Overview of CropSyst

Size: px
Start display at page:

Download "Overview of CropSyst"

Transcription

1 Overview of CropSyst A cropping systems computer simulation model Claudio O. Stöckle Biological Systems Engineering, Washington State University USA

2

3

4

5

6

7

8

9

10 Soil Weather Cropping systems Simulation-based Estimation and Projection Management ClimGen Biomass Arc GIS CropSyst Cooperator Yield ΔSOC Water, N, C balance GHG emissions

11 Biomass Yield CropSyst- Farm LCA Interaction ΔSOC GHG emissions Life Cycle Assessment Framework Extraction of Raw Materials Goal Definition and Scope Production and Transport Seeds Fertilizer Plant Protection Machinery Inventory Analysis Interpretation Farming Tillage and Sowing Fertilization Plant Protection Irrigation Harvest and Drying System Boundary Impact Assessment 1 Metric Ton of Grain 1 hectare of Farm Land LCA Software

12 CropSyst, from Crop Growth to Agricultural Systems Modeling New demands for computer simulation tools and applications have led to upgrades of CropSyst capabilities and functionalities in the last decade Integration into larger modeling frameworks and spatial scales Upgrades to run simulations under multiple platforms, in addition to MS-Windows, such as Linux based highperformance computer clusters and supercomputers. Specialized tools to inform policy makers and stakeholders such as CropSyst-IST (Irrigation Strategies Tool), a tool to address responses to water shortages, OFoot, an organic farm management model, and CAFE Dairy, a farm energy and nutrient design and management system.

13

14

15 VIC-CropSyst

16 Crop Growth Models in Agriculture

17 What is the model objective? Bottom-up Models Explanatory interest Plant-scale analysis Genotype Analysis Top-down Models Applicationoriented Regional Analysis Agricultural systems analysis

18 The CTP model A mix of top-down and bottom-up approach

19 Average sunlit and shaded leaf photosynthesis

20 More Processes and Parameters Canopy structure Canopy radiation Leaf photosynthesis Stomatal regulation (CO2, VPD, water) Canopy energy balance Root water uptake Canopy transpiration Biomass accretion (respiration, partitioning)

21 Kremer et al., 2008 CTP simulation of transpiration (lysimeter data from Bushland TX)

22 CTP model output Stöckle and Kemanian, 2009

23 CropSyst, a Process-oriented Top-Down Model

24 CropSyst, a Process-oriented Top-Down Agricultural Systems Model Top-down resource-capture modeling approach Plant transpiration (T) - Atmospheric water demand - Soil water and roots - Stomatal control - Daily and hourly water uptake - Water stress Biomass accretion (BA) - Radiation-use efficiency (RUE) - Transpiration-use efficiency (TUE) Interaction CO2 x T X BA - Changes in stomatal conductance - Changes in transpiration - Changes in RUE and TUE

25 CropSyst Biomass Growth

26 CropSyst, a Process-oriented Top-Down Model First, let us take a look at transpiration and water uptake modeling

27 Maximum Transpiration Weather Maximum Plant Hydraulic Conductance Crop Coefficient P-M ETo Canopy Radiation Interception Attainable Transpiration Water Demand Potential Transpiration Maximum Transpiration Potential Water Supply

28 Water Uptake = Actual Transpiration Maximum Transpiration Plant Hydraulic Conductance Root Fraction by Soil Layer Water Potential by Soil Layer Canopy Water Potential Canopy Conductance Actual Transpiration

29

30

31 Root Fraction Relative Soil Depth

32 Low (4.8 mm/day) high (8.4 mm/day) Very high evaporative demand (12 mm/day) Two soils: SaL and SiL Root depth =1.8 m

33 Jara and Stöckle, 1999

34 Water uptake simulation, nonirrigated maize, fully recharged deep soil (data from Davis CA) Jara and Stöckle, 1999

35 Pears (data from Lleida, Spain) Marsal and Stockle, 2012

36 ET simulation with varying degrees of water stress Stockle et al., 2003

37 Biomass and yield simulation with varying degrees of water stress Stockle et al., 2003

38 Biomass Accretion

39 Dual Approach Radiation-use efficiency at low D a (upper limit) B = ef i S t Modified transpiration-use efficiency B = α T β D a

40

41

42 Biomass Accretion under Elevated CO2

43 The implementation relies on experimental evidence of crop growth responses to CO 2. These experiments report the ratio (r e ) of biomass production for a specified elevated CO 2 concentration (C e ) to the production for a baseline concentration (C b ). With this information, the biomass growth ratio at any CO2 concentration relative to the baseline ( r CO2 ) can be obtained by assuming that r CO2 and [CO2] are related by a Michaelis-Menten type of expression: r CO rf [ CO = 2 K + [ CO 2 2 ] ] K = C C r e e C b b (1 r C e e ) r F = K + Cb C b

44 The future values of TUE and RUE at any CO 2 concentration must be adjusted with respect to the values at the specified [CO 2 ] (C S ) at which they were determined, which is not necessarily the baseline [CO 2 ] defined for biomass response to elevated carbon dioxide. r Sp = r CO 2 ( K + r F C S C S ) RUE CO rsp RUE CS 2 =

45 The determination of TUE CO2 is more involved given that biomass production, canopy resistance to vapor transfer, and transpiration will change with elevated [CO 2 ]. Experimental data for a number of C3 and C4 crops reported by Morison (1985) showed a linear reduction of canopy conductance as a function of increasing [CO 2 ] with a slope (S) of per ppm of [CO 2 ].

46 The [CO2] adjusted canopy resistance is given by the following equation, where r cfao is the FAO Irrigation and Drainage Paper #56 (Allen et al., 1998) standardized canopy resistance ( d/m) for use with the FAO version of the Penman-Monteith reference ET, C c is current [CO2], C FAO is [CO2] when the FAO56 was published (~359 ppm), and S was defined previously. rc r c = FAO adj 1 ( C C ) S c FAO

47 Given the change of canopy resistance as a function of [CO2], crop transpiration calculated based on the standard FAO56 PM-ETo must be multiplied by the following adjustment factor (FT). F T = Δ + γ ( r c Δ + γ ( r c FAO adj + r + r a a ) / r ) / r a a Finally, TUE CO2 is given by TUE CO2 = TUE F C T S r Sp (Actually, only α T B = is adjusted) β D a α in

48 1.5 Biomass Ratio Atmospheric CO2 Conc. (ppm)

49 Transpiration Adjustment Factor Atmospheric CO2 Conc (ppm)

50 TUE RUE Atmospheric CO2 Conc (ppm) TUE RUE

51 Carbon and Nitrogen Budgets Calculated daily for all soil layers Carbon and nitrogen cycling are interactive Crop residues and all types of organic materials are considered in cycling calculations Nitrogen demand and uptake included Phosphorus not yet fully implemented

52 Nitrogen Demand

53

54 90 N soil organic C at Pendleton data data 0-30 model model Organic C (Mg/ha) Year

55 0 N soil organic C at Pendleton data data 0-30 model model Organic C (Mg/ha) Year

56 Change in 0-30 cm soil organic C Organic carbon (kg C/ha) Othello Pullman St. John Lind Year of simulation

57 Simulated annual nitrous oxide emission N2O loss (kg N/ha) CropSyst IPCC estimate 0.00 Lind_CT_WW-SF Lind_RT_WW-SF SaintJohn_CT_WW-SW-SF SaintJohn_RT_WW-SW-SF Pullman_CT_WW-SW-SB Pullman_RT_WW-SW-SB Pullman_NT_WW-SB-SW Pullman_CT_WW-SW-SP Pullman_RT_WW-SW-SP Pullman_NT_WW-SP-SW Othello_Rep_SC-SC-P-WW Othello_Red_SC-SC-P Othello_Min_SC-SC-P

58

59

60 1.2 GHG emission (Mg CO 2e /ha/year) Probability of Exceedence Historical RCP RCP RCP RCP

Farming, Food and Climate Change. Chad Kruger WSU, CSANR

Farming, Food and Climate Change. Chad Kruger WSU, CSANR Farming, Food and Climate Change Chad Kruger WSU, CSANR Carbon Masters May 21, 29 Outline Climate change impacts on PNW agriculture? meta-level food security GHG s and Ag s Carbon Footprint? Direct Emissions

More information

Environmental productivity indices for crop growth and development: Cotton as an example Photosynthesis

Environmental productivity indices for crop growth and development: Cotton as an example Photosynthesis Environmental productivity indices for crop growth and development: Cotton as an example Photosynthesis KRReddy@pss.MsState.edu Department of Plant and Soil sciences Photosynthesis and Respiration and

More information

Crop Water Requirement. Presented by: Felix Jaria:

Crop Water Requirement. Presented by: Felix Jaria: Crop Water Requirement Presented by: Felix Jaria: Presentation outline Crop water requirement Irrigation Water requirement Eto Penman Monteith Etcrop Kc factor Ks Factor Total Available water Readily available

More information

Figure 1: Schematic of water fluxes and various hydrologic components in the vadose zone (Šimůnek and van Genuchten, 2006).

Figure 1: Schematic of water fluxes and various hydrologic components in the vadose zone (Šimůnek and van Genuchten, 2006). The evapotranspiration process Evapotranspiration (ET) is the process by which water is transported from the earth surface (i.e., the plant-soil system) to the atmosphere by evaporation (E) from surfaces

More information

Challenges of Modeling Cropping System Responses and Adaptation to a Variable and Changing Climate

Challenges of Modeling Cropping System Responses and Adaptation to a Variable and Changing Climate Challenges of Modeling Cropping System Responses and Adaptation to a Variable and Changing Climate James W. Jones Agricultural & Biological Engineering Department University of Florida Southeast Climate

More information

AquaCrop theoretical and practical training

AquaCrop theoretical and practical training AquaCrop theoretical and practical training Day 2 - Climate Johannes Hunink (j.hunink@futurewater.es) Peter Droogers 17-21 Oct-2016, Yerevan, Armenia AquaCrop Conceptual Framework Atmosphere CLIMATE Rain

More information

Weather-Driven Crop Models

Weather-Driven Crop Models Weather-Driven Crop Models James W. Jones Agricultural & Biological Engineering University of Florida Weather-Driven Crop Models Rationale Crop Model Concepts Effects of Weather Variables on Growth and

More information

CROP YIELD SIMULATION USING AQUACROP MODEL UNDER RAINFED AND IRRIGATED CONDITIONS

CROP YIELD SIMULATION USING AQUACROP MODEL UNDER RAINFED AND IRRIGATED CONDITIONS CROP YIELD SIMULATION USING AQUACROP MODEL UNDER RAINFED AND IRRIGATED CONDITIONS A. Sarangi Water Technology Centre, Indian Agricultural Research Institute Library Avenue, New Delhi 110012 Introduction

More information

Strategies to Maximize Income with Limited Water

Strategies to Maximize Income with Limited Water Strategies to Maximize Income with Limited Water Tom Trout Research Leader, Agricultural Engineer USDA-ARS Water Management Research Unit Ft. Collins, CO 970-492-7419 Thomas.Trout@ars.usda.gov The best

More information

GRAZING S IMPACT ON SOIL HEALTH

GRAZING S IMPACT ON SOIL HEALTH GRAZING S IMPACT ON SOIL HEALTH Pasture Layout shelter Nutrients (ppm) by Landscape Unit Profile Nitrogen Lane Paddock Shelter Water Potassium Phosphorus Lane Paddock Shelter Water Lane Paddock Shelter

More information

CropSyst Modelling Solution. Reference documentation

CropSyst Modelling Solution. Reference documentation CropSyst Modelling Solution Reference documentation Release Issue Date 1 2 September 2013 Copyright European Union, 1995 2013 Reproduction is authorised, provided the source is acknowledged, save where

More information

Growing Corn in a Computer: The Hybrid Hybrid-Maize Simulation Model and its Application to Production Agriculture

Growing Corn in a Computer: The Hybrid Hybrid-Maize Simulation Model and its Application to Production Agriculture University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Agronomy & Horticulture -- Faculty Publications Agronomy and Horticulture Department 2003 Growing Corn in a Computer: The

More information

Soil and Water Assessment Tool. R. Srinivasan Texas A&M University

Soil and Water Assessment Tool. R. Srinivasan Texas A&M University Soil and Water Assessment Tool R. Srinivasan Texas A&M University Model Philosophy Readily available input Physically based Comprehensive Process Interactions Simulate Management ARS Modeling History Time

More information

CFT Water Assessment Description

CFT Water Assessment Description CFT Water Assessment Description Cool Farm Alliance 2017 For more information, see www.coolfarmtool.org Cool Farm Alliance Community Interest Company The Stable Yard, Vicarage Road, Stony Stratford, MK11

More information

Expanding our concept of forest inventory opportunities for the future

Expanding our concept of forest inventory opportunities for the future Expanding our concept of forest inventory opportunities for the future Neal Scott, Department of Geography Queen s University AND MANY OTHERS! Forest Biomass Discovery Workshop Queen s University March

More information

FRAMEWORK FOR SYSTEMATIC ANALYSIS OF POTENTIAL WATER SAVINGS IN AGRICULTURE, WITH EMPHASIS ON EVAPORATION, TRANSPIRATION AND YIELD WATER PRODUCTIVITY

FRAMEWORK FOR SYSTEMATIC ANALYSIS OF POTENTIAL WATER SAVINGS IN AGRICULTURE, WITH EMPHASIS ON EVAPORATION, TRANSPIRATION AND YIELD WATER PRODUCTIVITY FRAMEORK FOR SYSTEMATIC ANALYSIS OF POTENTIAL ATER SAVINGS IN AGRICULTURE, ITH EMPHASIS ON EVAPORATION, TRANSPIRATION AND YIELD ATER PRODUCTIVITY Theodore C. Hsiao Dept. of Land, Air and ater Resources,

More information

Impacts of Climate Change on Rice Yield and Irrigation Water Requirement in Paddy Field Simulated with Crop Model

Impacts of Climate Change on Rice Yield and Irrigation Water Requirement in Paddy Field Simulated with Crop Model Impacts of Climate Change on Rice Yield and Irrigation Water Requirement in Paddy Field Simulated with Crop Model Kenichi Tatsumi Tokyo University of Agriculture and Technology ktatsumi@cc.tuat.ac.jp ABSTRACT

More information

FRAMEWORK FOR SYSTEMATIC ANALYSIS OF POTENTIAL WATER SAVINGS IN AGRICULTURE, WITH EMPHASIS ON EVAPORATION, TRANSPIRATION AND YIELD WATER PRODUCTIVITY

FRAMEWORK FOR SYSTEMATIC ANALYSIS OF POTENTIAL WATER SAVINGS IN AGRICULTURE, WITH EMPHASIS ON EVAPORATION, TRANSPIRATION AND YIELD WATER PRODUCTIVITY FRAMEORK FOR SYSTEMATIC ANALYSIS OF POTENTIAL ATER SAVINGS IN AGRICULTURE, ITH EMPHASIS ON EVAPORATION, TRANSPIRATION AND YIELD ATER PRODUCTIVITY Theodore C. Hsiao Dept. of Land, Air and ater Resources,

More information

Nitrogen, Phosphorus and Potassium Uptake Patterns of Fresh-Market Onion Production in Southern California

Nitrogen, Phosphorus and Potassium Uptake Patterns of Fresh-Market Onion Production in Southern California Nitrogen, Phosphorus and Potassium Uptake Patterns of Fresh-Market Onion Production in Southern California Andre Biscaro, Univ. of Calif. Cooperative Extension, Ventura County Michael Cahn and Richard

More information

Carbon and Nitrous Oxide in LCA

Carbon and Nitrous Oxide in LCA Carbon and Nitrous Oxide in LCA Life Cycle Analysis for Bioenergy University Park, PA 26-27 July, 2011 Armen R. Kemanian Dept. Crop & Soil Sciences Penn State University Introduction Why is this important?

More information

ESTIMATION OF EVAPOTRANSPIRATION IN SARDAR SAROVAR COMMAND AREA USING WEAP

ESTIMATION OF EVAPOTRANSPIRATION IN SARDAR SAROVAR COMMAND AREA USING WEAP ESTIMATION OF EVAPOTRANSPIRATION IN SARDAR SAROVAR COMMAND AREA USING WEAP BY : RINA. CHOKSI, GOPAL H. BHATTI AND PROF. H. M. PATEL CIVIL ENGINEERING DEPARTMENT, FACULTY OF TECHNOLOGY AND ENGINEERING,

More information

Coupling Bioenergy Production and. Distributed Modeling Approach

Coupling Bioenergy Production and. Distributed Modeling Approach Coupling Bioenergy Production and Precision Conservation: a Spatially Distributed Modeling Approach A.R. Kemanian*, R.P. Duckworth*, M.N. Meki*, D. Harmel**, and J. Williams* * Blackland Res. & Ext. Center,

More information

Achieving Emissions Reductions

Achieving Emissions Reductions Achieving Emissions Reductions Crop Protection Products Role in Creating a Sustainable Agriculture Insert then choose Picture select your picture. Right click your picture and Send to back. The world s

More information

USDA-NRCS Palouse Soil Carbon Project. The Earth Partners, LP Applied Ecological Services, Inc.

USDA-NRCS Palouse Soil Carbon Project. The Earth Partners, LP Applied Ecological Services, Inc. USDA-NRCS Palouse Soil Carbon Project The Earth Partners, LP Applied Ecological Services, Inc. Background Applied Ecological Services and The Earth Partners LP received a USDA-NRCS Conservation Innovation

More information

GEOG 402. Forests and Clearings

GEOG 402. Forests and Clearings GEOG 402 Forests and Clearings Microclimate DEFORESTATION What difference does it make when forest is cleared? Forests differ from cleared land in two hydrologically-significant ways. Forests promote:

More information

Copies of original instruments used for ABET student learning outcome "a" and "e" assessment for the course (ABE 455) (Problems used are highlighted)

Copies of original instruments used for ABET student learning outcome a and e assessment for the course (ABE 455) (Problems used are highlighted) Copies of original instruments used for ABET student learning outcome "a" and "e" assessment for the course (ABE 455) (Problems used are highlighted) Homework # 2 Problem 1 Homework # 4 Problems 4&5 The

More information

The GLAM crop model. Andy Challinor and Kathryn Nicklin

The GLAM crop model. Andy Challinor and Kathryn Nicklin The GLAM crop model Andy Challinor and Kathryn Nicklin A.J.Challinor@leeds.ac.uk Introduction Crop modelling methods Empirical and semi-empirical methods + Low input data requirement + Can be valid over

More information

Environmental assessment of N fertilizer management practices

Environmental assessment of N fertilizer management practices Environmental assessment of N fertilizer management practices Joachim Lammel and Frank Brentrup Yara International Research Centre for Plant Nutrition Hanninghof, Germany Contents Introduction environmental

More information

Simulation of tea yield with AquaCrop

Simulation of tea yield with AquaCrop Climate Change and the Tea Sector in Kenya: Impact Assessment and Policy Action National Multi-stakeholder Workshop 29-30 April 2013, Naivasha Simulation of tea yield with AquaCrop Dirk RAES, KU Leuven

More information

12/12/ General. Crop period and base period Duty and delta of a crop Duty and delta of a crop

12/12/ General. Crop period and base period Duty and delta of a crop Duty and delta of a crop 2. 1. General The quantity of water, regardless of its source, required by crop in a given period of time for its normal growth under field conditions. Crop period and base period CWR = ET or CU + application

More information

CropSyst model and model testing for use in Serbia

CropSyst model and model testing for use in Serbia Republic of Serbia Republic Hydrometeorological Service of Serbia CropSyst model and model testing for use in Serbia Technical Workshop on Crop Yield Forecast in SEE, Skopje, Macedonia 30 31 May 2013 CropSyst

More information

Optimizing crop water consumption using ET maps in GIS CEE6640 Term Paper Leila Esfahani

Optimizing crop water consumption using ET maps in GIS CEE6640 Term Paper Leila Esfahani Introduction Optimizing crop water consumption using ET maps in GIS CEE6640 Term Paper Leila Esfahani Water is essential for crop production, and any shortage has an impact on final yields. Since farmers

More information

IRRIGATION SCHEDULING OF ALFALFA USING EVAPOTRANSPIRATION. Richard L. Snyder and Khaled M. Bali 1 ABSTRACT

IRRIGATION SCHEDULING OF ALFALFA USING EVAPOTRANSPIRATION. Richard L. Snyder and Khaled M. Bali 1 ABSTRACT IRRIGATION SCHEDULING OF ALFALFA USING EVAPOTRANSPIRATION Richard L. Snyder and Khaled M. Bali 1 ABSTRACT This paper describes the Irrigation Scheduling Alfalfa (ISA) model, which is used to determine

More information

May AquaCrop, the FAO simulation model for crop water productivity, irrigation management and hydrologic assessment

May AquaCrop, the FAO simulation model for crop water productivity, irrigation management and hydrologic assessment 2237-1 Joint ICTP-IAEA Conference on Coping with Climate Change and Variability in Agriculture through Minimizing Soil Evaporation Wastage and Enhancing More Crops per Drop 9-13 May 2011 AquaCrop, the

More information

Soil carbon sequestration and croplands

Soil carbon sequestration and croplands Workshop on Terrestrial Carbon Soil carbon sequestration and croplands Dr. Jean-Francois Soussana INRA, Paris, France September 19, 2017 Pledges for the Paris agreement [UNEP] 128 countries include the

More information

Water balance at the field and watershed scale.

Water balance at the field and watershed scale. Water balance at the field and watershed scale. Marco Bittelli Department of Agro-Environmental Science and Technology, University of Bologna, Italy Water Balance Water Balance: computed processes Penman

More information

Water balance in soil

Water balance in soil Technische Universität München Water balance Water balance in soil Arno Rein Infiltration = + precipitation P evapotranspiration ET surface runoff Summer course Modeling of Plant Uptake, DTU Wednesday,

More information

oncentration (mmol ( Na co Mg concentr

oncentration (mmol ( Na co Mg concentr ) OBJECTIVES MODELING WATER AND NITROGEN FATE FROM SWEET SORGHUM IRRIGATED WITH FRESH AND BLENDED SALINE WATERS USING HYDRUS-2D T. B. Ramos 1, J. Šimůnek 2, M. C. Gonçalves 3, J. C. Martins 3, A. Prazeres

More information

ROBUST ESTIMATES OF EVAPOTRANSPIRATION FOR SUGARCANE

ROBUST ESTIMATES OF EVAPOTRANSPIRATION FOR SUGARCANE ROBUST ESTIMATES OF EVAPOTRANSPIRATION FOR SUGARCANE M G MCGLINCHEY 1 and N G INMAN-BAMBER 1 Swaziland Sugar Association Technical Services, Simunye, Swaziland CSIRO Sustainable Ecosystems, Townsville,

More information

Yield potential, yield gaps, and water productivity

Yield potential, yield gaps, and water productivity Yield potential, yield gaps, and water productivity Patricio Grassini Lenny van Bussel Nairobi, June 2012 Overview Yield potential (Yp) and waterlimited yield potential (Yw) Yield gap (Yg) and exploitable

More information

ISPRS Archives XXXVIII-8/W3 Workshop Proceedings: Impact of Climate Change on Agriculture

ISPRS Archives XXXVIII-8/W3 Workshop Proceedings: Impact of Climate Change on Agriculture ANALYZING THE IMPACT OF RISING TEMPERATURE AND CO 2 ON GROWTH AND YIELD OF MAJOR CEREAL CROPS USING SIMULATION MODEL Rojalin Tripathy, S.S. Ray and A.K. Singh 1 Agriculture, Forestry & Environment Group,

More information

CLIMATE CHANGE AND NUTRIENT MANAGEMENT

CLIMATE CHANGE AND NUTRIENT MANAGEMENT CLIMATE CHANGE AND NUTRIENT MANAGEMENT Steve Petrie Center Director and Soil Scientist, Oregon State University, Columbia Basin Agricultural Research Center, Pendleton, OR ABSTRACT Climate change models

More information

Crop water requirement and availability in the Lower Chenab Canal System in Pakistan

Crop water requirement and availability in the Lower Chenab Canal System in Pakistan Water Resources Management III 535 Crop water requirement and availability in the Lower Chenab Canal System in Pakistan A. S. Shakir & M. M. Qureshi Department of Civil Engineering, University of Engineering

More information

Estimating water needs of alfalfa and using ET to schedule Irrigation

Estimating water needs of alfalfa and using ET to schedule Irrigation Estimating water needs of alfalfa and using ET to schedule Irrigation D. Zaccaria, R. Snyder, D. Putnam, A. Montazar, C. Little DWR-Funded Project (2014-2017) aiming at Developing updated information on

More information

Crop Water Requirement using Single and Dual Crop Coefficient Approach

Crop Water Requirement using Single and Dual Crop Coefficient Approach Crop Water Requirement using Single and Dual Crop Coefficient Approach Dr. Falguni Parekh 1 Associate Professor, Water Resources Engineering and Management Institute, Faculty of Technology and Engineering,

More information

CHAPTER 6: Irrigation scheduling

CHAPTER 6: Irrigation scheduling Pressurized Irrigation Techniques 6.1 CHAPTER 6: Irrigation scheduling Irrigation scheduling is one of the factors that influence the agronomic and economic viability of small farms. It is important for

More information

Crop Water Requirements. Lecture note for Soil and Water Management Course Prepared by Dr ND Nang

Crop Water Requirements. Lecture note for Soil and Water Management Course Prepared by Dr ND Nang Crop Water Requirements Lecture note for Soil and Water Management Course Prepared by Dr ND Nang The crop water need (ET crop) is defined as the amount (or depth) of water needed to meet the water loss

More information

Revised FAO Procedures for Calculating Evapotranspiration Irrigation and Drainage Paper No. 56 with Testing in Idaho 1

Revised FAO Procedures for Calculating Evapotranspiration Irrigation and Drainage Paper No. 56 with Testing in Idaho 1 Revised FAO rocedures for Calculating Evapotranspiration rrigation and Drainage aper No. 5 with Testing in daho 1 Abstract Richard G. Allen, Martin Smith, Luis S. ereira, Dirk Raes and J.L. Wright n 199,

More information

The Noah Multi-Physics Land Surface Model: Description and Performance

The Noah Multi-Physics Land Surface Model: Description and Performance The Noah Multi-Physics Land Surface Model: Description and Performance Michael Barlage Research Applications Laboratory (RAL) National Center for Atmospheric Research Crop-Climate Workshop Ames, IA 7 November

More information

AquaCrop. Chapter 2 Users guide. Version 4.0. FAO, Land and Water Division Rome, Italy. Reference Manual June 2012

AquaCrop. Chapter 2 Users guide. Version 4.0. FAO, Land and Water Division Rome, Italy. Reference Manual June 2012 Chapter 2 Users guide AquaCrop Version 4.0 Reference Manual June 2012 Dirk RAES, Pasquale STEDUTO, Theodore C. HSIAO, and Elias FERERES with contributions of the AquaCrop Network FAO, Land and Water Division

More information

Changes in water resources availability for crop systems: a case study in the region of Umbria

Changes in water resources availability for crop systems: a case study in the region of Umbria Changes in Water Resources Systems: Methodologies to Maintain Water Security and Ensure Integrated Management (Proceedings of Symposium HS3006 at IUGG2007, Perugia, July 2007). IAHS Publ. 315, 2007. 9

More information

Global warming potential of Swiss arable and forage production systems

Global warming potential of Swiss arable and forage production systems Federal Department of Economic Affairs DEA Agroscope Reckenholz-Tänikon Research Station ART Global warming potential of Swiss arable and forage production systems Thomas Nemecek Agroscope Reckenholz-Tänikon

More information

Multicomponent Solute Transport in Two Multifactorial Experiments

Multicomponent Solute Transport in Two Multifactorial Experiments Objective Multicomponent Solute Transport in Two Multifactorial Experiments T. B. Ramos, M. C. Gonçalves, A. Prazeres & J. C. Martins Department of Soil Science,, Estação Agronómica Nacional, Oeiras, Portugal

More information

YEAR TO YEAR VARIATIONS IN CROP WATER USE FUNCTIONS

YEAR TO YEAR VARIATIONS IN CROP WATER USE FUNCTIONS Proceedings of the 27th Annual Central Plains Irrigation Conference, Colby, Kansas, February 17-18, 215 Available from CPIA, 76 N.Thompson, Colby, Kansas YEAR TO YEAR VARIATIONS IN CROP WATER USE FUNCTIONS

More information

Proceedings of Indiana Crop Adviser Conference 2004

Proceedings of Indiana Crop Adviser Conference 2004 CHANGES IN NITROGEN USE EFFICIENCY AND SOIL QUALITY AFTER FIVE YEARS OF MANAGING FOR HIGH YIELD CORN AND SOYBEAN D. T. Walters, A. Dobermann, K.G. Cassman, R. Drijber, J. Lindquist, J. Specht, and H. Yang.

More information

Land Modeling II - Biogeochemistry: Ecosystem Modeling and Land Use Dr. Peter Lawrence

Land Modeling II - Biogeochemistry: Ecosystem Modeling and Land Use Dr. Peter Lawrence Land Modeling II - Biogeochemistry: Ecosystem Modeling and Land Use Dr. Peter Lawrence Project Scientist Terrestrial Science Section Climate and Global Dynamics Division (With thanks to TSS and IAM groups

More information

Challenges for increasing crop productivity: Farmer & scientist solutions

Challenges for increasing crop productivity: Farmer & scientist solutions Challenges for increasing crop productivity: Farmer & scientist solutions by Pete Berry: Head of ADAS Crop Physiology www.adas.co.uk Background Increasing demand for food, feed & fuel Requirement for smaller

More information

Dealing with climate and yield variability: the role of precision agricultural technologies and crop models

Dealing with climate and yield variability: the role of precision agricultural technologies and crop models Dealing with climate and yield variability: the role of precision agricultural technologies and crop models Bruno Basso 1, G.Phillip Robertson 1 and Jerry Hatfield 2 1. 2. Montpellier March 16-18, 2015

More information

DRAFT - DO NOT DISSEMINATE

DRAFT - DO NOT DISSEMINATE Crop Growth Module: Capturing crop yield response to water deficit within MPMAS Thorsten Arnold tarnold@uni-hohenheim.de Within Ph.D. project Mathematical Programming Multi-Agent System Modeling: An Application

More information

Henning Kage, Antje Herrmann, Klaus Dittert, Andreas Pacholski, Babette Wienforth. Competence Center Biomass Utilisation

Henning Kage, Antje Herrmann, Klaus Dittert, Andreas Pacholski, Babette Wienforth. Competence Center Biomass Utilisation Versuch Hohenschulen Multi-Criteria Assessment and Optimization of Cropping Systems: What do we have and what do we need Experiences from a Case Study for Bioenergy Cropping Systems Henning Kage, Antje

More information

Measuring & modelling soil water balance and nitrate leaching of perennial crops in New Zealand

Measuring & modelling soil water balance and nitrate leaching of perennial crops in New Zealand Measuring & modelling soil water balance and nitrate leaching of perennial crops in New Zealand Steve Green, Brent Clothier, Karin Müller Key facts: Water allocation in New Zealand Abundant freshwater

More information

Nutrition of Horticultural Crops Measurements for Irrigation. Lincoln Zotarelli Horticultural Sciences Department University of Florida Spring 2015

Nutrition of Horticultural Crops Measurements for Irrigation. Lincoln Zotarelli Horticultural Sciences Department University of Florida Spring 2015 Nutrition of Horticultural Crops Measurements for Irrigation Lincoln Zotarelli Horticultural Sciences Department University of Florida Spring 2015 Principles of plant nutrition Principle 1. Plants take

More information

Use of a Computer Model to Simulate Soil Moisture Content in Irrigated Fields

Use of a Computer Model to Simulate Soil Moisture Content in Irrigated Fields Use of a Computer Model to Simulate Soil Moisture Content in Irrigated Fields Mukesh Mehata 1, Saleh Taghvaeian 1, Sumon Datta 1, and Daniel Moriasi 1 Dept. of Biosystems and Agricultural Engineering,

More information

THE INTRODUCTION THE GREENHOUSE EFFECT

THE INTRODUCTION THE GREENHOUSE EFFECT THE INTRODUCTION The earth is surrounded by atmosphere composed of many gases. The sun s rays penetrate through the atmosphere to the earth s surface. Gases in the atmosphere trap heat that would otherwise

More information

Irrigated Crop Management Effects On Productivity, Soil Nitrogen, and Soil Carbon

Irrigated Crop Management Effects On Productivity, Soil Nitrogen, and Soil Carbon Irrigated Crop Management Effects On Productivity, Soil Nitrogen, and Soil Carbon Dr. Ardell D. Halvorson Dr. Arvin R. Mosier Mr. Curtis A. Reule UDSA, Agricultural Research Service 2150 Centre Avenue,

More information

A potato model built using the APSIM Plant.NET Framework

A potato model built using the APSIM Plant.NET Framework 19th International Congress on Modelling and Simulation, Perth, Australia, 12 16 December 2011 http://mssanz.org.au/modsim2011 A potato model built using the APSIM Plant.NET Framework H.E. Brown a, N.

More information

Contribution of Nitrous Oxide in Life Cycle Greenhouse Gas Emissions of Novel and Conventional Rice Production Technologies

Contribution of Nitrous Oxide in Life Cycle Greenhouse Gas Emissions of Novel and Conventional Rice Production Technologies Contribution of Nitrous Oxide in Life Cycle Greenhouse Gas Emissions of Novel and Conventional Rice Production Technologies Md. Khairul Alam 1 ; Wahidul K. Biswas 2 and Richard W. Bell 1 1 Land Management

More information

N. AMENZOU(1,*), H. MARAH(1), F. RAIBI(1), J. EZZAHAR(1), S. KHABBA(2), S. ERRAKI, J. Lionel (3)

N. AMENZOU(1,*), H. MARAH(1), F. RAIBI(1), J. EZZAHAR(1), S. KHABBA(2), S. ERRAKI, J. Lionel (3) 1 : Unité Eau et climat Centre National d Énergie des Science et Techniques Nucléaire, Rabat, Maroc. * amenzou@cnesten.org.ma 2 : Université Cady Ayyad, Marrakech, Maroc 3 : IRD Maroc Isotopic and conventional

More information

B.A. Stewart Dryland Agriculture Institute West Texas A&M University Canyon, TX

B.A. Stewart Dryland Agriculture Institute West Texas A&M University Canyon, TX B.A. Stewart Dryland Agriculture Institute West Texas A&M University Canyon, TX 79106 bstewart@wtamu.edu 2011 World Average Corn Yield (750 kg water/kg corn) * U.S. Corn Average (600 kg water/kg corn)

More information

Investigating Land Use Land Cover Change in CESM. Peter Lawrence Project Scientist Terrestrial Science Section Climate and Global Dynamics Division

Investigating Land Use Land Cover Change in CESM. Peter Lawrence Project Scientist Terrestrial Science Section Climate and Global Dynamics Division Investigating Land Use Land Cover Change in CESM Peter Lawrence Project Scientist Terrestrial Science Section Climate and Global Dynamics Division (With thanks to TSS and IAM groups for their many contributions)

More information

Iowa Nutrient Reduction Strategy: Background Information

Iowa Nutrient Reduction Strategy: Background Information Iowa Nutrient Reduction Strategy: Background Information 2013 Iowa Water Conference Reid Christianson, P.E., Ph.D. Center for Watershed Protection Ellicott City, Maryland Project Components Project Goal

More information

Risk and Uncertainty in Crop Model Predictions of Regional Yields under Climate Change and Variability

Risk and Uncertainty in Crop Model Predictions of Regional Yields under Climate Change and Variability Risk and Uncertainty in Crop Model Predictions of Regional Yields under Climate Change and Variability K. J. Boote, J. W. Jones, S. Asseng, and G. A. Baigorria kjboote@ufl.edu Presented at CIMR Symposium,

More information

Water and Nitrogen balance studies of Rice crop grown under drainage lysimeters

Water and Nitrogen balance studies of Rice crop grown under drainage lysimeters International Conference on Emerging technologies in Agricultural Engineering, IIT Kharagpur Water and Nitrogen balance studies of Rice crop grown under drainage lysimeters Ashish Patil 1, K. N. Tiwari

More information

Contribution of Nitrous Oxide in Life Cycle Greenhouse Gas Emissions of Novel and Conventional Rice Production Technologies

Contribution of Nitrous Oxide in Life Cycle Greenhouse Gas Emissions of Novel and Conventional Rice Production Technologies Contribution of Nitrous Oxide in Life Cycle Greenhouse Gas Emissions of Novel and Conventional Rice Production Technologies Md. Khairul Alam1; Wahidul K. Biswas2 and Richard W. Bell1 1Land Management Group

More information

The effect of gravel-sand mulch on soil moisture in the semiarid loess region

The effect of gravel-sand mulch on soil moisture in the semiarid loess region 28 Ecohydrology of Surface and Groundwater Dependent Systems: Concepts, Methods and Recent Developments (Proc. of JS.1 at the Joint IAHS & IAH Convention, Hyderabad, India, September 29). IAHS Publ. 328,

More information

Buss, P.; Stevens, S. and Dalton, M. Sentek Pty Ltd, Adelaide, Australia

Buss, P.; Stevens, S. and Dalton, M. Sentek Pty Ltd, Adelaide, Australia New Irrigation Scheduling Software combining ETo and soil water dynamics to improve the measurements of daily crop water use, Kc factors and the onset of crop water stress of a flood irrigated alfalfa

More information

Almonds and Carbon Sequestration: What it Means for the Future. December 10, 2015

Almonds and Carbon Sequestration: What it Means for the Future. December 10, 2015 Almonds and Carbon Sequestration: What it Means for the Future December 10, 2015 Gabriele Ludwig, Almond Board Speakers Gabriele Ludwig, Almond Board (Moderator) Alissa Kendall, UC Davis Sara Kroopf,

More information

Modelling the benefits of soil carbon in cropping systems

Modelling the benefits of soil carbon in cropping systems Modelling the benefits of soil carbon in cropping systems A cropped allophanic soil showing the sharp boundary at cultivation depth - photo courtesy Craig Ross Soil organic matter has been long-recognised

More information

Effects of planting patterns on biomass accumulation and yield of summer maize

Effects of planting patterns on biomass accumulation and yield of summer maize Ecosystems and Sustainable Development VI 437 Effects of planting patterns on biomass accumulation and yield of summer maize L. Quanqi 1,2, C. Yuhai 2, L. Mengyu 1, Y. Songlie 2, Z. Xunbo 2 & D. Baodi

More information

Forest Sensitivity to Elevated Atmospheric CO 2 and its Relevance to Carbon Management

Forest Sensitivity to Elevated Atmospheric CO 2 and its Relevance to Carbon Management Forest Sensitivity to Elevated Atmospheric CO 2 and its Relevance to Carbon Management Richard J. Norby Oak Ridge National Laboratory Aspen Global Change Institute October 19, 2001 Trees that are planted

More information

Plant density, litter and bare soil effects on actual evaporation and transpiration in autumn

Plant density, litter and bare soil effects on actual evaporation and transpiration in autumn Plant density, litter and bare soil effects on actual evaporation and transpiration in autumn S.R. Murphy and G.M. Lodge NSW Agriculture, Tamworth Centre for Crop Improvement, Tamworth NSW. ABSTRACT An

More information

Crop Water Requirement Estimation by using CROPWAT Model: A Case Study of Halali Dam Command Area, Vidisha District, Madhya Pradesh, India

Crop Water Requirement Estimation by using CROPWAT Model: A Case Study of Halali Dam Command Area, Vidisha District, Madhya Pradesh, India Volume-5, Issue-3, June-2015 International Journal of Engineering and Management Research Page Number: 553-557 Crop Water Requirement Estimation by using CROPWAT Model: A Case Study of Halali Dam Command

More information

REFERENCE EVAPOTRANSPIRATION ESTIMATION USING CROPWAT MODEL AT LUDHIANA DISTRICT (PUNJAB) A. Patel 1, R. Sharda 2, S. Patel 3 and P.

REFERENCE EVAPOTRANSPIRATION ESTIMATION USING CROPWAT MODEL AT LUDHIANA DISTRICT (PUNJAB) A. Patel 1, R. Sharda 2, S. Patel 3 and P. International Journal of Science, Environment and Technology, Vol. 6, No 1, 2017, 620 629 ISSN 2278-3687 (O) 2277-663X (P) REFERENCE EVAPOTRANSPIRATION ESTIMATION USING CROPWAT MODEL AT LUDHIANA DISTRICT

More information

5.5 Improving Water Use Efficiency of Irrigated Crops in the North China Plain Measurements and Modelling

5.5 Improving Water Use Efficiency of Irrigated Crops in the North China Plain Measurements and Modelling 183 5.5 Improving Water Use Efficiency of Irrigated Crops in the North China Plain Measurements and Modelling H.X. Wang, L. Zhang, W.R. Dawes, C.M. Liu Abstract High crop productivity in the North China

More information

4 Sustainability in Dryland Farming Systems

4 Sustainability in Dryland Farming Systems 4 Sustainability in Dryland Farming Systems Elias Fereres Introduction Dryland farming systems are very fragile because of their dependence on an uncertain water supply. Traditionally, dryland farmers

More information

The Water-Energy-Land (WEL) nexus and the analysis of Land issues

The Water-Energy-Land (WEL) nexus and the analysis of Land issues The Water-Energy-Land (WEL) nexus and the analysis of Land issues Karl Harmsen Sr Fellow, ZEF, University of Bonn Consultant, DIE, Bonn European Report on Development (ERD) 2012 Consultation on Governance

More information

Life Cycle Assessment Greenhouse Emissions from Maize Supply Chain

Life Cycle Assessment Greenhouse Emissions from Maize Supply Chain Life Cycle Assessment Greenhouse Emissions from Maize Supply Chain Mr Tim Grant, Life Cycle Strategies P/L Dr Tom Beer, CSIRO, Div of Atmospheric Research Dr Mick Meyer, Div of Atmospheric Research Aims

More information

Crop Modeling Activities at South Asia AgMIP Workshop. ICRISAT, Andra Pradesh, India February 20-24, 2012

Crop Modeling Activities at South Asia AgMIP Workshop. ICRISAT, Andra Pradesh, India February 20-24, 2012 Crop Modeling Activities at South Asia AgMIP Workshop ICRISAT, Andra Pradesh, India February 20-24, 2012 Goals of the Crop Modelers during this Workshop: 1) to calibrate and intercompare multiple crop

More information

CROP EVAPOTRANSPIRATION

CROP EVAPOTRANSPIRATION CROP EVAPOTRANSPIRATION Mladen Todorović CIHEAM Mediterranean Agronomic Institute of Bari, Italy mladen@iamb.it LAND and WATER Resource Management Crop Evapotranspiration ETc FAO definition (FAO 56, 1998)

More information

Manure P effects on corn growth and changes in soil test levels. Carrie Laboski Soil Science Department Univ. of Wisconsin-Madison

Manure P effects on corn growth and changes in soil test levels. Carrie Laboski Soil Science Department Univ. of Wisconsin-Madison Manure P effects on corn growth and changes in soil test levels Carrie Laboski Soil Science Department Univ. of Wisconsin-Madison Info. used in A2809 & P Index Estimating crop P removal 0.38 lb P 2 O 5

More information

Climate Change Impacts on Rain-fed Agriculture and Crop Yields in the Niger Basin

Climate Change Impacts on Rain-fed Agriculture and Crop Yields in the Niger Basin Climate Change Impacts on Rain-fed Agriculture and Crop Yields in the Niger Basin Aondover Tarhule and Uvirkaa Akumaga Dept. of Geography and Environmental Sustainability, University of Oklahoma Importance

More information

The Hydrosphere: Lecture 7: Evapotranspiration. Paul R. Houser,27 March 2012, Page 1

The Hydrosphere: Lecture 7: Evapotranspiration. Paul R. Houser,27 March 2012, Page 1 The Hydrosphere: Lecture 7: Evapotranspiration Paul R. Houser,27 March 2012, Page 1 Evapotranspiration evapotranspiration summarizes all processes that return liquid water back into water vapor evaporation

More information

Phenotyping transpiration efficiency: Linking trait dissection to genetics

Phenotyping transpiration efficiency: Linking trait dissection to genetics Phenotyping transpiration efficiency: Linking trait dissection to genetics Erik van Oosterom, Karine Chenu, Greg McLean, Geetika, Kurt Deifel, Richard Sulman, Emma Mace, David Jordan, Graeme Hammer Outline

More information

Chapter 5 Training videos. AquaCrop Version 6.0. Reference manual

Chapter 5 Training videos. AquaCrop Version 6.0. Reference manual Chapter 5 Training videos AquaCrop Version 6.0 Reference manual March 2017 Chapter 5 Training videos AquaCrop Version 6.0 Reference manual March 2017 By Dirk RAES, Pasquale STEDUTO, Theodore C. HSIAO,

More information

Water Footprint Evaluation of Oryza sativa L.Tha Wang Pha District, Nan Province

Water Footprint Evaluation of Oryza sativa L.Tha Wang Pha District, Nan Province Research Article Water Footprint Evaluation of Oryza sativa L.Tha Wang Pha District, Nan Province Werachat Chatpanyacharoen*, Natha Hungspreug, Bundit Anurugsa and Siripun Taweesuk Department of Environmental

More information

Courses for Ph. D. in Agronomy

Courses for Ph. D. in Agronomy Courses for Ph. D. in Agronomy Course No. Course Title Credits/ Marks AGRON 600 RESEARCH METHODOLOGY AND TECHNIQUES 4 / 100 AGRON 601 CROP PRODUCTION AND SYSTEM MODELING 4 / 100 AGRON 602 ADVANCES IN CROP

More information

Much of the material in this class has built up to assess evaporation of landscapes. Here we discuss concepts and data. The field of evaporation has

Much of the material in this class has built up to assess evaporation of landscapes. Here we discuss concepts and data. The field of evaporation has Much of the material in this class has built up to assess evaporation of landscapes. Here we discuss concepts and data. The field of evaporation has grown and advanced a lot over the past few decades 1

More information

Water requirement of wheat crop for optimum production using CROPWAT model

Water requirement of wheat crop for optimum production using CROPWAT model 2017; 5(3): 338-342 ISSN (E): 2320-3862 ISSN (P): 2394-0530 NAAS Rating 2017: 3.53 JMPS 2017; 5(3): 338-342 2017 JMPS Received: 20-03-2017 Accepted: 22-04-2017 Krishna Deo SR Mishra AK Singh AN Mishra

More information

SENSITIVITY AND REQUIREMENT OF IMPROVEMENTS OF FOUR SOYBEAN CROP SIMULATION MODELS FOR CLIMATE CHANGE STUDIES IN SOUTHERN BRAZIL

SENSITIVITY AND REQUIREMENT OF IMPROVEMENTS OF FOUR SOYBEAN CROP SIMULATION MODELS FOR CLIMATE CHANGE STUDIES IN SOUTHERN BRAZIL SENSITIVITY AND REQUIREMENT OF IMPROVEMENTS OF FOUR SOYBEAN CROP SIMULATION MODELS FOR CLIMATE CHANGE STUDIES IN SOUTHERN BRAZIL R. BATTISTI 1*, P. C. SENTELHAS 1, K. J. BOOTE 1 Department of Biosystems

More information

Turf Irrigation Series No. 2. Drought Resistance and Efficient Irrigation for the Cool-Humid Region

Turf Irrigation Series No. 2. Drought Resistance and Efficient Irrigation for the Cool-Humid Region Turf Irrigation Series No. 2 Drought Resistance and Efficient Irrigation for the Cool-Humid Region Water Conservation J. Scott Ebdon, Ph.D. and Michelle DaCosta, Ph.D. When rainfall is insufficient and

More information