Slab Junction with Shear Connectors using Ansys.16

Non Linear Analysis of Composite Beam Slab Junction with Shear Connectors using Ansys.16 International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 5 Issue 4 April 2016 PP.22-29 Non Linear Analysis of Composite Beam Slab Junction with Shear

More information

Structural Analysis Models and Their Advancing Technologies

Structural Analysis Models and Their Advancing Technologies Structural Analysis Models and Their Advancing Technologies OTEC 2016 October 25 th, 2016 Mary Lou Kutska, PE Special Thanks to: Tony Shkurti, PhD, PE, SE Travis Konda, PhD, PE Agenda Introduction Context

More information

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 3, No 1, 2012

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 3, No 1, 2012 INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 3, No 1, 2012 Copyright by the authors - Licensee IPA- Under Creative Commons license 3.0 Research article ISSN 0976 4399 Finite element

More information

AISI S E1 AISI STANDARD. Errata to North American Specification. for the Design of Cold-Formed. Steel Structural Members.

AISI S E1 AISI STANDARD. Errata to North American Specification. for the Design of Cold-Formed. Steel Structural Members. AISI S100-12-E1 AISI STANDARD Errata to North American Specification for the Design of Cold-Formed Steel Structural Members 2012 Edition Amendment on August 16, 2013 Errata to North American Specification

More information

UNIVERSITY OF BOLTON WESTERN INTERNATIONAL CENTRE FZE. BEng (HONS) CIVIL ENGINEERING SEMESTER ONE EXAMINATION 2015/2016

UNIVERSITY OF BOLTON WESTERN INTERNATIONAL CENTRE FZE. BEng (HONS) CIVIL ENGINEERING SEMESTER ONE EXAMINATION 2015/2016 OCD59 UNIVERSITY OF BOLTON WESTERN INTERNATIONAL CENTRE FZE BEng (HONS) CIVIL ENGINEERING SEMESTER ONE EXAMINATION 2015/2016 ADVANCED STRUCTURAL ANALYSIS AND DESIGN MODULE NO: CIE6001 Date: Tuesday 12

More information

Supplemental Structural Correction Sheet Steel Brace Frame Design (2017 LABC)

Supplemental Structural Correction Sheet Steel Brace Frame Design (2017 LABC) Supplemental Structural Correction Sheet Steel Brace Frame Design (2017 LABC) Plan Check Submittal Date: Plan Check / PCIS App #: Job Address: Applicant: P.C. Engineer: (print first / last name) E-mail:

More information

A Guide for the Interpretation of Structural Design Options for Residential Concrete Structures

A Guide for the Interpretation of Structural Design Options for Residential Concrete Structures CFA Technical Note: 008-2010 A Guide for the Interpretation of Structural Design Options for Residential Concrete Structures CFA Technical This CFA Technical Note is intended to serve as a guide to assist

More information

Comparative Study of R.C.C and Steel Concrete Composite Structures

Comparative Study of R.C.C and Steel Concrete Composite Structures RESEARCH ARTICLE OPEN ACCESS Comparative Study of R.C.C and Steel Concrete Composite Structures Shweta A. Wagh*, Dr. U. P. Waghe** *(Post Graduate Student in Structural Engineering, Y.C.C.E, Nagpur 441

More information

Creep and Shrinkage Analysis of Composite Truss Bridge with Double Decks

Creep and Shrinkage Analysis of Composite Truss Bridge with Double Decks Abstract Creep and Shrinkage Analysis of Composite Truss Bridge with Double Decks XIN Haohui; LIU Yuqing; Zheng Shuangjie Tongji University,Shanghai, China 2011xinhaohui@tongji.edu.cn; yql@tongji.edu.cn;

More information

16. Design of Pipeline Structures.

16. Design of Pipeline Structures. 16. Design of Pipeline Structures. a. General. 1) The following guidelines are for the design of structures for water and sewer pipelines including structural concrete and miscellaneous metals design.

More information

Route 360 Inverted T-beams. Carin Roberts-Wollmann Virginia Tech Tommy Cousins Clemson University Fatmir Menkulasi Louisiana Tech

Route 360 Inverted T-beams. Carin Roberts-Wollmann Virginia Tech Tommy Cousins Clemson University Fatmir Menkulasi Louisiana Tech Route 360 Inverted T-beams Carin Roberts-Wollmann Virginia Tech Tommy Cousins Clemson University Fatmir Menkulasi Louisiana Tech Background Outline Scope and Objectives Development and Testing Topping

More information

Structural vs Nonstructural Members. Roger LaBoube, Ph.D., P.E. Wei-Wen Yu Center for Cold-Formed Steel Structures

Structural vs Nonstructural Members. Roger LaBoube, Ph.D., P.E. Wei-Wen Yu Center for Cold-Formed Steel Structures Structural vs Nonstructural Members Roger LaBoube, Ph.D., P.E. Wei-Wen Yu Center for Cold-Formed Steel Structures Behavior of Cold-Formed Steel Members STEEL DESIGN SPECIFICATIONS Type of steel Specification

More information

xiii Preface to the Fifth Edition Preface to the Second Edition Factors for Conversion to SI Units of

xiii Preface to the Fifth Edition Preface to the Second Edition Factors for Conversion to SI Units of Structural Steel Designer's Handbook Table Of Contents: Contributors xiii Preface to the Fifth Edition xv Preface to the Second Edition xvii Factors for Conversion to SI Units of xix Measurement Chapter

More information

Deflection Assessment of an FRP-Reinforced Concrete Bridge. By Danielle K. Stone, Andrea Prota, and Antonio Nanni

Deflection Assessment of an FRP-Reinforced Concrete Bridge. By Danielle K. Stone, Andrea Prota, and Antonio Nanni Deflection Assessment of an FRP-Reinforced Concrete Bridge By Danielle K. Stone, Andrea Prota, and Antonio Nanni Synopsis: Serviceability of FRP-reinforced concrete structures remains a highly relevant

More information

TECH FACTS. Formulas for Success Innovative Ways to Reinforce Slabs-On-Ground

TECH FACTS. Formulas for Success Innovative Ways to Reinforce Slabs-On-Ground TF 705-R-03 Formulas for Success Innovative Ways to Reinforce Slabs-On-Ground BACKGROUND With nearly a century of experience in designing slabs-on-ground, both with and without welded wire reinforcement

More information

FATIGUE TESTS OF HYBRID PLATE GIRDERS UNDER CO:N'fBINED MOMENT A NO SHEAR. M. Natarajan. and. A. A. Toprac

FATIGUE TESTS OF HYBRID PLATE GIRDERS UNDER CO:N'fBINED MOMENT A NO SHEAR. M. Natarajan. and. A. A. Toprac FATIGUE TESTS OF HYBRID PLATE GIRDERS UNDER CO:N'fBINED MOMENT A NO SHEAR by M. Natarajan and A. A. Toprac Research Report Number 96-4 Research Project Number 3-5-66-96 Conducted for The Texas Highway

More information

ADAPT-PTRC 2016 Getting Started Tutorial ADAPT-PT mode

ADAPT-PTRC 2016 Getting Started Tutorial ADAPT-PT mode ADAPT-PTRC 2016 Getting Started Tutorial ADAPT-PT mode Update: August 2016 Copyright ADAPT Corporation all rights reserved ADAPT-PT/RC 2016-Tutorial- 1 This ADAPT-PTRC 2016 Getting Started Tutorial is

More information

Local Buckling Analysis of Trapezoidal Rib Orthotropic Bridge Deck Systems

Local Buckling Analysis of Trapezoidal Rib Orthotropic Bridge Deck Systems Local Buckling Analysis of Trapezoidal Rib Orthotropic Bridge Deck Systems by Matthew T. Yarnold John L. Wilson Wan-Chun Jen Ben T. Yen ATLSS Report No. 06-27 ATLSS is a National Center for Engineering

More information

Copyright. magazine. CFS Load Bearing Construction

Copyright. magazine. CFS Load Bearing Construction Progressive Collapse Requirements Cold-Formed Steel Load Bearing Construction By Nabil A. Rahman, Ph.D., P.E., Michael Booth and Gary Bennett Figure 1: Cold formed steel load bearing mid-rise construction.

More information

CHAPTER 3 ANALYSIS METHOD

CHAPTER 3 ANALYSIS METHOD CHAPTER 3 ANALYSIS METHOD 3.1 ELASTIC STATIC ANALYSIS Elastic static analysis is done to calculate stress ratio between before and after subsidence. The structure will behave elastic when the first yield

More information

EXPERIMENTAL INVESTIGATION OF BUCKLING AND LATERAL TORSION BARRE INFORCED BY DELTA UNDER PURE BENDING LOAD

EXPERIMENTAL INVESTIGATION OF BUCKLING AND LATERAL TORSION BARRE INFORCED BY DELTA UNDER PURE BENDING LOAD EXPERIMENTAL INVESTIGATION OF BUCKLING AND LATERAL TORSION BARRE INFORCED BY DELTA UNDER PURE BENDING LOAD Siros Yousefi Khatoni Phd Student Of Structure At University Of Urmieh, Faculty Member Of Faniherfei

More information

MECHANICAL CHARACTERIZATION OF SANDWICH STRUCTURE COMPRISED OF GLASS FIBER REINFORCED CORE: PART 1

MECHANICAL CHARACTERIZATION OF SANDWICH STRUCTURE COMPRISED OF GLASS FIBER REINFORCED CORE: PART 1 Composites in Construction 2005 Third International Conference Lyon, France, July 11 13, 2005 MECHANICAL CHARACTERIZATION OF SANDWICH STRCTRE COMPRISED OF GLASS FIBER REINFORCED CORE: PART 1 S.V. Rocca

More information

MIDAS Training Series

MIDAS Training Series MIDAS midas Civil Title: All-In-One Super and Sub Structure Design NAME Edgar De Los Santos / MIDAS IT United States 2016 Substructure Session 1: 3D substructure analysis and design midas Civil Session

More information

The New SDI Diaphragm Design Manual

The New SDI Diaphragm Design Manual Missouri University of Science and Technology Scholars' Mine International Specialty Conference on Cold- Formed Steel Structures (2006) - 18th International Specialty Conference on Cold-Formed Steel Structures

More information

Kiski Area High School Allegheny Township, PA FLOOR SYSTEM ANALYSIS

Kiski Area High School Allegheny Township, PA FLOOR SYSTEM ANALYSIS FLOOR SYSTEM ANALYSIS Objective The objective of the following breadth study is to determine if an alternative floor system for Building N would be more advantageous than the existing floor system. The

More information

DESIGN GUIDELINES FOR BRIDGE DECK SLABS REINFORCED by CFRP and GFRP

DESIGN GUIDELINES FOR BRIDGE DECK SLABS REINFORCED by CFRP and GFRP ------------ DESIGN GUIDELINES FOR BRIDGE DECK SLABS REINFORCED by CFRP and GFRP Tarek Hassan 1, Amr Abdelrahman 2, Gamil Tadros 3, and Sami Rizkalla 4 Summary The use of carbon and glass fibre reinforced

More information

Renovation of Buildings using Steel Technologies (ROBUST)

Renovation of Buildings using Steel Technologies (ROBUST) Renovation of Buildings using Steel Technologies (ROBUST) RFCS Project RFSR-CT-2007-0043 WP 4.2 Renovation of roofs using open trusses in light steel C sections Date: 2009 Author: Mark Lawson SCI, Silwood

More information

Ultimate and serviceability limit state optimization of cold-formed steel hat-shaped beams

Ultimate and serviceability limit state optimization of cold-formed steel hat-shaped beams NSCC2009 Ultimate and serviceability limit state optimization of cold-formed steel hat-shaped beams D. Honfi Division of Structural Engineering, Lund University, Lund, Sweden ABSTRACT: Cold-formed steel

More information

BUCKLING OF BEAMS WITH INFLECTION POINTS. Joseph A. Yura 1 and Todd A. Helwig 2

BUCKLING OF BEAMS WITH INFLECTION POINTS. Joseph A. Yura 1 and Todd A. Helwig 2 BUCKLING OF BEAMS WITH INFLECTION POINTS Joseph A. Yura 1 and Todd A. Helwig ABSTRACT The buckling behavior of beams with reverse curvature bending can be complex since both flanges are subjected to compression

More information

Structural System. Design Criteria Fire Resistance Concrete designed for 2 HR rating (worst case) Geotechnical Report Allowable Bearing Capacity

Structural System. Design Criteria Fire Resistance Concrete designed for 2 HR rating (worst case) Geotechnical Report Allowable Bearing Capacity System Codes and Criteria Design Codes and Standards The design code used is the Wisconsin Administrative Code along with the State of Wisconsin Department of Commerce-Safety & Buildings Chapters Comm

More information

Reinforced Concrete Column Design

Reinforced Concrete Column Design Reinforced Concrete Column Design Compressive Strength of Concrete f cr is the average cylinder strength f c compressive strength for design f c ~2500 psi - 18,000 psi, typically 3000-6000 psi E c estimated

More information

Sponsored by the Iowa Department of Transportation and the Iowa Highway Research Board Iowa DOT Project HR-393 JUNE 1998 CTRE

Sponsored by the Iowa Department of Transportation and the Iowa Highway Research Board Iowa DOT Project HR-393 JUNE 1998 CTRE PREVENTING CRACKING AT DIAPHRAGM/PLATE GIRDER CONNECTIONS IN STEEL BRIDGES Sponsored by the Iowa Department of Transportation and the Iowa Highway Research Board Iowa DOT Project HR-393 JUNE 1998 CTRE

More information

STUDY OF CASTELLATED BEAM USING STIFFENERS: A REVIEW

STUDY OF CASTELLATED BEAM USING STIFFENERS: A REVIEW STUDY OF CASTELLATED BEAM USING STIFFENERS: A REVIEW Siddheshwari. A. Patil 1, Popat. D. Kumbhar 2 1 PG Scholar, Department of Civil Engineering, RIT Rajaramnagar, Maharashtra, India 2 Associate Professor,

More information

CH. 9 WOOD CONSTRUCTION

CH. 9 WOOD CONSTRUCTION CH. 9 WOOD CONSTRUCTION PROPERTIES OF STRUCTURAL LUMBER Grading Load carrying capacity effected by: - Size and number of knots, splits & other defects - Direction of grain - Specific gravity of wood Grading

More information

CHAPTER 9 STAIR CASES 9.1 GENERAL FEATURES 9.2 TYPES OF STAIR CASES

CHAPTER 9 STAIR CASES 9.1 GENERAL FEATURES 9.2 TYPES OF STAIR CASES CHAPTER 9 STAIR CASES 9.1 GENERAL FEATURES Stair cases are provided for connecting successive floors. It is comprised with flights of steps with inter mediate landings which provides rest to the user and

More information

Equivalent mass, stiffness, and loading for off-centre missile impact evaluations Asadollah Bassam 1, Mohammad Amin 2, and Javad Moslemian 3

Equivalent mass, stiffness, and loading for off-centre missile impact evaluations Asadollah Bassam 1, Mohammad Amin 2, and Javad Moslemian 3 Transactions, SMiRT-23, Paper ID 168 Equivalent mass, stiffness, and loading for off-centre missile impact evaluations Asadollah Bassam 1, Mohammad Amin 2, and Javad Moslemian 3 1 Senior Structural Associate,

More information

Structural Design of Pergola with Airfoil Louvers

Structural Design of Pergola with Airfoil Louvers International Journal of Advanced Structures and Geotechnical Engineering ISSN 2319-5347, Vol. 04, No. 03, July 2015 Structural Design of Pergola with Airfoil Louvers MUHAMMAD TAYYAB NAQASH Aluminium TechnologyAauxiliary

More information

DESIGN AND CONSTRUCTION OF A LONG SPAN STEEL PLATE I- GIRDER BRIDGE: I-270 BRIDGE OVER CHAIN OF ROCKS CANAL

DESIGN AND CONSTRUCTION OF A LONG SPAN STEEL PLATE I- GIRDER BRIDGE: I-270 BRIDGE OVER CHAIN OF ROCKS CANAL DESIGN AND CONSTRUCTION OF A LONG SPAN STEEL PLATE I- GIRDER BRIDGE: I-270 BRIDGE OVER CHAIN OF ROCKS CANAL BRANDON CHAVEL LANCE PETERMAN BIOGRAPHY Brandon Chavel is a Senior Bridge Engineer and Professional

More information

Deflection of a Composite Beam

Deflection of a Composite Beam COMPUTERS AND STRUCTURES, INC., BERKELEY, CALIFORNIA SEPTEMBER 2002 COMPOSITE BEAM DESIGN BS 5950-90 Technical Note This Technical Note describes how the program checks deflection when the user selects

More information

Figure: Grid or Waffle slab

Figure: Grid or Waffle slab Two Way Beam Supported Slab References: 1. Design of. Reinforced Concrete, 2014, 9 th Edition, ACI 318-11 Code Edition, by Jack C. McCormac. Clemson University. Russell H. Brown. Clemson University 2.

More information

AIA St. Louis January 4 th, 2017 Phillip Shinn, PE Jacobs Engineering Washington University in St. Louis, Sam Fox School of Design and Visual Arts

AIA St. Louis January 4 th, 2017 Phillip Shinn, PE Jacobs Engineering Washington University in St. Louis, Sam Fox School of Design and Visual Arts AIA St. Louis January 4 th, 2017 Phillip Shinn, PE Jacobs Engineering Washington University in St. Louis, Sam Fox School of Design and Visual Arts Owners are NOT Architects (but they ARE the Owners) Steel

More information

DIRECT DESIGN METHOD DDM

DIRECT DESIGN METHOD DDM DIRECT DESIGN METHOD DDM Load Transfer Path For Gravity Loads All gravity loads are basically Volume Loads generated due to mass contained in a volume Mechanism and path must be found to transfer these

More information

How to Design a Singly Reinforced Concrete Beam

How to Design a Singly Reinforced Concrete Beam Time Required: 45 minutes Materials: -Engineering Paper -Calculator -Pencil -Straight Edge Design For Flexural Limit State How to Design a Singly Reinforced Concrete Beam Goal: ΦMn > Mu Strength Reduction

More information

Design of Partially or Fully Composite Beams, with Ribbed Metal Deck, Using LRFD Specifications

Design of Partially or Fully Composite Beams, with Ribbed Metal Deck, Using LRFD Specifications Design of Partially or Fully Composite Beams, with Ribbed Metal Deck, Using LRFD Specifications SRIRAMULU VINNAKOTA, CHRISTOPHER M. FOLEY and MURTHY R. VINNAKOTA A Hindu saying states, "One picture is

More information

BRIDGE DESIGN MANUAL UPDATES. Jamie F. Farris, P.E.

BRIDGE DESIGN MANUAL UPDATES. Jamie F. Farris, P.E. BRIDGE DESIGN MANUAL UPDATES Jamie F. Farris, P.E. October 2015 Table of Contents 1 BDM Chapter 2 Limit States and Loads 2 BDM Chapter 3 Superstructure Design 3 BDM Chapter 4 Substructure Design 4 Questions

More information

GFRP-STEEL HYBRID REINFORCED CONCRETE BRIDGE DECK SLABS IN QUEBEC, CANADA

GFRP-STEEL HYBRID REINFORCED CONCRETE BRIDGE DECK SLABS IN QUEBEC, CANADA Fourth Asia-Pacific Conference on FRP in Structures (APFIS 213) 11-13 December 213, Melbourne, Australia 213 International Institute for FRP in Construction GFRP-STEEL HYBRID REINFORCED CONCRETE BRIDGE

More information

BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS

BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS Slide No. 1 Bending of In the previous discussion, we have considered only those beams that are fabricated from a single material such as steel. However, in

More information

ULTIMATE LOAD-CARRYING CAPACITY OF SELF-ANCHORED CONCRETE SUSPENSION BRIDGE

ULTIMATE LOAD-CARRYING CAPACITY OF SELF-ANCHORED CONCRETE SUSPENSION BRIDGE ULTIMATE LOAD-CARRYING CAPACITY OF SELF-ANCHORED CONCRETE SUSPENSION BRIDGE Meng Jiang*, University of Technology Dalian, P. R. China Wenliang Qiu, University of Technology Dalian, P. R. China Lihua Han,

More information