Biological Transformations of Refuse

Size: px
Start display at page:

Download "Biological Transformations of Refuse"

Transcription

1 Biological Transformations of Refuse Aerobic decomposition Organic matter + O 2 CO 2 + H 2 O + NH 3 + Heat NH 3 + O 2 NO 3 This is composting - air is supplied to refuse Anaerobic decomposition Organic matter ---> CO 2 + CH 4 + NH 3 + H 2 S This occurs in landfills Methane is only produced in the absence of oxygen Copyright Morton A. Barlaz, NC State University 1

2 Municipal Solid Waste Composition Discarded Waste (2006) Yard trimmings, 12.9 Food scraps, 12.4 Other, 3.4 Paper, 33.9 Wood, 5.5 Rubber,leather & textiles, 7.3 Plastics, 11.7 Metals, 7.6 Glass, 5.3 Copyright Morton A. Barlaz, NC State University 2

3 Refuse Decomposition Cellulose: (C 6 H 10 O 5 ) n + nh 2 O 3n CO 2 + 3n CH 4 Hemicellulose: (C 5 H 8 O 4 ) n + nh 2 O 2.5n CO n CH 4 Copyright Morton A. Barlaz, NC State University 3

4 Organic Composition of Residential Refuse (% Dry Wt.) Reference Barlaz et al, 1989 a Eleazer et al Rhew and Barlaz, 1995 Ress et al., 1998 Barlaz, Unpublished Price et al., 2003 Price et al., 2003 Barlaz, Unpublished Canadian Landfill Cellulose Hemicellulose Lignin (Cellulose + hemicellulose)/lignin Volatile Solids nm 71.4 nm nm nm 86.0 nm Copyright Morton A. Barlaz, NC State University 4

5 Organic Composition of Residential Refuse (% Dry Wt.) News print Office OCC Coated Paper Branches Grass Leaves Food Waste Cellulose Hemicellulose Lignin Volatile solids

6 Residential Refuse Composition Other 21.7% Lignin 15.2% Cellulose 51.2% Hemicellulose 11.9% Copyright Morton A. Barlaz, NC State University 6

7 CO 2 H 2 0 heat O 2 Biological Polymers Soluble Monomers Alcohols Butyric Acid Propionic Acid Cellulose Hemicellulose Sugars Amino Acids Fermentative Hydrolytics Anaerobic Biodegradation H 2,CO 2 Acetic Acid CH 4 CO 2 Methanogens Copyright Morton A. Barlaz, NC State University 7

8 Where are we? Paper, yard waste and food waste are comprised of cellulose and hemicellulose These compounds are converted to CH 4 and CO 2 by bacteria under anaerobic conditions Several groups of bacteria are involved Copyright Morton A. Barlaz, NC State University 8

9 Refuse Decomposition Refuse decomposition is affected by: Climate, surface hydrology, ph, temperature, operations Exerts an influence on: Gas composition and volume Leachate composition Copyright Morton A. Barlaz, NC State University 9

10 Refuse Decomposition Description of refuse decomposition in phases Useful for understanding the status of a landfill and how decomposition occurs Data measured in lab-scale landfills The picture presented here applies to a small quantity of refuse undergoing uniform decomposition Copyright Morton A. Barlaz, NC State University 10

11 1. Aerobic Phase - Oxygen present when refuse is buried supports aerobic decomposition - End products: H 2 O, CO 2 - "CO 2 bloom" - Waste heat of aerobic decomposition causes a temperature increase - Carbon source is soluble sugars based on chemical composition Copyright Morton A. Barlaz, NC State University 11

12 Aerobic Phase: Leachate Production And Quality Only useful if leachate represents a known area of refuse Limited volume in young landfills Strength may be high as water released from compacting refuse Refuse below field capacity leachate due to preferential flow paths Copyright Morton A. Barlaz, NC State University 12

13 2. Anaerobic Acid Phase (Commonly Referred to as Acid Phase) All oxygen consumed, no significant mechanism for replenishment Carboxylic acids accumulate due to an imbalance in microbial activity Butyrate CH 3 CH 2 CH 2 COOH Propionate CH 3 CH 2 COOH Acetate CH 3 COOH High CO 2 concentrations, CH 4 just detected, may be some H 2 Copyright Morton A. Barlaz, NC State University 13

14 2. Anaerobic Acid Phase Leachate Quality High COD, BOD (70% - 90% is acids) Low ph High metal dissolution Some solids (cellulose, hemicellulose) hydrolysis The acid phase explains the lag between burial and methane production in sanitary landfills May not be observed in an older landfill producing methane Copyright Morton A. Barlaz, NC State University 14

15 3. "Accelerated" Methane Production Phase Rapid increase in methane production rate Typical concentration 50% - 70% CH 4 Carboxylic acid concentrations decrease, ph increases to 7-8 Activity of the three groups of bacteria is balanced The sharp increase and decrease presented in the figure are dampened in full-scale landfills Many combine phases 3 and 4 Copyright Morton A. Barlaz, NC State University 15

16 Phase 3: Leachate Quality Similar to acid phase depending on landfill May not be observed if this leachate flows through well decomposed waste below prior to collection Copyright Morton A. Barlaz, NC State University 16

17 Leachate Quality Interpretation Leachate Fresh Refuse Older Refuse Leachate Collection Geomembrane Compacted clay Copyright Morton A. Barlaz, NC State University 17

18 4. "Decelerated" Methane Production Phase Carboxylic acids (soluble substrate) are depleted Rate of CH 4 production is dependent upon solids hydrolysis Activity of the three groups of bacteria is balanced Gas composition constant Leachate quality COD is significantly lower Acids are a much lower fraction of COD Humic materials representative of very mature refuse are present Copyright Morton A. Barlaz, NC State University 18

19 5. Complete Stabilization (Theoretical) degradable solids completely consumed O 2 infiltrates the landfill and is not consumed may only occur over geologic time Copyright Morton A. Barlaz, NC State University 19

20 Trends in Methane, COD, and ph CH 4 Production Rate ph COD Copyright Morton A. Barlaz, NC State University 20

21 Methane Production From Landfills Landfill gas = CH 4 + CO 2 Methane production rate = CH 4 Must specify temperature and pressure Copyright Morton A. Barlaz, NC State University 21

22 Methane Production From Landfills Composition under steady methane production CH % CO N O indicates over pumping H CO Trace* * petroleum hydrocarbons, chlorinated aliphatics, alkanes, ketones, aldehydes, alcohols, terpenes, siloxanes, H 2 S Pumping scenario will influence oxygen and nitrogen content significantly Copyright Morton A. Barlaz, NC State University 22

23 Copyright Morton A. Barlaz, NC State University 23

24 Landfill Gas Modeling Q n k L 0 n i j 0.0 M i 10 e k t i, j Q n is annual methane generation for a specific year t (m 3 CH 4 /yr); k is first order decay rate constant (1/yr) L 0 is total methane potential (m 3 CH 4 /ton of waste); M i is the annual burial rate (wet tons) t is time after initial waste placement (yr); j is the deci-year time increment Landfill Gas Emissions Model (LandGem)

25 Landfill Gas Modeling Understand difference between production and collection Must assume a collection efficiency to apply over entire landfill life Decay rate will vary dependent upon climate and operating conditions Copyright Morton A. Barlaz, NC State University 25

26 Methane Production Rate Curve for One Year of Waste 3.00E E+06 Methane Rate (m3/yr) 2.00E E E E E Time (Yr) Copyright Based Morton on 286,000 A. Barlaz, NC short State University tons of refuse at time zero 26 and Lo = 1.5 ft 3 /wet lb (93.5 m 3 /wet Mg)

27 Methane Production Rate Curve for Five Years Waste Methane Rate (m3/yr) 1.50E E E E E+06 Year 1 Year 2 Year 3 Year 4 Year 5 total 0.00E Copyright Morton A. Barlaz, NC State University 27 Time (Yr)

28 Effect of L 0 on Methane Production Methane Production (m3 per year) 1.80E E E E E E E E E E Year Copyright Morton A. Barlaz, NC State University 28

29 Effect of Decay Rate (k) on Methane Production Methane Production (m3 per year) 1.20E E E E E E E+00 Based on 286,000 short tons of refuse annually for 20 years and Lo = 1.5 ft 3 /wet lb (93.5 m 3 /wet Mg) Copyright Morton A. Barlaz, NC State University Year 29

30 Effect of Decay Rate (k) on Methane Production % of Cumulative Methane Based on 286,000 short tons of refuse annually Copyright Morton for 20 A. Barlaz, years NC and State University Lo = 1.5 ft /wet lb (93.5 m /wet Mg) 5 30 Year

31 Landfill Gas Modeling Must be careful to use appropriate waste composition and quantity data Mass of construction debris differs from a mass of food waste Use multiple waste fractions Model results Data should be presented as a range given uncertainty Decreasing waste quantities will affect model predictions Copyright Morton A. Barlaz, NC State University 31

32 U.S. EPA Defaults L 0 = 100 m 3 CH4/wet Mg (1 Mg = 1 metric ton = 1000 kg) k = 0.04 yr -1 in regions that receive >62.5 cm annual precipitation 0.02 in regions that receive <62.5 cm annual precipitation Copyright Morton A. Barlaz, NC State University 32

33 Effect of Decay Rate on Gas Collection Methane Rate (m3/yr) 8.00E E E E+06 k = 0.04 Collection Efficiency = 69.6% Methane Production Methane collection Methane Rate (m3/yr) 8.00E E E E+06 k = 0.12 Collection Efficiency = 60.6% Methane Production Methane collection 0.00E E Time (Yr) Time (Yr) Copyright Morton A. Barlaz, NC State University 33

34 Stoichiometric Methods 1. General stoichiometric formula which includes all organics some organics do not degrade 2. Estimate from methane potential of refuse C n H a O b N c + (n- a/4 - b/2 + 3c/4)H 2 O ----> (n/2 - a/8 + b/4 + 3c/8) CO 2 + (n/2 + a/8 - b/4-3c/8) CH 4 Copyright Morton A. Barlaz, NC State University 34

35 Limitations to Stoichiometric Methods Enables prediction of total remaining methane based on 100% conversion Some refuse will not degrade Chemically unavailable (lignin) physically unavailable (plastic) Lowest remaining cellulose unknown: Hard to sample, diluted with soil Values as low as 3-6% have been measured Limitation: Landfills are difficult to sample Copyright Morton A. Barlaz, NC State University 35

36 Methane potential of remaining refuse: Biochemical Methane Potential (BMP) Test Measure maximum attainable methane production Bioavailable cellulose/hemicellulose Sample is ground to a powder Incubated for 60 days in culture medium with an inoculum of microbes acclimated to refuse Methane production is measured Representative sampling still an issue Copyright Morton A. Barlaz, NC State University 36

37 Measured Yields Lab-scale data (ultimate versus actual) Assumptions to fit field data mass of waste and time of burial collection efficiency CH4 (m 3 /min) Expansion Landfill k=0.04, L0=100 m^3/mg k=0.1, L0=100m^3/Mg k= 0.07, L0=100 m^3/mg 1 m 3 /min = 35.3 cfm Year Copyright Morton A. Barlaz, NC State University 37

38 Effect of Decay Rate on Gas Collection Methane Rate (m3/yr) 8.00E E E E+06 k = 0.04 Collection Efficiency = 69.6% Methane Production Methane collection Methane Rate (m3/yr) 8.00E E E E+06 k = 0.12 Collection Efficiency = 60.6% Methane Production Methane collection 0.00E E Time (Yr) Time (Yr) Copyright Morton A. Barlaz, NC State University 38

The Use of Landfills for the Long-Term Storage of Biogenic Organic Carbon

The Use of Landfills for the Long-Term Storage of Biogenic Organic Carbon The Use of Landfills for the Long-Term Storage of Biogenic Organic Carbon Morton A. Barlaz, Ph.D., P.E. Distinguished University Professor and Head Department of Civil, Construction, and Environmental

More information

Release of Trace Organics During MSW Decomposition and Environmental Implications of Waste Management Using Landfills and Waste to Energy

Release of Trace Organics During MSW Decomposition and Environmental Implications of Waste Management Using Landfills and Waste to Energy Release of Trace Organics During MSW Decomposition and Environmental Implications of Waste Management Using Landfills and Waste to Energy Morton Barlaz North Carolina State University Introduction Limited

More information

Heat Generation and Accumulation at Municipal Solid Waste Landfills Experiencing Elevated Temperatures

Heat Generation and Accumulation at Municipal Solid Waste Landfills Experiencing Elevated Temperatures Heat Generation and Accumulation at Municipal Solid Waste Landfills Experiencing Elevated Temperatures Morton Barlaz North Carolina State University Scott Luettich, Geosyntec Consultants Marco Castaldi,

More information

CHARACTERISATION OF MUNICIPAL SOLID WASTE COMPOSITION INTO MODEL INPUTS

CHARACTERISATION OF MUNICIPAL SOLID WASTE COMPOSITION INTO MODEL INPUTS CHARACTERISATION OF MUNICIPAL SOLID WASTE COMPOSITION INTO MODEL INPUTS J. LAMBORN Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Australia Email: jlamborn@swin.edu.au

More information

Environmental Life Cycle Assessment PSE 476/WPS 576/WPS

Environmental Life Cycle Assessment PSE 476/WPS 576/WPS Environmental Life Cycle Assessment PSE 476/WPS 576/WPS 595-005 Lecture 10: End of Life Richard Venditti Fall 2012 Richard A. Venditti Forest Biomaterials North Carolina State University Raleigh, NC 27695-8005

More information

S WOLF. Landfill Process Modeling. Sardinia Symposium Solid Waste Life-Cycle Modeling Workshop. Morton Barlaz, PhD, PE Professor and Head

S WOLF. Landfill Process Modeling. Sardinia Symposium Solid Waste Life-Cycle Modeling Workshop. Morton Barlaz, PhD, PE Professor and Head Landfill Process Modeling Morton Barlaz, PhD, PE Professor and Head James Levis, PhD Research Assistant Professor S WOLF go.ncsu.edu/swolf www.easetech.dk 1 Outline Introduction Functional unit: landfill

More information

DYNAMIC CHARACTERISTICS OF MUNICIPAL SOLID WASTE WITH DEGRADATION IN BIOREACTOR LANDFILLS

DYNAMIC CHARACTERISTICS OF MUNICIPAL SOLID WASTE WITH DEGRADATION IN BIOREACTOR LANDFILLS 4 th International Conference on Earthquake Geotechnical Engineering June 25-28, 2007 Paper No. 1265 DYNAMIC CHARACTERISTICS OF MUNICIPAL SOLID WASTE WITH DEGRADATION IN BIOREACTOR LANDFILLS MD Sahadat

More information

ORDOT DUMP ORDOT-CHALAN PAGO, GUAM. Estimation of Potential Landfill Gas Yields for the Ordot Dump

ORDOT DUMP ORDOT-CHALAN PAGO, GUAM. Estimation of Potential Landfill Gas Yields for the Ordot Dump F I N A L ORDOT DUMP ORDOT-CHALAN PAGO, GUAM Estimation of Potential Landfill Gas Yields for the Ordot Dump Prepared for Department of Public Works, Government of Guam 542 North Marine Drive Tamuning,

More information

Landfill Gas Monte Carlo Model Documentation and Results

Landfill Gas Monte Carlo Model Documentation and Results Landfill Gas Monte Carlo Model Documentation and Results June 18, 2014 James Levis and Morton A. Barlaz Overview EPA s Waste Reduction Model (WARM) includes the disposal of waste in a landfill as one of

More information

Module 11 : Water Quality And Estimation Of Organic Content. Lecture 14 : Water Quality And Estimation Of Organic Content

Module 11 : Water Quality And Estimation Of Organic Content. Lecture 14 : Water Quality And Estimation Of Organic Content 1 P age Module 11 : Water Quality And Estimation Of Organic Content Lecture 14 : Water Quality And Estimation Of Organic Content 2 P age 11.3.2 BOD Model It is generally assumed that the rate at which

More information

LANDFILL LEACHATE MANAGEMENT

LANDFILL LEACHATE MANAGEMENT LANDFILL LEACHATE MANAGEMENT Barış ÇALLI Marmara University, Environmental Eng. Department Vahit BALAHORLİ İSTAÇ A.Ş Landfilling Process Landfills are physical facilities used for the disposal of residual

More information

Long Term Treatment and Disposal of Landfill Leachate. Debra R. Reinhart Nicole Berge Eyad Batarseh University of Central Florida

Long Term Treatment and Disposal of Landfill Leachate. Debra R. Reinhart Nicole Berge Eyad Batarseh University of Central Florida Long Term Treatment and Disposal of Landfill Leachate Debra R. Reinhart Nicole Berge Eyad Batarseh University of Central Florida Presentation Brief introduction Debra Reinhart In Situ Nitrification/Denitrification

More information

Advantage of leachate recirculation on municipal solid waste biodegradation: experimental and field results

Advantage of leachate recirculation on municipal solid waste biodegradation: experimental and field results Advantage of leachate recirculation on municipal solid waste biodegradation: experimental and field results Mostafa A. Warith Department of Civil Engineering, Ryerson Polytechnic University 350 Victoria

More information

S WOLF. Landfill Process Modeling.

S WOLF. Landfill Process Modeling. Landfill Process Modeling Jim Levis, PhD Research Assistant Professor Department of Civil, Construction, and Environmental Engineering Morton Barlaz, PhD, PE Professor and Head Department of Civil, Construction,

More information

Closing Gaps in the Regulation of MSW Landfills: Defining the End of the Post-Closure Monitoring Period

Closing Gaps in the Regulation of MSW Landfills: Defining the End of the Post-Closure Monitoring Period Closing Gaps in the Regulation of MSW Landfills: Defining the End of the Post-Closure Monitoring Period Introduction How to define the end of the post-closure monitoring period or when is a landfill stable?

More information

Module 11 : Water Quality And Estimation Of Organic Content. Lecture 13 : Water Quality And Estimation Of Organic Content

Module 11 : Water Quality And Estimation Of Organic Content. Lecture 13 : Water Quality And Estimation Of Organic Content 1 P age Module 11 : Water Quality And Estimation Of Organic Content Lecture 13 : Water Quality And Estimation Of Organic Content 2 P age 11.1 Surface Water Quality: Rivers and Streams Surface water is

More information

Environmental Life Cycle Assessment PSE 476/WPS 576

Environmental Life Cycle Assessment PSE 476/WPS 576 Environmental Life Cycle Assessment PSE 476/WPS 576 Lecture 10: End of Life Richard Venditti Fall 2016 Richard A. Venditti Forest Biomaterials North Carolina State University Raleigh, NC 27695-8005 1 Richard_Venditti@ncsu.edu

More information

BIOGAS PRODUCTION POTENTIAL OF SELECT RAW MATERIALS COMMONLY FOUND IN HOUSE HOLD WASTE. M.P.P.R. Kumara and S. Wijetunga * Abstract

BIOGAS PRODUCTION POTENTIAL OF SELECT RAW MATERIALS COMMONLY FOUND IN HOUSE HOLD WASTE. M.P.P.R. Kumara and S. Wijetunga * Abstract BIOGAS PRODUCTION POTENTIAL OF SELECT RAW MATERIALS COMMONLY FOUND IN HOUSE HOLD WASTE M.P.P.R. Kumara and S. Wijetunga * Department of Agric Engineering,University of Ruhuna, Sri Lanka * E-mail- swije@ageng.ruh.ac.lk.

More information

Gas Management at Bioreactor Landfills

Gas Management at Bioreactor Landfills Gas Management at Bioreactor Landfills Landfill Gas Basics The recirculation of leachate as part of a bioreactor landfill increases the rate of gas production. Predicting Landfill Gas Generation Rate Use

More information

Simulation of Carbon Dioxide Production during Composting of Agro-Wastes

Simulation of Carbon Dioxide Production during Composting of Agro-Wastes International Journal of Engineering and Technology Volume 2 No. 1, January, 2012 Simulation of Carbon Dioxide Production during Composting of Agro-Wastes 1 Shilpa Tripathi, 2 J. K. Srivastava 1 Chemical

More information

Technical overview and benefits

Technical overview and benefits Technical overview and benefits Overview Terms used in anaerobic digestion Different types of digesters Benefits of anaerobic digestion Total Solids, Volatile Solids Total Solids (TS)= Dry matter content

More information

"INOGATE Technical Secretariat & Integrated Programme in support of the Baku Initiative and the Eastern Partnership energy objectives" Project

INOGATE Technical Secretariat & Integrated Programme in support of the Baku Initiative and the Eastern Partnership energy objectives Project "INOGATE Technical Secretariat & Integrated Programme in support of the Baku Initiative and the Eastern Partnership energy objectives" Project B U I L D I N G P A R T N E R S H I P S F O R E N E R G Y

More information

Solid Index Variation of Different Types of Bioreactors to Handle Rural Garbage

Solid Index Variation of Different Types of Bioreactors to Handle Rural Garbage 7th International Conference on Mechatronics, Control and Materials (ICMCM 2016) Solid Index Variation of Different Types of Bioreactors to Handle Rural Garbage Hong Li1, Min Zheng1,2 and Dan Liu1,* 1

More information

Disposal of Sludge with Solid Wastes in Aerobic and Anaerobic Landfill Areas

Disposal of Sludge with Solid Wastes in Aerobic and Anaerobic Landfill Areas CONTACT Günay Kocasoy Turkish National Committee on Solid Wastes Bogazici University 34342, Bebek, Istanbul, TURKEY Tel: +90 212 359 44 76 Fax: +90 212 268 08 98 e-mail: kocasoy@boun.edu.tr Disposal of

More information

User's Manual Mexico Landfill Gas Model. Version 2.0

User's Manual Mexico Landfill Gas Model. Version 2.0 March 2009 User's Manual Mexico Landfill Gas Model Version 2.0 Prepared on behalf of: Victoria Ludwig Landfill Methane Outreach Program U.S. Environmental Protection Agency Washington, D.C. Prepared by:

More information

Evolution of Leachate Composition In a Calgary Landfill. Sean Buckles, M.Sc., P.Eng.

Evolution of Leachate Composition In a Calgary Landfill. Sean Buckles, M.Sc., P.Eng. Evolution of Leachate Composition In a Calgary Landfill Sean Buckles, M.Sc., P.Eng. Background Landfill Construction and Operation Leachate Generation Typical Characteristics 2 Landfill Construction and

More information

ACKNOWLEDGEMENTS. I would like to thank Waste Management Inc., especially Mr.Gary Hater for providing

ACKNOWLEDGEMENTS. I would like to thank Waste Management Inc., especially Mr.Gary Hater for providing ACKNOWLEDGEMENTS I would like to thank Waste Management Inc., especially Mr.Gary Hater for providing me an opportunity to work on this project apart from extending funding. It s my pleasure to express

More information

Examples of Studies conducted by

Examples of Studies conducted by Examples of Studies conducted by Page Oxygen Uptake Rate (OUR) Fingerprints 1 Toxicity Assessment Using a Dilution Series 4 Assessment of Acute Toxicity to Treatment Plants 5 Biodegradation Tests for Wastewater

More information

Biogas Production from Lignocellulosic Biomass

Biogas Production from Lignocellulosic Biomass Biogas Production from Lignocellulosic Biomass Dr. Ram Chandra Scientist, Energy Bioscience Overseas Fellow Centre for Rural Development & Technology Indian Institute of Technology Delhi 1 Biomass to Energy

More information

EnviTreat Laboratory Examples of Studies

EnviTreat Laboratory Examples of Studies OUR, mg/l-hr EnviTreat Laboratory Examples of Studies Oxygen Uptake Rate Fingerprints Oxygen uptake rate (OUR) fingerprints can reveal a great amount of detail about the manner in which treatment plants

More information

Figure -1 Functional Elements of the Life Cycle Analysis of Municipal Solid Waste Management Alternatives.

Figure -1 Functional Elements of the Life Cycle Analysis of Municipal Solid Waste Management Alternatives. System Description for a Life-Cycle Inventory of Municipal Solid Waste Management Alternatives Morton A. Barlaz and Ranji Ranjithan North Carolina State University (7/22/95) Executive Summary The objective

More information

Using household food waste as a source of energy in a single-chamber microbial fuel cell

Using household food waste as a source of energy in a single-chamber microbial fuel cell Using household food waste as a source of energy in a single-chamber microbial fuel cell Antonopoulou G. 1,2, Ntaikou I. 1,2, Alexandropoulou M. 1,2, Tremouli A. 1, Pastore C. 3, Bitonto L. 3, Bebelis

More information

6 Biodegradability test

6 Biodegradability test 6 Biodegradability test 6.1 Soil burial and compost conditions Biodegradation occurs with enzymatic action and involves living organisms (micro/macro). Molecular degradation is promoted by enzymes and

More information

DISPOSAL SITE GAS MODELING STUDY. Shadra Disposal Site Agra, India

DISPOSAL SITE GAS MODELING STUDY. Shadra Disposal Site Agra, India DISPOSAL SITE GAS MODELING STUDY Agra, India Prepared for: Agra Municipal Corporation Prepared under the support of: U. S. Environmental Protection Agency Disposal Site Methane Outreach Program Prepared

More information

User's Manual Thailand Landfill Gas Model. Version 1.0

User's Manual Thailand Landfill Gas Model. Version 1.0 December 2009 User's Manual Thailand Landfill Gas Model Version 1.0 Prepared on behalf of: Landfill Methane Outreach Program U.S. Environmental Protection Agency Washington, D.C. Prepared by: Clint Burklin,

More information

UMWEKO GmbH, Dr Konrad Schleiss

UMWEKO GmbH, Dr Konrad Schleiss 3. Biology of anaerobic digestion (after Peter Weiland, Institute of Technology and Biosystems Engineering Federal Agricultural Research Centre, Braunschweig, Germany) Microbiology and biochemistry of

More information

High Solids Anaerobic Digestion for Energy and Nutrient Recovery

High Solids Anaerobic Digestion for Energy and Nutrient Recovery High Solids Anaerobic Digestion for Energy and Nutrient Recovery Washington Bioenergy Research Symposium Timothy Ewing 08 Nov 2010 Center for Sustaining Agriculture and Natural Resources Department of

More information

Waste to energy conversion Dr. Prasenjit Mondal Department of Chemical Engineering Indian Institute of Technology, Roorkee

Waste to energy conversion Dr. Prasenjit Mondal Department of Chemical Engineering Indian Institute of Technology, Roorkee Waste to energy conversion Dr. Prasenjit Mondal Department of Chemical Engineering Indian Institute of Technology, Roorkee Lecture 01 Introduction - 01 Good morning. Myself Doctor Prasenjit Mondal, associate

More information

Assessment of Dissolved Organic Carbon Degradation in Landfill Leachate Using Hydrogen and Carbon Isotopes

Assessment of Dissolved Organic Carbon Degradation in Landfill Leachate Using Hydrogen and Carbon Isotopes Assessment of Dissolved Organic Carbon Degradation in Landfill Leachate Using Hydrogen and Carbon Isotopes Hossein Mohammadzadeh Department of Geology, Ferdowsi University of Mashhad, Mashhad, Iran mohammadzadeh@alumni.uottawa.ca

More information

From waste to fuel: bioconversion of domestic food wastes to energy carriers

From waste to fuel: bioconversion of domestic food wastes to energy carriers From waste to fuel: bioconversion of domestic food wastes to energy carriers M. Alexandropoulou 1,2, N. Menis 1, G. Antonopoulou 2, I. Ntaikou 2, G. Lyberatos 1,2 1 School of Chemical Engineering, National

More information

How EPA s Waste Reduction Model (WARM) Quantifies the Greenhouse Gas Impacts of Organics Management

How EPA s Waste Reduction Model (WARM) Quantifies the Greenhouse Gas Impacts of Organics Management How EPA s Waste Reduction Model (WARM) Quantifies the Greenhouse Gas Impacts of Organics Management EPA s Waste Reduction Model (WARM) Liz Resek Chief, Municipal Source Reduction Branch Office of Resource

More information

Waste to energy conversion Dr. Prasenjit Mondal Department of Chemical Engineering Indian Institute of Technology, Roorkee

Waste to energy conversion Dr. Prasenjit Mondal Department of Chemical Engineering Indian Institute of Technology, Roorkee Waste to energy conversion Dr. Prasenjit Mondal Department of Chemical Engineering Indian Institute of Technology, Roorkee Lecture 26 Energy production from Organic Wastes Through Anaerobic Digestion-1

More information

6.2 Impact of Bioreactor Activities on Leachate Quality and Waste Stabilization

6.2 Impact of Bioreactor Activities on Leachate Quality and Waste Stabilization VOLUME 6 Deliverables to meet work plan objective 5: Monitor the bioreactor in a manner to measure the impact of bioreactor activities and to allow control of the waste treatment process 6.1 Work Plan

More information

Anaerobic digestion = biogas process

Anaerobic digestion = biogas process Anaerobic digestion = biogas process Input Manure Organic household waste Industrial waste Sludge Products Energy: in the form of biogas (methane) Substitution of existing energy production Fertilizers:

More information

M. T. I. Cabaraban & S. S. Paclijan Department of Chemical Engineering, Xavier University Ateneo de Cagayan, Philippines. Abstract

M. T. I. Cabaraban & S. S. Paclijan Department of Chemical Engineering, Xavier University Ateneo de Cagayan, Philippines. Abstract Energy and Sustainability V: Special Contributions 295 Estimation of landfill gas production and the energy potential of municipal solid wastes from the Upper Dagong dumpsite using the Philippine Landfill

More information

UNIVERSITY OF WISCONSIN SYSTEM SOLID WASTE RESEARCH PROGRAM Student Project Report

UNIVERSITY OF WISCONSIN SYSTEM SOLID WASTE RESEARCH PROGRAM Student Project Report UNIVERSITY OF WISCONSIN SYSTEM SOLID WASTE RESEARCH PROGRAM Student Project Report Benefits of Food Waste as a Potential Substrate in a Dry Anaerobic Digester May 2013 Student Investigator: Ryan Bartell

More information

Electrochemical Systems for Enhanced Product Recovery from Anaerobic Fermentations

Electrochemical Systems for Enhanced Product Recovery from Anaerobic Fermentations Electrochemical Systems for Enhanced Product Recovery from Anaerobic Fermentations Integration of Chemical, Biochemical and Thermal Process to Maximise Biomass Resource Potential Joint AD Network/SUPERGEN

More information

COMPOSTING 101 to 450 Paul Walker Illinois State University - Normal

COMPOSTING 101 to 450 Paul Walker Illinois State University - Normal COMPOSTING 101 to 450 Paul Walker Illinois State University - Normal COMPOST DEVELOPMENT COMPOST QUALITY ON-SIGHT QUALITY DETERMINATION POLLUTANT REMOVAL EROSION / SEDIMENT CONTROL COMPOST PROCESS FLOW

More information

Carbon storage in engineered wood products in landfills

Carbon storage in engineered wood products in landfills Carbon storage in engineered wood products in landfills Presented by Fabiano Ximenes, NSW DPI, 2013 Talk Outline - Background to project - Landfills in Australia - Excavations - Experimental work - Implications

More information

SWANA 2017 Leachate Basics and Quality Changes with Organics Removal. Steve Johnson M.Eng., P.Eng.

SWANA 2017 Leachate Basics and Quality Changes with Organics Removal. Steve Johnson M.Eng., P.Eng. SWANA 2017 Leachate Basics and Quality Changes with Organics Removal Steve Johnson M.Eng., P.Eng. May 2017 2 Landfills that take over 10,000 tonnes per year? How many of you have leachate collection systems?

More information

REPORT OF THE PUMP TEST AND PRE-FEASIBILITY STUDY

REPORT OF THE PUMP TEST AND PRE-FEASIBILITY STUDY REPORT OF THE PUMP TEST AND PRE-FEASIBILITY STUDY FOR LANDFILL GAS RECOVERY AND UTILIZATION AT THE NUEVO LAREDO LANDFILL NUEVO LAREDO, MEXICO Prepared for: PA Consulting and United States Agency for International

More information

SEPARATE PRODUCTION OF HYDROGEN AND METHANE FROM ETHANOL WASTEWATER USING TWO-STAGE UASB SYSTEM

SEPARATE PRODUCTION OF HYDROGEN AND METHANE FROM ETHANOL WASTEWATER USING TWO-STAGE UASB SYSTEM SEPARATE PRODUCTION OF HYDROGEN AND METHANE FROM ETHANOL WASTEWATER USING TWO-STAGE UASB SYSTEM Songphol Jaikeaw a, Sumaeth Chavadej a,b, Malinee Leethochawalit *,c a The Petroleum and Petrochemical College,

More information

Review of composting and anaerobic digestion of MSW & a methodological proposal for a mid-size city

Review of composting and anaerobic digestion of MSW & a methodological proposal for a mid-size city Review of composting and anaerobic digestion of MSW & a methodological proposal for a mid-size city By M. R. Q. Silva & T. R. Naik UWM Center for By-Products Utilization University of Wisconsin-Milwaukee

More information

Waste. Solid Waste Management

Waste. Solid Waste Management Solid Waste Management Environmental Engineering Zerihun Alemayehu (AAiT-CED) Waste Solid waste: Any material that is thrown away or discarded as useless and unwanted. municipal solid waste (MSW): Solid

More information

Soil Organic Matter (SOM) Important component in soil fertility The higher the SOM soil more fertile

Soil Organic Matter (SOM) Important component in soil fertility The higher the SOM soil more fertile Soil Organic Matter (SOM) Important component in soil fertility The higher the SOM soil more fertile Advantages of OM Supply nutrients (especially N, P, S) Increase CEC Improve physical properties( soil

More information

466 (15) Munawar, E.; Fellner, J.; Brunner, P.H. (2011) Modelling the Fate Organic Matter in Municipal Solid Waste Landfills After the Instalation of

466 (15) Munawar, E.; Fellner, J.; Brunner, P.H. (2011) Modelling the Fate Organic Matter in Municipal Solid Waste Landfills After the Instalation of 466 (15) Munawar, E.; Fellner, J.; Brunner, P.H. (2011) Modelling the Fate Organic Matter in Municipal Solid Waste Landfills After the Instalation of a Final Capping System (Case Study Breitenau Landfill)?,

More information

336098: DYNAMIC MODELLING AND SIMULATION OF ANAEROBIC DIGESTER FOR HIGH ORGANIC STRENGTH WASTE

336098: DYNAMIC MODELLING AND SIMULATION OF ANAEROBIC DIGESTER FOR HIGH ORGANIC STRENGTH WASTE 336098: DYNAMIC MODELLING AND SIMULATION OF ANAEROBIC DIGESTER FOR HIGH ORGANIC STRENGTH WASTE POOJA SHARMA, U K GHOSH, A K RAY Department of Polymer & Process Engineering Indian Institute of Technology,

More information

GREEN ENERGY-ANAEROBIC DIGESTION

GREEN ENERGY-ANAEROBIC DIGESTION GREEN ENERGY-ANAEROBIC DIGESTION S.SIDDHARTH THIRD YEAR CHEMICAL ENGINEERING SRI VENKATESWARA COLLEGE OF ENGINEERING SRIPERUMBUDUR ANNA UNIVERSITY Siddz_shankar@yahoo.com Keywords: Anaerobic Digestion

More information

Alternative Product Streams from Anaerobic Digestion

Alternative Product Streams from Anaerobic Digestion Alternative Product Streams from Anaerobic Digestion AD NETWORK RESEARCH COLLOQUIUM University of Manchester 25 th January 2019 Professor Richard Dinsdale Sustainable Environment Research Centre University

More information

IJESRT. Scientific Journal Impact Factor: (ISRA), Impact Factor: [Satyanarayana, 3(6): June, 2014] ISSN:

IJESRT. Scientific Journal Impact Factor: (ISRA), Impact Factor: [Satyanarayana, 3(6): June, 2014] ISSN: IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Municipal Solid Waste Management by Sanitary Landfill D. N. V. Satyanarayana 1, K. Ramesh Chandra 2 Department of Chemical Engineering,

More information

23 Solid and Hazardous Waste

23 Solid and Hazardous Waste 23 Solid and Hazardous Waste Overview of Chapter 23 Solid Waste Waste Prevention Reducing the Amount of Waste Reusing Products Recycling Materials Hazardous Waste Types of Hazardous Waste Management of

More information

Development of Methods to Measure the Hydrogen Sulfide Production Potential of Sulfur-Containing Wastes FINAL REPORT

Development of Methods to Measure the Hydrogen Sulfide Production Potential of Sulfur-Containing Wastes FINAL REPORT Development of Methods to Measure the Hydrogen Sulfide Production Potential of Sulfur-Containing Wastes Mei Sun, Wenjie Sun and Morton A. Barlaz Dept. of Civil, Construction, and Environmental Engineering,

More information

Optimizing anaerobic digestion of agricultural substrates

Optimizing anaerobic digestion of agricultural substrates Optimizing anaerobic digestion of agricultural substrates Claudia Pabón Pereira MSc PhD candidate Tania Fernandes MSc PhD candidate Environmental Technology Anaerobic digestion process Rate limiting step

More information

In Situ Remediation (ISR MT3DMS TM ) Features: Reactions

In Situ Remediation (ISR MT3DMS TM ) Features: Reactions In Situ Remediation (ISR MT3DMS TM ) Features: Reactions October 5, 2015 ISR MT3DMS TM Reactions 1 Introduction The core reaction framework in ISR MT3DMS TM was developed using the public domain reaction

More information

Agricultural and Biological Engineering. Biological Manipulation of Manure: Getting What You Want from Animal Manure

Agricultural and Biological Engineering. Biological Manipulation of Manure: Getting What You Want from Animal Manure College of Agricultural Sciences Cooperative Extension Agricultural and Biological Engineering Biological Manipulation of Manure: Getting What You Want from Animal Manure G 87 Jeannie A. Leggett, Extension

More information

Natur-Tec is a division of Northern Technologies International Corp., a Minnesota based company. Northern Technologies International Corp.

Natur-Tec is a division of Northern Technologies International Corp., a Minnesota based company. Northern Technologies International Corp. Who is Natur-Tec? Natur-Tec is a division of Northern Technologies International Corp., a Minnesota based company Northern Technologies International Corp. Focused on Environmentally Beneficial Materials

More information

23 Solid and Hazardous Waste

23 Solid and Hazardous Waste 23 Solid and Hazardous Waste Overview of Chapter 23 Solid Waste Waste Prevention Reducing the Amount of Waste Reusing Products Recycling Materials Hazardous Waste Types of Hazardous Waste Management of

More information

Developing a Recipe for Composting Livestock Manure

Developing a Recipe for Composting Livestock Manure 112 Developing a Recipe for Composting Livestock Manure Petra Loro, Livestock Environment Specialist, Animal Industry Branch, Manitoba Agriculture, Food and Rural Initiatives, Winnipeg, MB, R3T 5S6. E-mail:

More information

The Future of Solid Waste Management

The Future of Solid Waste Management Recovery The Future of Solid Waste Management Resource recover is the recognition that waste often still have a function. Once treated, transform it into new by-products. Recycling By reusing these materials

More information

Portable Gas Detectors for Landfill Gases

Portable Gas Detectors for Landfill Gases Robert E Henderson, GfG Instrumentation, Inc Portable Gas Detectors for Landfill Gases The key to success is understanding the monitoring environment, and the specific benefits and limitations of the sensors

More information

Department of Civil Engineering-I.I.T. Delhi CVL723 Problem Set_2_Feb6_15

Department of Civil Engineering-I.I.T. Delhi CVL723 Problem Set_2_Feb6_15 Department of Civil Engineering-I.I.T. Delhi CVL723 Problem Set_2_Feb6_15 Always write your name and entry number in all submissions. Please mention your assumptions explicitly. Q1. Say a raw wastewater

More information

Biogas Production from Lignocellulosic Biomass

Biogas Production from Lignocellulosic Biomass Biogas Production from Lignocellulosic Biomass Dr. Ram Chandra Scientist, Energy Bioscience Overseas Fellow Centre for Rural Development & Technology Indian Institute of Technology Delhi 1 Introduction

More information

Aerobic and Anaerobic Biodegradation

Aerobic and Anaerobic Biodegradation Polimernet Plastik San.Tic.Ltd.Şti. Tel:+90 216 393 77 46 / Email: info@polimernet.com www.polimernet.com 1 Aerobic and Anaerobic Biodegradation This document provides an in depth explanation, detailing

More information

Content 12/21/2010. Plastic Compostable Bags, Realities and Myths Paul Arnold, Maggie Hope Simpson December 2, 2010

Content 12/21/2010. Plastic Compostable Bags, Realities and Myths Paul Arnold, Maggie Hope Simpson December 2, 2010 Plastic Compostable Bags, Realities and Myths Paul Arnold, Maggie Hope Simpson December 2, 2010 Content Definitions Criteria/standards Composting and plastics: Bench scale results Commercial scale results

More information

USING GEOTEXTILE FILTER AS BIOFILM MEDIA IN ANAEROBIC LANDFILL BIOREACTOR

USING GEOTEXTILE FILTER AS BIOFILM MEDIA IN ANAEROBIC LANDFILL BIOREACTOR USING GEOTEXTILE FILTER AS BIOFILM MEDIA IN ANAEROBIC LANDFILL BIOREACTOR YUSUF KÜÇÜKAĞA*, CEVAT YAMAN, BURCU PALA, GÜLŞAH DELİCE * Environmental Engineering Department, Gebze Technical University, TURKEY

More information

Protocol for the determination of potential biogas production

Protocol for the determination of potential biogas production Protocol for the determination of potential biogas production Johan W. van Groenestijn TNO November 16 2015 General principle Samples of biomass are mixed with a mixture of anaerobic bacteria (sludge),

More information

Chapter 2 Solid Waste Conversion and Dynamic Multi-objective Optimization

Chapter 2 Solid Waste Conversion and Dynamic Multi-objective Optimization Chapter 2 Solid Waste Conversion and Dynamic Multi-objective Optimization Abstract A systemic study of the metabolic process of solid waste and the law of conversion and environmental effects of major

More information

Debra Reinhart Hamid Amini. University of Central Florida

Debra Reinhart Hamid Amini. University of Central Florida Landfill Gas to Energy Projects: Incentives and Benefits Debra Reinhart Hamid Amini Overview Project Objectives Completed Phases Methodology Results & Conclusions Future Tasks Economic Benefits and Sensitivity

More information

Supplemental Information for

Supplemental Information for Supplemental Information for A Combined Activated Sludge Anaerobic Digestion Model CASADM to Understand the Role of Anaerobic Sludge Recycling in Wastewater Treatment Plant Performance Michelle N. Young,

More information

jf, FiBL, CH-Frick 1

jf, FiBL, CH-Frick 1 Research Institute of Organic Agriculture Forschungsinstitut für biologischen Landbau Institut de recherche de l agriculture biologique to composting and anaerobic digestion How does composting work? Conclusions

More information

Chapter 24 Solid and Hazardous Wastes

Chapter 24 Solid and Hazardous Wastes Chapter 24 Solid and Hazardous Wastes Overview of Chapter 24 Solid Waste Waste Prevention Reducing the Amount of Waste Reusing Products Recycling Materials Hazardous Waste Types of Hazardous Waste Management

More information

Managing Waste Byproducts

Managing Waste Byproducts Managing Waste Byproducts Wayne Thompson EDAPHOS Limited 4 th International Conference on Precision Agriculture St. Paul, MN - July 21, 1998 Waste Byproducts Summary Background Information Treatment Processes

More information

Methodological tool. Tool to determine methane emissions avoided from disposal of waste at a solid waste disposal site.

Methodological tool. Tool to determine methane emissions avoided from disposal of waste at a solid waste disposal site. Page 1 Methodological tool Tool to determine methane emissions avoided from disposal of waste at a solid waste disposal site (Version 05) I. SCOPE, APPLICABILITY AND PARAMETERS Scope and applicability

More information

Methodological tool. Tool to determine methane emissions avoided from disposal of waste at a solid waste disposal site.

Methodological tool. Tool to determine methane emissions avoided from disposal of waste at a solid waste disposal site. Page 1 Methodological tool Tool to determine methane emissions avoided from disposal of waste at a solid waste disposal site (Version 04) I. SCOPE, APPLICABILITY AND PARAMETERS Scope and applicability

More information

Anaerobic Processing Principles & Technologies. Endeco

Anaerobic Processing Principles & Technologies. Endeco Anaerobic Processing Principles & Technologies Endeco Anaerobic Processing Principles Anaerobic digestion (AD) is a biological process that uses microorganisms to breakdown organic material in the absence

More information

Issues with Arsenic Containing Wastes in Modern Landfills

Issues with Arsenic Containing Wastes in Modern Landfills Issues with Arsenic Containing Wastes in Modern Landfills Timothy G. Townsend, PhD, PE Department of Environmental Engineering Sciences University of Florida October 3-4, 2006 Boston, Massachusetts Arsenic

More information

Use of Two Phase Anaerobic Bioprocess Configuration

Use of Two Phase Anaerobic Bioprocess Configuration Use of Two Phase Anaerobic Bioprocess Configuration Prof. Dr. Göksel N. Demirer Department of Environmental Engineering Middle East Technical University Ankara, Turkey 1st German-Turkish Biogas Workshop

More information

2006 IPCC Guidelines for National Greenhouse Gas Inventories: Waste Sector

2006 IPCC Guidelines for National Greenhouse Gas Inventories: Waste Sector Task Force on National Greenhouse Gas Inventories 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Waste Sector African Regional Workshop: Technical Training on National GHG Inventories 24-27

More information

WHY WASTE TO ENERGY (WTE)?

WHY WASTE TO ENERGY (WTE)? WASTE TO ENERGY TECHNOLOGIES Missouri Waste Control Coalition Laura Drescher Monday, July 13 th, 2015 WHY WASTE TO ENERGY (WTE)? Heightened interest in green energy with President Obama calling for 80%

More information

Aerobic and Anaerobic Biodegradation. Danny Clark ENSO Bottles LLC 06/29/2010

Aerobic and Anaerobic Biodegradation. Danny Clark ENSO Bottles LLC 06/29/2010 2010 Aerobic and Anaerobic Biodegradation Danny Clark ENSO Bottles LLC 06/29/2010 Aerobic and Anaerobic Biodegradation A look into aerobic and anaerobic biodegradation By Danny Clark ENSO Bottles, LLC

More information

ENVIRONMENTAL GEOLOGY - GEOL 406/506

ENVIRONMENTAL GEOLOGY - GEOL 406/506 ENVIRONMENTAL GEOLOGY - GEOL 406/506 Glossary of useful Terms: 1. Abiotic: not living. 2. A b s o r p t i o n: the penetration of atoms, ions, or molecules into the bulk mass of substrate. 3. Acclimation:

More information

Sanitary Sewer Systems. Sewage Collection System. Types of Sewage 10/12/2016. General Overview

Sanitary Sewer Systems. Sewage Collection System. Types of Sewage 10/12/2016. General Overview Sanitary Sewer Systems General Overview Sewage Collection System Pipes Pumping stations Maintenance entry points manholes Types of Sewage Sanitary Domestic sewage: human wastes and washwater from public

More information

The Nutrient Cycle. Atmospheric pool. Organic material. 5 Soil solution storage

The Nutrient Cycle. Atmospheric pool. Organic material. 5 Soil solution storage The Nutrient Cycle Atmospheric pool Precipitation Canopy, wood, and root Litter fall SOIL 2 Soil and rock minerals cations 1 2 3 Groundwater level Organic material 5 Soil solution storage 4 4 Channel BEDROCK

More information

Anaerobic Fermentation of Organic Solid Wastes: Volatile Fatty Acid Production and Separation

Anaerobic Fermentation of Organic Solid Wastes: Volatile Fatty Acid Production and Separation Santiago de Compostela, SPAIN June 25-28, 2013 Anaerobic Fermentation of Organic Solid Wastes: Volatile Fatty Acid Production and Separation H.Yesil, A.E.Tugtas, A.Bayrakdar and B.Calli Marmara University,

More information

Biomass. The latter is not a new concept, homes and industries were, at one time, heated and powered by wood.

Biomass. The latter is not a new concept, homes and industries were, at one time, heated and powered by wood. Biomass Energy Content Biomass Conversion of Biomass in Energy Thermochemical Processes Extraction Processes Biological Processes Waste to Energy Mechanical Biological Treatment (MBT) Biofuels Biomass

More information

Modeling of Anaerobic Digestion of Sludge

Modeling of Anaerobic Digestion of Sludge Engineering Conferences International ECI Digital Archives Wastewater and Biosolids Treatment and Reuse: Bridging Modeling and Experimental Studies Proceedings Spring 6-8-2014 Modeling of Anaerobic Digestion

More information

Solid Waste Management Waste Management. Liquid and solid Waste ( )

Solid Waste Management Waste Management. Liquid and solid Waste ( ) Liquid and solid Waste (0670545) Very Important Note: Most of the figures and tables are downloaded from google and various text books Solid Waste Evolution and Concepts: Since the beginning of humanity,

More information

What Can We Do With All This. C. Merritt, C&S Engineers. Food Waste?

What Can We Do With All This. C. Merritt, C&S Engineers. Food Waste? What Can We Do With All This C. Merritt, C&S Engineers Food Waste? Here s the Deal How big is this problem- Food is one of the big 4 (water, energy and climate change) Sources of food wastes What are the

More information

EXAMPLE OF A CLIL ACTIVITY

EXAMPLE OF A CLIL ACTIVITY EXAMPLE OF A CLIL ACTIVITY SCAFFOLDING A CLIL ACTIVITY TITLE: THE TRIPLETS: THE STORY OF THREE PLASTIC BOTTLES SUBJECT: CHEMISTRY / CITIZENSHIP LEVEL: 4 ESO AUTHOR: OBJECTIVE: To raise students awareness

More information

Cellulosic Biomass Chemical Pretreatment Technologies

Cellulosic Biomass Chemical Pretreatment Technologies Life-changing Research and Development Cellulosic Biomass Chemical Pretreatment Technologies September 6, 2007 Keith Pauley Keith.Pauley@matricresearch.com 800-611-2296 Chemical and Environmental Technologies

More information