INVESTIGATION OF CRITICAL SAFETY FUNCTION INTEGRITY IN CASE OF STEAM LINE BREAK ACCIDENT FOR VVER 1000/V320

Size: px
Start display at page:

Download "INVESTIGATION OF CRITICAL SAFETY FUNCTION INTEGRITY IN CASE OF STEAM LINE BREAK ACCIDENT FOR VVER 1000/V320"

Transcription

1 International Conference 12th Symposium of AER, Sunny Beach, pp , September, INVESTIGATION OF CRITICAL SAFETY FUNCTION INTEGRITY IN CASE OF STEAM LINE BREAK ACCIDENT FOR VVER 1000/V320 Antoaneta E. STEFANOVA, Rositsa V. GENCHEVA, Pavlin P. GROUDEV Institute for Nuclear Research and Nuclear Energy, Tzarigradsko Shaussee 72, Sofia 1784, Bulgaria ABSTRACT In this paper are presented the results of investigation of critical safety function (CSF) Integrity in case of Steam Line Break (SLB) accident. The investigation has been done in supporting of Symptom Based Emergency Operating Procedures for VVER1000/V320. This kind of analyses are designed to provide the response of monitored plant parameters to identify symptoms available to the operators, timing of the loss of critical safety functions and timing of operator actions to avoid the loss of critical safety functions or core damage. RELAP5/MOD3.2 computer code has been used to simulate the SLB accident in a VVER1000 NPP model. This model was developed and validated at the Institute for Nuclear Research and Nuclear Energy for analyses of operational occurrences, abnormal events, and design bases scenarios. The model provides a significant analytical capability for the specialists working in the field of NPP safety. I. INTRODUCTION The maximum challenged Critical Safety Function in case of Steam Line Break is primary side Integrity. Steam Line Break event is characterized by rapid decreasing of pressure in the failed Steam Generator and in the Main Steam Header. Other symptoms include decreasing of water level in the failed SG #1 and decreasing of primary system temperature and pressure. After a while primary pressure will reach the set point for safety injection system actuation (one Makeup pump). As a result of this primary side pressure stabilizes, while the coolant temperature decreases rapidly. It creates conditions for reactor over pressurization and respectively challenges the CSF Integrity.

2 The represented NPP in this investigation is a VVER1000 pressurized water reactor that produces 3000 MW thermal power and generates 1000 MW electric power. The VVER1000 design includes four coolant loops, each one including one main coolant pump and one horizontal steam generator. This analysis is used for validation and verification of Symptom Based Emergency Operating Procedures for VVER 1000 units at Kozloduy NPP. II. EVENT DESCRIPTION The initiating event of this investigation is a total steam line break - ID 580 mm - on the steam line of the SG#1 upstream of BZOK. For Large Secondary Break an immediate pressure decreasing in the failed SG occurs, which results in reactor SCRAM and consequent Turbine Stop Valve closing. Steam generator water level in the failed SG decreases rapidly. An extensive primary system cooldown appears. Primary water volume shrinks initially. It results in PRZ water level and primary pressure decreasing. Primary pressure and PRZ water level are restored by Makeup system actuation. In this situation the most challenged is CSF Integrity. For investigation of the CSF Integrity, by engineering judgment, it was taken a decision to run the calculation at hot reactor shutdown conditions, which means at nominal reactor pressure and temperature but no decay heat is assumed. It is also accepted minimum water level in all SGs, which means minimum accumulated heat in the secondary side. This paper presents the results of two calculations: Base Case Calculation and Operator Action Calculation in case of postulated equipment failures. III. BASE CASE OF SLB INTEGRITY As a boundary condition for investigation of CSF Integrity it is assumed that SGs water levels are minimal 1.71 m because we would like to have minimum accumulated heat in secondary side. In this way, reestablishing of SG water level with colder feed water will maximum increases the steam generator heat sink capability. Scenario I.Initial status I.1. Hot reactor shutdown conditions reactor system is at normal operating pressure and temperature but no decay heat is assumed. I.2. Actuation of only one Makeup pump. I.3. Reactor Systems respond without operator actions. I.4. It is assumed that the SGs water levels are 1.71 m. II.Schedule of automatic and operator actions II.1. In accordance with signals P SG < 50 kgf/cm 2 and t S(I-II) > 75 0 C pumps TQ11DO1, TQ12DO1, TQ13DO1 are actuated.

3 II.2. In accordance to the signals P SG < 45 kgf/cm 2 and t S(I-II) > 75 0 C the MCP of damaged SG switch off. II.3. In accordance to the signals Pressure of Check Valve (CHV) - P CHV on steam line P CHV < -2 kgf/cm 2 and P SG < 50 kgf/cm 2 and with accordance with both set points it switchs off MCP of corresponding SG and it isolates the damaged SG from Feed Water Line (FWL) with delay of 30 sec. II.4. After reaching P SG < 50 kgf/cm 2 and t S(I-II) > 75 0 C BZOK closes with 10 s delay and in this way the damage SG is isolated from the Main Steam Header (MSH). II.5. By reaching P containment > 0.3 kgf/cm 2 in containment it starts an injection of sprinkler system by pump TQ11DO1. II.6. By reaching P SG < 50 kgf/cm 2 and P CHV < -2 kgf/cm 2 it actuates a signal for stopping of injection of Emergency Feed Water. Results The calculated sequence of events for the Base Case for SLB - Integrity is presented below. Table 1 Event Time, s Steam Line Break, ID MCP #1 is tripped 4.0 BZOK at faulted SG #1 closes 10.5 Isolation of feed water to SG # Minimum Pressurizer Water Level 3.77 m Stabilization of primary circuit pressure at 15.9 MPa Opening of Spray valve and injection to Pressurizer from cold leg #1 Dryout of SG #1 (SG water level 3 cm.) The most important parameter behavior is shown from Figure 1 through 6. The calculation was performed up to 2000 s into the transient time.

4 Reactor system is a subcritical at hot conditions. No fission product decay option as a bounding condition was used for receiving maximum cooldown rate for primary side. Core exit temperature for hot conditions was accepted 558 K. Should a steam line break appear, MCP #1 is tripped due to the signals P SG < 45 kgf/cm 2 and t S(I-II) > 75 0 C. All BRU-Ks open (due to closing of turbine stop valves in hot conditions). After 24.0 sec transient time BRU-Ks close by low-pressure signal. The important system parameter trends for this break are an uncontrolled pressure decreasing in faulted SG and this SG is completely depressurized. The behavior of faulted SG pressure is presented in Figure 1. The other symptoms include decreasing steam generator water level of faulted SG (presented in Fig. 5.) and initially decreasing primary pressure (presented in Figure 1.) and temperature (presented in Figure 4.). A rapid, extensive primary system cooldown occurs. Primary to secondary heat transfer is presented in Figure 3. As the primary system temperature drops, the heat transfer to the steam generator (faulted SG) and the primary system cooldown rate will be reduced. This trend will continue to the point where the primary system water volume shrinkage (cause by the cooldown) is overcome by the Make up system flow rate. Approximately, after 170 sec. the primary pressure drops to 12.6 MPa (due to shrinkage of primary side coolant) and begins to increase due to work of Make up system (there was no decay heat in primary side). Primary side pressure did not reach a set point of starting TQ13DO1 HPP. Heat transfer in faulted SG drops rapidly to 36 MW after dryout of SG#1 below 40 cm at 260 sec. Maximum heat transfer 730 MW from primary to secondary side in faulted SG was reached at 10 sec. (see Figure 3.). Behavior of cold leg liquid temperature is presented on Figure 4. The plate in core exit temperature comes at 30 sec due to isolation of feed water.

5 The steam generator blowdown is almost completed in 400 sec and further cooldown of the primary system is controlled mainly by the auxiliary feedwater flow to the other SGs. After 1500 sec transient time cooldown of the primary system is totally controlled by the auxiliary feedwater flow to the other SGs. Comparison of pressure in primary and secondary side is shown in Figure 1. During the whole transient time there is a reverse flow rate through faulted SG caused by work of other three MCPs. The break flow rate is presented on Figure 2. Figure 6. presents the behavior of Pressurizer water level. The Pressurizer water level was assumed to be 7.6 m in hot conditions instead of 8.7 m as in nominal. Also, Make up system works with maximum flow rate of 80 m 3 /hr from the beginning of transient in support of low level in pressurizer. The let down flow rate was assumed to be constant - 25 m 3 /hr to the end of calculations. For the first 180 sec the fast decreasing of Pressurizer water level comes due to cooldown of primary side and it caused primary system water volume shrinkage, when the pressure drops rapidly. The reason of increasing the Pressurizer water level after the first 180 sec comes from Make-up system work. The Pressurizer spray valve opens and starts to cycle and to inject cold water from leg #1, using the MCPs of the other loops. IV. PERFORMANCE OF OPERATOR ACTION CALCULATION INTEGRITY Following the methodology in the operator action calculation it is accepted failure of stop of feedwater and the operator actions at the selected time to verify that this action has restored the critical safety function Integrity. In The operator action there are two possibilities to reduce velocity of cooldown rate for the reactor system. The first one is to stop feed water to damaged SG and in this way we go back to base case. The second one is to stop other three MCPs and this way to reduce flow rate through faulted SG. This variant is investigated here. Scenario: Initial status the same as in Base case calculation. In the scenario for Operator system calculation it was assumed as an operator action switching off MCPs #2, 3 and 4 in the third minute from the begging of transient. The calculated sequence of events for the Operator Actions for SLB is presented below. Table 2 Event Time, s Steam Line Break, ID MCP #1 is tripped 4.0

6 BZOK at faulted SG #1 closes 10.5 Minimum water level in SG # m 34.8 Operator stops MCPs #2, 3 and Minimum Pressurizer Water Level 1.76m The most important parameters behavior is shown from Figure 7. through 12. The calculation was performed up to 2000s into the transient time. Figure 7. presents the primary side pressure behavior. The pressure in Primary circuit did not reach the set point of starting injection of HPP. Reactor system is a subcritical at hot conditions. No fission product decay option as a bounding condition was used for receiving maximum cooldown rate for primary side.

7 Should a steam line break appear, MCP #1 is tripped due to the signals P SG < 45 kgf/cm 2 and t S(I-II) > 75 0 C. The BRU-Ks open (due to closing of turbine stop valves in hot conditions). After 24.0 sec transient time BRU-Ks close by low-pressure signal. The important system parameter trends for this break are an uncontrolled pressure decrease in faulted SG. The behavior of faulted SG pressure is presented in Figure 7 The intact SGs are depressurized. This comes due to cooldown these SGs by primary side. The other symptoms include decreasing of steam generator water level of faulted SG, but after reaching 1.34 m at 34.8 sec, SG water level in SG #1 back again due to work of feed water. Decreasing of primary side pressure is presented in Figure 7. In the case with operator action there is almost the same deep depressurization of primary side, but switching off MCPs by operator delayed cooldown and that way and shrinkage of coolant is less. The earlier stopping of primary depressurization comes due to switching off MCPs. Approximately, after 520 sec. the primary pressure drops to 11.5 MPa (due to shrinkage of primary side) and begins to increase due to work of Make up system (there was no decay heat in primary side). The behavior of cold leg liquid temperature is presented in Figure 10. A rapid and extensive primary system cooldown occurs, too. Primary to secondary heat transfer is presented on Figure 9. Heat transfer in faulted SG drops rapidly after decreasing primary side liquid temperature. Maximum heat transfer of 730 MW from primary to secondary side in faulted SG was reached at 10sec. (see Figure 9.). As in failed calculation, the damaged SG #1, continue to cooldown primary side to the end of calculation. After some time (approximately 74 sec) primary side system starts to cooldown other SGs and it caused their depressurizations. Behavior of cold leg liquid temperature is presented on Figure 10. The break flow rate is presented on Figure 8. The steam generator blowdown continue to the end of calculation. The value of blowdown flow rate after depressurization of SG #1, depends of feedwater controller. In this calculation was assumed that feedwater controller will support the nominal SG water level of 2.4 m. During the whole transient time there is a reverse flow rate through faulted SG caused by work of the other three MCPs. After switching off MCPs #2, 3 and 4, reverse flow rate through SG #1 decrease significantly. The pressurizer water level depends from work of Make up system and shrinkage of coolant in RCS. Switching off the MCPs by operator delay shrinkage, how it was mention above and in this way pressurizer water level decreasing is reduced The minimum pressurizer water level was reached at sec 1.76 m. After this moment injection of water by Make up system dominate shrinkage of coolant and starts increasing of pressurizer water level. V. CONCLUSIONS: The Base Case calculation shows that with minimum resources and without operator actions the cooldown rate is in acceptable margin. The reactor system does not over pressurized by make up system and reactor system parameters are not in the dangerous area corresponding to cold over pressurization.

8 The main conclusion for Base Case calculation is that the safety systems are effective for an automatic plant recovery. The main conclusion for Operator Action calculation is that the action is not enough effective for a plant recovery. There is only one way to stop further cooling down of RCS to isolated faulted SG from Feedwater. VI. REFERENCES: [1] Carlson, K.E. et. al., RELAP5/MOD3.2 Code Manual Vol. 1,2,3 and 4 Draft, NUREG/CR-5535 (1990). [2] International Atomic Energy Agency, Guidance for Accident Analysis for VVER Nuclear Power Plants, VVER-SC-094, Vienna (1995). [3] Overall Plant Design Descriptions VVER Water Cooled, Water-Moderated Energy Reactor, DOE/NE-0084, Revision 1, (1987). [4] Ustanovka Reactornaia V-320. Poiasnitelnaia Zapiska. Opisanie Proektnyh Rejimov P31, GKAE. OKB, Gidropress (1971) (in Russian). [5] Groudev, P.P., et. al., Steam Generator PGV 1000 Processes Modeling Using RELAP5/MOD2, Mathematical Models in Nuclear Safety and Radiation Protection, Sofia, April [6] Data Base for VVER 1000, Safety Analyses Capability Improvement of KNPP (SACI of KNPP) in the field of Thermal-Hydraulic Analysis, BOA A-R4, INRNE-BAS, Sofia. [7] Engineering Hand Book, Safety Analysis Capability Improvement of KNPP (SACI of KNPP) in the field of Thermal-Hydraulic Analysis, BOA A-R4, INRNE-BAS, Sofia.

RELAP5/MOD3.2 INVESTIGATION OF A VVER-440 STEAM GENERATOR HEADER COVER LIFTING

RELAP5/MOD3.2 INVESTIGATION OF A VVER-440 STEAM GENERATOR HEADER COVER LIFTING Science and Technology Journal of BgNS, Vol. 8, 1, September 2003, ISSN 1310-8727 RELAP5/MOD3.2 INVESTIGATION OF A VVER-440 STEAM GENERATOR HEADER COVER LIFTING Pavlin P. Groudev, Rositsa V. Gencheva,

More information

RELAP5 Analysis of Krško Nuclear Power Plant Abnormal Event from 2011

RELAP5 Analysis of Krško Nuclear Power Plant Abnormal Event from 2011 RELAP5 Analysis of Krško Nuclear Power Plant Abnormal Event from 2011 ABSTRACT Andrej Prošek Jožef Stefan Institute Jamova cesta 39 SI-1000, Ljubljana, Slovenia andrej.prosek@ijs.si Marko Matkovič Jožef

More information

AP1000 European 15. Accident Analysis Design Control Document

AP1000 European 15. Accident Analysis Design Control Document 15.2 Decrease in Heat Removal by the Secondary System A number of transients and accidents that could result in a reduction of the capacity of the secondary system to remove heat generated in the reactor

More information

Station Blackout Analysis for a 3-Loop Westinghouse PWR Reactor Using TRACE

Station Blackout Analysis for a 3-Loop Westinghouse PWR Reactor Using TRACE The Egyptian Arab Journal of Nuclear Sciences and Applications Society of Nuclear Vol 50, 3, (229-239) 2017 Sciences and Applications ISSN 1110-0451 Web site: esnsa-eg.com (ESNSA) Station Blackout Analysis

More information

Technical University of Sofia, Department of Thermal and Nuclear Power Engineering, 8 Kliment Ohridski Blvd., 1000 Sofia, Bulgaria

Technical University of Sofia, Department of Thermal and Nuclear Power Engineering, 8 Kliment Ohridski Blvd., 1000 Sofia, Bulgaria BgNS TRANSACTIONS volume 20 number 2 (2015) pp. 143 149 Comparative Analysis of Nodalization Effects and Their Influence on the Results of ATHLET Calculations of VVER-1000 Coolant Transient Benchmark Phase

More information

Passive Cooldown Performance of Integral Pressurized Water Reactor

Passive Cooldown Performance of Integral Pressurized Water Reactor Energy and Power Engineering, 2013, 5, 505-509 doi:10.4236/epe.2013.54b097 Published Online July 2013 (http://www.scirp.org/journal/epe) Passive Cooldown Performance of Integral Pressurized Water Reactor

More information

Scenarios of Heavy Beyond-Design-Basis Accidents in HTGRs N.G. Kodochigov, Yu.P. Sukharev

Scenarios of Heavy Beyond-Design-Basis Accidents in HTGRs N.G. Kodochigov, Yu.P. Sukharev Scenarios of Heavy Beyond-Design-Basis Accidents in HTGRs N.G. Kodochigov, Yu.P. Sukharev IAEA Technical Meeting on the Safety of High Temperature Gas Cooled Reactors in the Light of the Fukushima Daiichi

More information

Deterministic Safety Analyses for Human Reliability Analysis

Deterministic Safety Analyses for Human Reliability Analysis Deterministic Safety Analyses for Human Reliability Analysis Andrej Prošek Reactor Engineering Division Jožef Stefan Institute, Slovenia Marko Čepin Faculty of Electrical Engineering University of Ljubljana,

More information

Simulation of thermal hydraulics accidental transients: evaluation of MAAP5.02 versus CATHAREv2.5

Simulation of thermal hydraulics accidental transients: evaluation of MAAP5.02 versus CATHAREv2.5 1/12 Simulation of thermal hydraulics accidental transients: evaluation of MAAP5.02 versus CATHAREv2.5 J. Bittan¹ 1) EDF R&D, Clamart (F) Summary MAAP is a deterministic code developed by EPRI that can

More information

Fatigue Monitoring for Demonstrating

Fatigue Monitoring for Demonstrating Fatigue Monitoring for Demonstrating Fatigue Design Basis Compliance Timothy J. Griesbach Structural Integrity Associates IAEA 2 nd International Symposium on Nuclear Power Plant Life Mgmt. 15-18 October,

More information

EPR: Steam Generator Tube Rupture analysis in Finland and in France

EPR: Steam Generator Tube Rupture analysis in Finland and in France EPR: Steam Generator Tube Rupture analysis in Finland and in France S. ISRAEL Institut de Radioprotection et de Sureté Nucléaire BP 17 92262 Fontenay-aux-Roses Cedex, France Abstract: Different requirements

More information

SMR/1848-T21b. Course on Natural Circulation Phenomena and Modelling in Water-Cooled Nuclear Reactors June 2007

SMR/1848-T21b. Course on Natural Circulation Phenomena and Modelling in Water-Cooled Nuclear Reactors June 2007 SMR/1848-T21b Course on Natural Circulation Phenomena and Modelling in Water-Cooled Nuclear Reactors 25-29 June 2007 T21b - Selected Examples of Natural Circulation for Small Break LOCA and Som Severe

More information

RELAP 5 ANALYSIS OF PACTEL PRIMARY-TO-SECONDARY LEAKAGE EXPERIMENT PSL-07

RELAP 5 ANALYSIS OF PACTEL PRIMARY-TO-SECONDARY LEAKAGE EXPERIMENT PSL-07 Fifth International Seminar on Horizontal Steam Generators 22 March 21, Lappeenranta, Finland. 5 ANALYSIS OF PACTEL PRIMARY-TO-SECONDARY LEAKAGE EXPERIMENT PSL-7 József Bánáti Lappeenranta University of

More information

AP1000 European 21. Construction Verification Process Design Control Document

AP1000 European 21. Construction Verification Process Design Control Document 2.5 Instrumentation and Control Systems 2.5.1 Diverse Actuation System Design Description The diverse actuation system (DAS) initiates reactor trip, actuates selected functions, and provides plant information

More information

Research Article Evaluation of Heat Removal from RBMK-1500 Core Using Control Rods Cooling Circuit

Research Article Evaluation of Heat Removal from RBMK-1500 Core Using Control Rods Cooling Circuit Science and Technology of Nuclear Installations Volume 8, Article ID 378, 8 pages doi:1155/8/378 Research Article Evaluation of Heat Removal from RBMK-15 Core Using Control Rods Cooling Circuit A Kaliatka,

More information

Supporting Deterministic T-H Analyses for Level 1 PSA

Supporting Deterministic T-H Analyses for Level 1 PSA Supporting Deterministic T-H Analyses for Level 1 PSA ABSTRACT SLAVOMÍR BEBJAK VUJE, a.s. Okružná 5 918 64 Trnava, Slovakia slavomir.bebjak@vuje.sk TOMÁŠ KLIMENT VUJE, a.s. Okružná 5 918 64 Trnava, Slovakia

More information

Westinghouse Small Modular Reactor. Passive Safety System Response to Postulated Events

Westinghouse Small Modular Reactor. Passive Safety System Response to Postulated Events Westinghouse Small Modular Reactor Passive Safety System Response to Postulated Events Matthew C. Smith Dr. Richard F. Wright Westinghouse Electric Company Westinghouse Electric Company 600 Cranberry Woods

More information

Elena Dinca CNCAN Daniel Dupleac - UPB Ilie Prisecaru UPB. Politehnica University of Bucharest, Romania (UPB)

Elena Dinca CNCAN Daniel Dupleac - UPB Ilie Prisecaru UPB. Politehnica University of Bucharest, Romania (UPB) RELAP/SCDAP Sensitivity Study on the Efficiency in Severe Core Degradation Prevention of Depressurization and Water Injection into Steam Generators following SBO at a CANDU-6 NPP National Commission for

More information

SPECIFIC DEGRADATIONS OF VVER-1000

SPECIFIC DEGRADATIONS OF VVER-1000 SPECIFIC DEGRADATIONS OF VVER-1000 (in view of lifetime extension) Dimitar Popov Kozloduy NPP, Bulgaria IAEA Technical Meeting on Degradation of Primary Components of PW cooled NPPs, Vienna, 05-08 Nov,

More information

Joint ICTP-IAEA Essential Knowledge Workshop on Deterministic Safety Analysis and Engineering Aspects Important to Safety. Trieste,12-23 October 2015

Joint ICTP-IAEA Essential Knowledge Workshop on Deterministic Safety Analysis and Engineering Aspects Important to Safety. Trieste,12-23 October 2015 Joint ICTP- Essential Knowledge Workshop on Deterministic Safety Analysis and Engineering Aspects Important to Safety Trieste,12-23 October 2015 Safety classification of structures, systems and components

More information

PSA Michael Powell, Roy Linthicum, Richard Haessler, Jeffrey Taylor

PSA Michael Powell, Roy Linthicum, Richard Haessler, Jeffrey Taylor PSA-2017 Crediting the Use of a Rapidly Deployable Mobile to Recover from and Core Damage Events Caused by a Failure of the Turbine Driven Auxiliary Feedwater Michael Powell, Roy Linthicum, Richard Haessler,

More information

VVER-440/213 - The reactor core

VVER-440/213 - The reactor core VVER-440/213 - The reactor core The fuel of the reactor is uranium dioxide (UO2), which is compacted to cylindrical pellets of about 9 height and 7.6 mm diameter. In the centreline of the pellets there

More information

MAJOR FINDINGS OF PMK-2 TEST RESULTS AND VALIDATION OF THERMOHYDRAULIC SYSTEM CODES FOR VVER SAFETY STUDIES

MAJOR FINDINGS OF PMK-2 TEST RESULTS AND VALIDATION OF THERMOHYDRAULIC SYSTEM CODES FOR VVER SAFETY STUDIES FINAL REPORT ON THE PMK-2 PROJECTS VOLUME II. MAJOR FINDINGS OF PMK-2 TEST RESULTS AND VALIDATION OF THERMOHYDRAULIC SYSTEM CODES FOR VVER SAFETY STUDIES By L. Szabados, Gy. Ézsöl, L. Perneczky, I. Tóth,

More information

Design, Safety Technology and Operability Features of Advanced VVERs

Design, Safety Technology and Operability Features of Advanced VVERs Technical Cooperation Project INT/4/142 Interregional Workshop on Advanced Nuclear Reactor Technology for Near Term Deployment IAEA Headquarters, Vienna, Austria, 4-8 July 2011 Design, Safety Technology

More information

IAEA Training in level 1 PSA and PSA applications. Other PSA s. Low power and shutdown PSA

IAEA Training in level 1 PSA and PSA applications. Other PSA s. Low power and shutdown PSA IAEA Training in level 1 PSA and PSA applications Other PSA s Low power and shutdown PSA Content Why shutdown PSA? Definitions Plat damage states and Plant operational states Specific modelling tasks of

More information

Justification of the Ignalina NPP Model on the Basis of Verification and Validation

Justification of the Ignalina NPP Model on the Basis of Verification and Validation Justification of the Ignalina NPP Model on the Basis of Verification and Validation Dr. Habil. Eugenijus Uspuras Laboratory of Nuclear Installation Safety Lithuanian Energy Institute Breslaujos 3 LT-3035

More information

ACR Safety Systems Safety Support Systems Safety Assessment

ACR Safety Systems Safety Support Systems Safety Assessment ACR Safety Systems Safety Support Systems Safety Assessment By Massimo Bonechi, Safety & Licensing Manager ACR Development Project Presented to US Nuclear Regulatory Commission Office of Nuclear Reactor

More information

NPP Simulators Workshop for Education - Passive PWR NPP & Simulator Overview

NPP Simulators Workshop for Education - Passive PWR NPP & Simulator Overview NPP Simulators Workshop for Education - Passive PWR NPP & Simulator Overview Wilson Lam (wilson@cti-simulation.com) CTI Simulation International Corp. www.cti-simulation.com Sponsored by IAEA Modified

More information

NSSS Design (Ex: PWR) Reactor Coolant System (RCS)

NSSS Design (Ex: PWR) Reactor Coolant System (RCS) NSSS Design (Ex: PWR) Reactor Coolant System (RCS) Purpose: Remove energy from core Transport energy to S/G to convert to steam of desired pressure (and temperature if superheated) and moisture content

More information

LOCA analysis of high temperature reactor cooled and moderated by supercritical light water

LOCA analysis of high temperature reactor cooled and moderated by supercritical light water GENES4/ANP23, Sep. 15-19, Kyoto, JAPAN Paper 116 LOCA analysis of high temperature reactor cooled and moderated by supercritical light water Yuki Ishiwatari 1*, Yoshiaki Oka 1 and Seiichi Koshizuka 1 1

More information

AES-2006 PSA LEVEL 1. PRELIMINARY RESULTS AT PSAR STAGE

AES-2006 PSA LEVEL 1. PRELIMINARY RESULTS AT PSAR STAGE AES-2006 PSA LEVEL 1. PRELIMINARY RESULTS AT PSAR STAGE A. Kalinkin a*, A. Solodovnikov a, S. Semashko a a JSC "VNIPIET", Saint-Petersburg, Russian Federation Abstract: This report represents PSA level

More information

Research Article The Investigation of Nonavailability of Passive Safety Systems Effects on Small Break LOCA Sequence in AP1000 Using RELAP5 MOD 4.

Research Article The Investigation of Nonavailability of Passive Safety Systems Effects on Small Break LOCA Sequence in AP1000 Using RELAP5 MOD 4. Science and Technology of Nuclear Installations Volume 1, Article ID 79151, 11 pages http://dx.doi.org/1.1155/1/79151 Research Article The Investigation of Nonavailability of Passive Safety Systems Effects

More information

EXPERIMENTS ON THE PERFORMANCE SENSITIVITY OF THE PASSIVE RESIDUAL HEAT REMOVAL SYSTEM OF AN ADVANCED INTEGRAL TYPE REACTOR

EXPERIMENTS ON THE PERFORMANCE SENSITIVITY OF THE PASSIVE RESIDUAL HEAT REMOVAL SYSTEM OF AN ADVANCED INTEGRAL TYPE REACTOR EXPERIMENTS ON THE PERFORMANCE SENSITIVITY OF THE PASSIVE RESIDUAL HEAT REMOVAL SYSTEM OF AN ADVANCED INTEGRAL TYPE REACTOR HYUN-SIK PARK *, KI-YONG CHOI, SEOK CHO, SUNG-JAE YI, CHOON-KYUNG PARK and MOON-KI

More information

A. Kaliatka, S. Rimkevicius, E. Uspuras Lithuanian Energy Institute (LEI) Safety Assessment of Shutdown Reactors at the Ignalina NPP

A. Kaliatka, S. Rimkevicius, E. Uspuras Lithuanian Energy Institute (LEI) Safety Assessment of Shutdown Reactors at the Ignalina NPP A. Kaliatka, S. Rimkevicius, E. Uspuras Lithuanian Energy Institute (LEI) Safety Assessment of Shutdown Reactors at the Ignalina NPP Outline Introduction Specific of heat removal from shutdown RBMK-type

More information

EUROPEAN STRESS TESTS FOR NUCLEAR POWER PLANTS

EUROPEAN STRESS TESTS FOR NUCLEAR POWER PLANTS EUROPEAN STRESS TESTS FOR NUCLEAR POWER PLANTS National Report of Bulgaria Nuclear Regulatory Agency December 2011 Table of Content INTRODUCTION...5 1. GENERAL DATA FOR KOZLODUY NPP...6 1.1 KOZLODUY NPP

More information

Nuclear I&C Systems Basics. The role of Instrumentation and Control Systems in Nuclear Power Plants, and their Characteristics

Nuclear I&C Systems Basics. The role of Instrumentation and Control Systems in Nuclear Power Plants, and their Characteristics Nuclear I&C Systems Basics The role of Instrumentation and Control Systems in Nuclear Power Plants, and their Characteristics Functions of Nuclear I&C Functions and significance of the Instrumentation

More information

Severe Accident Progression Without Operator Action

Severe Accident Progression Without Operator Action DAA Technical Assessment Review of the Moderator Subcooling Requirements Model Severe Accident Progression Without Operator Action Facility: Darlington Classification: October 2015 Executive summary After

More information

GUIDELINES ON PRESSURIZED THERMAL SHOCK ANALYSIS FOR WWER NUCLEAR POWER PLANTS

GUIDELINES ON PRESSURIZED THERMAL SHOCK ANALYSIS FOR WWER NUCLEAR POWER PLANTS IAEA-EBP-WWER-08 (Rev. 1) GUIDELINES ON PRESSURIZED THERMAL SHOCK ANALYSIS FOR WWER NUCLEAR POWER PLANTS Revision 1 A PUBLICATION OF THE EXTRABUDGETARY PROGRAMME ON THE SAFETY OF WWER AND RBMK NUCLEAR

More information

INTEGRAL EFFECT NON-LOCA TEST RESULTS FOR THE INTEGRAL TYPE REACTOR SMPART-P USING THE VISTA FACILITY

INTEGRAL EFFECT NON-LOCA TEST RESULTS FOR THE INTEGRAL TYPE REACTOR SMPART-P USING THE VISTA FACILITY HEFAT7 5 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 1- July 7, Sun City, South Africa CK INTEGRAL EFFECT NON-LOCA TEST RESULTS FOR THE INTEGRAL TYPE REACTOR SMPART-P

More information

Analysis of a Loss of Normal Feedwater ATWS with TRACE 5.0

Analysis of a Loss of Normal Feedwater ATWS with TRACE 5.0 Analysis of a Loss of Normal Feedwater ATWS with TRACE 5.0 ABSTRACT MJ Rebollo, Cesar Queral UPM Alenza, 4. 720 28003, Madrid Mj.rebollo@.upm.es, Cesar.queral@upm.es José María Posada Almaraz Trillo AIE

More information

AP1000 European 15. Accident Analyses Design Control Document

AP1000 European 15. Accident Analyses Design Control Document 15.3 Decrease in Reactor Coolant System Flow Rate A number of faults that could result in a decrease in the reactor coolant system flow rate are postulated. These events are discussed in this section.

More information

Research Article Relap5 Analysis of Processes in Reactor Cooling Circuit and Reactor Cavity in Case of Station Blackout in RBMK-1500

Research Article Relap5 Analysis of Processes in Reactor Cooling Circuit and Reactor Cavity in Case of Station Blackout in RBMK-1500 Science and Technology of Nuclear Installations Volume 7, Article ID 5285, 9 pages doi:1.1155/7/5285 Research Article Relap5 Analysis of Processes in Reactor Cooling Circuit and Reactor Cavity in Case

More information

A Research Reactor Simulator for Operators Training and Teaching. Abstract

A Research Reactor Simulator for Operators Training and Teaching. Abstract Organized and hosted by the Canadian Nuclear Society. Vancouver, BC, Canada. 2006 September 10-14 A Research Reactor Simulator for Operators Training and Teaching Ricardo Pinto de Carvalho and José Rubens

More information

Thermal-Hydraulic Analysis of Single and Multiple Steam Generator Tube Ruptures in a Typical 3-Loop PWR

Thermal-Hydraulic Analysis of Single and Multiple Steam Generator Tube Ruptures in a Typical 3-Loop PWR Open Access Journal Journal of Power Technologies 95 (3) (2015) 175 182 journal homepage:papers.itc.pw.edu.pl Thermal-Hydraulic Analysis of Single and Multiple Steam Generator Tube Ruptures in a Typical

More information

Shutdown and Cooldown of SEE-THRU Nuclear Power Plant for Student Performance. MP-SEE-THRU-02 Rev. 004

Shutdown and Cooldown of SEE-THRU Nuclear Power Plant for Student Performance. MP-SEE-THRU-02 Rev. 004 Student Operating Procedure Millstone Station Shutdown and Cooldown of SEE-THRU Nuclear Power Plant for Student Performance Approval Date: 10/4/2007 Effective Date: 10/4/2007 TABLE OF CONTENTS 1. PURPOSE...3

More information

DESIGN AND EVALUATION OF NEW OVERVIEW SCREENS FOR THE LABIHS SIMULATOR

DESIGN AND EVALUATION OF NEW OVERVIEW SCREENS FOR THE LABIHS SIMULATOR 2015 International Nuclear Atlantic Conference - INAC 2015 São Paulo, SP, Brazil, October 4-9, 2015 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ISBN: 978-85-99141-06-9 DESIGN AND EVALUATION OF NEW

More information

nuclear science and technology

nuclear science and technology EUROPEAN COMMISSION nuclear science and technology Improved Accident Management of VVER Nuclear Power Plants (IMPAM-VVER) Contract FIKS-CT2001-00196 Final report Work performed as part of the European

More information

NURETH Progress on Severe Accident Code Benchmarking in the Current OECD TMI-2 Exercise

NURETH Progress on Severe Accident Code Benchmarking in the Current OECD TMI-2 Exercise NURETH-15 544 Progress on Severe Accident Code Benchmarking in the Current OECD TMI-2 Exercise G. Bandini (ENEA), S. Weber, H. Austregesilo (GRS), P. Drai (IRSN), M. Buck (IKE), M. Barnak, P. Matejovic

More information

PSA ANALYSIS FOCUSED ON MOCHOVCE NPP SAFETY MEASURES EVALUATION FROM OPERATIONAL SAFETY POINT OF VIEW

PSA ANALYSIS FOCUSED ON MOCHOVCE NPP SAFETY MEASURES EVALUATION FROM OPERATIONAL SAFETY POINT OF VIEW International Conference Nuclear Energy in Central Europe 2001 Hoteli Bernardin, Portorož, Slovenia, September 10-13, 2001 www: http://www.drustvo-js.si/port2001/ e-mail: PORT2001@ijs.si tel.:+ 386 1 588

More information

An Introduction of Simulator Exercises and Operator Interviews in support of C-2 Human Reliability Analysis

An Introduction of Simulator Exercises and Operator Interviews in support of C-2 Human Reliability Analysis An Introduction of Simulator Exercises and Operator Interviews in support of C-2 Human Reliability Analysis Yongping Qiu a*, Yucheng Zhuo a, Wenjing Lei a, Juntao Hu a a Shanghai Nuclear Engineering Research

More information

AP1000 European 7. Instrumentation and Controls Design Control Document

AP1000 European 7. Instrumentation and Controls Design Control Document 7.5 Safety-Related Display Information 7.5.1 Introduction An analysis is conducted to identify the appropriate variables and to establish the appropriate design bases and qualification criteria for instrumentation

More information

IAEA-TECDOC-1361 Assessment and management of ageing of major nuclear power plant components important to safety

IAEA-TECDOC-1361 Assessment and management of ageing of major nuclear power plant components important to safety IAEA-TECDOC-1361 Assessment and management of ageing of major nuclear power plant components important to safety Primary piping in PWRs July 2003 The originating Section of this publication in the IAEA

More information

Seismic Margin Assessment for Nuclear Facilities of Kozloduy NPP

Seismic Margin Assessment for Nuclear Facilities of Kozloduy NPP Proceedings of the 10 th International Conference on Nuclear Option in Countries with Small and Medium Electricity Grids Zadar, Croatia, 1-4 June 2014 Paper No. 121 Seismic Margin Assessment for Nuclear

More information

CANDU Safety #12: Large Loss of Coolant Accident F. J. Doria Atomic Energy of Canada Limited

CANDU Safety #12: Large Loss of Coolant Accident F. J. Doria Atomic Energy of Canada Limited CANDU Safety #12: Large Loss of Coolant Accident F. J. Doria Atomic Energy of Canada Limited 24-May-01 CANDU Safety - #12 - Large LOCA.ppt Rev. 0 1 Overview Event sequence for a large break loss-of of-coolant

More information

Analysis of the Presence of Vapor in Residual Heat Removal System in Modes 3/4 Loss-of-Coolant Accident Conditions using RELAP5

Analysis of the Presence of Vapor in Residual Heat Removal System in Modes 3/4 Loss-of-Coolant Accident Conditions using RELAP5 4 th European Nuclear Young Generation Forum Prague, 17-22 May 2011 Analysis of the Presence of Vapor in Residual Heat Removal System in Modes 3/4 Loss-of-Coolant Accident Conditions using RELAP5 Kerim

More information

AP1000 European 21. Construction Verification Process Design Control Document

AP1000 European 21. Construction Verification Process Design Control Document 2.4 Steam and Power Conversion Systems 2.4.1 Main and Startup Feedwater System See Section 2.2.4 for information on the main feedwater system. Design Description The startup feedwater system supplies feedwater

More information

DEVELOPMENT OF LOW POWER SHUTDOWN LEVEL 1 PSA MODEL FOR WESTINGHOUSE TYPE REACTORS IN KOREA : OVERVIEW, RESULTS AND INSIGHTS

DEVELOPMENT OF LOW POWER SHUTDOWN LEVEL 1 PSA MODEL FOR WESTINGHOUSE TYPE REACTORS IN KOREA : OVERVIEW, RESULTS AND INSIGHTS DEVELOPMENT OF LOW POWER SHUTDOWN LEVEL 1 PSA MODEL FOR WESTINGHOUSE TYPE REACTORS IN KOREA : OVERVIEW, RESULTS AND INSIGHTS Yong Suk LEE 1, Eden KIM 1,Gunhyo JUNG 1, Seok-won HWANG 2, Ho-jun JEON 2 1

More information

McGuire Nuclear Station UFSAR Chapter 15

McGuire Nuclear Station UFSAR Chapter 15 McGuire Nuclear Station UFSAR Chapter 15 Table of Contents 15.0 Accident Analysis 15.0.1 References 15.1 Increase in Heat Removal by the Secondary System 15.1.1 Feedwater System Malfunctions that Result

More information

Verification of the MELCOR Code Against SCDAP/RELAP5 for Severe Accident Analysis

Verification of the MELCOR Code Against SCDAP/RELAP5 for Severe Accident Analysis Verification of the Code Against SCDAP/RELAP5 for Severe Accident Analysis Jennifer Johnson COLBERT 1* and Karen VIEROW 2 1 School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907-2017,

More information

PROBABILISTIC SAFETY ASSESSMENT OF JAPANESE SODIUM- COOLED FAST REACTOR IN CONCEPTUAL DESIGN STAGE

PROBABILISTIC SAFETY ASSESSMENT OF JAPANESE SODIUM- COOLED FAST REACTOR IN CONCEPTUAL DESIGN STAGE PROBABILISTIC SAFETY ASSESSMENT OF JAPANESE SODIUM- COOLED FAST REACT IN CONCEPTUAL DESIGN STAGE Kurisaka K. 1 1 Japan Atomic Energy Agency, Ibaraki, Japan Abstract Probabilistic safety assessment was

More information

Verification of the Kuosheng BWR/6 TRACE Model with Load Rejection Startup Test

Verification of the Kuosheng BWR/6 TRACE Model with Load Rejection Startup Test Verification of the Kuosheng BWR/6 TRACE Model with Load Rejection Startup Test Kuan-Yuan Lin, Chunkuan Shih Institute of Nuclear Engineering and Science National Tsing-Hua University, TAIWAN Jong-Rong

More information

DISTRIBUTION LIST. Preliminary Safety Report Chapter 12 Design Basis Conditions Analysis UK HPR1000 GDA. GNS Executive.

DISTRIBUTION LIST. Preliminary Safety Report Chapter 12 Design Basis Conditions Analysis UK HPR1000 GDA. GNS Executive. Rev: 000 Page: 2 / 34 DISTRIBUTION LIST Recipients GNS Executive GNS all staff Cross Box GNS and BRB all staff CGN EDF Regulators Public Rev: 000 Page: 3 / 34 SENSITIVE INFORMATION RECORD Section Number

More information

4.2 DEVELOPMENT OF FUEL TEST LOOP IN HANARO

4.2 DEVELOPMENT OF FUEL TEST LOOP IN HANARO 4.2 DEVELOPMENT OF FUEL TEST LOOP IN HANARO Sungho Ahn a, Jongmin Lee a, Suki Park a, Daeyoung Chi a, Bongsik Sim a, Chungyoung Lee a, Youngki Kim a and Kyehong Lee b a Research Reactor Engineering Division,

More information

Critical Issues Concerned with the Assessment of Passive System Reliability

Critical Issues Concerned with the Assessment of Passive System Reliability IAEA Technical Meeting on Probabilistic Safety Assessment for New Nuclear Power Plants Design Vienna, October 1-5 2012 Critical Issues Concerned with the Assessment of Passive System Reliability Luciano

More information

Research Article Assessment of Severe Accident Depressurization Valve Activation Strategy for Chinese Improved 1000 MWe PWR

Research Article Assessment of Severe Accident Depressurization Valve Activation Strategy for Chinese Improved 1000 MWe PWR Science and Technology of Nuclear Installations Volume 3, Article ID 79437, pages http://dx.doi.org/.55/3/79437 Research Article Assessment of Severe Accident Depressurization Valve Activation Strategy

More information

Lecture 7 Heat Removal &

Lecture 7 Heat Removal & Containment Dr. V.G. Snell Nuclear Reactor Safety Course McMaster University Containment R4 vgs 1 Where We Are (still) Deterministic Requirements Experience Chapter 3 Chapter 1 Safety Goals Chapter 6 Probabilistic

More information

Activities on Safety Improvement of Czech NPPs in Solution of Severe Accident Issues

Activities on Safety Improvement of Czech NPPs in Solution of Severe Accident Issues Activities on Safety Improvement of Czech NPPs in Solution of Severe Accident Issues Jiří Duspiva ÚJV Řež, a. s. Division of Nuclear Safety and Reliability Dept. of Severe Accidents and Thermomechanics

More information

Source Terms Issues and Implications on the Nuclear Reactor Safety

Source Terms Issues and Implications on the Nuclear Reactor Safety Source Terms Issues and Implications on the Nuclear Reactor Safety Jin Ho Song Korea Atomic Energy Research Institute t Technical Meeting on Source Term Evaluation for Severe Accidents, Vienna International

More information

Grid Stability and Safety Issues Associated With Nuclear Power Plants

Grid Stability and Safety Issues Associated With Nuclear Power Plants Grid Stability and Safety Issues Associated With Nuclear Power Plants Dr. John H. Bickel, Ph.D. Workshop on International Grid Interconnection in Northeast Asia Beijing, China May 14-16, 2001 1 Items to

More information

Status report 85 - VVER-1500 (V-448) (VVER-1500 (V-448))

Status report 85 - VVER-1500 (V-448) (VVER-1500 (V-448)) Status report 85 - VVER-1500 (V-448) (VVER-1500 (V-448)) Overview Full name Acronym Reactor type Coolant Moderator Neutron spectrum Thermal capacity Gross Electrical capacity Design status Designers VVER-1500

More information

Example Pressurized Water Reactor Defense-in-Depth Measures For GSI-191, PWR Sump Performance

Example Pressurized Water Reactor Defense-in-Depth Measures For GSI-191, PWR Sump Performance Example Pressurized Water Reactor Defense-in-Depth Measures For GSI-191, PWR Sump Performance ATTACHMENT Introduction This paper describes a range of defense-in-depth measures that either currently exist

More information

The Analysis of TRACE/FRAPTRAN in the Fuel Rods of Maanshan PWR for LBLOCA

The Analysis of TRACE/FRAPTRAN in the Fuel Rods of Maanshan PWR for LBLOCA The Analysis of TRACE/FRAPTRAN in the Fuel Rods of Maanshan PWR for LBLOCA J. R. Wang, W. Y. Li, H. T. Lin, J. H. Yang, C. Shih, S. W. Chen Abstract Fuel rod analysis program transient (FRAPTRAN) code

More information

EXAMPLE OF SEVERE ACCIDENT MANAGEMENT GUIDELINES VALIDATION AND VERIFICATION USING FULL SCOPE SIMULATOR

EXAMPLE OF SEVERE ACCIDENT MANAGEMENT GUIDELINES VALIDATION AND VERIFICATION USING FULL SCOPE SIMULATOR International Conference Nuclear Energy in Central Europe 2001 Hoteli Bernardin, Portorož, Slovenia, September 10-13, 2001 www: http://www.drustvo-js.si/port2001/ e-mail: PORT2001@ijs.si tel.:+ 386 1 588

More information

Module 05 WWER/ VVER (Russian designed Pressurized Water Reactors)

Module 05 WWER/ VVER (Russian designed Pressurized Water Reactors) Module 05 WWER/ VVER (Russian designed Pressurized Water Reactors) 1.3.2016 Prof.Dr. Böck Technical University Vienna Atominstitut Stadionallee 2, 1020 Vienna, Austria ph: ++43-1-58801 141368 boeck@ati.ac.at

More information

Research Article RELAP5/MOD3.3 Best Estimate Analyses for Human Reliability Analysis

Research Article RELAP5/MOD3.3 Best Estimate Analyses for Human Reliability Analysis Science and Technology of Nuclear Installations Volume 21, Article ID 797193, 12 pages doi:1.1155/21/797193 Research Article RELAP5/MOD3.3 Best Estimate Analyses for Human Reliability Analysis Andrej Prošek

More information

ABSTRACT DESING AND IMPLEMENTATION OF FORCED COOLING TOWERS FOR LOVIISA NPP SAFETY- AND RESIDUAL HEAT REMOVAL (RHR) COOLING CIRCUITS

ABSTRACT DESING AND IMPLEMENTATION OF FORCED COOLING TOWERS FOR LOVIISA NPP SAFETY- AND RESIDUAL HEAT REMOVAL (RHR) COOLING CIRCUITS ABSTRACT DESING AND IMPLEMENTATION OF FORCED COOLING TOWERS FOR LOVIISA NPP SAFETY- AND RESIDUAL HEAT REMOVAL (RHR) COOLING CIRCUITS S.Tarkiainen, T.Hyrsky, I.Paavola, A.Teräsvirta Fortum Nuclear and Thermal

More information

ANALYSIS OF THE VVER-1000 COOLANT TRANSIENT BENCHMARK PHASE 1 WITH RELAP5/PARCS

ANALYSIS OF THE VVER-1000 COOLANT TRANSIENT BENCHMARK PHASE 1 WITH RELAP5/PARCS The 11 th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-11) Paper: 255 ANALYSIS OF THE VVER-1000 COOLANT TRANSIENT BENCHMARK PHASE 1 WITH RELAP5/PARCS Sánchez Espinoza 1 Víctor

More information

Operating Nuclear Reactors in Ukraine: Enhancement of Safety and Performance

Operating Nuclear Reactors in Ukraine: Enhancement of Safety and Performance IAEA-CN-164-6S05 Operating Nuclear Reactors in Ukraine: Enhancement of Safety and Performance S. Bozhkoa, G. Gromovb, S. Sholomitskyb, O.Sevbob, G. Balakanc a State Nuclear Regulatory Authority of Ukraine,

More information

AP1000 European 16. Technical Specifications Design Control Document

AP1000 European 16. Technical Specifications Design Control Document 16.3 Investment Protection 16.3.1 Investment Protection Short-term Availability Controls The importance of nonsafety-related systems, structures and components in the AP1000 has been evaluated. The evaluation

More information

AP1000 European 6. Engineered Safety Features Design Control Document

AP1000 European 6. Engineered Safety Features Design Control Document 6.2 Containment Systems 6.2.1 Containment Functional Design 6.2.1.1 Containment Structure 6.2.1.1.1 Design Basis The containment system is designed such that for all break sizes, up to and including the

More information

Safety Analysis Results of Representative DEC Accidental Transients for the ALFRED Reactor

Safety Analysis Results of Representative DEC Accidental Transients for the ALFRED Reactor FR13 - TECHNICAL SESSION 3.5: Fast reactor safety: post-fukushima lessons and goals for next-generation reactors Paper n. IAEA-CN-199/260 Safety Analysis Results of Representative DEC Accidental Transients

More information

SMART Standard Design Approval inspection result July. 4 th

SMART Standard Design Approval inspection result July. 4 th SMART Standard Design Approval inspection result 2012. July. 4 th Content Ⅰ. Inspection outline. 1 Ⅱ. Inspection proceedings 2 Ⅲ. SMART Standard Design features. 3 Ⅳ. Standard Design inspection result

More information

Influence of Coolant Phase Separation on Event Timing During a Severe Core Damage Accident in a Generic CANDU 6 Plant

Influence of Coolant Phase Separation on Event Timing During a Severe Core Damage Accident in a Generic CANDU 6 Plant Influence of Coolant Phase Separation on Event Timing During a Severe Core Damage Accident in a Generic CANDU 6 Plant M.J. Brown, S.M. Petoukhov and P.M. Mathew Atomic Energy of Canada Limited Fuel & Fuel

More information

Application of MELCOR at GRS Regarding Spent Fuel Pool Analyses and Assessment of SAMG Procedures

Application of MELCOR at GRS Regarding Spent Fuel Pool Analyses and Assessment of SAMG Procedures Application of MELCOR at GRS Regarding Spent Fuel Pool Analyses and Assessment of SAMG Procedures 7 th Meeting of the European MELCOR User Group March 17, 2015 TRACTEBEL Engineering, Brussels, Belgium

More information

Risks Associated with Shutdown in PWRs

Risks Associated with Shutdown in PWRs International Conference Nuclear Option in Countries with Small and Mi Opatija, Croatia, 1996 Risks Associated with Shutdown in PWRs Igor Grlicarev Slovenian Nuclear Safety Administration Vojkova 59, 1113

More information

Advanced Sodium Fast Reactor Power Unit Concept

Advanced Sodium Fast Reactor Power Unit Concept International Conference on Fast Reactors and Related Fuel Cycles: Challenges and Opportunities (FR 09) Advanced Sodium Fast Reactor Power Unit Concept V.M. Poplavsky a, A.M. Tsybulya a, Yu.E. Bagdasarov

More information

Computerized monitoring system of residual cyclic life of WWER RP equipment

Computerized monitoring system of residual cyclic life of WWER RP equipment Computerized monitoring system of residual cyclic life of WWER RP equipment The computerized monitoring system of residual cyclic life (SACOR-M) is intended for in-service calculation of cumulative fatigue

More information

Experimental Measurements for Plate Temperatures of MTR Fuel Elements at Sudden Loss of Flow Accident and Comparison with Computed Results

Experimental Measurements for Plate Temperatures of MTR Fuel Elements at Sudden Loss of Flow Accident and Comparison with Computed Results Experimental Measurements for Plate Temperatures of MTR Fuel Elements at Sudden Loss of Flow Accident and Comparison with Computed Results Dr. Bülent SEVDIK TR 2 Reactor Unit Head Turkish Atomic Energy

More information

RELAP5/MOD3.2 ASSESSMENT STUDIES BASED ON THE PACTEL AND PMK-2 LOSS OF FEED WATER TESTS

RELAP5/MOD3.2 ASSESSMENT STUDIES BASED ON THE PACTEL AND PMK-2 LOSS OF FEED WATER TESTS Proceedings of the 3rd ASME/JSME Joint Fluids Engineering Conference July 18-23, 1999, San Francisco, California FEDSM99-7009 RELAP5/MOD3.2 ASSESSMENT STUDIES BASED ON THE PACTEL AND PMK-2 LOSS OF FEED

More information

DESIGN AND SAFETY PRINCIPLES LEONTI CHALOYAN DEPUTY CHIEF ENGINEER ON MODERNIZATION

DESIGN AND SAFETY PRINCIPLES LEONTI CHALOYAN DEPUTY CHIEF ENGINEER ON MODERNIZATION DESIGN AND SAFETY PRINCIPLES LEONTI CHALOYAN DEPUTY CHIEF ENGINEER ON MODERNIZATION VIENNA OKTOBER 3-6, 2016 1 ANPP * ANPP is located in the western part of Ararat valley 30 km west of Yerevan close to

More information

Probabilistic Safety Assessment for Hot Standby and Hot Shutdown

Probabilistic Safety Assessment for Hot Standby and Hot Shutdown Probabilistic Safety Assessment for Hot Standby and Hot Shutdown ABSTRACT Marko Čepin Jožef Stefan Institute Jamova 39, SI-1000 Ljubljana, Slovenia marko.cepin@ijs.si Rudolf Prosen Nuclear Power Plant

More information

Research Article Investigation of TASS/SMR Capability to Predict a Natural Circulation in the Test Facility for an Integral Reactor

Research Article Investigation of TASS/SMR Capability to Predict a Natural Circulation in the Test Facility for an Integral Reactor Science and Technology of Nuclear Installations, Article ID 18182, 6 pages http://dx.doi.org/1.1155/214/18182 Research Article Investigation of TASS/SMR Capability to Predict a Natural Circulation in the

More information

CANDU Safety #6 - Heat Removal Dr. V.G. Snell Director Safety & Licensing

CANDU Safety #6 - Heat Removal Dr. V.G. Snell Director Safety & Licensing CANDU Safety #6 - Heat Removal Dr. V.G. Snell Director Safety & Licensing 24/05/01 CANDU Safety - #6 - Heat Removal.ppt Rev. 0 vgs 1 Overview the steam and feedwater system is similar in most respects

More information

nuclear science and technology

nuclear science and technology EUROPEAN COMMISSION nuclear science and technology Fast-Acting Boron Injection System (FABIS) Contract No: FIKS-CT-2001-00195 Final report (short version) Work performed as part of the European Atomic

More information

AP1000 European 9. Auxiliary Systems Design Control Document

AP1000 European 9. Auxiliary Systems Design Control Document 9.2 Water Systems 9.2.1 Service Water System The service water system (SWS) supplies cooling water to remove heat from the nonsafety-related component cooling water system (CCS) heat exchangers in the

More information

VALIDATION OF COUPLED NEUTRON-KINETIC / THERMAL- HYDRAULIC CODES FOR VVER-TYPE REACTORS

VALIDATION OF COUPLED NEUTRON-KINETIC / THERMAL- HYDRAULIC CODES FOR VVER-TYPE REACTORS VALIDATION OF COUPLED NEUTRON-NETIC / THERMAL- HYDRAULIC CODES FOR VVER-TYPE REACTORS Siegfried Mittag, Sören Kliem, Frank-Peter Weiss, Riitta Kyrki-Rajamäki 1, Anitta Hämäläinen 1, Siegfried Langenbuch

More information

Accident Sequence Analysis. Workshop Information IAEA Workshop

Accident Sequence Analysis. Workshop Information IAEA Workshop IAEA Training Course on Safety Assessment of NPPs to Assist Decision Making Accident Sequence Analysis Lecturer Lesson Lesson IV IV 3_2.2 3_2.2 Workshop Information IAEA Workshop City, XX XX - City -XX,

More information

Heat exchanger equipment of TPPs & NPPs

Heat exchanger equipment of TPPs & NPPs Heat exchanger equipment of TPPs & NPPs Lecturer: Professor Alexander Korotkikh Department of Atomic and Thermal Power Plants TPPs Thermal power plants NPPs Nuclear power plants Content Steam Generator

More information

Temelin 1000 MW Units Active Testing Stage - Commissioning Experience

Temelin 1000 MW Units Active Testing Stage - Commissioning Experience International Conference Nuclear Energy for New Europe 2003 Portorož, Slovenia, September 8-11, 2003 http://www.drustvo-js.si/port2003 1 ABSTRACT Temelin 1000 MW Units Active Testing Stage - Commissioning

More information

Recent Issues in Reactor Thermalhydraulics and Safety

Recent Issues in Reactor Thermalhydraulics and Safety Recent Issues in Reactor Thermalhydraulics and Safety Sanjoy Banerjee Distinguished Professor and Director, The Energy Institute The City College of New York, New York banerjee@che.ccny.cuny.edu June 2012,

More information