Design of Anchored-Strengthened Sheet Pile Wall: A Case Study

Size: px
Start display at page:

Download "Design of Anchored-Strengthened Sheet Pile Wall: A Case Study"

Transcription

1 Design of Anchored-Strengthened Sheet Pile Wall: A Case Study Ümit Gökkuş* 1, Yeşim Tuskan 2 1 Prof.Dr., Department of Civil Engineering, Celal Bayar University, İzmir, Turkey ( umit.gokkus@cbu.edu.tr Phone: 90(236) ) 2 Res.Asst., Department of Civil Engineering, Celal Bayar University, İzmir, Turkey ( yesim.tuskan@cbu.edu.tr Phone: 90(236) ) *Corresponding Address: Dept.of Civil Eng, Celal Bayar University, Sehit Prof.Dr.Ilhan Varank Campus, ,Yunusemre-Manisa/TURKEY Abstract: The design of a m high anchored-strengthened steel sheet pile, effective on building foundations, staged excavations and earth retention, is presented in this study. Sheet piling with a single anchor was considered. Wall deformations, bending moments, wall shear forces and anchor forces were investigated for the conditions studied. An evolution of the safety provided by classical limit equilibrium method for anchored sheet pile wall is investigated. Investigation of the stabilization problems that are mentioned above was observed with the determination of the design parameters such as anchors, box pile wall profile and interaction of these parameters which effects the deformations into the ground during the stabilization studies. Moments of inertia were gradually changed and strengthened parts of profile were placed considering shelves. Keywords: Sheet Pile Wall, Anchorage of Sheet Pile Wall, Strengthened Sheet Pile Profile, Structural Analysis of Retaining Walls 1. Introduction Brinch-Hansen (1953) developed a design method with plastic hinges for sheet pile wall and ever since this method has formed the basis for the current Danish design practice (Brinch et al.1953). Retaining walls are used to maintain a difference in the elevation of the ground surface. The retaining wall can be classified as rigid or flexible walls according to system rigidity. A wall is considered to be rigid if it moves as a unit in rigid body and does not experience bending deformations like most of gravity walls. However, flexible walls are the retaining walls that undergo bending deformations in addition to rigid body motion. Steel sheet pile wall is the most common example of the flexible walls because it can tolerate relatively large deformations. A continuously interlocked pile segments embedded in soils were used to resist horizontal pressures. Steel is the most common material used for sheet pile walls due to its resistance to high driving stresses, relatively lightweight, and long service life (Bowles 1988). In recent years, Choudhury et al.(2006) presented a paper concerning with the lateral earth pressure on sheet pile against earthquake motion. Soils with high groundwater tables or soils with low bearing capacity are ideal sites for the application of sheet piling (Tan et al. 2008). The anchored sheet pile walls used as either permanent or temporary lateral earth support system in various civil engineering projects are one of the most reliable methods of structure protection (Bilgin et al.2009). They proposed the response of a sheet pile retaining wall with a single anchor to improve the sloping ground conditions. The advantage of decreasing the cut and fill operations of slope was presented for a 12 m high slope. After that, Ramsden et al (2010) 92

2 investigated the load carrying capacity of the sheet pile wall by examining the lateral wall deflection and examined the cross-section lost due to the corrosion. The rehabilitation of an 11 m high offshore sheet pile wall is studied (Ramsden et al.2010). Zhang et al. (2011) studied the feasibility of concrete sheet pile retaining wall as vertical shoring. Finite element analysis was carried out to define earth pressure, settlement, and horizontal displacement of shoring structure and the pile s stress and strain variation by simulating the design conditions (Zhang et al.2011). Within last five years, Isobe et all.(2014) used the sheet pile wall made of steel pipes to reinforce the caisson foundation in their studies. Armanyous et al.,(2016) studied experimentally in double sheet-walls replaced intervally. Gazetas et al. (2016) also worked especially for tall and anchored sheet-pile wall under seismic loads as mentioned in Choudhury et al.(2006). They studied on wall composed of I and V shaped sheet piles. In this study, it is aimed that tall and anchored sheet pile wall are strengthened by using sheet piles varying sections from the bottom to top of wall. On a case study considering this strengthened sheet pile, the calculation procedures taking into account the uniform surcharge loads and lateral earth pressure stated clearly. 2. Methodology The wall movement from active earth pressure towards the passive conducted the horizontal pressure distributions around the sheet pile wall. The simple triangular pressure distribution is adopted for an ideal conservative solution with lower earth pressures and smaller bending moments in the wall. For the effectiveness of the anchorage system location, outside of the potential active failure zone must be selected behind a sheet pile wall. The anchorage system length is designed to provide sufficient resistance to movement under limit state conditions. The slip circle of overall stability is also considered for the length of the tie rod system. Steel sheet piles are used in many aggressive environments and consequently corrosion protection or factor influencing effective life must be considered. There are several design methods for sheet pile walls. The simplified method is slightly more conservative than the full method and gradual method with the benefit of simplicity on the traditional system of equations (Padfield et al.1984). The main advantage of an anchored sheet pile wall, against those cantilevered, is the ability to reduce the embedment depth by increasing the excavation depth. Initially the total pressure coefficients for active and passive conditions were calculated in presence of earthquake magnitude by the following equations: = ± 1 + " = ± 1 +!! For retaining structures restrained by anchors equivalent horizontal seismic coefficient and vertical seismic coefficient were presented in the equations: # $ = 0.3( + 1) * (3) # + = 2# $ 3 (4) Effective ground acceleration coefficient, A 0, was selected 0.4 for seismic zone 1 in Turkey, building importance factor, I, was selected 1.00 for the standard buildings. 93 (2) (1)

3 3. Case Study A wall is built to support a retained height of 16 m with the ties acting at 3.8m below ground level. The simplified method for a fixed earth analysis assumes that the point of contra-flexure in bending moment diagram occurs at the level where the active pressure equals the passive pressure. The length of sheet pile is found by moments about the 1.67 m below the low ground level and forces equilibrium. Then the depth below the point of contra-flexure is increased by 20% to give the pile penetration. Zero shear occurs at 3.8 m and m below the ground level. The backfill behind the sheet pile wall has a dry unit weight of about 18 kn/m 3, a saturated unit weight of 20 kn/m 3 and shear strength parameter of φ = 40. Additional features, such as the ground water height H w and surcharge load q are shown in Figure 1 as a typical cross-section with the maximum design wall height. A surcharge load of 17 kn/m 2 was applied for traffic loading. The total active and passive pressure coefficients were summarized in Table 1. for saturated and natural unit weight conditions with ground water level (Kip et al.1999). The calculated horizontal pressures and the calculated values of horizontal equivalent forces were depicted in Figure 2. The distance between the contra flexure point and the dredged level with the pressure value of point, P c2 are calculated by the following equations:.! = / ! (5) 3 = (6) Bending moments about the point B were calculated and D 1 was founded by the moment equilibrium then the forces equilibrium was carried out to obtain the anchor load, T. Section PSp 1117 with height of 1117 mm and width of 460 mm second moment of inertia Ix= cm 4, section modulus ωx=44860 cm 3,allowable stress = kn/cm 2 were selected according to ASTM A328 was selected in the Sheet Piling Handbook (2010) and the section is shown in Figure 3. The total deflection exhibited by a retaining wall comprises a component based on the deflection of the section as a result of the applied loads and a component based on compression of the soil as the active/passive pressure regime is established. The calculations of shear forces and bending moments are set out in Figure 4. with the parametric study of SAP2000 and were compared with the results obtained by effective stress distribution. The ability of large size construction is carried out with reinforcement. An anchored-strengthened sheet pile wall cross-section is shown in Fig.5. It is possible to enhance the strength of overlap parts for different layers. Joints of sheet pile wall were strengthened in presence of suitable overlap length. Piling energy of sheet pile wall should be increased for additional profiles. The strengthened parts may also be located on beam flanges of sheet pile wall. 94

4 4. Conclusion In this study, efforts were made to develop an anchored sheet pile wall system to satisfy successfully external and internal stability of the retaining wall. Results show that the proposed method can capture the displacements and bending moments of retaining wall for quite deep excavations. Deep-seated Failure and rotational failure due to inadequate pile penetration were prevented to improve soil stability. The designed sheet-pile wall with anchor system enabled the stability to carry out earth and foundation work safely. References Armanyous,A.M., Ghoraba,S.M., Rashwan,I.M.H., Dapaon,M.A.,(2016) A Study on Control of Contaminant Transport through the Soil Using Equal Double Sheet Piles, Ain Shams Engineering Journal, Vol:7, pp Bilgin, O. and Erten, B. (2009). Anchored Sheet Pile Walls Constructed on Sloping Ground, International Foundation Congress and Equipment Expo Bowles, J. E. (1988). Foundation Analysis and Design. 4th Ed., McGraw-Hill, New York. Brinch Hansen, J., (1953). Earth pressure calculation, PhD Thesis, University of Cophenagen. Choudhury,D., Chatterjee,S.,(2006), Dynamic Active Earth Pressure on Retaining Structures, Sadhana, Vol. 31, Part 6, pp Gazetas,G., Garini,E., Zafeirakos,A.,(2016), Seismic analysis of tall anchored sheet-pile walls, Soil Dynamics and Earthquake Engineering, Vol:91, pp Isobe,K.,Kimura,M.,Ohtsuka,S.,(2014),Design Approach to a Method for Reinforcing Existing Caisson Foundation Using Steel Pipe Sheet Piles, Soils and Foundations, The Japanese Geotechnical Society, Vol: 54 (2), pp , Kip, F. and Kumbasar, V. (1999). Problems in Soil Mechanics, Caglayan Publishing, Istanbul (in Turkish) Padfield, C. J. and Mair, R. J. (1984). Design of retaining walls embedded in stiff clay, CIRIA Report 104. Ramsden, M.R., Griffiths, T.F., (2010). Steel Sheet Pile Wall Wale Rehabilitation, Ports, pp State of New York,(2015), Geotechnical Design Procedure: Geotechnical Design Procedure for Flexible Wall Systems,GDP-11,Revision #4, Geotechnical Bureau, Department of Transportation, NY Sheet Piling Handbook (2010), 3rd Edition, Hoesch Spundwand und Profil-A Member of the Salzgitter Group and Peiner Trager-A Member of the Salzgitter Group, ThyssenKrupp GfT Bautechnik Tan, Y. and Paikowsky S. G. (2008). Performance of sheet pile wall in peat, Journal of Geotechnical and Geoenvironmental Engineering, Vol 134, No.4, Technical Standarts for Port and Harbour Facilities in Japan. (1980). Bureau of Ports and Harbours, Ministry of Transport Port and Harbour Research. United States Steel Corporation, (1984), Steel Sheet Piling Design Manual, U. S.Department of Transportation /FHWA Zhang, L., Zhang, F. And Hua, M. (2011). Application of Sheet Pile Wall in a Channel to Upgrade Water ways, Slope Stability and Earth Retaining Walls:

5 Figures Fig. 1 Anchored sheet pile wall Fig. 2 (a)horizontal effective stress distribution (b) Horizontal equivalent forces with tie rod force 96

6 International Journal of Scientific Research rch aand Innovative Technology ISSN: Vol. Vo 4 No. 3; March 2017 Fig.3 Sheet Pile Wall Box Section Fig. 4 Shear ear Force Forces and Bending Moments of the Sheet Pile Wall System 97

7 Fig. 5 Strengthened Cross-Section of Sheet Pile Wall Table Table 1 The total active and passive pressure coefficients Total Pressure Coefficient K at, MAX (above water table) K at, MAX (below water table) K pt, MAX (above water table) K pt, MAX (below water table)

Geotechnical Analysis of Stepped Gravity Walls

Geotechnical Analysis of Stepped Gravity Walls Geotechnical Analysis of Stepped Gravity Walls Baleshwar Singh 1 * and Birjukumar Mistri 2 1 Associate Professor, Civil Engineering Department, IIT Guwahati, India 2 Former Post-Graduate Student, Civil

More information

Finite Element Analysis of Flexible Anchored Sheet Pile Walls: Effect of Mode of Construction and Dewatering Naveen Kumar 1, Arindam Dey 2*

Finite Element Analysis of Flexible Anchored Sheet Pile Walls: Effect of Mode of Construction and Dewatering Naveen Kumar 1, Arindam Dey 2* Golden Jubilee Conference of the IGS Bangalore Chapter, Geo-Innovations, 30-31 October 2014 Finite Element Analysis of Flexible Anchored Sheet Pile Walls: Effect of Mode of Construction and Dewatering

More information

Earthquake Design of Flexible Soil Retaining Structures

Earthquake Design of Flexible Soil Retaining Structures Earthquake Design of Flexible Soil Retaining Structures J.H. Wood John Wood Consulting, Lower Hutt 207 NZSEE Conference ABSTRACT: Many soil retaining wall structures are restrained from outward sliding

More information

Effect of Seismic Reinforcement of Sheet Pile Quay Wall Using Ground Anchor

Effect of Seismic Reinforcement of Sheet Pile Quay Wall Using Ground Anchor Effect of Seismic Reinforcement of Sheet Pile Quay Wall Using Ground Anchor M. Yoshida & M. Mitou Penta-Ocean Construction Co., Ltd., Japan O. Kiyomiya Waseda University, Japan S. Tashiro TOA Corporation,

More information

Estimation of Lateral Earth Pressure on Cantilever Sheet Pile using Flat Dilatometer Test (DMT) Data: Numerical Study

Estimation of Lateral Earth Pressure on Cantilever Sheet Pile using Flat Dilatometer Test (DMT) Data: Numerical Study Estimation of Lateral Earth Pressure on Cantilever Sheet Pile using Flat Dilatometer Test (DMT) Data: Numerical Study Kousik Deb Indian Institute of Technology Kharagpur, Kharagpur, India. E-mail: kousik@civil.iitkgp.ernet.in

More information

Partial factors: where to apply them?

Partial factors: where to apply them? LSD2000: International Workshop on Limit State Design in Geotechnical Engineering Melbourne, Australia. 18 November 2000 Partial factors: where to apply them? Brian Simpson Arup Geotechnics, London, UK

More information

Developing a Numerical Model for the Design of Sheet Pile Walls

Developing a Numerical Model for the Design of Sheet Pile Walls University of Southern Queensland Faculty of Health, Engineering & Surveying Developing a Numerical Model for the Design of Sheet Pile Walls A dissertation submitted by Chane Brits in fulfilment of the

More information

Response of Piered Retaining Walls to Lateral Soil Movement Based on Numerical Modeling

Response of Piered Retaining Walls to Lateral Soil Movement Based on Numerical Modeling Int. J. of GEOMATE, March, 2013, Vol. 4, No. 1 (Sl. No. 7), pp. 436-441 Geotec., Const. Mat. and Env., ISSN:2186-2982(P), 2186-2990(O), Japan Response of Piered Retaining Walls to Lateral Soil Movement

More information

FEM ANALYSIS OF ANCHORED SHEET PILE QUAY WALL: A CASE STUDY ON THE FAILURE OF WQ-7 BERTH OF VISAKHAPATNAM PORT

FEM ANALYSIS OF ANCHORED SHEET PILE QUAY WALL: A CASE STUDY ON THE FAILURE OF WQ-7 BERTH OF VISAKHAPATNAM PORT FEM ANALYSIS OF ANCHORED SHEET PILE QUAY WALL: A CASE STUDY ON THE FAILURE OF WQ-7 BERTH OF VISAKHAPATNAM PORT Mohamed Faizur Rahaman Khazi 1, Mahammood Vazeer 2 1 Department of Civil Engineering, College

More information

Cantilever Sheet Pile Wall (English units)

Cantilever Sheet Pile Wall (English units) Cantilever Sheet Pile Wall (English units) Deep Excavation LLC Software program: DeepEX 2018 Document version: 1.0 August 14, 2018 www.deepexcavation.com www.deepex.com DEEP EXCAVATION 1 A. Project description

More information

Performance based Displacement Limits for Reinforced Concrete Columns under Flexure

Performance based Displacement Limits for Reinforced Concrete Columns under Flexure Performance based Displacement Limits for Reinforced Concrete Columns under Flexure Ahmet Yakut, Taylan Solmaz Earthquake Engineering Research Center, Middle East Technical University, Ankara,Turkey SUMMARY:

More information

UNDERPINNING A CRANE FOUNDATION

UNDERPINNING A CRANE FOUNDATION UNDERPINNING A CRANE FOUNDATION Donald R. McMahon, P.E., McMahon & Mann Consulting Engineers, P.C., Buffalo, New York, USA Andrew J. Nichols, P.E., McMahon & Mann Consulting Engineers, P.C., Buffalo, New

More information

Numerical Analysis of a Novel Piling Framed Retaining Wall System

Numerical Analysis of a Novel Piling Framed Retaining Wall System The 12 th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG) 1-6 October, 2008 Goa, India Numerical Analysis of a Novel Piling Framed Retaining

More information

PILE DESIGN METHOD FOR IMPROVED GROUND USING THE VACUUM CONSOLIDATION METHOD

PILE DESIGN METHOD FOR IMPROVED GROUND USING THE VACUUM CONSOLIDATION METHOD PILE DESIGN METHOD FOR IMPROVED GROUND USING THE VACUUM CONSOLIDATION METHOD K Tomisawa, Civil Engineering Research of Hokkaido, Japan S Nishimoto, Civil Engineering Research of Hokkaido, Japan Abstract

More information

TABLE OF CONTENTS. 0 Structural calculations 0.1 General 0.2 Safety concept 0.3 Calculations for waterfront structures

TABLE OF CONTENTS. 0 Structural calculations 0.1 General 0.2 Safety concept 0.3 Calculations for waterfront structures Arbeitsausschuß "Ufereinfassungen" der Hafentechnischen Gesellschaft e.v. Recommendations of the Committee for Waterfront Structures Harbours and Waterways 9., completely revised Edition TABLE OF CONTENTS

More information

STRUCTURAL APPLICATIONS OF A REINFORCED CONCRETE BEAM-COLUMN-SLAB CONNECTION MODEL FOR EARTHQUAKE LOADING

STRUCTURAL APPLICATIONS OF A REINFORCED CONCRETE BEAM-COLUMN-SLAB CONNECTION MODEL FOR EARTHQUAKE LOADING STRUCTURAL APPLICATIONS OF A REINFORCED CONCRETE BEAM-COLUMN-SLAB CONNECTION MODEL FOR EARTHQUAKE LOADING B.B. Canbolat 1 1 Assistant Professor, Dept. of Civil Engineering, Middle East Technical University,

More information

Skirted Spudcan Sheet Pile Wall Interaction during Jack- Up Rig Installation and Removal in a Harbour Area

Skirted Spudcan Sheet Pile Wall Interaction during Jack- Up Rig Installation and Removal in a Harbour Area Skirted Spudcan Sheet Pile Wall Interaction during Jack- Up Rig Installation and Removal in a Harbour Area L. Kellezi GEO - Danish Geotechnical Institute 1 Maglebjergvej, DK 2800 Copenhagen, Denmark G.

More information

Optimum Position of Multi Outrigger Belt Truss in Tall Buildings Subjected to Earthquake and Wind Load

Optimum Position of Multi Outrigger Belt Truss in Tall Buildings Subjected to Earthquake and Wind Load www.cafetinnova.org Indexed in Scopus Compendex and Geobase Elsevier, Geo-Ref Information Services-USA, List B of Scientific Journals, Poland, Directory of Research Journals ISSN 0974-5904, Volume 09,

More information

Performance of Reinforced Earth Retaining Wall with Fly Ash under Static and Dynamic Loading

Performance of Reinforced Earth Retaining Wall with Fly Ash under Static and Dynamic Loading Performance of Reinforced Earth Retaining Wall with Fly Ash under Static and Dynamic Loading 1 Umesh Kumar N, 2 Padmashree M. Kalliamni 1 Geotechnical Engineer, 2 Assistant professor, 1 Civil Engineering

More information

Evaluation of Pseudo Static coefficient for Soil nailed walls on the basis of Seismic behavior levels

Evaluation of Pseudo Static coefficient for Soil nailed walls on the basis of Seismic behavior levels Research Journal of Recent Sciences ISSN 2277-2502. Evaluation of Pseudo Static coefficient for Soil nailed walls on the basis of Seismic behavior levels Abstract Majid yazdandoust 1*, Ali komak panah

More information

SEISMIC SOIL-PILE GROUP INTERACTION ANALYSIS OF A BATTERED PILE GROUP

SEISMIC SOIL-PILE GROUP INTERACTION ANALYSIS OF A BATTERED PILE GROUP 4 th International Conference on Earthquake Geotechnical Engineering June 25-28, 27 Paper No. 1733 SEISMIC SOIL-PILE GROUP INTERACTION ANALYSIS OF A BATTERED PILE GROUP Nan DENG 1, Richard KULESZA 2 and

More information

INFLUENCE OF BNWF SOIL MODELLING ON DYNAMIC BEHAVIOUR OF PILE FOUNDATION FOR RC FRAME WITH STRUCTURAL WALL

INFLUENCE OF BNWF SOIL MODELLING ON DYNAMIC BEHAVIOUR OF PILE FOUNDATION FOR RC FRAME WITH STRUCTURAL WALL ICOVP, 3 th International Conference on Vibration Problems 29 th November 2 nd December, 27, Indian Institute of Technology Guwahati, INDIA INFLUENCE OF BNWF SOIL MODELLING ON DYNAMIC BEHAVIOUR OF PILE

More information

Deadman Sheet Pile Wall (SI units)

Deadman Sheet Pile Wall (SI units) Deadman Sheet Pile Wall (SI units) Deep Excavation LLC Software program: DeepEX 2018 Document version: 1.0 August 14, 2018 www.deepexcavation.com www.deepex.com DEEP EXCAVATION 1 A. Project description

More information

Client Project Job # Wall Loc. SBWall Report deg 120 pcf 950 psf deg 0.0 ft. 6.0 ft 6.0 ft 2.0 ft. W16x50.

Client Project Job # Wall Loc. SBWall Report deg 120 pcf 950 psf deg 0.0 ft. 6.0 ft 6.0 ft 2.0 ft. W16x50. SBWall Report Soils Data Soil Friction Angle, phi Soil Unit Weight, gamma Soil Surcharge (uniform), qs Passive Resistance, FSp Passive Wedge Width, PW*B Backfill Slope Angle, beta Ignore Passive Resistance,

More information

Downloaded from Downloaded from /1

Downloaded from  Downloaded from  /1 PURWANCHAL UNIVERSITY VI SEMESTER FINAL EXAMINATION-2003 LEVEL : B. E. (Civil) SUBJECT: BEG359CI, Foundation Engineering. Full Marks: 80 TIME: 03:00 hrs Pass marks: 32 Candidates are required to give their

More information

DESIGNING AND CONSTRUCTION OF T-WALL RETAINING WALL SYSTEM

DESIGNING AND CONSTRUCTION OF T-WALL RETAINING WALL SYSTEM Istanbul Bridge Conference August 11-13, 2014 Istanbul, Turkey DESIGNING AND CONSTRUCTION OF T-WALL RETAINING WALL SYSTEM T. C. NEEL and K.BOZKURT ABSTRACT This work shall consist of the design, manufacture

More information

AVOIDING EXCESSIVE DISPLACEMENTS: A NEW DESIGN APPROACH FOR RETAINING WALLS

AVOIDING EXCESSIVE DISPLACEMENTS: A NEW DESIGN APPROACH FOR RETAINING WALLS International Conference on Structural and Foundation Failures August 2-4, 4, Singapore AVOIDING EXCESSIVE DISPLACEMENTS: A NEW DESIGN APPROACH FOR RETAINING WALLS A. S. Osman and M.D. Bolton Department

More information

A Comparative Study on Non-Linear Analysis of Frame with and without Structural Wall System

A Comparative Study on Non-Linear Analysis of Frame with and without Structural Wall System A Comparative Study on Non-Linear Analysis of Frame with and without Structural Wall System Dr.Binu Sukumar #1, A.Hemamathi *2, S.Kokila #3 C.Hanish #4 #1 Professor &Head, Department of Civil Engineering,

More information

MG University, Kerala

MG University, Kerala Section Optimization of Diaphragm Wall Ashok V M 1, Dr. Babu Kurian 2, Merin Mathews 3, Anu James 4 1 M.Tech student CE, 2 Principal, 3 Asst Professor CE, Ph.D. Scholar 1 3 4 M.A College of Engineering,

More information

Static Response of Reinforced Soil Retaining Walls with Modular Block Facing

Static Response of Reinforced Soil Retaining Walls with Modular Block Facing Static Response of Reinforced Soil Retaining Walls with Modular Block Facing Morteza Sabet 1, Amir M. Halabian 2, Kazem Barkhordari 3 1 Graduate Student, Department of Civil Engineering, Yazd University

More information

Soldier pile and tremied concrete walls with strut supports (SI units)

Soldier pile and tremied concrete walls with strut supports (SI units) Soldier pile and tremied concrete walls with strut supports (SI units) Deep Excavation LLC Software program: DeepEX 2015 Document version: 1.0 January 15, 2015 www.deepexcavation.com Deep Excavation LLC

More information

The use of flexible flaps in improving the settlement resistent behaviour of raft foundations

The use of flexible flaps in improving the settlement resistent behaviour of raft foundations SECM/15/144 The use of flexible flaps in improving the settlement resistent behaviour of raft foundations J.M.C.J.Jayasundara 1*, B.M.K.L.K.Basnayake 1 and K.G.H.C.N.senaviratne 1 1 University of Peradeniya,

More information

Evaluation of Response Reduction Factor and Ductility Factor of RC Braced Frame

Evaluation of Response Reduction Factor and Ductility Factor of RC Braced Frame 12 JOURNAL OF MATERIALS AND ENGINEERING STRUCTURES 2 (215) 12 129 Research Paper Evaluation of Response Reduction Factor and Ductility Factor of RC Braced Frame Kruti Tamboli, J. A. Amin * Department of

More information

Linear and Nonlinear Seismic Analysis of a Tall Air Traffic Control (ATC) Tower

Linear and Nonlinear Seismic Analysis of a Tall Air Traffic Control (ATC) Tower Linear and Nonlinear Seismic Analysis of a Tall Air Traffic Control (ATC) Tower A. Adnan, M. Vafaei & A.K. Mirasa Faculty of Civil Engineering, Universiti Teknologi Malaysia SUMMARY: Air Traffic Control

More information

Geo-E2010 Advanced Soil Mechanics L Wojciech Sołowski. 19 March 2017

Geo-E2010 Advanced Soil Mechanics L Wojciech Sołowski. 19 March 2017 Geo-E2010 Advanced Soil Mechanics L Wojciech Sołowski 19 March 2017 Slope stability: review Q: Shortcomings of undrained cohesion You wrote that the shortcoming is that the analysis is short term Well

More information

Issues on Design of Piled Raft Foundation

Issues on Design of Piled Raft Foundation IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 14, Issue 2 Ver. I (Mar. - Apr. 2017), PP 36-40 www.iosrjournals.org Issues on Design of Piled Raft

More information

Development of the Combi-Gyro Method, a New Steel Wall Construction Method Combining Steel Sheet Piles and Pipe Piles

Development of the Combi-Gyro Method, a New Steel Wall Construction Method Combining Steel Sheet Piles and Pipe Piles Technical Report NIPPON STEEL & SUMITOMO METAL TECHNICAL REPORT No. 113 DECEMBER 2016 UDC 624. 155 Development of the Combi-Gyro Method, a New Steel Wall Construction Method Combining Steel Sheet Piles

More information

Basic quantities of earthquake engineering. Strength Stiffness - Ductility

Basic quantities of earthquake engineering. Strength Stiffness - Ductility Basic quantities of earthquake engineering Strength Stiffness - Ductility 1 Stength is the ability to withstand applied forces. For example a concrete element is weak in tension but strong in compression.

More information

GEOTECHNICAL DESIGN AND CONSTRUCTION METHODOLOGY OF A DEEP BASEMENT CUT NEXT TO SENSITIVE BUILDINGS

GEOTECHNICAL DESIGN AND CONSTRUCTION METHODOLOGY OF A DEEP BASEMENT CUT NEXT TO SENSITIVE BUILDINGS GEOTECHNICAL DESIGN AND CONSTRUCTION METHODOLOGY OF A DEEP BASEMENT CUT NEXT TO SENSITIVE BUILDINGS James Livingston 1 Ching Dai 2 1 Geotechnical engineer at Coffey Services (NZ) 2 Chartered Senior Principal

More information

SEISMIC RETROFIT OF A TYPICAL REINFORCED CONCRETE BUILDING THROUGH FRP JACKETING OF EXTENDED RECTANGULAR COLUMNS

SEISMIC RETROFIT OF A TYPICAL REINFORCED CONCRETE BUILDING THROUGH FRP JACKETING OF EXTENDED RECTANGULAR COLUMNS 6 th International Conference on Advanced Composite Materials in Bridges and Structures 6 ième Conférence Internationale sur les matériaux composites d avant-garde pour ponts et charpentes Kingston, Ontario,

More information

Design of Semi gravity Retaining Walls

Design of Semi gravity Retaining Walls Design of Semi gravity Retaining Walls Example 13.1 A semi gravity retaining wall consisting of plain concrete (weight = 145 lb/ft³) is shown in Figure 13.9. The bank of supported earth is assumed to weigh

More information

INTRINSIC SEISMIC PROTECTION OF CANTILEVERED AND ANCHORED RETAINING STRUCTURES

INTRINSIC SEISMIC PROTECTION OF CANTILEVERED AND ANCHORED RETAINING STRUCTURES SECED 2015 Conference: Earthquake Risk and Engineering towards a Resilient World 9-10 July 2015, Cambridge UK INTRINSIC SEISMIC PROTECTION OF CANTILEVERED AND ANCHORED RETAINING STRUCTURES Luigi CALLISTO

More information

Top down excavation between diaphragm (slurry) walls with slabs (SI units)

Top down excavation between diaphragm (slurry) walls with slabs (SI units) Top down excavation between diaphragm (slurry) walls with slabs (SI units) Deep Excavation LLC Software program: DeepEX 2015 Document version: 1.0 January 16, 2015 www.deepexcavation.com Deep Excavation

More information

Stability of a Mechanically Stabilized Earth Wall

Stability of a Mechanically Stabilized Earth Wall Stability of a Mechanically Stabilized Earth Wall GEO-SLOPE International Ltd. www.geo-slope.com 1400, 633-6th Ave SW, Calgary, AB, Canada T2P 2Y5 Main: +1 403 269 2002 Fax: +1 403 266 4851 Introduction

More information

Evaluation of Geosynthetic Forces in GRSRW under Dynamic Condition

Evaluation of Geosynthetic Forces in GRSRW under Dynamic Condition Evaluation of Geosynthetic Forces in GRSRW under Dynamic Condition Kooshyar Passbakhsh, Maryam Yazdi Abstract Geosynthetics have proved to be suitable for reinforced soil retaining walls. Based on the

More information

Analysis for Failure Mechanism of Temporary Shoring Structure

Analysis for Failure Mechanism of Temporary Shoring Structure IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 15, Issue 2 Ver. I (Mar. - Apr. 2018), PP 31-37 www.iosrjournals.org Analysis for Failure Mechanism

More information

Numerical Modeling of Dynamic Soil-Structure Interaction in Bridges with HP Driven Piles

Numerical Modeling of Dynamic Soil-Structure Interaction in Bridges with HP Driven Piles Numerical Modeling of Dynamic Soil-Structure Interaction in Bridges with HP Driven Piles Yu Bao, Andrew Rietz and Steven Halewski, Rochester Institute of Technology, Rochester, NY, USA HP-Pile foundations

More information

Torsion in tridimensional composite truss bridge decks

Torsion in tridimensional composite truss bridge decks Torsion in tridimensional composite truss bridge decks André B. Almeida Instituto Superior Técnico Technical University of Lisbon Lisbon, Portugal e-mail: branco.almeida.a@gmail.com Abstract Torsion stiffness

More information

A seismic reinforcement method for an existing pile foundation in soft ground and liquefiable ground

A seismic reinforcement method for an existing pile foundation in soft ground and liquefiable ground Japanese Geotechnical Society Special Publication The 15th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering A seismic reinforcement method for an existing pile foundation in soft

More information

Verification of a multi-anchored wall

Verification of a multi-anchored wall Engineering manual No. 7 Updated: 04/2018 Verification of a multi-anchored wall Program: File: Sheeting check Demo_manual_07.gp2 In this chapter, we will show you how to design and verify a multi-anchored

More information

Types of Foundations

Types of Foundations Shallow Foundations Types of Foundations Foundations can be classified to two major categories: Shallow. Deep. 1 Introduction If the soil stratum is suitable for supporting the structural loads from the

More information

Damage states of cut-and-cover tunnels under seismic excitation

Damage states of cut-and-cover tunnels under seismic excitation 6 th International Conference on Earthquake Geotechnical Engineering 1-4 November 2015 Christchurch, New Zealand Damage states of cut-and-cover tunnels under seismic excitation Duhee Park 1, Tae-Hyung

More information

NPTEL Course. GROUND IMPROVEMENT Factors affecting the behaviour and performance of reinforced soil

NPTEL Course. GROUND IMPROVEMENT Factors affecting the behaviour and performance of reinforced soil Lecture 27 NPTEL Course GROUND IMPROVEMENT Factors affecting the behaviour and performance of reinforced soil Prof. G L Sivakumar Babu Department of Civil Engineering Indian Institute of Science Bangalore

More information

Office Building-G. Thesis Proposal. Carl Hubben. Structural Option. Advisor: Dr. Ali Memari

Office Building-G. Thesis Proposal. Carl Hubben. Structural Option. Advisor: Dr. Ali Memari Office Building-G Thesis Proposal Structural Option December 10, 2010 Table of Contents Executive Summary... 3 Introduction... 4 Gravity System...4 Lateral System:...6 Foundation System:...6 Problem Statement...

More information

Dead man sheet pile wall (SI units)

Dead man sheet pile wall (SI units) Dead man sheet pile wall (SI units) Deep Excavation LLC Software program: DeepEX 2015 Document version: 1.0 January 16, 2015 www.deepexcavation.com Deep Excavation LLC 1 A. Project description In this

More information

Earth Retaining Walls CIVL455 CHAPTER I: INTRODUCTION

Earth Retaining Walls CIVL455 CHAPTER I: INTRODUCTION Earth Retaining Walls CIVL455 CHAPTER I: INTRODUCTION Earth retaining structures are designed to overcome significant variation in ground levels to provide either a sloping or flat ground on the retained

More information

PERFORMANCE STUDY OF RETROFITTED GRAVITY LOAD DESIGNED WALL FRAME STRUCTURES (SC-140)

PERFORMANCE STUDY OF RETROFITTED GRAVITY LOAD DESIGNED WALL FRAME STRUCTURES (SC-140) PERFORMANCE STUDY OF RETROFITTED GRAVITY LOAD DESIGNED WALL FRAME STRUCTURES (SC-140) *A. Ahmed 1, K. H. Tan 1 1 Department of Civil and Environmental Engineering National University of Singapore, Singapore,

More information

DYNAMIC SHEAR AMPLIFICATION IN HIGH-RISE CONCRETE WALLS: EFFECT OF MULTIPLE FLEXURAL HINGES AND SHEAR CRACKING

DYNAMIC SHEAR AMPLIFICATION IN HIGH-RISE CONCRETE WALLS: EFFECT OF MULTIPLE FLEXURAL HINGES AND SHEAR CRACKING DYNAMIC SHEAR AMPLIFICATION IN HIGH-RISE CONCRETE WALLS: EFFECT OF MULTIPLE FLEXURAL HINGES AND SHEAR CRACKING B.R. Rad 1 and P. Adebar 2 1 Doctoral Candidate, Dept. of Civil Engineering, University of

More information

Sheetpile Wall Report

Sheetpile Wall Report 16 ft cut Sheetpile Wall Report Project Information Designed By: LAA Organization: 16 ft cut Date: 05/09/2012 Project: Job #: 4952-6 Client: Support condition = Cantilever Unit system = English (ft, lb,

More information

[Kouravand Bardpareh* et al., 5(6): July, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116

[Kouravand Bardpareh* et al., 5(6): July, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY STUDY ON HORIZONTAL DISPLACEMENT OF RESTRAINED EXCAVATION WALLS BY CANTILEVER RETAINING WALL Siavash Kouravand Bardpareh *1, Ashkan

More information

geopier Lateral resistance

geopier Lateral resistance technical bulletin No. 4 geopier Lateral resistance This Technical Bulletin discusses the behavior of Geopier supported shallow foundation systems when subjected to lateral loads. Lateral loads are applied

More information

Evaluation of negative skin friction on sheet pile walls at the Rio Grande dry dock, Brazil

Evaluation of negative skin friction on sheet pile walls at the Rio Grande dry dock, Brazil Geotechnical Aspects of Underground Construction in Soft Ground Viggiani (ed) 2012 Taylor & Francis Group, London, ISBN 978-0-415-68367-8 Evaluation of negative skin friction on sheet pile walls at the

More information

Long-term Stress of Simply Supported Steel-concrete Composite Beams

Long-term Stress of Simply Supported Steel-concrete Composite Beams The Open Construction and Building Technology Journal, 2011, 5, 1-7 1 Open Access Long-term Stress of Simply Supported Steel-concrete Composite Beams Min Ding 1,2, Xiugen Jiang 1, Zichen Lin 3 and Jinsan

More information

VOLUNTARY - EARTHQUAKE HAZARD REDUCTION IN EXISTING HILLSIDE BUILDINGS (Division 94 Added by Ord. No. 171,258, Eff. 8/30/96.)

VOLUNTARY - EARTHQUAKE HAZARD REDUCTION IN EXISTING HILLSIDE BUILDINGS (Division 94 Added by Ord. No. 171,258, Eff. 8/30/96.) DIVISION 94 VOLUNTARY - EARTHQUAKE HAZARD REDUCTION IN EXISTING HILLSIDE BUILDINGS (Division 94 Added by Ord. No. 171,258, Eff. 8/30/96.) SEC. 91.9401. PURPOSE. (Amended by Ord. No. 172,592, Eff. 6/28/99,

More information

BEHAVIOR OF INFILL MASONRY WALLS STRENGTHENED WITH FRP MATERIALS

BEHAVIOR OF INFILL MASONRY WALLS STRENGTHENED WITH FRP MATERIALS BEHAVIOR OF INFILL MASONRY WALLS STRENGTHENED WITH FRP MATERIALS D.S. Lunn 1,2, V. Hariharan 1, G. Lucier 1, S.H. Rizkalla 1, and Z. Smith 3 1 North Carolina State University, Constructed Facilities Laboratory,

More information

Lecture Retaining Wall Week 12

Lecture Retaining Wall Week 12 Lecture Retaining Wall Week 12 Retaining walls which provide lateral support to earth fill embankment or any other form of material which they retain them in vertical position. These walls are also usually

More information

Table of Contents 18.1 GENERAL Overview Responsibilities References

Table of Contents 18.1 GENERAL Overview Responsibilities References Table of Contents Section Page 18.1 GENERAL... 18.1-1 18.1.1 Overview... 18.1-1 18.1.2 Responsibilities... 18.1-1 18.1.3 References... 18.1-2 18.2 MISCELLANEOUS FOUNDATION DESIGNS... 18.2-1 18.2.1 Buildings...

More information

mortarless Design Manual Part 1 (AS 3600:2009) Section 1 Page 1 AS 3600:2009 PLAIN AND REINFORCED CONCRETE - CODE OF PRACTICE

mortarless Design Manual Part 1 (AS 3600:2009) Section 1 Page 1 AS 3600:2009 PLAIN AND REINFORCED CONCRETE - CODE OF PRACTICE SECTION 1. mortarless Design Manual Part 1 (AS 3600:2009) Section 1 Page 1 AS 3600:2009 PLAIN AND REINFORCED CONCRETE - CODE OF PRACTICE 1.1 Overview of AS 3600:2009 AS 3600:2009 is the latest Australian

More information

Effect of Axial load on deformation capacity of RC column

Effect of Axial load on deformation capacity of RC column Effect of load on deformation capacity of RC column N. G. Patoliya 1, Prof. C. S. Sanghvi 2 1 Narmada, Water Resources, Water Supply and Kalpsar Department, Government of Gujarat,, patoliyanirav@yahoo.co.in

More information

FACSIMILE/ MAIL TRANSMISSION. Date: December 2, 2011 File:

FACSIMILE/ MAIL TRANSMISSION. Date: December 2, 2011 File: PUAR Engineering Consultants Inc #200-100 Park Royal South W.Vancouver, BC, Canada V7T 1A2 Fax: 604-922-5054; Tel: 604-913-7827 FACSIMILE/ MAIL TRANSMISSION Date: December 2, 2011 File: 07-2-256 To: BRIAN

More information

Geotechnical Engineering Software GEO5

Geotechnical Engineering Software GEO5 Geotechnical Engineering Software GEO5 GEO5 software suite is designed to solve various geotechnical problems. The easy -to -use suite consists of individual programs with an unified and user-friendly

More information

Structural Characteristics of New Composite Girder Bridge Using Rolled Steel H-Section

Structural Characteristics of New Composite Girder Bridge Using Rolled Steel H-Section Proc. Schl. Eng. Tokai Tokai Univ., Univ., Ser. ESer. E 41 (2016) (2016) - 31-37 Structural Characteristics of New Composite Girder Bridge Using Rolled Steel H-Section by Mohammad Hamid ELMY *1 and Shunichi

More information

Diaphragm wall with tieback supports (English units)

Diaphragm wall with tieback supports (English units) Diaphragm wall with tieback supports (English units) Deep Excavation LLC Software program: DeepEX 2015 Document version: 1.0 December 16, 2014 www.deepexcavation.com Deep Excavation LLC 1 A. Project description

More information

Analysis of Buried Arch Structures; Performance Versus Prediction

Analysis of Buried Arch Structures; Performance Versus Prediction Analysis of Buried Arch Structures; Performance Versus Prediction D.A. Jenkins: Reinforced Earth Pty Ltd, Somersby, NSW, Australia Synopsis: The Reinforced Earth Group introduced the TechSpan arch system

More information

COMPARISON OF A REINFORCED CONCRETE BUILDING STRENGTHRND WITH VARIOUS METHODS

COMPARISON OF A REINFORCED CONCRETE BUILDING STRENGTHRND WITH VARIOUS METHODS COMPARISON OF A REINFORCED CONCRETE BUILDING STRENGTHRND WITH VARIOUS METHODS Farnaz ALINOORI 1 and Kadir GÜLER 2 ABSTRACT The earthquake performance of a school building having three stories which has

More information

Modelling of RC moment resisting frames with precast-prestressed flooring system

Modelling of RC moment resisting frames with precast-prestressed flooring system Modelling of RC moment resisting frames with precast-prestressed flooring system B.H.H. Peng, R.P. Dhakal, R.C. Fenwick & A.J. Carr Department of Civil Engineering, University of Canterbury, Christchurch.

More information

Optimization Design of Arm Frame of Folding Arm Type Tower Crane Based on ANSYS Ge-ning XU, Wen-ju LIU * and Yan-fei TAO

Optimization Design of Arm Frame of Folding Arm Type Tower Crane Based on ANSYS Ge-ning XU, Wen-ju LIU * and Yan-fei TAO 2016 International Conference on Applied Mechanics, Mechanical and Materials Engineering (AMMME 2016) ISB: 978-1-60595-409-7 Optimization Design of Arm Frame of Folding Arm Type Tower Crane Based on ASYS

More information

Seismic Considerations and Design Methodology for Lightweight Cellular Concrete Embankments and Backfill

Seismic Considerations and Design Methodology for Lightweight Cellular Concrete Embankments and Backfill Seismic Considerations and Design Methodology for Lightweight Cellular Concrete Embankments and Backfill STGEC 2018, Louisville KY Steven F. Bartlett, Ph.D. P.E Department of Civil and Environmental Engineering

More information

EFFECT OF DEEP EXCAVATION SUPPORTED BY CONCRETE SOLIDER PILE WITH STEEL SHEET PILE LAGGING WALL ON ADJACENT EXISTING BUILDINGS

EFFECT OF DEEP EXCAVATION SUPPORTED BY CONCRETE SOLIDER PILE WITH STEEL SHEET PILE LAGGING WALL ON ADJACENT EXISTING BUILDINGS EFFECT OF DEEP EXCAVATION SUPPORTED BY CONCRETE SOLIDER PILE WITH STEEL SHEET PILE LAGGING WALL ON ADJACENT EXISTING BUILDINGS Mostafa Abdou 1 *, Ahamed Rushedy Towfeek 2, Waleed Hassan 3 1 prof. Dr.,

More information

Foundation or Footing Design: Part 1

Foundation or Footing Design: Part 1 Foundation or Footing Design: Part 1 Foundation or Footing Footings are structural elements that transmit column or wall loads to the underlying soil below the structure. Footings are designed to transmit

More information

International Journal of Engineering and Innovative Technology (IJEIT) Volume 2, Issue 6, December 2012

International Journal of Engineering and Innovative Technology (IJEIT) Volume 2, Issue 6, December 2012 International Journal of Engineering and Innovative Technology (IJEIT) Volume 2, Issue 6, December 2012 Study Of Instrumented Segmental / Meter Panels For Basements: Comparison of Theoretical and Actual

More information

Introduction to Structural Analysis TYPES OF STRUCTURES LOADS AND

Introduction to Structural Analysis TYPES OF STRUCTURES LOADS AND AND Introduction to Structural Analysis TYPES OF STRUCTURES LOADS INTRODUCTION What is the role of structural analysis in structural engineering projects? Structural engineering is the science and art

More information

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 1, No 4, 2011

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 1, No 4, 2011 Evaluating the effect of penetration depth of a previous sheet pile quay wall on the seismic behavior of newly installed open type wharf Reza Dezvareh 1, Khosrow Bargi 2 1 Student of Master of Science,

More information

"Research Note" DISCRETE ELEMENT METHOD ANALYSIS OF RETAINING WALL EARTH PRESSURE IN STATIC AND PSEUDO-STATIC CONDITIONS *

Research Note DISCRETE ELEMENT METHOD ANALYSIS OF RETAINING WALL EARTH PRESSURE IN STATIC AND PSEUDO-STATIC CONDITIONS * Iranian Journal of Science & Technology, Transaction B, Engineering, Vol. 3, No. B Printed in The Islamic Republic of Iran, 26 Shiraz University "Research Note" DISCRETE ELEMENT METHOD ANALYSIS OF RETAINING

More information

SEISMIC PERFORMANCE OF BRIDGE COLUMNS WITH DOUBLE INTERLOCKING SPIRALS

SEISMIC PERFORMANCE OF BRIDGE COLUMNS WITH DOUBLE INTERLOCKING SPIRALS 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 4 Paper No. 2198 SEISMIC PERFORMANCE OF BRIDGE COLUMNS WITH DOUBLE INTERLOCKING SPIRALS Juan F. Correal 1, M. Saiid

More information

Invention: Seismic Retrofitting by Exterior Steel Brace Structural Building Jacketing System

Invention: Seismic Retrofitting by Exterior Steel Brace Structural Building Jacketing System 2017 Published in 5th International Symposium on Innovative Technologies in Engineering and Science 29-30 September 2017 (ISITES2017 Baku - Azerbaijan) Invention: Seismic Retrofitting by Exterior Steel

More information

An Investigation on the Dynamic Behaviour of Soil Nail Walls

An Investigation on the Dynamic Behaviour of Soil Nail Walls An Investigation on the Dynamic Behaviour of Soil Nail Walls Jaya V *1, Annie Joy 2 Civil Engineering Department, Kerala University College of Engineering, Trivandrum, India *1 jayasraj@gmail.com; 2 annjoy87@gmail.com

More information

16. Design of Pipeline Structures.

16. Design of Pipeline Structures. 16. Design of Pipeline Structures. a. General. 1) The following guidelines are for the design of structures for water and sewer pipelines including structural concrete and miscellaneous metals design.

More information

Seismic Evaluation of a 1930 Steel Bridge with Lightly Reinforced Concrete Piers

Seismic Evaluation of a 1930 Steel Bridge with Lightly Reinforced Concrete Piers Seismic Evaluation of a 1930 Steel Bridge with Lightly Reinforced Concrete Piers R. Tinawi & M. Leclerc École Polytechnique de Montréal, Canada D. Mitchell McGill University, Canada A. Massad Hydro-Québec,

More information

Effects of Wall Embedded Length Ratio and Wall Thickness Ratio on Undrained Stability of Cantilever Piled Walls

Effects of Wall Embedded Length Ratio and Wall Thickness Ratio on Undrained Stability of Cantilever Piled Walls Engineering and Physical Sciences Effects of Wall Embedded Length Ratio and Wall Thickness Ratio on Undrained Stability of Cantilever Piled Walls Boonchai UKRITCHON *, Kant TEERAVONG and Suraparb KEAWSAWASVONG

More information

Earth Retention Systems

Earth Retention Systems haywardbaker.com Earth Retention Systems Mark W. Goodsell, P.E., D.GE Senior Engineer 2 Earth Retention Systems Focus of Presentation Different Types and Purposes of Earth Retention Systems Design Considerations/Geotechnical

More information

Dual earthquake resistant frames

Dual earthquake resistant frames Earthquake Resistant Engineering Structures VII 165 Dual earthquake resistant frames T. L. Sophocleous & M. C. Phocas Department of Civil and Environmental Engineering, University of Cyprus, Cyprus Abstract

More information

HANDBOOK OF PORT AND HARBOR ENGINEERING

HANDBOOK OF PORT AND HARBOR ENGINEERING HANDBOOK OF PORT AND HARBOR ENGINEERING GEOTECHNCAL AND STRUCTURAL ASPECTS Gregory P. Tsinker, Ph.D., RE. E3 CHAPMAN & HALL International Thomson Publishing New \ork Albany Bonn ^Boston Cincinnati Detroit

More information

TESTS ON A POST TENSIONED MOMENT RESISTING CONNECTION FOR PRECAST CONCRETE STRUCTURES

TESTS ON A POST TENSIONED MOMENT RESISTING CONNECTION FOR PRECAST CONCRETE STRUCTURES TESTS ON A POST TENSIONED MOMENT RESISTING CONNECTION FOR PRECAST CONCRETE STRUCTURES Tuğrul Tankut, Uğur Ersoy, Seval Pınarbaşı Middle East Technical University Ersin Arıoğlu, Ezel Özdil, Müfit Yorulmaz

More information

Northport Berth 3 design and construction monitoring

Northport Berth 3 design and construction monitoring Proc. 18 th NZGS Geotechnical Symposium on Soil-Structure Interaction. Ed. CY Chin, Auckland Lucy Coe, Nicola Ridgley, Do Van Toan Beca Infrastructure Limited, Auckland, NZ Keywords: retaining wall, deflections,

More information

Effect of Standard No Rules for Moment Resisting Frames on the Elastic and Inelastic Behavior of Dual Steel Systems

Effect of Standard No Rules for Moment Resisting Frames on the Elastic and Inelastic Behavior of Dual Steel Systems Engineering, Technology & Applied Science Research Vol. 7, No. 6, 2017, 2139-2146 2139 Effect of Standard No. 2800 Rules for Moment Resisting Frames on the Elastic and Inelastic Behavior of Dual Steel

More information

EARTHQUAKE RESPONSE ANALYSIS OF MID-STORY BUILDINGS ISOLATED WITH VARIOUS SEISMIC ISOLATION TECHNIQUES

EARTHQUAKE RESPONSE ANALYSIS OF MID-STORY BUILDINGS ISOLATED WITH VARIOUS SEISMIC ISOLATION TECHNIQUES EARTHQUAKE RESPONSE ANALYSIS OF MID-STORY BUILDINGS ISOLATED WITH VARIOUS SEISMIC ISOLATION TECHNIQUES N. Torunbalci 1 and G. Ozpalanlar 2 1 Assoc. Professor Dr., Dept. of Structural Engineering, Faculty

More information

REINFORCED ENGINEERING HANDBOOK CLAY AND CONCRETE MASONRY SEVENTH EDITION. John M. Hochwalt, PE, SE KPFF Consulting Engineers

REINFORCED ENGINEERING HANDBOOK CLAY AND CONCRETE MASONRY SEVENTH EDITION. John M. Hochwalt, PE, SE KPFF Consulting Engineers REINFORCED MASONRY ENGINEERING HANDBOOK CLAY AND CONCRETE MASONRY SEVENTH EDITION John M. Hochwalt, PE, SE KPFF Consulting Engineers James E. Amrhein Original Author Published by MASONRY INSTITUTE OF AMERICA

More information

EN Eurocode 7. Section 8 Anchorages Section 9 Retaining structures. Brian Simpson Arup Geotechnics

EN Eurocode 7. Section 8 Anchorages Section 9 Retaining structures. Brian Simpson Arup Geotechnics EUROCODES Background and Applications EN1997-1: Anchorages and Retaining structures Brussels, 18-20 February 2008 Dissemination of information workshop 1 EN 1997-1 Eurocode 7 Section 8 Anchorages Section

More information

LATERAL LOAD BEHAVIOR OF UNBONDED POST-TENSIONED HYBRID COUPLED WALLS. Qiang SHEN Graduate Research Assistant. Yahya C. KURAMA Assistant Professor

LATERAL LOAD BEHAVIOR OF UNBONDED POST-TENSIONED HYBRID COUPLED WALLS. Qiang SHEN Graduate Research Assistant. Yahya C. KURAMA Assistant Professor LATERAL LOAD BEHAVIOR OF UNBONDED POST-TENSIONED HYBRID COUPLED WALLS Qiang SHEN Graduate Research Assistant Yahya C. KURAMA Assistant Professor University of Notre Dame, Civil Engineering and Geological

More information