STRUCTURES Year 1 Term 2. Danae Polyviou Rob Knight

Size: px
Start display at page:

Download "STRUCTURES Year 1 Term 2. Danae Polyviou Rob Knight"

Transcription

1 STRUCTURES Year 1 Term 2

2 Role of Structural Engineer: Imagine the likely behaviour of a structure that does not yet exist Bring experience from other projects (an engineer will work on many more projects than an architect) Suggest appropriate structural forms Think both qualitatively and quantitatively about loads, materials and structures and switch between both modes of thought

3 Ove Arup The term Total Architecture implies that all relevant design decisions have been considered together and have been integrated into a whole by a well organised team empowered to fix priorities.

4 Pier Luigi Nervi Architecture, for Nervi, was "a synthesis of technology and art." To find the logical solution to a limiting set of factors within a highly competitive situation was, for him, "to build correctly."

5 Frei Otto To build means to make architecture real on the borders of knowledge.

6 Gaudi Do you want to know where I found my model? An upright tree; it bears its branches and these, in turn, their twigs, and these, in turn, the leaves While designing the Sagrada Familia, in order to evolve a structure in equilibrium, Gaudi designed catenary cord models with weights that transformed the hanging curves into funicular polygonal elements from which the masons took measurements.

7 What is a structure? A structure is something that can support an object or a load.

8 What does a structure consist of? 1. A structural element i.e beam, column, arch, strut, tie, wall, slab 2. Combination of structural elements/ systems i.e truss, frame, gridshell Key parameters affecting element s behaviour? - Material - Span - Structural system (i.e simply supported, continuous, cantilever, moment frame etc) - Geometry of section (i.e I-beam, RHS, CHS etc) - Support conditions (i.e pinned, fixed, slider) - Connection between elements - Load type (i.e point load, uniformly distributed load etc) - Geometry

9 Structure must be designed to satisfy: Strength to support its own weight and whatever load is applied to it without breaking Stiffness to prevent excessive deflections Stability to prevent collapse

10 Strength: How much load can it take before breaking? Depends on - the material and its capacity - Size of profile - the combination of the elements - The structural system - Support conditions - Span

11 Stiffness:

12 Stiffness: E Young s Modulus Elasticity depends on the material I Second moment of Inertia depends on the size/ geometry of the section EI Stiffness E= Stress, σ/ Strain, ε Stress: amount of internal forces acting on an element Strain: deformation of a solid due to stress

13 Stiffness: I = Second moment of Inertia I= bd 3 / 12 + A d 2

14 Typical Loads On A Building Snow Wind Notional Elevators Plant Services Soil pressure Hydrostatic Heave Cleaning Self-weight Dead Imposed Cladding Blast / impact Seismic Thermal Shrinkage Pre-stress Vehicles Braking

15 Static and Dynamic Analysis Static: Is the branch of mechanics that deals with forces and force systems that act on bodies in equilibrium as described in the following. Dynamics: Is the branch of mechanics that deals with the motion of a system of material particles under the influence of forces. Dynamic equilibrium, also known as kinetic equilibrium, is the condition of a mechanical system when the kinetic reaction of all forces acting on it are in dynamic equilibrium.

16 Equilibrium Externally applied loads cause internal forces and deflections and external reactions Key concept of equilibrium resultants of all forces sum to zero

17 Structural behaviour under action of loads:

18 Structural behaviour under action of loads: Compression Shorten Tension Elongate Bending Bends Locally :Top: Compression Bottom: Tension Shear Slide

19 Shear Diagram Moment Diagram Deflection

20 Buckling: Failure mode of compression elements. Parameters affecting it: - Load - Span of element - Stiffness of section ( geometry + size) Elements in compression are noticeable fatter than elements in tension because they have to be designed against buckling.

21 Load Vectors Vertical : Dead Load, Live Load, Snow Load, Wind Load, Seismic etc Horizontal: Wind Load, Seismic, Human Impact etc Require a structural system for each direction. Either the same or a different structural system.

22 Frame Lateral Stability

23 Frame Lateral Stability

24 Supports Roller Pin Fixed

25 The Elements

26 1. Spanning structures

27 Beam It bends in order to carry the load It carries the load in : - Bending Locally: - Tension on bottom - Compression on top

28 Atrium Roof Beams - The Angel Building, Islington EC1V 4AB Beams

29 Bridge of Aspiration, Wilkinson Eyre Architects Floral Street, Covent Garden Beams

30 Cantilever They have to be fixed at one end. They work in bending

31 Diving Boards, London Aquatic Centre - Olympic Park, Stratford, London E20 Cantilevers

32 Vauxhall Bondway Bus Station Canopy Vauxhall, London SE11 Cantilevers

33 Truss Trusses are an efficient way to carry loads with minimal material. They support load much like beams, but for longer spans. They bent in order to carry the load as : - Tension on bottom - Compression on top

34 Borough High Street rail bridge London Bridge SE1 Trusses

35 St Pancras Station Trusses

36 Slabs / Plates/Decks Work in bending Transfer vertical loads. If stiff enough can also contribute to the lateral stability.

37 National Theatre Southbank, London SE1 Slabs

38 Queen Elizabeth Hall foyer Southbank, London SE1 Slabs

39 2. Vertical load bearing structures

40 Column Carry vertical loads to the ground In Compression Prone to buckling

41 Columns Barbican Centre

42 02 Arena -Greenwich Peninsula, London SE10 Columns

43 Walls Vertical Load Path Can act as shear walls for lateral stability Barcelona Pavilion

44 Thermal Baths Vals Walls

45 3. Arching structures

46 Arch It is in compression throughout. Arches transmit large horizontal thrust into their supports.

47 Dome An arch but in 3D. It is in compression throughout.

48 St Paul s Cathedral London EC4M Dome

49 St Martin in the Fields Crypt Trafalgar Square, London WC2N Dome / Vault

50 4. Lateral stability systems

51 Moment or Braced Frames Combination of beams and columns Lateral Stability

52 Neo Bankside - Bankside London SE1 Braced Frame

53 Murray Grove Flats Murray Grove, London N1 Braced Frame

54 Tower Stability gerkin Swiss Re ( The Gherkin ) - 30 St Mary Axe, City of London EC3A

55 The Shard - Joiner Street, Southwark,London SE1 Tower Stability

56 Core/ Braced cores or Shear Walls

57 5. Tensile systems

58 Cable Only in Tension

59 Millennium Bridge London Suspension Span

60 Suspension Span Golden Jubilee Footbridges - Hungerford Bridge, London Albert Bridge, Battersea, London

61 6. Form active structures

62 Gridshells Grid of slender elements that transfer axial loads. They are form-active structures as they acquire their strength and stiffness through their form and shape. They are most efficient when doubly curved.

63 Westfield Shopping Mall Shepherd Bush Gridshells

64 Cutty Sark - Greenwich Gridshells

65 Fabric Structures Only in Tension

66 Fabric Structure Spitafield Markets Fabric Structures

67 Serpentine Slacker Gallery Fabric Structures

68 Structural design Load path diagrams 1. Loads : which loads are acting on our structure and in which form/ direction? 2. Which parameters do we have to fulfill? Strength + Stability: to avoid collapse - Stiffness: to avoid excessive deflections 3. Sketch a load path or alternative load paths on our structure in order to identify the best structural system or systems: a) Begin by drawing the load vectors b) Walk along the structure with your pen following the path of the load from their point of application towards the ground / supports c) Sketch structural elements/ combined elements for transferring the loads d) Make sure we have a structural system for transferring the loads from their point of application to the ground

69 Load Path Action Re-Action Re-Action

70 Structural system and deflected shape

one structural behavior and design ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS FALL 2016 lecture

one structural behavior and design ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS FALL 2016 lecture ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS FALL 2016 lecture one structural behavior and design Introduction 1 www.greatbuildings.com Syllabus & Student Understandings Introduction

More information

Level 6 Graduate Diploma in Engineering Structural analysis

Level 6 Graduate Diploma in Engineering Structural analysis 9210-111 Level 6 Graduate Diploma in Engineering Structural analysis Sample Paper You should have the following for this examination one answer book non-programmable calculator pen, pencil, ruler, drawing

More information

Introduction to Structural Analysis TYPES OF STRUCTURES LOADS AND

Introduction to Structural Analysis TYPES OF STRUCTURES LOADS AND AND Introduction to Structural Analysis TYPES OF STRUCTURES LOADS INTRODUCTION What is the role of structural analysis in structural engineering projects? Structural engineering is the science and art

More information

Equilibrium. Of a Rigid Body

Equilibrium. Of a Rigid Body Equilibrium Of a Rigid Body 1 Objectives 1. To develop the equations of equilibrium for a rigid body. 2. To introduce the concept of the free-body diagram for a rigid body. 3. To show how to solve rigid

More information

How Beams Work, I. Statics and Strength of Materials

How Beams Work, I. Statics and Strength of Materials How Beams Work, I Statics and Strength of Materials HOW BEAMS WORK Beams work by transferring transverse loads along their length to their supports primarily by resisting a force called internal bending

More information

S p a c e e l e v a t o r. Structure selection and design Prof Schierle 1

S p a c e e l e v a t o r. Structure selection and design Prof Schierle 1 S p a c e e l e v a t o r Structure selection and design Prof Schierle 1 Selection criteria: 1 Morphology 2 Capacity Limits 3 Code Requirements 4 Cost 5 Load Conditions 6 Resources and Technology 7 Sustainability

More information

Jerome J. Connor Susan Faraji. Fundamentals of Structural. Engineering. ^ Springer

Jerome J. Connor Susan Faraji. Fundamentals of Structural. Engineering. ^ Springer Jerome J. Connor Susan Faraji Fundamentals of Structural Engineering ^ Springer Contents Part I Statically Determinate Structures 1 Introduction to Structural Engineering 3 1.1 Types of Structures and

More information

one structural behavior, systems, and design ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2015 lecture

one structural behavior, systems, and design ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2015 lecture ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2015 lecture one structural behavior, systems, and design Introduction 1 www.greatbuildings.com Syllabus & Student Understandings

More information

Types of Structures and Loads

Types of Structures and Loads Types of Structures and Loads THEORY OF STRUCTURES Asst. Prof. Dr. Cenk Üstündağ Asst. Prof. Dr. Cenk Ustundag E-mail: ustunda1@itu.edu.tr Room Nr: 103 Web: http://web.itu.edu.tr/ustunda1 Course Content

More information

one structural behavior, systems and design Course Description Course Description Syllabus & Student Understandings statics mechanics of materials

one structural behavior, systems and design Course Description Course Description Syllabus & Student Understandings statics mechanics of materials ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture one Syllabus & Student Understandings structural behavior, systems and design Introduction 1 Architectural Structures

More information

QUIZ 2 Allotted Time: 3 hours

QUIZ 2 Allotted Time: 3 hours ARCHITECTURE 324/624: INTRODUCTION TO STRUCTURAL DESIGN PAGE 1 Name print QUIZ 2 Allotted Time: 3 hours On my honor as a student, I pledge the following: I will neither give nor receive unauthorized assistance

More information

Stay Tuned! Practical Cable Stayed Bridge Design

Stay Tuned! Practical Cable Stayed Bridge Design midas Civil Stay Tuned! Practical Cable Stayed Bridge Design 2017 Francesco Incelli I. Introduction II. Modeling of the cable-stayed bridge a. Bridge wizard b. Girder Cross Section III. Nonlinear Effect

More information

ARCH 331. Study Guide for Final Examination

ARCH 331. Study Guide for Final Examination ARCH 331. Study Guide for Final Examination This guide is not providing answers for the conceptual questions. It is a list of topical concepts and their application you should be familiar with. It is an

More information

ENR202 Mechanics of Materials Lecture 1A Slides and Notes

ENR202 Mechanics of Materials Lecture 1A Slides and Notes Slide 1 Copyright Notice Do not remove this notice. COMMMONWEALTH OF AUSTRALIA Copyright Regulations 1969 WARNING This material has been produced and communicated to you by or on behalf of the University

More information

Marina Bay Sands Hotel Arch 631 Kayla Brittany Maria Michelle

Marina Bay Sands Hotel Arch 631 Kayla Brittany Maria Michelle Marina Bay Sands Hotel Arch 631 Kayla Brittany Maria Michelle Overall Information Location: Singapore Date of Completion: 2010 Cost: $5.7 billion Architect: Moshe Safdie Executive Architect: Aedas, Pte

More information

15.2 Approximate Analysis of a Continuous Beam for Gravity Load

15.2 Approximate Analysis of a Continuous Beam for Gravity Load 15.2 Approximate Analysis of a Continuous Beam for Gravity Load Figure 15.1 Location of points of inflection and shear and moment curves for beams with various idealized end conditions 1 15.2 Approximate

More information

Example of a modelling review Roof truss

Example of a modelling review Roof truss Example of a modelling review Roof truss Iain A MacLeod The Structure Figure gives an elevation and connection details for a roof truss. It is supported at each end on masonry walls. The trusses are at

More information

five trusses & columns APPLIED ACHITECTURAL STRUCTURES: DR. ANNE NICHOLS SPRING 2018 lecture STRUCTURAL ANALYSIS AND SYSTEMS ARCH 631

five trusses & columns APPLIED ACHITECTURAL STRUCTURES: DR. ANNE NICHOLS SPRING 2018 lecture STRUCTURAL ANALYSIS AND SYSTEMS ARCH 631 APPLIED ACHITECTURAL STRUCTURES: STRUCTURAL ANALYSIS AND SYSTEMS DR. ANNE NICHOLS SPRING 2018 lecture five trusses & columns www.nyc-architecture.com Columns & Trusses 1 Calibrated Peer Review / Turnitin

More information

five trusses & columns APPLIED ACHITECTURAL STRUCTURES: DR. ANNE NICHOLS SPRING 2017 lecture STRUCTURAL ANALYSIS AND SYSTEMS ARCH 631

five trusses & columns APPLIED ACHITECTURAL STRUCTURES: DR. ANNE NICHOLS SPRING 2017 lecture STRUCTURAL ANALYSIS AND SYSTEMS ARCH 631 APPLIED ACHITECTURAL STRUCTURES: STRUCTURAL ANALYSIS AND SYSTEMS DR. ANNE NICHOLS SPRING 2017 lecture five trusses & columns www.nyc-architecture.com Columns & Trusses 1 Calibrated Peer Review / Turnitin

More information

READ THIS PAGE FIRST

READ THIS PAGE FIRST READ THIS PAGE FIRST There should be just enough time for you to complete this exam if you have prepared. Read each problem carefully before answering. A few moments of reflection can save minutes of unnecessary

More information

five trusses & columns Trusses Trusses Trusses ancient (?) wood 1800 s analysis efficient long spans

five trusses & columns Trusses Trusses Trusses ancient (?) wood 1800 s analysis efficient long spans APPLIED ARCHITECTURAL STRUCTURES: STRUCTURAL ANALYSIS AND SYSTEMS DR. ANNE NICHOLS SPRING 017 lecture five ancient (?) wood 1800 s analysis efficient long spans trusses & columns www.nyc-architecture.com

More information

Principles of STRUCTURAL DESIGN. Wood, Steel, and Concrete SECOND EDITION RAM S. GUPTA. CRC Press. Taylor& Francis Group

Principles of STRUCTURAL DESIGN. Wood, Steel, and Concrete SECOND EDITION RAM S. GUPTA. CRC Press. Taylor& Francis Group SECOND EDITION Principles of STRUCTURAL DESIGN Wood, Steel, and Concrete RAM S. GUPTA CRC Press Taylor& Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Croup, an

More information

twenty eight shells & structural systems ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SPRING 2016 lecture

twenty eight shells & structural systems ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SPRING 2016 lecture ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SPRING 2016 lecture twenty eight shells & structural systems Shells & Systems 1 Office Hours not available at this time

More information

4/14/2015 INTRODUCTION. Dr. AZ Department of Civil Engineering Brawijaya University BRIDGES

4/14/2015 INTRODUCTION. Dr. AZ Department of Civil Engineering Brawijaya University BRIDGES INTRODUCTION Dr. AZ Department of Civil Engineering Brawijaya University BRIDGES A bridge is a structure built to span a valley, road, body of water, or other physical obstacle, for the purpose of providing

More information

twenty eight shells & structural systems Office Hours Arches Arch & Shell Systems behavior compression only

twenty eight shells & structural systems Office Hours Arches Arch & Shell Systems behavior compression only ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS Office Hours SPRING 2019 lecture twenty eight shells & structural systems link to posted schedule http://faculty.arch.tamu.edu/anichols/schedule/

More information

six beam introduction & internal forces Beams Beams Beams span horizontally

six beam introduction & internal forces Beams Beams Beams span horizontally EEMENTS OF ARCHITECTURA STRUCTURES: FORM, BEHAIOR, AND DESIGN DR. ANNE NICHOS SPRING 2014 lecture six beam introduction & internal forces Beams span horizontally floors bridges roofs loaded transversely

More information

Sesión 1/4 Pág. 1. Asignatura INTRODUCTION STRUCTURES. Clave Máster y Curso. Construction I. Materials and techniques.

Sesión 1/4 Pág. 1. Asignatura INTRODUCTION STRUCTURES. Clave Máster y Curso. Construction I. Materials and techniques. Asignatura Clave Máster y Curso Sesión 1/4 Pág. 1 INTRODUCTION STRUCTURES Construction I. Materials and techniques. First course Àrea de Construcció 2016-2017 Index 01 STRUCTURAL DEMANDS 02 FUNDAMENTAL

More information

A Promising Approach in the World: Tensile Structures Roofing

A Promising Approach in the World: Tensile Structures Roofing International Journal of Engineering Research and Development, Vol.7, No.3, 015, All in One Conference Special Issue 1 A Promising Approach in the World: Tensile Structures Roofing Talha Ekmekyapar, Alaa

More information

CHAPTER 1. Introduction

CHAPTER 1. Introduction CHAPTER 1 Introduction In the past it was common practice to teach structural analysis and stress analysis, or theory of structures and strength of materials as they were frequently known, as two separate

More information

Approximate Analysis of Statically Indeterminate Structures

Approximate Analysis of Statically Indeterminate Structures Approximate Analysis of Statically Indeterminate Structures Every successful structure must be capable of reaching stable equilibrium under its applied loads, regardless of structural behavior. Exact analysis

More information

Introduction to Statically

Introduction to Statically Introduction to Statically Indeterminate Analysis Support reactions and internal forces of statically determinate structures can be determined using only the equations of equilibrium. However, the analysis

More information

Rajan s Book Chapter 3: Structural Design Fundamentals

Rajan s Book Chapter 3: Structural Design Fundamentals Rajan s Book Chapter 3: Structural Design Fundamentals What is Design? Design a process by which an acceptable solution is obtained. -- Feasible solution is acceptable, but desirable to have a minimum

More information

BOAST. West Coast. Set to open this spring, the tallest building on the West Coast resists wind and seismic drifts with massive braces.

BOAST. West Coast. Set to open this spring, the tallest building on the West Coast resists wind and seismic drifts with massive braces. Set to open this spring, the tallest building on the West Coast resists wind and seismic drifts with massive braces. AC Martin West Coast BOAST BY GERARD M. NIEBLAS, SE AC Martin Wilshire Grand is expected

More information

STRESS-RIBBON BRIDGES STIFFENED BY ARCHES OR CABLES

STRESS-RIBBON BRIDGES STIFFENED BY ARCHES OR CABLES 2nd Int. PhD Symposium in Civil Engineering 1998 Budapest STRESS-RIBBON BRIDGES STIFFENED BY ARCHES OR CABLES Tomas Kulhavy Technical University of Brno, Department of Concrete and Masonry Structures Udolni

More information

STRUCTURAL ANALYSIS. CE 382 Structural Analysis. As a structural engineer, you will be required to make many. Blue text is important course

STRUCTURAL ANALYSIS. CE 382 Structural Analysis. As a structural engineer, you will be required to make many. Blue text is important course CE 382 Structural Analysis Blue text is important course material Green text is important definition material for the course Red text is important conclu- sion or caution material for the course Text in

More information

A Guide for the Interpretation of Structural Design Options for Residential Concrete Structures

A Guide for the Interpretation of Structural Design Options for Residential Concrete Structures CFA Technical Note: 008-2010 A Guide for the Interpretation of Structural Design Options for Residential Concrete Structures CFA Technical This CFA Technical Note is intended to serve as a guide to assist

More information

Chapter 6: Structural Analysis

Chapter 6: Structural Analysis Chapter 6: Structural Analysis Goals and Objectives Determine the forces in members of a truss using the method of joints Determine zero-force members Determine the forces in members of a truss using the

More information

Analysis of Statically Determinate Structures. W.M.Onsongo. 11~1~~ii~1 ~il~~i~i~',r,~jrll. Nairobi University Press

Analysis of Statically Determinate Structures. W.M.Onsongo. 11~1~~ii~1 ~il~~i~i~',r,~jrll. Nairobi University Press Analysis of Statically Determinate Structures W.M.Onsongo 11~1~~ii~1 ~il~~i~i~',r,~jrll 04965208 Nairobi University Press CONTENTS Preface xiii CHAPTER INTRODUCTION I 1.1 Structures 1.2 Loads 1.3 Analysis

More information

The Design and Engineering of Fabric Membrane Clad Buildings

The Design and Engineering of Fabric Membrane Clad Buildings The Design and Engineering of Fabric Membrane Clad Buildings Wayne Rendely PE 132 Columbia Street, Huntington Station, New York, 11746-1220 TEL (631) 351-1843 WayneRendelyPE.com ABSTRACT This paper reviews

More information

NON-LINEAR STRUCTURAL INTEGRITY ANALYSIS

NON-LINEAR STRUCTURAL INTEGRITY ANALYSIS NON-LINEAR STRUCTURAL INTEGRITY ANALYSIS AHMAD RAHIMIAN, PhD, PE, SE Dr. Ahmad Rahimian., PE, SE is President of Cantor Seinuk Structural Engineers in New York City. An expert in the behaviour of steel

More information

The need to design for robustness in fire. Ian Burgess

The need to design for robustness in fire. Ian Burgess The need to design for robustness in fire Ian Burgess Robustness a working definition The ability of a structure to avoid disproportionate collapse when subject to a localised failure Hence: Only structural

More information

Steel structures I INTRODUCTION Steel structures Structural elements Structural design Design methods Euro code Chapter 2 LIMIT STATE DESIGN Limit

Steel structures I INTRODUCTION Steel structures Structural elements Structural design Design methods Euro code Chapter 2 LIMIT STATE DESIGN Limit Steel structures I INTRODUCTION Steel structures Structural elements Structural design Design methods Euro code Chapter 2 LIMIT STATE DESIGN Limit state design principles Limit states for steel design

More information

VAULTED STRUCTURES STABILITY CALCULATIONS

VAULTED STRUCTURES STABILITY CALCULATIONS VAULTED STRUCTURES STABILITY CALCULATIONS CATENARY METHOD Past developments An English engineer of the 17 th century, Robert Hooke, made already in 1675 the correlation between the tensile stress in a

More information

six beams internal forces & diagrams Beams Beams Beams span horizontally

six beams internal forces & diagrams Beams Beams Beams span horizontally ARCHITECTURA STRUCTURES: FOR, BEHAIOR, AND DESIGN DR. ANNE NICHOS SUER 2013 lecture si beams internal forces & diagrams http:// nisee.berkeley.edu/godden Beams span horizontally floors bridges roofs loaded

More information

ENG202 Statics Lecture 13, Sections

ENG202 Statics Lecture 13, Sections ENG202 Statics Lecture 13, Sections 6.1-6.3 Simple Truss -A truss is a structure of slender members (Elements) joined together at their end points (Joints). -Elements consist of wooden struts or metal

More information

VARIOUS TYPES OF SLABS

VARIOUS TYPES OF SLABS VARIOUS TYPES OF SLABS 1 CHOICE OF TYPE OF SLAB FLOOR The choice of type of slab for a particular floor depends on many factors. Economy of construction is obviously an important consideration, but this

More information

STRUCTURAL ANALYSIS Using Classical and Matrix Methods

STRUCTURAL ANALYSIS Using Classical and Matrix Methods STRUCTURAL ANALYSIS Using Classical and Matrix Methods Fourth Edition Jack C. McCormac Clemson University 8 O 7 2 O O 7 John Wiley and Sons, Inc. Table of Contents DEDICATION PREFACE xiii vii PART ONE:

More information

fifteen design for lateral loads Lateral Load Resistance Load Direction Lateral Load Resistance

fifteen design for lateral loads Lateral Load Resistance Load Direction Lateral Load Resistance APPLIED ARCHITECTURAL STRUCTURES: STRUCTURAL ANALYSIS AND SYSTEMS DR. ANNE NICHOLS FALL 2013 lecture fifteen design for lateral loads Lateral Load Resistance stability important for any height basic mechanisms

More information

Diploma Examination Questions. (first-circle study)

Diploma Examination Questions. (first-circle study) Diploma Examination Questions (first-circle study) Questions for the Structural Engineering specialization NOTE: The # symbol separates the main part of the question (which is always displayed) from the

More information

Question Paper Code : 11410

Question Paper Code : 11410 Reg. No. : Question Paper Code : 11410 B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2011 Fourth Semester Mechanical Engineering ME 2254 STRENGTH OF MATERIALS (Common to Automobile Engineering and Production

More information

UNIVERSITY OF BOLTON WESTERN INTERNATIONAL CENTRE FZE. BEng (HONS) CIVIL ENGINEERING SEMESTER ONE EXAMINATION 2015/2016

UNIVERSITY OF BOLTON WESTERN INTERNATIONAL CENTRE FZE. BEng (HONS) CIVIL ENGINEERING SEMESTER ONE EXAMINATION 2015/2016 OCD59 UNIVERSITY OF BOLTON WESTERN INTERNATIONAL CENTRE FZE BEng (HONS) CIVIL ENGINEERING SEMESTER ONE EXAMINATION 2015/2016 ADVANCED STRUCTURAL ANALYSIS AND DESIGN MODULE NO: CIE6001 Date: Tuesday 12

More information

Structural Behaviour and Detailing

Structural Behaviour and Detailing Unit 22: Structural Behaviour and Detailing Unit code: M/601/1282 QCF level: 4 Credit value: 15 Aim This unit enables learners to understand structural concepts and develop skills to determine properties

More information

UNIVERSITY OF BOLTON WESTERN INTERNATIONAL COLLEGE FZE. BEng (HONS) CIVIL ENGINEERING SEMESTER ONE EXAMINATION 2018/2019

UNIVERSITY OF BOLTON WESTERN INTERNATIONAL COLLEGE FZE. BEng (HONS) CIVIL ENGINEERING SEMESTER ONE EXAMINATION 2018/2019 OCD030 UNIVERSITY OF BOLTON WESTERN INTERNATIONAL COLLEGE FZE BEng (HONS) CIVIL ENGINEERING SEMESTER ONE EXAMINATION 2018/2019 ADVANCED STRUCTURAL ANALYSIS AND DESIGN MODULE NO: CIE6001 Date: Tuesday 8

More information

NODIA AND COMPANY. GATE SOLVED PAPER Civil Engineering Design of Steel Structure. Copyright By NODIA & COMPANY

NODIA AND COMPANY. GATE SOLVED PAPER Civil Engineering Design of Steel Structure. Copyright By NODIA & COMPANY No part of this publication may be reproduced or distributed in any form or any means, electronic, mechanical, photocopying, or otherwise without the prior permission of the author. GATE SOVED AER Civil

More information

Distribution of Forces in Lateral Load Resisting Systems

Distribution of Forces in Lateral Load Resisting Systems Distribution of Forces in Lateral Load Resisting Systems Part 1. Vertical Distribution and Load Paths IITGN Short Course Gregory MacRae Many slides from 2009 Myanmar Slides of Profs Jain and Rai 1 Gravity

More information

VALLIAMMAI ENGINEERING COLLEGE DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK CE 6306 - STRENGTH OF MATERIALS UNIT I STRESS STRAIN DEFORMATION OF SOLIDS PART- A (2 Marks) 1. What is Hooke s Law? 2.

More information

fifteen design for lateral loads Lateral Load Resistance Load Direction Lateral Load Resistance

fifteen design for lateral loads Lateral Load Resistance Load Direction Lateral Load Resistance APPLIED ARCHITECTURAL STRUCTURES: STRUCTURAL ANALYSIS AND SYSTEMS DR. ANNE NICHOLS SPRING 2017 lecture fifteen design for lateral loads Lateral Load Resistance stability important for any height basic

More information

The problems in this guide are from past exams, 2011 to 2016.

The problems in this guide are from past exams, 2011 to 2016. CE 311 Exam 1 Past Exam Problems, 2011 to 2016 Exam 1 (14% of the grade) THURSDY, 9/21 7 TO 9:30PM. OPTIONL Q& SESSION WED. 9/20, 8PM. COVERGE: LESSONS 1 TO 9 Exam is designed for 2 hours, but a maximum

More information

Innovations in Tied Arch Bridges

Innovations in Tied Arch Bridges Innovations in Tied Arch Bridges Why are tied arches important? R. Shankar Nair Chicago Nair 2 Typical span ranges for various long-span bridge types Composite steel girders Segmental concrete box Steel

More information

Contents. 1.1 Introduction 1

Contents. 1.1 Introduction 1 Contents PREFACE 1 ANCIENT MASONRY 1 1.1 Introduction 1 1.2 History of Masonry Materials 1 1.2.1 Stone 2 1.2.2 Clay Units 2 1.2.3 Calcium Silicate Units 4 1.2.4 Concrete Masonry Units 4 1.2.5 Mortars 5

More information

CADS A3D MAX. How to model shear walls

CADS A3D MAX. How to model shear walls CADS A3D MAX How to model shear walls Modelling shear walls in A3D MAX Introduction and synopsis This paper explains how to model shear walls in A3D MAX using the `wide column rigid arm sub-frame described

More information

fifteen design for lateral loads Lateral Load Resistance Load Direction Lateral Load Resistance

fifteen design for lateral loads Lateral Load Resistance Load Direction Lateral Load Resistance APPLIED ARCHITECTURAL STRUCTURES: STRUCTURAL ANALYSIS AND SYSTEMS DR. ANNE NICHOLS FALL 2014 lecture fifteen design for lateral loads Lateral Load Resistance stability important for any height basic mechanisms

More information

Structural Glossary. ARCH 631 Structural Glossary F2014abn

Structural Glossary. ARCH 631 Structural Glossary F2014abn Structural Glossary Allowable strength: Nominal strength divided by the safety factor. Allowable stress: Allowable strength divided by the appropriate section property, such as section modulus or cross

More information

Sabah Shawkat Cabinet of Structural Engineering 2017

Sabah Shawkat Cabinet of Structural Engineering 2017 3.1-1 Continuous beams Every building, whether it is large or small, must have a structural system capable of carrying all kinds of loads - vertical, horizontal, temperature, etc. In principle, the entire

More information

Contents. Tables. Notation xii Latin upper case letters Latin lower case letters Greek upper case letters Greek lower case letters. Foreword.

Contents. Tables. Notation xii Latin upper case letters Latin lower case letters Greek upper case letters Greek lower case letters. Foreword. Tables x Notation xii Latin upper case letters Latin lower case letters Greek upper case letters Greek lower case letters xii xiv xvi xvi Foreword xviii 1 Introduction 1 1.1 Aims of the Manual 1 1.2 Eurocode

More information

STRUCTURES WHATEVER THE TYPE OF STRUCTURE, IT CAN BE EITHER A NATURAL OR A MANUFACTURED STRUCTURE.

STRUCTURES WHATEVER THE TYPE OF STRUCTURE, IT CAN BE EITHER A NATURAL OR A MANUFACTURED STRUCTURE. STRUCTURES INTRODUCTION A structure is something that supports an object or a load1. A structure must: be strong enough to support its own weight and any load that is put on it. be stable (not topple over2

More information

BS EN :2004 EN :2004 (E)

BS EN :2004 EN :2004 (E) Contents List 1. General 1.1 Scope 1.1.1 Scope of Eurocode 2 1.1.2 Scope of Part 1-1 of Eurocode 2 1.2 Normative references 1.2.1 General reference standards 1.2.2 Other reference standards 1.3 Assumptions

More information

Elastic versus Plastic Analysis of Structures

Elastic versus Plastic Analysis of Structures Elastic versus Plastic Analysis of Structures 1.1 Stress-Strain Relationships 1.2 Plastic Design Versus Elastic Design Chapter 1 Basic Concepts of Plastic Analysis 1.3 Elastic-Plastic Bending of Beams

More information

General Structural Concerns

General Structural Concerns 1/28 General Structural Concerns Functionality / Stiffness deformations Stability equilibrium Strength material behaviour 2/28 Stability Loads act on structure tend to destabilise structure also tend to

More information

Historical Timber Structures Mechanical Patterns and Structural Form

Historical Timber Structures Mechanical Patterns and Structural Form Historical Timber Structures Mechanical Patterns and Structural Form Karl-Gunnar Olsson, Ylva Sandin, Carl Thelin Department of Architecture, Chalmers University of Technology, Göteborg, Sweden For a number

More information

TEST STUDY ON BASIC STATIC CHARACTERISTICS OF CABLE SUPPORTED BARREL VAULT STRUCTURE

TEST STUDY ON BASIC STATIC CHARACTERISTICS OF CABLE SUPPORTED BARREL VAULT STRUCTURE Advanced Steel Construction Vol. 8, No. 2, pp. 199-211 (2012) 199 TEST STUDY ON BASIC STATIC CHARACTERISTICS OF CABLE SUPPORTED BARREL VAULT STRUCTURE Wentao Qiao 1,*, Zhihua Chen 2 and Mingshan Zhao 3

More information

Structural Engineering Art and Approximation. A Talk By Hugh Morrison

Structural Engineering Art and Approximation. A Talk By Hugh Morrison Structural Engineering Art and Approximation A Talk By Hugh Morrison Any Questions? Please Speak Up! And turn off mobile phones. Summary of Talk Why and How the book came to be written Illustration: Historic

More information

twenty two concrete construction: flat spanning systems, columns & frames Reinforced Concrete Design Reinforced Concrete Design

twenty two concrete construction: flat spanning systems, columns & frames Reinforced Concrete Design Reinforced Concrete Design ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture twenty two economical & common resist lateral loads concrete construction: flat spanning systems, columns & frames

More information

Register of some important notions in structural mechanics András Draskóczy

Register of some important notions in structural mechanics András Draskóczy Register of some important notions in structural mechanics András Draskóczy Andrew-cross - X-shaped bracing, in which generally only the diagonal subjected to tension is working when loaded, the compressed

More information

Indeterminate Structures. Architecture 4.440

Indeterminate Structures. Architecture 4.440 Indeterminate Structures Architecture 4.440 Outline! Introduction! Static Indeterminacy! Support Conditions! Degrees of Static Indeterminacy! Design Considerations! Conclusions Forces in the Legs of a

More information

Civil Engineering. Civil Engineering Civil engineering is considered to be the oldest field in engineering. still the same: Civil engineering is the.

Civil Engineering. Civil Engineering Civil engineering is considered to be the oldest field in engineering. still the same: Civil engineering is the. Civil Engineering NAME: CLASS: Civil Engineering Civil engineering is considered to be the oldest field in engineering. Engineered structures have been found dating back thousands of years like the pyramids

More information

twelve rigid frames: compression & buckling ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SPRING 2019 lecture

twelve rigid frames: compression & buckling ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SPRING 2019 lecture ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SPRING 2019 lecture twelve rigid frames: compression & buckling Rigid Frames 1 http:// nisee.berkeley.edu/godden Rigid Frames rigid

More information

CIVL 3121 Trusses - Introduction 1/8

CIVL 3121 Trusses - Introduction 1/8 CIVL 3121 Trusses - Introduction 1/8 We will discuss the determinacy, stability, and analysis of three forms of statically determinate trusses: simple, compound, and complex. CIVL 3121 Trusses - Introduction

More information

Bridge articulation No. 1.04

Bridge articulation No. 1.04 Bridge articulation Scope This Guidance Note gives advice on the selection of the articulation arrangements, the choice of bearing types and dispositions of bearings, for bridges where relative movement

More information

Enclosed Network Bridging Structures for Urban Environments

Enclosed Network Bridging Structures for Urban Environments International Conference on Adaptation and Movement in Architecture, Toronto, Canada, 10-12 October 2013 Enclosed Network Bridging Structures for Urban Environments Michael Barnes 1 and Sigrid Adriaenssens

More information

ARCHITECTURAL ENGINEERING (ARCE)

ARCHITECTURAL ENGINEERING (ARCE) Architectural Engineering (ARCE) 1 ARCHITECTURAL ENGINEERING (ARCE) ARCE Courses ARCE 106. Introduction to Building Systems. 2 units Introduction to building systems and materials. Use and application

More information

Design and construction of Hechang Bridge, Quanzhou, China

Design and construction of Hechang Bridge, Quanzhou, China Design and construction of Hechang Bridge, Quanzhou, China G. Peng and B. Chen College of Civil Engineering, Fuzhou University, Fuzhou 302, China ABSTRACT: Hechang Bridge is a pedestrian bridge, located

More information

Cyclic Loading Tests Of Steel Dampers Utilizing Flexure-Analogy of Deformation

Cyclic Loading Tests Of Steel Dampers Utilizing Flexure-Analogy of Deformation Cyclic Loading Tests Of Steel Dampers Utilizing Flexure-Analogy of Deformation J.-H. Park & K.-H. Lee University of Incheon, Korea SUMMARY Steel dampers utilizing flexure analogy of deformation are proposed

More information

MULTI STOREY BUILDINGS IV

MULTI STOREY BUILDINGS IV 40 MULTI STOREY BUILDINGS IV 1.0 INTRODUCTION Historically monuments such as the pyramids of Egypt, Taj Mahal in India, the Temples of Greece, the Viaduct of Rome were all built principally with masonry

More information

twenty two concrete construction: flat spanning systems, columns & frames ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN

twenty two concrete construction: flat spanning systems, columns & frames ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture twenty two concrete construction: http:// nisee.berkeley.edu/godden flat spanning systems, columns & frames Concrete

More information

MULTI-STOREY BUILDINGS - II

MULTI-STOREY BUILDINGS - II 38 MULTI-STOREY BUILDINGS - II 1.0 INTRODUCTION Modern design offices are generally equipped with a wide variety of structural analysis software programs, invariably based on the stiffness matrix method.

More information

(laboratory) (fall semester)

(laboratory) (fall semester) Civil Engineering Courses-1 CIV 211/Surveying Prerequisite: MAT 127 An introduction to the theory and applications of modern surveying processes. Students use optical and digital land surveying instruments

More information

DIN EN : (E)

DIN EN : (E) DIN EN 1999-1-1:2014-03 (E) Eurocode 9: Design of aluminium structures - Part 1-1: General structural rules Contents Page Foreword to EN 1999-1-1:2007... 7!Foreword to EN 1999-1-1:2007/A1:2009... 7 #Foreword

More information

Fill in the gaps using the words in the box: the top of stretched the bottom of beam compressed

Fill in the gaps using the words in the box: the top of stretched the bottom of beam compressed 9. STRUCTURES 9.1. TEXT 1: BENDING BENDING Fill in the gaps using the words in the box: the top of stretched the bottom of beam compressed In engineering mechanics, bending (also known as flexure) is the

More information

and girder bridges for others? Why do engineers design suspension bridges for some locations

and girder bridges for others? Why do engineers design suspension bridges for some locations and girder bridges for others? Why do engineers design suspension bridges for some locations and truss bridges for others? Why do engineers design arch bridges for some locations Why are I-sections used

More information

THE DESIGN AND INSTALLATION OF A FIVE-STORY NEW TIMBER BUILDING IN JAPAN

THE DESIGN AND INSTALLATION OF A FIVE-STORY NEW TIMBER BUILDING IN JAPAN THE DESIGN AND INSTALLATION OF A FIVE-STORY NEW TIMBER BUILDING IN JAPAN KOSHIHARA Mikio, Assoc. Prof., Dr.Eng. Institute of Industrial Science, University of Tokyo, Japan, kos@iis.u-tokyo.ac.jp ISODA

More information

Network Arch Bridges. Presenter: Robert Salca technical support engineer, Midas UK

Network Arch Bridges. Presenter: Robert Salca technical support engineer, Midas UK Network Arch Bridges Presenter: Robert Salca technical support engineer, Midas UK In order to make sure that the sound system is working well a poll will appear shortly on your screens. Please vote by

More information

PROJECT OF TWO METAL ARCH BRIDGES WITH TUBULAR ELEMENTS AND NETWORK SUSPENSION SYSTEM

PROJECT OF TWO METAL ARCH BRIDGES WITH TUBULAR ELEMENTS AND NETWORK SUSPENSION SYSTEM PROJECT OF TWO METAL ARCH BRIDGES WITH TUBULAR ELEMENTS AND NETWORK SUSPENSION SYSTEM Francisco Millanes Mato a, Miguel Ortega Cornejo b, Antonio Carnerero Ruiz c a Prof., PhD., Eng., Universidad Politécnica

More information

Chapter 6: Structural Analysis

Chapter 6: Structural Analysis Chapter 6: Structural Analysis 1 6.1 Simple Trusses A truss is a structure composed of slender members joined together at their end points. The members commonly used in construction consist of wooden struts

More information

xiii Preface to the Fifth Edition Preface to the Second Edition Factors for Conversion to SI Units of

xiii Preface to the Fifth Edition Preface to the Second Edition Factors for Conversion to SI Units of Structural Steel Designer's Handbook Table Of Contents: Contributors xiii Preface to the Fifth Edition xv Preface to the Second Edition xvii Factors for Conversion to SI Units of xix Measurement Chapter

More information

twenty two concrete construction: flat spanning systems, columns & frames Reinforced Concrete Design Reinforced Concrete Design

twenty two concrete construction: flat spanning systems, columns & frames Reinforced Concrete Design Reinforced Concrete Design ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2013 lecture twenty two economical & common resist lateral loads concrete construction: flat spanning systems, columns & frames

More information

Professor Terje Haukaas University of British Columbia, Vancouver Approximate Methods

Professor Terje Haukaas University of British Columbia, Vancouver   Approximate Methods Approximate Methods Modern structural analysis offers a host of methods and computer tools to determine deformations and internal forces in structures. For instance, the finite element method facilitates

More information

CIVL473 Fundamentals of Steel Design

CIVL473 Fundamentals of Steel Design CIVL473 Fundamentals of Steel Design CHAPTER 3 Design of Beams Prepared By Asst.Prof.Dr. Murude Celikag DESIGN OF STRUCTURAL ELEMENTS 3. Beams in Buildings 3.1. Laterally Restrained Beams Restrained beams

More information

Using friction dampers for improving earthquake response of self-variable stiffness RC framed buildings

Using friction dampers for improving earthquake response of self-variable stiffness RC framed buildings Using friction dampers for improving earthquake response of self-variable stiffness RC framed buildings I. Iskhakov & Y. Ribakov Department of Civil Engineering, Ariel University Center of Samaria, Israel

More information

Chapter Objectives. To show how to determine the forces in the members of a truss using: the method of joints and the method of sections.

Chapter Objectives. To show how to determine the forces in the members of a truss using: the method of joints and the method of sections. Structural Analysis Chapter Objectives To show how to determine the forces in the members of a truss using: the method of joints and the method of sections. Chapter Outline Two-force members Planar (Simple)

More information