Finite Element Analysis of Flexible Anchored Sheet Pile Walls: Effect of Mode of Construction and Dewatering Naveen Kumar 1, Arindam Dey 2*

Size: px
Start display at page:

Download "Finite Element Analysis of Flexible Anchored Sheet Pile Walls: Effect of Mode of Construction and Dewatering Naveen Kumar 1, Arindam Dey 2*"

Transcription

1 Golden Jubilee Conference of the IGS Bangalore Chapter, Geo-Innovations, October 2014 Finite Element Analysis of Flexible Anchored Sheet Pile Walls: Effect of Mode of Construction and Dewatering Naveen Kumar 1, Arindam Dey 2* 1 Post Graduate Student, Department of Civil Engineering, IIT Guwahati, Assam , India naveenk88@gmail.com 2 Assistant Professor, Department of Civil Engineering, IIT Guwahati, Assam , India, arindam.dey@iitg.ernet.in Abstract. This paper reports the finite element (FE) study to assess the behavior of a flexible sheet pile wall. The effect of excavation and backfilling process on the behavior of the sheet pile wall have been thoroughly investigated and the results are presented in terms of the wall deformations and bending moments, developed anchor forces, and the earth pressures developed on both active and passive side of the wall. Development of failure mechanism in terms of soil displacements and incremental deviatoric strains, slip lines and plastic points formations have been illustrated. Such structures in the field are often associated with high water table, which renders significant hindrance in the construction of sheet pile wall, and hence, dewatering is adopted in such cases. The dewatering scheme substantially alters the stress conditions on the sheet pile wall, and if not accommodated in the design, might render the behavior as unrealistic. This aspect has been addressed in the present article. It has been observed that the sheet pile wall systems in the dewatered excavation cases are failing before the desired excavation depth, and hence, forms a crucial part of the analysis. Keywords: Flexible anchored sheet pile wall, Installation technique, Excavation, Backfilling, Dewatering, PLAXIS FE modeling. Introduction Flexible retaining walls are frequently used for earth retaining purposes as required for deep excavations and tunnelling, waterfront structures, beach and river bank protection, stabilization of ground slopes, shoring walls of trenches and construction of cofferdams. Based on the site requirements and field conditions, the two widely used installation techniques adopted are excavation and backfilling, which exhibit significant influence on the behavior of the sheet pile wall. Site conditions may govern the adoption of a tie-back mechanism as well for such structures. The problems related to flexible anchored sheet pile wall being associated to the complex interaction with soil, analytical techniques to obtain solution becomes quite cumbersome. Under such conditions, resort is taken to the numerical models such as finite element method (FEM) for the investigation of such structures. This paper utilizes PLAXIS 2D v2012, commercial geotechnical FE software, to simulate the behavioural response of sheet pile wall depending on the installation technique and construction sequences, subjected to the effect of fluctuation of the ground water table due to dewatering. Very limited studies related to behaviour of sheet pile walls subjected to the above mentioned conditions have been earlier investigated [Bilgin 2010]. The present article illustrates in detail the effect of mode of construction and fluctuation of water level on the response of of the sheet pile wall under static condition. PLAXIS FE Modelling Fig. 1 shows a schematic diagram of an anchored sheet pile wall. For the present study, such a wall retaining 6m height of soil is considered. Considering the sheet pile wall to be extended in the longitudinal direction, a plane strain model has been developed with model boundary 1

2 Golden Jubilee Conference of the IGS Bangalore Chapter, Geo-Innovations, October 2014 having dimension 48m x 15m (The dimension has been so chosen that any boundary effects on the response of the sheet pile wall is eliminated [Bilgin 2010]). The soil was modeled using 15-noded triangular elements and its stress strain behavior represented by the elasticperfectly plastic Mohr-Coulomb model [Bilgin (2010), Hsiung (2009), Krabbenhoft et al. (2005)]. Two different types of soil has been considered for the present study, namely medium dense and loose sand which have been designated as D and L respectively and the properties of which are as given in Table 1. The whole soil domain is divided into two main layers, namely foundation soil (medium dense or loose sand) and backfill soil (always medium dense sand) as shown in Fig. 1. The soil-structure interface behavior has been described using an elastic-plastic model, whose interface strength is defined by R int = (tanδ/tan φ'), where δ is the interface friction angle, and φ' is the angle of internal friction of the adjacent soil mass. The sheet pile wall is modeled using 6-noded elastic plate element, while the anchor is modeled as an elastic spring element with the far end having a fixed node. The length of the anchor was so chosen that the anchor penetrates the resisting zone beyond the active zone behind the sheet pile wall. Table 2 enlists the properties of the sheet pile wall. Figure 1. Schematic diagram of a typical section The construction procedure has been modeled utilizing the staged construction sequence of the software. The backfill soil was divided into eight layers, each of 0.75m depth, on one side of the sheet pile wall. The anchor was installed when two layers of either excavation or backfill was completed. The anchor level has been fixed at 25% of wall height based on [Bilgin and Erten (2009)]. For backfilling process, two cases are considered: (a) Backfilling with initial excavation - The ground is first excavated to the depth of initial dredge line, sheet pile is installed, and then the backfilling is done. Such a condition reproduces the effect overconsolidated soils (b) Backfilling without initial excavation The existing ground level is considered as the dredge level, and hence the construction starts with the direct installation of sheet pile wall followed by backfilling process. Such a condition replicates the normally consolidated soils. In all these cases of excavation and backfill, the water level has been considered to be at the level of the anchor throughout the construction process. Each case has been designated as DL6 or DD6, where initial letter represents the type of backfill soil, the second letter the foundation soil and 6 the height of the soil retained in metres. Six cases have been analyzed with constant water level: two for excavation and four for backfilling. In the next set of analysis, the effect of dewatering during the construction process has been investigated. For the excavation case, dewatering is done after each layer of excavation so that the water level is kept 0.75m below the immediate excavated level. In the backfilling case, water level is kept 0.75m below the dredge line by dewatering, before the installation of sheet pile wall and is maintained at the same level till the backfilling is complete. After the completion of backfilling, it is assumed that dewatering is stopped and water level is allowed to reach the initial level. The effect of seepage pressure is neglected and it is assumed that due 2

3 Golden Jubilee Conference of the IGS Bangalore Chapter, Geo-Innovations, October 2014 to high permeability of sand the steady state condition reaches quickly. The option of steady state nullifies the effect of permeability of the soil taken i.e. for any value of permeability the results remain the same. In the present analysis a permeability of 10-4 m/s has been taken, which is an average value for sand. Table 1. Soil properties adopted in the present study Soil Properties Medium dense sand Loose sand Saturated unit weight (γ s ) 18 kn/m 3 16 kn/m 3 Unsaturated unit weight (γ d ) 17 kn/m 3 16 kn/m 3 Angle of internal friction (φ ) Cohesion (c) 0.3 kpa 0.3kPa Dilatancy angle (ψ) 6 0 Modulus of Elasticity (E) kpa kpa Poisson s ratio (υ) Interface strength (R int ) Table 2. Sheet pile wall and anchor properties adopted in the present study Sheet Pile Wall Anchor Material Steel EA 500x10 3 kn/m Elastic Modulus, E 2x10 5 MPa Spacing 2.5m EI 2.3x10 4 knm 2 /m Length 8m EA 2.738x10 6 kn/m Poisson s Ratio (υ) 0.15 Results and Discussions Six numerical simulations each have been analyzed under constant water level and subjected to dewatering conditions. The effect of construction mode and dewatering on the wall deflection, wall bending moment and anchor force developed are investigated and compared with those obtained in [Bilgin 2010]. In addition, the change in lateral earth pressure with distance from the wall and the failure surface formation will be discussed.. Figure 2. Deflection of sheet pile wall under constant water table condition Wall Deflection: Before the installation of anchor, a rigid body rotation was observed during the initial phases of excavation or backfill. Installation of the anchor resulted in the rotation of wall about the anchor leading to maximum lateral deflection occurring in between the anchor level and the bottom of the wall. Fig. 2 shows a comparison of the wall deflection profile at the final two stages of the backfilled DL6 case obtained in [Bilgin 2009] and in the present 3

4 Golden Jubilee Conference of the IGS Bangalore Chapter, Geo-Innovations, October 2014 study. Reasonable agreement has been found between the results for the comparison depicted and other cases as well, which have not been presented here for the sake of brevity. Fig. 2 also reveals that the wall deflection at the end of the construction is found to be higher for backfilling cases than for excavation cases. Effect of overconsolidation and pre-existing overburden pressure is portrayed by the fact that the backfilling cases with initial excavation revealed lower deflection than other backfilling without initial excavation. Figure 3. Lateral wall deflection obtained for dewatered cases Fig. 3 shows the deflection of sheet pile wall under dewatering conditions. In comparison to the constant water level condition, higher deflections are observed due to dewatering pertaining to the removal of water load. Collapse of the wall is observed in both the cases of excavation for DD6 and DL6; The DD6 case failed during the dewatering phase after an excavation of 5.25m while the DL6 failed during the excavation of final soil layer due to excessive lateral movement. As observed for constant water table, in comparison to backfilling without initial excavation, dewatering also led to larger settlement for backfilling without initial excavation. Moreover, for all dewatered conditions, backfill cases revealed larger wall bottom displacement than that obtained for excavation conditions. Bending Moment: Fig. 4 depicts comparison plots for the results of bending moments obtained from the present numerical modeling to that recorded experimentally [Bilgin 2010]. The results show an agreeable match for the two typical cases presented. Similar observation has been made with other simulation cases as well. As observed for wall deflection, backfilling method results in higher bending moment than that obtained for excavation methods. An obvious finding is that walls embedded in loose foundation soil portrayed higher bending moment than those embedded in denser soil. 4

5 Golden Jubilee Conference of the IGS Bangalore Chapter, Geo-Innovations, October 2014 Figure 4. Bending moment of sheet pile wall under constant water table condition Fig. 5 shows the comparative of the bending moment obtained for constant water table and dewatered cases. It is observed that the bending moment values obtained from the latter are higher than those with fixed water table. A significant increase in wall bending moment at the anchor level is also observed for the walls constructed by excavation method. Figure 5. Bending moment of sheet pile wall under constant water table and dewatered cases Anchor Force: The anchor forces obtained in all cases with fixed water table have values almost near to the values obtained in [1] which have been given in Table 3. The walls constructed in loose foundation soil result in higher anchor force than those in denser soil. Moreover, the anchor forces developed in all dewatered cases are much higher than those for the fixed water table cases. Lateral Earth Pressure: Fig. 6 shows the variation of effective active lateral earth pressure with the increasing distance from the face of the wall (Final stage of DL6 backfilling case having fixed water level). It is observed that the earth pressure is low wherever the wall, and hence soil, displacements are higher (which releases the lateral restraint and results inlowering of lateral stress). Moreover, the lateral earth pressure is observed to have a transition from active state at-rest state as the distance from the wall increases. It can be noticed that there is a sudden decrease in earth pressure (near the wall) below the anchor level due to the presence 5

6 Golden Jubilee Conference of the IGS Bangalore Chapter, Geo-Innovations, October 2014 of water table. The variation in passive earth pressure during the construction stages for typical excavation and backfill cases are shown in Fig. 7 and Fig. 8 respectively. For walls constructed by excavation method, initially the passive resistance is provided by a larger height of soil. Towards the final stages this height resisting soil decreases, which leads to sudden increase in the passive pressure in the remaining soil; whereas for the walls constructed by backfill method, the passive resistance increases gradually as the height of resisting soil is same throughout the construction process. Table 3. Anchor forces Case Anchor Force (kn/m) (Present study) (Bilgin 2010) DD6 Excavation DL6 Excavation DD6 Backfilling without initial excavation DL6 Backfilling without initial excavation DD6 Backfilling with initial excavation DL6 Backfilling with initial excavation Dewatered DD6 Backfilling without initial excavation Dewatered DL6 Backfilling without initial excavation Dewatered DD6 Backfilling with initial excavation Dewatered DL6 Backfilling with initial excavation ~ 40 ~ 40 ~ 40 ~ 40 Deformations in soil and failure surfaces: The deformations in soil at the final stage of walls constructed by different construction modes have been shown as a contour diagram in Fig. 9. Soil heaving is observed in the excavation case and for backfilling case with initial excavation due to the releasee of overburden stress. Distinct wedge formation on the active side can be observed in all the cases. Fig. 10 presents some typical failure surfaces formed in the final stage of construction. Most of the cases show similar failure pattern with a clear formation of failure surface on the active side and an obscure one on the passive side indicating the development of passive failure wedge in case of large deformations of the sheet pile wall. Plastic points in soil: Fig. 11 presents the plastic points generated in soil at different stages of construction of DD6 backfilled case. The formation of plastic points indicates that the corresponding zone of soil has failed or is at the verge of failure. Thus the zone of plastic points represents the surface of rupture. The rupture zone can be clearly noticed on both the sides of the wall from the same figure. Figure 6. Variation of effective earth pressure away from the wall on the active side 6

7 Golden Jubilee Conference of the IGS Bangalore Chapter, Geo-Innovations, October 2014 Figure 7. Variation of passive earth pressure away from the wall for an excavation case Figure 8. Variation of passive earth pressure away from the wall for an excavation case Figure 9. Total displacement in soil at the final stage for various cases Figure 10. Incremental deviatoric strain at the final stage of various cases Summary and Conclusions Based on the numerical analyses conducted and the results reported, various conclusions that have been drawn are as follows: The wall deflections are affected by the mode of construction and the effect is significant when the foundation soil comprises of loose sand. Significant wall deflection is noted when the dewatering phenomenon is considered during the excavation process. It is to be 7

8 Golden Jubilee Conference of the IGS Bangalore Chapter, Geo-Innovations, October 2014 mentioned that failure of wall occurred in both the dewatered excavation cases, with loose and dense foundation soil, before the final stage of construction was reached. Figure 11. Plastic points generated in soil at various stages of construction Bending moment of the sheet pile wall was also affected by the mode of construction and dewatering, the effect is similar in trend as of wall deflection. The anchor forces generated for the fixed water level cases were negligibly affected except for that of backfilled case with loose foundation soil, which had relatively higher anchor force. The anchor forces for the dewatered cases were significantly higher, with dewatered excavation cases having highest values. The dewatered excavations cases had high wall base deflection. Further study on the soil movement and the strain developed in soil showed a basal failure of the system rather than failure due to wall bending or rotation. The finite element modeling results gave a good idea on the stress and strain developed, strength mobilization, development of slip surface and failure pattern of the soil wall system through diagrams of earth pressure developed, relative shear stress, formation of plastic points and incremental deviatoric strains. References Bilgin O (2010) Numerical studies of anchored sheet pile wall behavior constructed in cut and fill conditions. Computers and Geotechnics 37: Hsiung B-CB (2009) A case study on the behavior of a deep excavation in sand. Computers and Geotechnics 36(4): Krabbenhoft K, Damkilde L and Krabbenhoft S (2005) Ultimate limit state design of sheet pile walls by finite elements and nonlinear programming. Computers and Structures 83: Bilgin Ö and Erten MB (2009) Analysis of anchored sheet pile wall deformations. In Contemporary topics in ground modification, problem soils, and geo-support (GSP 187). International foundation congress and equipment expo, Florida

Comparison of geotechnic softwares - Geo FEM, Plaxis, Z-Soil

Comparison of geotechnic softwares - Geo FEM, Plaxis, Z-Soil Comparison of geotechnic softwares - Geo FEM, Plaxis, Z-Soil Comparison du logiciel géotechnique Geo FEM, Plaxis, Z-Soil J. Pruška CTU in Prague FCE Department of Geotechnics, Prague, Czech Republic, Pruska@fsv.cvut.cz

More information

Estimation of Lateral Earth Pressure on Cantilever Sheet Pile using Flat Dilatometer Test (DMT) Data: Numerical Study

Estimation of Lateral Earth Pressure on Cantilever Sheet Pile using Flat Dilatometer Test (DMT) Data: Numerical Study Estimation of Lateral Earth Pressure on Cantilever Sheet Pile using Flat Dilatometer Test (DMT) Data: Numerical Study Kousik Deb Indian Institute of Technology Kharagpur, Kharagpur, India. E-mail: kousik@civil.iitkgp.ernet.in

More information

Performance of Reinforced Earth Retaining Wall with Fly Ash under Static and Dynamic Loading

Performance of Reinforced Earth Retaining Wall with Fly Ash under Static and Dynamic Loading Performance of Reinforced Earth Retaining Wall with Fly Ash under Static and Dynamic Loading 1 Umesh Kumar N, 2 Padmashree M. Kalliamni 1 Geotechnical Engineer, 2 Assistant professor, 1 Civil Engineering

More information

CHAPTER 5 2D FINITE ELEMENT MODELLING OF BURIED PIPE TESTS

CHAPTER 5 2D FINITE ELEMENT MODELLING OF BURIED PIPE TESTS 131 CHAPTER 5 2D FINITE ELEMENT MODELLING OF BURIED PIPE TESTS 5.1 INTRODUCTION Finite element method has been proved to be very useful tool in the analysis of buried structures. The method allows for

More information

EFFECT OF DEEP EXCAVATION SUPPORTED BY CONCRETE SOLIDER PILE WITH STEEL SHEET PILE LAGGING WALL ON ADJACENT EXISTING BUILDINGS

EFFECT OF DEEP EXCAVATION SUPPORTED BY CONCRETE SOLIDER PILE WITH STEEL SHEET PILE LAGGING WALL ON ADJACENT EXISTING BUILDINGS EFFECT OF DEEP EXCAVATION SUPPORTED BY CONCRETE SOLIDER PILE WITH STEEL SHEET PILE LAGGING WALL ON ADJACENT EXISTING BUILDINGS Mostafa Abdou 1 *, Ahamed Rushedy Towfeek 2, Waleed Hassan 3 1 prof. Dr.,

More information

SETTLEMENTS DUE TO TUNNEL CONSTRUCTION

SETTLEMENTS DUE TO TUNNEL CONSTRUCTION 5 SETTLEMENTS DUE TO TUNNEL CONSTRUCTION In this tutorial the construction of a shield tunnel in medium soft soil and the influence on a pile foundation is considered. A shield tunnel is constructed by

More information

COURSE ON COMPUTATIONAL GEOTECHNICS A Geotechnical Design Tool. Faculty of Civil Engineering UiTM, Malaysia

COURSE ON COMPUTATIONAL GEOTECHNICS A Geotechnical Design Tool. Faculty of Civil Engineering UiTM, Malaysia COURSE ON COMPUTATIONAL GEOTECHNICS A Geotechnical Design Tool Faculty of Civil Engineering, Malaysia Name : COURSE CONTENTS Use of Plaxis Getting Started Exercise 1: Elastic analysis of drained footing

More information

Design of deep excavations with FEM - Influence of constitutive model and comparison of EC7 design approaches

Design of deep excavations with FEM - Influence of constitutive model and comparison of EC7 design approaches Reference: H.F. Schweiger Design of deep excavations with FEM - Influence of constitutive model and comparison of EC7 design approaches Proc. of the 21 Earth Retention Conference (Finno,R.J., Hashash,

More information

Modelling issues for numerical analysis of deep excavations

Modelling issues for numerical analysis of deep excavations Modelling issues for numerical analysis of deep excavations Helmut F. Schweiger Computational Geotechnics Group, Institute for Soil Mechanics und Foundation Engineering Graz University of Technology, Austria

More information

Numerical Analysis of a Novel Piling Framed Retaining Wall System

Numerical Analysis of a Novel Piling Framed Retaining Wall System The 12 th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG) 1-6 October, 2008 Goa, India Numerical Analysis of a Novel Piling Framed Retaining

More information

Behaviour of Strip Footing on Geogrid Reinforced Slope subjected to Eccentric Load

Behaviour of Strip Footing on Geogrid Reinforced Slope subjected to Eccentric Load ISSN (Print): 2347-671 (An ISO 3297: 27 Certified Organization) Behaviour of Strip Footing on Geogrid Reinforced Slope subjected to Eccentric Load Dhiraj D. Patil 1, Sunil S. Pusadkar 2, Sanjay W. Thakare

More information

Behavior of pile due to combined loading with lateral soil movement

Behavior of pile due to combined loading with lateral soil movement DOI 1.1186/s473-16-21-z ORIGINAL RESEARCH Open Access Behavior of pile due to combined loading with lateral soil movement B. Jegatheeswaran 1* and K. Muthukkumaran 2 *Correspondence: jegatheesb@gmail.com

More information

NPTEL Course. GROUND IMPROVEMENT Factors affecting the behaviour and performance of reinforced soil

NPTEL Course. GROUND IMPROVEMENT Factors affecting the behaviour and performance of reinforced soil Lecture 27 NPTEL Course GROUND IMPROVEMENT Factors affecting the behaviour and performance of reinforced soil Prof. G L Sivakumar Babu Department of Civil Engineering Indian Institute of Science Bangalore

More information

BROADENING OF HIGHWAYS AT CRITICAL SLOPE WATERWAY EMBANKMENTS USING VERTICAL PILES

BROADENING OF HIGHWAYS AT CRITICAL SLOPE WATERWAY EMBANKMENTS USING VERTICAL PILES BROADENING OF HIGHWAYS AT CRITICAL SLOPE WATERWAY EMBANKMENTS USING VERTICAL PILES Assoc. Prof. Hisham Arafat Mahdi 1 Head of Structural Engineering & construction Management-FUE-Egypt ABSTRACT The main

More information

Modelling the response of single passive piles subjected to lateral soil movement using PLAXIS

Modelling the response of single passive piles subjected to lateral soil movement using PLAXIS Modelling the response of single passive piles subjected to lateral soil movement using PLAXIS Al Abboodi, I, Toma Sabbagh, TM and Al Jazaairry, A 10.17577/ Title Authors Type URL Modelling the response

More information

Design Illustrations on the Use of Soil Nails to Upgrade Loose Fill Slopes

Design Illustrations on the Use of Soil Nails to Upgrade Loose Fill Slopes Design Illustrations on the Use of Soil Nails to Upgrade Loose Fill Slopes Geotechnical Engineering Office and The Hong Kong Institution of Engineers (Geotechnical Division) November 2013 2 Disclaimer

More information

NUMERICAL MODELLING OF HIGHWAY EMBANKMENT BY DIFFERENT GROUND IMPROVEMENT TECHNIQUES

NUMERICAL MODELLING OF HIGHWAY EMBANKMENT BY DIFFERENT GROUND IMPROVEMENT TECHNIQUES NUMERICAL MODELLING OF HIGHWAY EMBANKMENT BY DIFFERENT GROUND IMPROVEMENT TECHNIQUES Sabahat A. Khan* Assistant Professor, Civil Engg. Deptt., AMU, Aligarh, India Syed M. Abbas Professor, Civil Engg. Deptt.,

More information

Analysis for Failure Mechanism of Temporary Shoring Structure

Analysis for Failure Mechanism of Temporary Shoring Structure IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 15, Issue 2 Ver. I (Mar. - Apr. 2018), PP 31-37 www.iosrjournals.org Analysis for Failure Mechanism

More information

Analysis of the stability of sheet pile walls using Discontinuity Layout Optimization

Analysis of the stability of sheet pile walls using Discontinuity Layout Optimization Analysis of the stability of sheet pile walls using Discontinuity Layout Optimization S. D. Clarke, C. C. Smith & M. Gilbert The University of Sheffield, UK ABSTRACT: In this paper it is demonstrated that

More information

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. Title Three-dimensional finite element analysis of braced excavation systems Author(s) Winata, Berlina Margaretha.

More information

EFFECT OF REINFORCEMENT, BACKFILL AND SURCHARGE ON THE PERFORMANCE OF REINFORCED EARTH RETAINING WALL

EFFECT OF REINFORCEMENT, BACKFILL AND SURCHARGE ON THE PERFORMANCE OF REINFORCED EARTH RETAINING WALL EFFECT OF REINFORCEMENT, BACKFILL AND SURCHARGE ON THE PERFORMANCE OF REINFORCED EARTH RETAINING WALL Anand M. Hulagabali 1, C. H. Solanki 1, G. R. Dodagoudar 2 and M. P. Shettar 3 1 Department of Applied

More information

Analysis of Buried Arch Structures; Performance Versus Prediction

Analysis of Buried Arch Structures; Performance Versus Prediction Analysis of Buried Arch Structures; Performance Versus Prediction D.A. Jenkins: Reinforced Earth Pty Ltd, Somersby, NSW, Australia Synopsis: The Reinforced Earth Group introduced the TechSpan arch system

More information

BEARING CAPACITY IMPROVEMENT USING MICROPILES A CASE STUDY

BEARING CAPACITY IMPROVEMENT USING MICROPILES A CASE STUDY BEARING CAPACITY IMPROVEMENT USING MICROPILES A CASE STUDY G.L. Sivakumar Babu 1, B. R.Srinivasa Murthy 2, D.S. N. Murthy 3, M.S. Nataraj 4 ABSTRACT Micropiles have been used effectively in many applications

More information

Static Response of Reinforced Soil Retaining Walls with Modular Block Facing

Static Response of Reinforced Soil Retaining Walls with Modular Block Facing Static Response of Reinforced Soil Retaining Walls with Modular Block Facing Morteza Sabet 1, Amir M. Halabian 2, Kazem Barkhordari 3 1 Graduate Student, Department of Civil Engineering, Yazd University

More information

Response of Circular Footing by Varying the Vertical Spacing of Reinforcement Resting on Structural Fill

Response of Circular Footing by Varying the Vertical Spacing of Reinforcement Resting on Structural Fill Response of Circular Footing by Varying the Vertical Spacing of Reinforcement Resting on Structural Fill Vivek Verma 1, L. K. Yadu 2 B. Tech. Student, Department of Civil Engineering, SSIPMT Raipur, Old

More information

Finite Element Analysis of Ground Modification Techniques for Improved Stability of Geotubes Reinforced Reclamation Embankments Subjected to Scouring

Finite Element Analysis of Ground Modification Techniques for Improved Stability of Geotubes Reinforced Reclamation Embankments Subjected to Scouring Finite Element Analysis of Ground Modification Techniques for Improved Stability of Geotubes Reinforced Reclamation Embankments Subjected to Scouring Hyeong-Joo Kim 1), *Jay Jamin 2) and Jose Leo Mission

More information

Effects of Wall Embedded Length Ratio and Wall Thickness Ratio on Undrained Stability of Cantilever Piled Walls

Effects of Wall Embedded Length Ratio and Wall Thickness Ratio on Undrained Stability of Cantilever Piled Walls Engineering and Physical Sciences Effects of Wall Embedded Length Ratio and Wall Thickness Ratio on Undrained Stability of Cantilever Piled Walls Boonchai UKRITCHON *, Kant TEERAVONG and Suraparb KEAWSAWASVONG

More information

Finite Element Study Using FE Code (PLAXIS) on the Geotechnical Behavior of Shell Footings

Finite Element Study Using FE Code (PLAXIS) on the Geotechnical Behavior of Shell Footings Journal of Computer Science 2 (1): 104-108, 2006 ISSN 1549-3636 Science Publications Finite Element Study Using FE Code (PLAXIS) on the Geotechnical Behavior of Shell Footings Bujang B.K. Huat and Thamer

More information

Comparison of the results of load test done on stone columns and rammed aggregate piers using numerical modeling

Comparison of the results of load test done on stone columns and rammed aggregate piers using numerical modeling Comparison of the results of load test done on stone columns and rammed aggregate piers using numerical modeling Ece Kurt Civil Eng., M.Sc.& Geoph. Eng., Istanbul, Turkey Berrak Teymur Asst. Prof. Dr.,

More information

GEO-SLOPE International Ltd, Calgary, Alberta, Canada Tie-back Wall

GEO-SLOPE International Ltd, Calgary, Alberta, Canada   Tie-back Wall 1 Introduction Tie-back Wall This example simulates the sequential construction of a sheet-pile shoring wall tied back with pre-stressed anchors. The purpose is to demonstrate the steps involved in modeling

More information

CEX6230 GEOTECHNICS Dear Student:

CEX6230 GEOTECHNICS Dear Student: CEX6230 GEOTECHNICS 31.05.2010 Dear Student: Geotechnics (CEX6230) discusses design and construction aspects of Geotechnical Engineering. Even though this course requires a pass in CEX4230, I find that

More information

Introduction to SoilWorks for Practical Design. MIDAS Information Technology

Introduction to SoilWorks for Practical Design. MIDAS Information Technology Introduction to SoilWorks for Practical Design MIDAS Information Technology Index Product Overview About SoilWorks Smart SoilWorks Pre-Processing Geometry Modeling Properties Mesh Generation Analysis Types

More information

A numerical simulation on the dynamic response of MSE wall with LWA backfill

A numerical simulation on the dynamic response of MSE wall with LWA backfill Numerical Methods in Geotechnical Engineering Hicks, Brinkgreve & Rohe (Eds) 2014 Taylor & Francis Group, London, 978-1-138-00146-6 A numerical simulation on the dynamic response of MSE wall with LWA backfill

More information

Evaluation of the Behavior of Geo-Synthetic Reinforced Soil Wall with Improved Soil as Backfill

Evaluation of the Behavior of Geo-Synthetic Reinforced Soil Wall with Improved Soil as Backfill Evaluation of the Behavior of Geo-Synthetic Reinforced Soil Wall with Improved Soil as Backfill D.V.SivaSankara Reddy, Ch.Gopal Reddy, M.Jugal Kishore, K.Kowshik Abstract: By using PLAXIS 8. a model had

More information

Evaluation of negative skin friction on sheet pile walls at the Rio Grande dry dock, Brazil

Evaluation of negative skin friction on sheet pile walls at the Rio Grande dry dock, Brazil Geotechnical Aspects of Underground Construction in Soft Ground Viggiani (ed) 2012 Taylor & Francis Group, London, ISBN 978-0-415-68367-8 Evaluation of negative skin friction on sheet pile walls at the

More information

Effect of Seismic Reinforcement of Sheet Pile Quay Wall Using Ground Anchor

Effect of Seismic Reinforcement of Sheet Pile Quay Wall Using Ground Anchor Effect of Seismic Reinforcement of Sheet Pile Quay Wall Using Ground Anchor M. Yoshida & M. Mitou Penta-Ocean Construction Co., Ltd., Japan O. Kiyomiya Waseda University, Japan S. Tashiro TOA Corporation,

More information

NON-LINEAR ANALYSIS OF BURIED ARCH STRUCTURES

NON-LINEAR ANALYSIS OF BURIED ARCH STRUCTURES NON-LINEAR ANALYSIS OF BURIED ARCH STRUCTURES D.A. Jenkins Reinforced Earth Pty Ltd, Hornsby, NSW, Australia SUMMARY Groupe TAI introduced the TechSpan arch system in 1986. Since then over 5 buried precast

More information

Seismic bearing capacity factors for strip footings

Seismic bearing capacity factors for strip footings Seismic bearing capacity factors for strip footings Amir H.Shafiee 1, M.Jahanandish 2 1- Former MSc Student of Soil Mech. & Found. Eng., Shiraz University, Shiraz, Iran 2- Associate Professor, Civil Eng.

More information

BEHAVIOR OF REINFORCED CONCRETE BEAM WITH OPENING

BEHAVIOR OF REINFORCED CONCRETE BEAM WITH OPENING International Journal of Civil Engineering and Technology (IJCIET) Volume 8, Issue 7, July 2017, pp. 581 593, Article ID: IJCIET_08_07_062 Available online at http:// http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=8&itype=7

More information

Pile foundations Introduction

Pile foundations Introduction Engineering manual No. 12 Updated: 06/2018 Pile foundations Introduction Program: Pile, Pile CPT, Pile Group The objective of this engineering manual is to explain the practical use of programs for the

More information

Analysis of skin friction in prebored and precast piles

Analysis of skin friction in prebored and precast piles Japanese Geotechnical Society Special Publication The 6th Japan-Korea Geotechnical Workshop Analysis of skin friction in prebored and precast piles Sangseom Jeong i), Gyoungja Jung ii), Dohyun Kim iii)

More information

Seismic Response of Reinforced Soil Retaining Walls with Block Facings

Seismic Response of Reinforced Soil Retaining Walls with Block Facings Missouri University of Science and Technology Scholars' Mine International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics 21 - Fifth International Conference on

More information

Challenges of quick clay excavation in urban area with sloping ground

Challenges of quick clay excavation in urban area with sloping ground Challenges of quick clay excavation in urban area with sloping ground R. M. Nalbant 1 Multiconsult AS, Oslo, Norway ABSTRACT The paper presents the overall stability evaluation for a deep excavation in

More information

Chapter 14 Lateral Earth Pressure

Chapter 14 Lateral Earth Pressure Page 14 1 Chapter 14 Lateral Earth Pressure 1. Which of the following is not a retaining structure? (a) Retaining wall (b) Basement wall (c) Raft (d) Bulkhead 2. When a retaining structure does not move

More information

Downloaded from Downloaded from /1

Downloaded from  Downloaded from  /1 PURWANCHAL UNIVERSITY VI SEMESTER FINAL EXAMINATION-2003 LEVEL : B. E. (Civil) SUBJECT: BEG359CI, Foundation Engineering. Full Marks: 80 TIME: 03:00 hrs Pass marks: 32 Candidates are required to give their

More information

Response of Piered Retaining Walls to Lateral Soil Movement Based on Numerical Modeling

Response of Piered Retaining Walls to Lateral Soil Movement Based on Numerical Modeling Int. J. of GEOMATE, March, 2013, Vol. 4, No. 1 (Sl. No. 7), pp. 436-441 Geotec., Const. Mat. and Env., ISSN:2186-2982(P), 2186-2990(O), Japan Response of Piered Retaining Walls to Lateral Soil Movement

More information

BEHAVIOUR OF SQUARE FOOTING RESTING ON TWO LAYERED CLAY DEPOSITS. Dr. Sunil S. Pusadkar 1, Sheetal M. Baral 2 ABSTRACT

BEHAVIOUR OF SQUARE FOOTING RESTING ON TWO LAYERED CLAY DEPOSITS. Dr. Sunil S. Pusadkar 1, Sheetal M. Baral 2 ABSTRACT 50 th IGC 50 th INDIAN GEOTECHNICAL CONFERENCE 17 th 19 th DECEMBER 2015, Pune, Maharashtra, India Venue: College of Engineering (Estd. 1854), Pune, India BEHAVIOUR OF SQUARE FOOTING RESTING ON TWO LAYERED

More information

Analysis of T-Shape Footing On Layered Sandy Soil

Analysis of T-Shape Footing On Layered Sandy Soil ISSN(Online) : 9-875 ISSN (Print) : 7-67 (An ISO 97: 7 Certified Organization) Vol. 6, Issue 6, June 7 Analysis of T-Shape Footing On Layered Sandy Soil Gargi V. Kulkarni, Prof. S. W. Thakare P.G. Student,

More information

Application of FEM to ULS design (Eurocodes) in surface and near surface geotechnical structures

Application of FEM to ULS design (Eurocodes) in surface and near surface geotechnical structures Application of FEM to ULS design (Eurocodes) in surface and near surface geotechnical structures H.F. Schweiger Computational Geotechnics Group, Institute for Soil Mechanics and Foundation Engineering,

More information

Geotechnical Engineering Software GEO5

Geotechnical Engineering Software GEO5 Geotechnical Engineering Software GEO5 GEO5 software suite is designed to solve various geotechnical problems. The easy -to -use suite consists of individual programs with an unified and user-friendly

More information

BEHAVIOR OF PILES IN SAND SUBJECTED TO INCLINED LOADS

BEHAVIOR OF PILES IN SAND SUBJECTED TO INCLINED LOADS BEHAVIOR OF PILES IN SAND SUBJECTED TO INCLINED LOADS Martin Achmus, Khalid Abdel-Rahman & Klaus Thieken Institute of Soil Mechanics, Foundation Engineering and Waterpower Engineering, Leibniz University

More information

AVOIDING EXCESSIVE DISPLACEMENTS: A NEW DESIGN APPROACH FOR RETAINING WALLS

AVOIDING EXCESSIVE DISPLACEMENTS: A NEW DESIGN APPROACH FOR RETAINING WALLS International Conference on Structural and Foundation Failures August 2-4, 4, Singapore AVOIDING EXCESSIVE DISPLACEMENTS: A NEW DESIGN APPROACH FOR RETAINING WALLS A. S. Osman and M.D. Bolton Department

More information

Geotechnical Analysis of Stepped Gravity Walls

Geotechnical Analysis of Stepped Gravity Walls Geotechnical Analysis of Stepped Gravity Walls Baleshwar Singh 1 * and Birjukumar Mistri 2 1 Associate Professor, Civil Engineering Department, IIT Guwahati, India 2 Former Post-Graduate Student, Civil

More information

Three-dimensional computer simulation of soil nailing support in deep foundation pit

Three-dimensional computer simulation of soil nailing support in deep foundation pit Three-dimensional computer simulation of soil nailing support in deep foundation pit Abstract Chang Zhi Zhu 1,2*, Quan Chen Gao 1 1 School of Mechanics & Civil Engineering, China University of Mining &

More information

Seismic Amplification of Double-Sided Geosynthetic-Reinforced Soil Retaining Walls

Seismic Amplification of Double-Sided Geosynthetic-Reinforced Soil Retaining Walls 6 th International Conference on Earthquake Geotechnical Engineering 1-4 November 2015 Christchurch, New Zealand Seismic Amplification of Double-Sided Geosynthetic-Reinforced Soil Retaining Walls W. A.

More information

Design of Anchored-Strengthened Sheet Pile Wall: A Case Study

Design of Anchored-Strengthened Sheet Pile Wall: A Case Study Design of Anchored-Strengthened Sheet Pile Wall: A Case Study Ümit Gökkuş* 1, Yeşim Tuskan 2 1 Prof.Dr., Department of Civil Engineering, Celal Bayar University, İzmir, Turkey (E-mail: umit.gokkus@cbu.edu.tr

More information

Modelling of Piled Raft Foundation on Soft Clay

Modelling of Piled Raft Foundation on Soft Clay Modelling of Piled Raft Foundation on Soft Clay Mohamed A.Baqi Mahmoud 1 and Hussien Elarabi 2 1 Department of Civil Engineering, Faculty of Engineering, University of Khartoum 2 Building and Road Research

More information

Behaviour of rigid retaining wall with relief shelves with cohesive backfill

Behaviour of rigid retaining wall with relief shelves with cohesive backfill Behaviour of rigid retaining wall with relief shelves with cohesive backfill V. B. Chauhan 1 and S. M. Dasaka 2 1 Research Scholar, Department of Civil Engineering, Indian Institute of Technology Bombay,

More information

INFLUENCE OF BNWF SOIL MODELLING ON DYNAMIC BEHAVIOUR OF PILE FOUNDATION FOR RC FRAME WITH STRUCTURAL WALL

INFLUENCE OF BNWF SOIL MODELLING ON DYNAMIC BEHAVIOUR OF PILE FOUNDATION FOR RC FRAME WITH STRUCTURAL WALL ICOVP, 3 th International Conference on Vibration Problems 29 th November 2 nd December, 27, Indian Institute of Technology Guwahati, INDIA INFLUENCE OF BNWF SOIL MODELLING ON DYNAMIC BEHAVIOUR OF PILE

More information

An Investigation on the Dynamic Behaviour of Soil Nail Walls

An Investigation on the Dynamic Behaviour of Soil Nail Walls An Investigation on the Dynamic Behaviour of Soil Nail Walls Jaya V *1, Annie Joy 2 Civil Engineering Department, Kerala University College of Engineering, Trivandrum, India *1 jayasraj@gmail.com; 2 annjoy87@gmail.com

More information

VOL. 11, NO. 16, AUGUST 2016 ISSN ARPN Journal of Engineering and Applied Sciences

VOL. 11, NO. 16, AUGUST 2016 ISSN ARPN Journal of Engineering and Applied Sciences COMPARISON OF STABILITY PERFORMANCE BETWEEN CONCRETE PILE AND CLOSED END STEEL PIPE OF SHORT PILED RAFT FOUNDATION SYSTEM FOR REDUCING SETTLEMENT ON PEAT Sajiharjo Marto Suro, Agus Sulaeman and Ismail

More information

Back Analyses and Performance of Semi Top-Down Basement Excavation of 11m Deep in Sandy Alluvial Deposits overlying Kenny Hill Formation in Malaysia

Back Analyses and Performance of Semi Top-Down Basement Excavation of 11m Deep in Sandy Alluvial Deposits overlying Kenny Hill Formation in Malaysia Back Analyses and Performance of Semi Top-Down Basement Excavation of 11m Deep in Sandy Alluvial Deposits overlying Kenny Hill Formation in Malaysia S. S. Liew & S. J. Gan G&P Geotechnics Sdn Bhd, Wisma

More information

EFFECT OF SOIL CEMENT COLUMN SPACING AND AREA REPLACEMENT RATIO ON EMBANKMENT BEARING CAPACITY: A QUEENSLAND CASE STUDY

EFFECT OF SOIL CEMENT COLUMN SPACING AND AREA REPLACEMENT RATIO ON EMBANKMENT BEARING CAPACITY: A QUEENSLAND CASE STUDY Geotec., Const. Mat. & Env., ISSN: 2186-2982(Print), 2186-299(Online), Japan EFFECT OF SOIL CEMENT COLUMN SPACING AND AREA REPLACEMENT RATIO ON EMBANKMENT BEARING CAPACITY: A QUEENSLAND CASE STUDY Mark

More information

Coupled Stress-Seepage Numerical Design of Pressure Tunnels

Coupled Stress-Seepage Numerical Design of Pressure Tunnels IAHR-HK Student Research Forum, November 17, 2012 Coupled Stress-Seepage Numerical Design of Pressure Tunnels Afis Olumide BUSARI, Prof. C.W. LI Department of Civil and Environmental Engineering, the Hong

More information

[Kouravand Bardpareh* et al., 5(6): July, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116

[Kouravand Bardpareh* et al., 5(6): July, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY STUDY ON HORIZONTAL DISPLACEMENT OF RESTRAINED EXCAVATION WALLS BY CANTILEVER RETAINING WALL Siavash Kouravand Bardpareh *1, Ashkan

More information

Two-dimensional finite element analysis of influence of plasticity on the seismic soil micropiles structure interaction

Two-dimensional finite element analysis of influence of plasticity on the seismic soil micropiles structure interaction Technical Journal of Engineering and Applied Sciences Available online at www.tjeas.com 2013 TJEAS Journal-2013-3-13/1301-1305 ISSN 2051-0853 2013 TJEAS Two-dimensional finite element analysis of influence

More information

INTRINSIC SEISMIC PROTECTION OF CANTILEVERED AND ANCHORED RETAINING STRUCTURES

INTRINSIC SEISMIC PROTECTION OF CANTILEVERED AND ANCHORED RETAINING STRUCTURES SECED 2015 Conference: Earthquake Risk and Engineering towards a Resilient World 9-10 July 2015, Cambridge UK INTRINSIC SEISMIC PROTECTION OF CANTILEVERED AND ANCHORED RETAINING STRUCTURES Luigi CALLISTO

More information

Skirted Spudcan Sheet Pile Wall Interaction during Jack- Up Rig Installation and Removal in a Harbour Area

Skirted Spudcan Sheet Pile Wall Interaction during Jack- Up Rig Installation and Removal in a Harbour Area Skirted Spudcan Sheet Pile Wall Interaction during Jack- Up Rig Installation and Removal in a Harbour Area L. Kellezi GEO - Danish Geotechnical Institute 1 Maglebjergvej, DK 2800 Copenhagen, Denmark G.

More information

Development of Soil Plug in Pipe Pile: A Review

Development of Soil Plug in Pipe Pile: A Review Development of Soil Plug in Pipe Pile: A Review Aparna Verma Civil Engineering Department MMMUT Gorakhpur, India. S.M. Ali Jawaid Civil Engineering Department MMMUT Gorakhpur, India. Abstract In case of

More information

Strip Footing - Ultimate Bearing Capacity

Strip Footing - Ultimate Bearing Capacity Strip Footing - Ultimate Bearing Capacity analys: nonlin phase physic. constr: suppor tying. elemen: ct12e pstrai. load: deform weight. materi: consta crack cutoff elasti full harden isotro mohrco multil

More information

7 LOCAL BUCKLING OF STEEL CLASS 4 SECTION BEAMS

7 LOCAL BUCKLING OF STEEL CLASS 4 SECTION BEAMS Jan Hricák, jan.hricak@fsv.cvut.cz WG3 - Michal Jandera, michal.jandera@fsv.cvut.cz WG2 František Wald, wald@fsv.cvut.cz 7 LOCAL BUCKLING OF STEEL CLASS 4 SECTION BEAMS Summary A significant progress in

More information

Verification of a multi-anchored wall

Verification of a multi-anchored wall Engineering manual No. 7 Updated: 04/2018 Verification of a multi-anchored wall Program: File: Sheeting check Demo_manual_07.gp2 In this chapter, we will show you how to design and verify a multi-anchored

More information

THE EFFECT OF LATERAL CONFINEMENT ON THE SETTLEMENT CHARACTERISTICS OF SHALLOW FOUNDATIONS ON SAND

THE EFFECT OF LATERAL CONFINEMENT ON THE SETTLEMENT CHARACTERISTICS OF SHALLOW FOUNDATIONS ON SAND Geotec., Const. Mat. & Env., DOI: https://doi.org/10.21660/2018.51.65933 ISSN: 2186-2982 (Print), 2186-2990 (Online), Japan THE EFFECT OF LATERAL CONFINEMENT ON THE SETTLEMENT CHARACTERISTICS OF SHALLOW

More information

Numerical Modeling of Slab-On-Grade Foundations

Numerical Modeling of Slab-On-Grade Foundations Numerical Modeling of Slab-On-Grade Foundations M. D. Fredlund 1, J. R. Stianson 2, D. G. Fredlund 3, H. Vu 4, and R. C. Thode 5 1 SoilVision Systems Ltd., 2109 McKinnon Ave S., Saskatoon, SK S7J 1N3;

More information

GEOTECHNICAL DESIGN AND CONSTRUCTION METHODOLOGY OF A DEEP BASEMENT CUT NEXT TO SENSITIVE BUILDINGS

GEOTECHNICAL DESIGN AND CONSTRUCTION METHODOLOGY OF A DEEP BASEMENT CUT NEXT TO SENSITIVE BUILDINGS GEOTECHNICAL DESIGN AND CONSTRUCTION METHODOLOGY OF A DEEP BASEMENT CUT NEXT TO SENSITIVE BUILDINGS James Livingston 1 Ching Dai 2 1 Geotechnical engineer at Coffey Services (NZ) 2 Chartered Senior Principal

More information

DAMAGE ON DEEP, MULTI-TIED-BACK EXCAVATION DUE TO DEFORMATION OF THE ANCHOR-SOIL BLOCK SYSTEM

DAMAGE ON DEEP, MULTI-TIED-BACK EXCAVATION DUE TO DEFORMATION OF THE ANCHOR-SOIL BLOCK SYSTEM DAMAGE ON DEEP, MULTI-TIED-BACK EXCAVATION DUE TO DEFORMATION OF THE ANCHOR-SOIL BLOCK SYSTEM H.-G. Kempfert 1, Berhane Gebreselassie 2, M. Raithel 3 ABSTRACT: Despite the knowledge and experiences accumulated,

More information

Numerical Analysis of the Durability of Retaining Wall with Anchor

Numerical Analysis of the Durability of Retaining Wall with Anchor Numerical Analysis of the Durability of Retaining Wall with Anchor Qingyu Meng 1, 2, Chao Li 1, 2, Hongbo Zhang 1, 2, Xin Li 1, 2 1. School of Civil Engineering, Shandong University, Jinan, 250061, China

More information

Brooks/Cole Thomson LearningiM. Fundamentals of Geotechnical Engineering. Braja M. Das. California State University, Sacramento

Brooks/Cole Thomson LearningiM. Fundamentals of Geotechnical Engineering. Braja M. Das. California State University, Sacramento Fundamentals of Geotechnical Engineering Braja M. Das California State University, Sacramento Brooks/Cole Thomson LearningiM Australia Canada Mexico Singapore Spain United Kingdom United States CHAPTER

More information

Northport Berth 3 design and construction monitoring

Northport Berth 3 design and construction monitoring Proc. 18 th NZGS Geotechnical Symposium on Soil-Structure Interaction. Ed. CY Chin, Auckland Lucy Coe, Nicola Ridgley, Do Van Toan Beca Infrastructure Limited, Auckland, NZ Keywords: retaining wall, deflections,

More information

Effect of Cavities on the Behaviour of Strip Footing Subjected to Inclined Load

Effect of Cavities on the Behaviour of Strip Footing Subjected to Inclined Load Effect of Cavities on the Behaviour of Strip Footing Subjected to Inclined Load Ali A. Al-Jazaairry, Tahsin T. Sabbagh Abstract One of the important concerns within the field of geotechnical engineering

More information

Seismic Design of a Slope Stabilization Work Using Piles and Tendons

Seismic Design of a Slope Stabilization Work Using Piles and Tendons 6 th International Conference on Earthquake Geotechnical Engineering 1-4 November 2015 Christchurch, New Zealand Seismic Design of a Slope Stabilization Work Using Piles and Tendons H. Sanchez Lizarraga

More information

SEEPAGE FLOW-STABILITY ANALYSIS OF THE RIVERBANK OF SAIGON RIVER DUE TO RIVER WATER LEVEL FLUCTUATION

SEEPAGE FLOW-STABILITY ANALYSIS OF THE RIVERBANK OF SAIGON RIVER DUE TO RIVER WATER LEVEL FLUCTUATION Geotech., Const. Mat. and Env., ISSN:2186-2982(P), 2186-2990(O), Japan SEEPAGE FLOW-STABILITY ANALYSIS OF THE RIVERBANK OF SAIGON RIVER DUE TO RIVER WATER LEVEL FLUCTUATION A. Oya 1, H.H. Bui 2, N. Hiraoka

More information

RESULTS FROM NUMERICAL BENCHMARK EXERCISES IN GEOTECHNICS

RESULTS FROM NUMERICAL BENCHMARK EXERCISES IN GEOTECHNICS RESULTS FROM NUMERICAL BENCHMARK EXERCISES IN GEOTECHNICS H.F. Schweiger Institute for Soil Mechanics and Foundation Engineering, Computational Geotechnics Group, Graz University of Technology, Austria

More information

Effect of Deep Excavation Adjacent to Pile Structure

Effect of Deep Excavation Adjacent to Pile Structure Effect of Deep Excavation Adjacent to Pile Structure Dr. A I. Dhatrak 1, Sarika Kulkarni 2 Associate Professor, Department of Civil Engineering, Government College of Engineering, Amravati, India 1 P.G.

More information

Numerical Modeling of Dynamic Soil-Structure Interaction in Bridges with HP Driven Piles

Numerical Modeling of Dynamic Soil-Structure Interaction in Bridges with HP Driven Piles Numerical Modeling of Dynamic Soil-Structure Interaction in Bridges with HP Driven Piles Yu Bao, Andrew Rietz and Steven Halewski, Rochester Institute of Technology, Rochester, NY, USA HP-Pile foundations

More information

Numerical Modeling of Laterally Loaded Piles

Numerical Modeling of Laterally Loaded Piles American Journal of Applied Sciences 5 (10): 1403-1408, 2008 ISSN 1546-9239 2008 Science Publications Numerical Modeling of Laterally Loaded Piles S.T. Kok and Bujang B.K. Huat Faculty of Engineering,

More information

Evaluation of Geosynthetic Forces in GRSRW under Dynamic Condition

Evaluation of Geosynthetic Forces in GRSRW under Dynamic Condition Evaluation of Geosynthetic Forces in GRSRW under Dynamic Condition Kooshyar Passbakhsh, Maryam Yazdi Abstract Geosynthetics have proved to be suitable for reinforced soil retaining walls. Based on the

More information

3D finite element analysis of deep excavations with cross-walls

3D finite element analysis of deep excavations with cross-walls Geotechnical Aspects of Underground Construction in Soft Ground Viggiani (ed) 212 Taylor & Francis Group, London, SBN 978--415-68367-8 3D finite element analysis of deep excavations with cross-walls S.

More information

Braced deep excavations in soft ground

Braced deep excavations in soft ground 1 Introduction Braced deep excavations in soft ground Halim and Wong presented a paper in a publication called Underground Singapore 2005. The title of the paper is Evaluation of Modified Cam Clay Parameters

More information

DISPLACEMENT OF DIAPHRAGM WALL FOR VERY DEEP BASEMENT EXCAVATION IN SOFT BANGKOK CLAY

DISPLACEMENT OF DIAPHRAGM WALL FOR VERY DEEP BASEMENT EXCAVATION IN SOFT BANGKOK CLAY Geotec., Const. Mat. & Env., DOI: https://doi.org/10.21660/2018.46.7291 ISSN: 2186-2982 (Print), 2186-2990 (Online), Japan DISPLACEMENT OF DIAPHRAGM WALL FOR VERY DEEP BASEMENT EXCAVATION IN SOFT BANGKOK

More information

RAK Computational Geotechnics 2

RAK Computational Geotechnics 2 Janne Iho Student number 263061 / janne.iho@student.tut.fi Tampere University of Technology Department of Civil Engineering RAK-23546 2017-01 Computational Geotechnics 2 Course work 2: Widening of road

More information

THE OPTIMUM LOCATION OF REINFORCEMENT EMBANKMENT USING 3D PLAXIS SOFTWARE

THE OPTIMUM LOCATION OF REINFORCEMENT EMBANKMENT USING 3D PLAXIS SOFTWARE International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 5, September-October 1, pp. 91, Article ID: IJCIET_7_5_31 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=5

More information

Numerical Modeling of Geogrid Reinforced Soil Bed under Strip Footings using Finite Element Analysis

Numerical Modeling of Geogrid Reinforced Soil Bed under Strip Footings using Finite Element Analysis Numerical Modeling of Geogrid Reinforced Soil Bed under Strip Footings using Finite Element Analysis Ahmed M. Gamal, Adel M. Belal, S. A. Elsoud, Abstract This article aims to study the effect of reinforcement

More information

IGC. 50 th INDIAN GEOTECHNICAL CONFERENCE PERFORMANCE ENHANCEMENT OF ISOLATED FOOTING WITH MICRO-PILES

IGC. 50 th INDIAN GEOTECHNICAL CONFERENCE PERFORMANCE ENHANCEMENT OF ISOLATED FOOTING WITH MICRO-PILES 5 th IGC 5 th INDIAN GEOTECHNICAL CONFERENCE 17 th 19 th DECEMBER 215, Pune, Maharashtra, India Venue: College of Engineering (Estd. 1854), Pune, India PERFORMANCE ENHANCEMENT OF ISOLATED FOOTING WITH

More information

Study of Rock-Lining Interaction for Circular Tunnels Using Finite Element Analysis

Study of Rock-Lining Interaction for Circular Tunnels Using Finite Element Analysis Study of Rock-Lining Interaction for Circular Tunnels Using Finite Element Analysis Modern Academy for Engineering and Technology, Cairo, Egypt ABSTRACT Finite element technique is used to model two phases

More information

GEO-SLOPE International Ltd, Calgary, Alberta, Canada Tie-back Wall

GEO-SLOPE International Ltd, Calgary, Alberta, Canada   Tie-back Wall 1 Introduction Tie-back Wall This example simulates the sequential construction of a sheet-pile shoring wall tied back with pre-stressed anchors. The purpose is to demonstrate the steps involved in modeling

More information

Relationship between twin tunnels distance and surface subsidence in soft ground of Tabriz Metro - Iran

Relationship between twin tunnels distance and surface subsidence in soft ground of Tabriz Metro - Iran University of Wollongong Research Online Coal Operators' Conference Faculty of Engineering and Information Sciences 2012 Relationship between twin tunnels distance and surface subsidence in soft ground

More information

Design of Gravity Flow Pipes 121 = UNIT WT OF SOIL. P d = H H. D = 2r. P x LIVE LOAD PIPE WALLS ARE CLADDING FOR THE SOIL COLUMN SOIL SECTION AA

Design of Gravity Flow Pipes 121 = UNIT WT OF SOIL. P d = H H. D = 2r. P x LIVE LOAD PIPE WALLS ARE CLADDING FOR THE SOIL COLUMN SOIL SECTION AA Design of Gravity Flow Pipes 11 deflection. Some pipes manufactured in this manner are sometimes referred to as semirigid. This is simply a misnomer. Many solid wall PVC and ductile iron pipes are actually

More information

A 2D DEM mono-pile model under combined loading condition

A 2D DEM mono-pile model under combined loading condition A 2D DEM mono-pile model under combined loading condition N. Duan Department of Civil, Environment & Geomatic Engineering, University College London, Gower Street, London WC1E6BT, UK Y.P. Cheng Department

More information

RS 3 A New 3D Program for Geotechnical Analysis

RS 3 A New 3D Program for Geotechnical Analysis RS 3 A New 3D Program for Geotechnical Analysis Rocscience is announcing the upcoming release of a brand new software program for 3-dimensional analysis and design of geotechnical structures RS 3 a general

More information