Lightning and Atmospheric Chemistry

Size: px
Start display at page:

Download "Lightning and Atmospheric Chemistry"

Transcription

1 Lightning and Atmospheric Chemistry 1785 Cavendish performed the first experiments with a spark discharge in glass tube. Discovered that oxidized nitrogen (NO x =NO + NO 2 ) compounds resulted from the burning of air von Liebig discovered nitric acid (HNO 3 ) in rain water and related it to Cavendish s experiments. NO x oxidized in drops. Nitric acid (HNO 3 ) provides an important source of nitrate for biosphere. Important in evolution of life Crutzen showed that tropospheric ozone (O 3 ) was strongly influenced by the amounts of atmospheric NO x. Ozone is poisonous to people, animals, plants, and is harmful to perishable materials such as rubber, plastics, etc s led to a dramatic increase in the study of lightning produced NO x since O 3 is a strong greenhouse gas.

2 Nitrogen: Nitrogen is a major component of the atmosphere, but an essential nutrient in short supply to living organisms. OXIDATION STATES OF NITROGEN N has 5 electrons in valence shell a9 oxidation states from 3 to +5 Increasing oxidation number (oxidation reactions) NH 3 Ammonia NH 4 + N 2 N 2 O Nitrous oxide NO Nitric oxide HONO Nitrous acid NO 2 - NO 2 Nitrogen dioxide HNO 3 Nitric acid NO 3 - Ammonium Nitrite Nitrate R 1 N(R 2 )R 3 Organic N free radical free radical N 2 O 5 Nitrogen pentoxide Decreasing oxidation number (reduction reactions)

3 NO x [NO+NO 2 ]: Why is NOx important? NOx indirectly affects our local air quality and global climate Has a strong influence on Ozone (O3) and hydroxyl radical (OH) concentration is a primary pollutant found in photochemical smog is a precursor for tropospheric ozone formation TROPOSPHERIC OZONE: is the third most important greenhouse gas impacts the Earth s radiation budget and can cause changes in atmospheric circulation patterns. is toxic to humans, plants and animals.

4 EULINOX Observational Evidence of LNOx

5 (Germany) New Mexico Colorado

6

7 Lightning-Produced NO x Theoretical estimates Laboratory estimates Field Measurements Tuck (1976) Chameides et al. (1977) Chameides (1979) Dawson (1980) Hill et al. (1980) Bhetanabhotla et al. (1985) Chameides et al. (1977) Levine et al. (1981) Peyrous and Lapeyre (1982) Borucki and Chameides (1984) Wang et al. (1998) Noxon (1976, 1978) Kowalczyk and Bauer (1982) Drapcho et al. (1983) Franzblau and Popp (1989) Huntrieser (1999) Tg N / yr

8 Lightning: An Important Source of NO x Current Annual NO x Source Fossil Fuel Burning Biomass Burning Lightning Soil Emissions Aviation N2O Degradation Total Tg N/yr (28) 4-24 (10) 1-20 (5-7) 1-16 (5.5) (0.7) (0.4) ~50 [Schumann and Huntrieser 2007]

9 Why such large uncertainties? To get a global number one has to answer 3 questions: What is the energy of a typical lightning discharge? How much NO x is produced per unit energy? How do we extrapolate to the globe?

10 1. Energy of a lightning discharge E 1 = L I(t) dt (t) r(t) 2 E 2 = V I(t) dt = V Q

11 Wang et al. (1998)

12

13 How long is a typical lightning channel?

14

15 Current (Amperes) E 2 = V I(t) dt = V Q I(t) = I o [exp -at -exp -bt +exp -ct ] I o = 35 ka I o = ka V ~ 3x10 8 Volts Time (microseconds) E = Joules <E> = 6.7 x 10 9 J (Price et al., 1997)

16

17

18 2. How much NO x is produced per unit energy? T~30,000 K O 2 N 2 O N N NO NO 2 NO NO O NO NO 2 NO ~1mm ~5 cm

19 Temperature of Lightning

20 How much air is processed by lightning?

21 Size of lightning channel

22 Zel dovich Reactions O 2 O + O O + N 2 NO + N N + O 2 NO + O When the lightning channel cools below T ~ 2500 K NO x remains fixed or frozen in the atmosphere (fixed nitrogen) ~85% of NO x is in form of NO With volume mixing ratios of 1-4% P (NO) = molecules/joule

23 Wang et al. (1998)

24 Hot channel ~cm Region of coronae and streamers due to high electric fields surrounding channel ~ meters O + + N 2 NO + + N NO + + e - NO NO + + N N 2 O + N 2 O + + e - N 2 O Much larger volume of air

25

26

27

28

29 3. Global Extrapolation

30

31 Flashrate Parameterization CTH Z_IC Flashrate parameterization of Price and Rind [1992] F continental CTH 4.9 CC F marine CTH C Z_CG IC/CG Ratio parameterization of Price and Rind [1993] IC-CG Ratio CC 4.0

32 Using Satellite Observations of Clouds Using ISCCP clouds from Annual mean NO x production is 12 Tg N/yr Price et al. (1997)

33 Monthly NOx production (Tg) Global estimates of monthly NO production (Tg) J F M A M J J A S O N D Month

34 Using Modelled Clouds

35 How do we model lightning in GCMs? GCM simulations using lightning parameterizations Total Lightning: F ~ H 5 over land F ~ H 1.7 over oceans (Price & Rind, 1992) Fraction of CG vs. IC lightning: IC/CG ~ cold cloud thickness (Price and Rind, 1993)

36 Observations Model

37

38 Levy et al. (1999)

39

40 Obs (satellite) Model (6 TgN/yr) Model (4-8 TgN/yr) Model (no lightning) TOP-DOWN ESTIMATES OF GLOBAL LIGHTNING NOx EMISSIONS Using SCIAMACHY (NO 2 ), OMI (O 3 ), ACE-FTS (HNO 3 ): Target locations/times where NO 2 column is dominated by lightning source Global source of 6 ± 2 TgN/yr from lightning [Martin et al., 2007]

41

42 Formation of Ozone (O 3 ) OH + CO H + CO 2 H + O 2 + M HO 2 + M Low NO x High NO x HO 2 + O 3 OH + 2O 2 Net: CO + O 3 CO 2 + 2O 2 Ozone destruction HO 2 + NO OH + NO 2 NO 2 + h NO + O O + O 2 + M O 3 + M Net: CO + 2O 2 CO 2 + O 3 Ozone production

43 Simplified Chemistry of Nitrogen Oxides Exploit Longer Lifetimes in Upper Troposphere hv NO NO 2 O 3, RO 2 Ozone (O 3 ) lifetime ~ month Upper Troposphere NOx lifetime ~ week HNO 3 lifetime ~ weeks NO / NO2 with altitude hv NO NO 2 O 3, RO 2 NOx lifetime < day Nitrogen Oxides (NO x ) HNO 3 Ozone (O 3 ) lifetime ~ days Boundary Layer

44

45

46

47

48

49 July 21, UT at 400mb Total NO x Lightning NO x Maximum NO x production of 1 ppb (Flatoy and Hov, 1997)

50 July 21, UT Total Ozone Production Ozone Production Due to Lightning Ozone production : max of 1 ppb/hour

51 July 1998 mean at 400mb NO x from lightning Ozone from lightning

52 NASA Goddard Institute for Space Studies (GISS) General Circulation Model (GCM) 2xCO 2 climate - Control = ~ 4 o C global warming Price & Rind (1994) +30%

53 CHANGING LNO X? Warmer climate = more thunderclouds = more lightning Impact: (1) increasing UT ozone formation (positive forcing) (2) Increasing OH leads to small reductions in CH 4 (negative forcing) Models predict % LNO x per K

54 Summary and Conclusions Lightning is a major source of NO x in the troposphere and is likely the largest source in the upper troposphere. Lightning produces between 5-10 Tg N/yr. While NO x production by lightning is a minor contributor to surface O 3 concentrations, and is likely the largest contributor in the tropical upper troposphere. 75% of the lightning-no x and O 3 is produced in the tropics The highest global production of LNO x occurs during JJA and the lowest production occurs during DJF. Due to this natural imbalance, the northern hemisphere had a natural bias in tropospheric ozone, even in pre-industrial times. Future climate change may increase global lightning activity resulting in an increase in tropospheric O 3 (positive feedback).

Module 7: Combustion and Environment Lecture 36: Atmosphere. The Lecture Contains: Atmosphere. Chemical Emission From Combustion

Module 7: Combustion and Environment Lecture 36: Atmosphere. The Lecture Contains: Atmosphere. Chemical Emission From Combustion The Lecture Contains: Atmosphere Chemical Emission From Combustion Chemicals From Combustion (Contd..) file:///d /Web%20Course/Dr.%20D.P.%20Mishra/Local%20Server/FOC/lecture36/36_1.htm[10/5/2012 4:32:17

More information

The next 2 weeks. Reading: IPCC (2007), Chap 7 (sections 7.4 and 7.5)

The next 2 weeks. Reading: IPCC (2007), Chap 7 (sections 7.4 and 7.5) PCC 588 Jan 15 The next 2 weeks Th. Jan 15: non-co 2 greenhouse gases CH 4 and N 2 O Tu. Jan 20: non-co 2 greenhouse gases: ozone, halocarbons Th. Jan 22: Aerosols and Climate Tu. Jan 27: Paper discussion

More information

The modification of global atmospheric Nitrogen cycling by human activities. David Fowler Centre for Ecology and Hydrology Edinburgh UK

The modification of global atmospheric Nitrogen cycling by human activities. David Fowler Centre for Ecology and Hydrology Edinburgh UK The modification of global atmospheric Nitrogen cycling by human activities David Fowler Centre for Ecology and Hydrology Edinburgh UK Background The N cycle Global N emissions Oxidised Nitrogen Reduced

More information

CHAPTER 6: GEOCHEMICAL CYCLES Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017

CHAPTER 6: GEOCHEMICAL CYCLES Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017 CHAPTER 6: GEOCHEMICAL CYCLES Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017 THE EARTH: ASSEMBLAGE OF ATOMS OF THE 92 NATURAL ELEMENTS Most abundant elements: oxygen (in solid

More information

The Global Nitrogen Cycle

The Global Nitrogen Cycle OCN 401 The Global Nitrogen Cycle (11.30.10) Fig. 12.2. Units are 10 12 g N/yr (Tg) Role of N in Biogeochemistry Bioavailability of N (and/or P) can limit NPP on land/oceans; controls size of biomass N

More information

Effect of Aviation on Atmospheric Composition

Effect of Aviation on Atmospheric Composition Effect of Aviation on Atmospheric Composition Cynthia Whaley, Kimberly Strong, Zen Mariani, and Steven Barrett (MIT) UTIAS Colloquium on Sustainable Aviation 15-16 May 2013 Outline Introduction Composition

More information

Leif Backman HENVI Seminar February 19, 2009

Leif Backman HENVI Seminar February 19, 2009 Methane Sources and Sinks Leif Backman HENVI Seminar February 19, 2009 Background Atmospheric methane Sources & Sinks Concentration variations & trends Objective & methods Objective & Goals Research plan

More information

Aerosol from biomass burning and mineral aerosols. 1. What are aerosols from biomass burning?

Aerosol from biomass burning and mineral aerosols. 1. What are aerosols from biomass burning? Lectures 40-41. Global change due to anthropogenic aerosols: Aerosol from biomass burning and mineral aerosols. Objectives: 1. What are aerosols from biomass burning? 2. What is mineral aerosol? 3. Direct

More information

MOZART Development, Evaluation, and Applications at GFDL

MOZART Development, Evaluation, and Applications at GFDL MOZART Development, Evaluation, and Applications at GFDL MOZART Users Meeting August 17, 25 Boulder, CO Arlene M. Fiore Larry W. Horowitz Arlene.Fiore@noaa.gov Larry.Horowitz@noaa.gov Outline: MOZART Development,

More information

Atmospheric Methane Distribution and Trends: Impacts on Climate and Ozone Air Quality

Atmospheric Methane Distribution and Trends: Impacts on Climate and Ozone Air Quality Atmospheric Methane Distribution and Trends: Impacts on Climate and Ozone Air Quality Arlene M. Fiore Larry Horowitz (NOAA/GFDL) Jason West (Princeton) Ed Dlugokencky (NOAA/GMD) Earth, Atmospheric, and

More information

Risk and Uncertainties in Anthropogenic. Control over Greenhouse Forcing in the TAR. with a focus on Atmospheric Chemistry

Risk and Uncertainties in Anthropogenic. Control over Greenhouse Forcing in the TAR. with a focus on Atmospheric Chemistry FCCC, Bonn, 4-6 Apr 2002 SBSTA IPCC/TAR Michael Prather University of California at Irvine Risk and Uncertainties in Anthropogenic Control over Greenhouse Forcing in the TAR with a focus on Atmospheric

More information

The Global Nitrogen Cycle, and Linkages Between C, N, and P Cycles

The Global Nitrogen Cycle, and Linkages Between C, N, and P Cycles OCN 401 The Global Nitrogen Cycle, and Linkages Between C, N, and P Cycles (12.1.11) The Contemporary N Cycle - Basic Facts - Reservoirs and Fluxes Global N and P Budgets - balance between N-fixation and

More information

Applications of Satellite Measurements and Modeling for Air Quality Changsub Shim

Applications of Satellite Measurements and Modeling for Air Quality Changsub Shim Applications of Satellite Measurements and Modeling for Air Quality Changsub Shim Korea Adaptation Center for Climate Change Korea Environment Institute Atmospheric O 3 (Why O 3?) OZONE: GOOD UP HIGH,

More information

N-cycle: biogeochemistry. Biological flows of Nitrogen

N-cycle: biogeochemistry. Biological flows of Nitrogen N-cycle: biogeochemistry SWES 410/510 April 4, 2014 I. N cycling A. simplest possible B. Global N budget C. Effects of N-cycling ( the Nitrogen Cascade ) II. Nitrous Oxide (N 2 O) budgets III. Data-Model

More information

Chapter 43 Ecosystems & Human Interferences

Chapter 43 Ecosystems & Human Interferences How do organisms obtain energy from their environment? Autotrophs produce their own food Heterotrophs feed on other organisms 1. Herbivores Consume plants 2. Carnivores Consume other animals 3. Omnivores

More information

Other GHGs. IPCC Climate Change 2007: The Physical Science Basis

Other GHGs. IPCC Climate Change 2007: The Physical Science Basis Other GHGs IPCC Climate Change 2007: The Physical Science Basis 1 Atmospheric Chemistry and other long-lived GHG during the industrial period 1750-2000 The radiative forcing of climate during the period

More information

Radiative forcing of climate change

Radiative forcing of climate change Radiative forcing of climate change Joanna D. Haigh Imperial College of Science, Technology and Medicine, London Radiative forcing concept, definition and applications On a global and annual average, and

More information

The science of the Kyoto protocol

The science of the Kyoto protocol The science of the Kyoto protocol Vicky Pope Hadley Centre with lots of help from Climate Chemistry and Ecosystem group ECMWF seminar September 2005 Page 1 Outline Kyoto protocol Observations relevant

More information

Satellite observations of air quality, climate and volcanic eruptions

Satellite observations of air quality, climate and volcanic eruptions Satellite observations of air quality, climate and volcanic eruptions Ronald van der A and Hennie Kelder Introduction Satellite observations of atmospheric constitents have many applications in the area

More information

Background Ozone in Surface Air over the United States: Variability, Climate Linkages, and Policy Implications

Background Ozone in Surface Air over the United States: Variability, Climate Linkages, and Policy Implications Background Ozone in Surface Air over the United States: Variability, Climate Linkages, and Policy Implications Arlene M. Fiore Department of Environmental Sciences Seminar Rutgers University March 4, 2005

More information

Atmospheric Chemistry Air Pollution

Atmospheric Chemistry Air Pollution Atmospheric Chemistry Pontus Roldin Div. Nuclear Physics Dep. Physics Lund University Conflict between positive climate cooling effects and negative human health effects Are there good aerosol particles

More information

Physics 100 Lecture 17. The Greenhouse Effect and Global Warming April 2, 2018

Physics 100 Lecture 17. The Greenhouse Effect and Global Warming April 2, 2018 1 Physics 100 Lecture 17 The Greenhouse Effect and Global Warming April 2, 2018 2 Class Quiz Ch. 7: Suppose your car burned bituminous coal instead of gasoline. How much coal would provide the same energy

More information

Abating Global Ozone Pollution with Methane Emission Controls

Abating Global Ozone Pollution with Methane Emission Controls Abating Global Ozone Pollution with Methane Emission Controls EMEP Second Meeting of the Task Force on Hemispheric Transport of Air Pollution Moscow, Russia Arlene M. Fiore J. Jason West Larry W. Horowitz

More information

Agricultural Gas and Aerosol Experiment (AGGAE)

Agricultural Gas and Aerosol Experiment (AGGAE) Agricultural Gas and Aerosol Experiment (AGGAE) Scientific background and overarching questions Agriculture is a major industrial sector in the US and Canada Agricultural sources of greenhouse gases are

More information

Introduction to the Role of Tropospheric Ozone and Arctic Climate. Ellen Baum May 8, 2008

Introduction to the Role of Tropospheric Ozone and Arctic Climate. Ellen Baum May 8, 2008 Introduction to the Role of Tropospheric Ozone and Arctic Climate Ellen Baum May 8, 2008 There is a significant global role for tropospheric ozone and climate 1.4 Temperature impact from CO2 compared to

More information

Effect of chemistry-aerosol-climate coupling on predictions of future climate and future levels of tropospheric ozone and aerosols

Effect of chemistry-aerosol-climate coupling on predictions of future climate and future levels of tropospheric ozone and aerosols Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114,, doi:10.1029/2008jd010984, 2009 Effect of chemistry-aerosol-climate coupling on predictions of future climate and future levels of

More information

Evidence and implications of anthropogenic climate change

Evidence and implications of anthropogenic climate change Evidence and implications of anthropogenic climate change Earth s Climate has always been changing 1) Is climate changing now? Global Warming? Sea level rising IPCC 2007 Fig. 5.13 (p. 410) Recontructed

More information

Factors controlling the oxidative capacity of the troposphere since the Last Glacial Maximum

Factors controlling the oxidative capacity of the troposphere since the Last Glacial Maximum Factors controlling the oxidative capacity of the troposphere since the Last Glacial Maximum Lee T. Murray (ltmurray@post.harvard.edu) 1, Loretta J. Mickley 1, Jed O. Kaplan 2, Eric D. Sofen 3, Mirjam

More information

GLOBAL WARMING COMPUTER LAB

GLOBAL WARMING COMPUTER LAB GLOBAL WARMING COMPUTER LAB A COMPUTER SIMULATION PROGRAM ON TEMPERATURE CHANGE AND SEA LEVEL RISING After performing this computer simulation lab you will be able to: 1) understand the greenhouse effect

More information

column measurements Chun Zhao and Yuhang Wang Georgia Institute of Technology, Atlanta, Georgia 30332

column measurements Chun Zhao and Yuhang Wang Georgia Institute of Technology, Atlanta, Georgia 30332 Assimilated inversion of NO x emissions over East Asia using OMI NO 2 column measurements Chun Zhao and Yuhang Wang Georgia Institute of Technology, Atlanta, Georgia 30332 Abstract. Assimilated inversion

More information

5/6/2015. Matter is recycled within and between ecosystems.

5/6/2015. Matter is recycled within and between ecosystems. Biogeochemical Cycles/ Nutrient Cycles Biogeochemical Cycle Evaporation Water Cycle Transpiration Condensation Precipitation Runoff Vocabulary Seepage Root Uptake Carbon Cycle Phosphorus Cycle Nitrogen

More information

Scientific Foundation of Climate Change. Human Responsibility for Climate Change

Scientific Foundation of Climate Change. Human Responsibility for Climate Change Scientific Foundation of Climate Change EOH 468 CSU Northridge Spring 2010 Peter Bellin, CIH, Ph.D. 1 Human Responsibility for Climate Change The IPCC finds that it is very likely that emissions of heat-trapping

More information

Just what is Acid Rain?

Just what is Acid Rain? Acid Rain Just what is Acid Rain? Acid Rain is the term used to describe the ways in which acid precipitates out of the atmosphere. Acid Rain is more accurately termed acid deposition. There are two types

More information

Connecting Climate and Air Quality: The Contribution of Methane to Hemispheric Ozone Pollution

Connecting Climate and Air Quality: The Contribution of Methane to Hemispheric Ozone Pollution Connecting Climate and Air Quality: The Contribution of Methane to Hemispheric Ozone Pollution Arlene M. Fiore (arlene.fiore@noaa.gov) Acknowledgments: Larry Horowitz, Chip Levy (NOAA/GFDL) Jason West,

More information

Estimating Ship emitted NO 2 in the Indian Ocean using satellite data

Estimating Ship emitted NO 2 in the Indian Ocean using satellite data Institut für Umweltphysik/Fernerkundung Fachbereich 1 Physik/Elektrotechnik Estimating Ship emitted NO 2 in the Indian Ocean using satellite data K. Franke, A. Richter, J.P. Burrows, H. Bovensmann, Institute

More information

Some resources (more websites later)

Some resources (more websites later) Some resources (more websites later) Intergovernmental Panel Climate Change 2001: The Scientific Basis at http://www.ipcc.ch/pub/reports.htm John Houghton Global Warming - the complete briefing Cambridge

More information

Second Order Draft Chapter 7 IPCC WG1 Fourth Assessment Report

Second Order Draft Chapter 7 IPCC WG1 Fourth Assessment Report Second Order Draft Chapter IPCC WG Fourth Assessment Report 0 Box., Figure. Atmospheric release of CO from the burning of fossil fuels may give rise to a marked increase in ocean acidity. Panel a: Atmospheric

More information

Lecture 11: Global Warming. Human Acticities. Natural Climate Changes. Global Warming: Natural or Man-Made CO 2 CH 4

Lecture 11: Global Warming. Human Acticities. Natural Climate Changes. Global Warming: Natural or Man-Made CO 2 CH 4 Lecture 11: Global Warming Human Acticities CO 2 CH 4 The initial appearance of human species: last 100,000 to 200,000 years Development of the first civilization: the last 10,000 years What is the sensitivity

More information

Introduction. Introduction. Introduction. Outline Last IPCC report : 2001 Last IPCC report :

Introduction. Introduction. Introduction. Outline Last IPCC report : 2001 Last IPCC report : Introduction Greenhouse Gases & Climate Change Laurent Bopp LSCE, Paris When did the story start? ¾1827 Fourier hypothesizes greenhouse effect ¾1860 Tyndal identifies CO2 and water vapor as heat trapping

More information

FOLLOW: Green House on Twitter

FOLLOW: Green House on Twitter Jan 31, 2012 Recommend 773 208 By Wendy Koch, USA TODAY Updated 1d 13h ago CAPTION By William Fernando Martinez, AP A new NASA study tries to lay to rest the skepticism about climate change, especially

More information

Air Quality and Climate Connections

Air Quality and Climate Connections Air Quality and Climate Connections Arlene M. Fiore (arlene.fiore@noaa.gov) Acknowledgments: Larry Horowitz, Chip Levy, Dan Schwarzkopf (GFDL) Vaishali Naik, Jason West (Princeton U), Allison Steiner (U

More information

Public and Environmental Health Concerns

Public and Environmental Health Concerns Oxidizing Capacity and Urban Air Pollution Joel Thornton Associate Professor 506 ATG thornton@atmos.uw.edu Regional and Global Impacts Background Chemistry and Composition Climate Public and Environmental

More information

The amount of fixed nitrogen (N that has chemically combined with other

The amount of fixed nitrogen (N that has chemically combined with other Chapter 1: Introduction The cycle of N is unique in that it consists of a massive, well-mixed, and (to most organisms) wholly unavailable pool of nitrogen gas (N 2 ) in the atmosphere; a relatively small

More information

Recent changes in atmospheric methane

Recent changes in atmospheric methane Recent changes in atmospheric methane Recent changes in atmospheric methane Recent changes in atmospheric methane Recent changes in atmospheric methane Recent changes in atmospheric methane Recent changes

More information

Global Warming Science Solar Radiation

Global Warming Science Solar Radiation SUN Ozone and Oxygen absorb 190-290 nm. Latent heat from the surface (evaporation/ condensation) Global Warming Science Solar Radiation Turbulent heat from the surface (convection) Some infrared radiation

More information

Lab 7 Measurement of Ozone

Lab 7 Measurement of Ozone Georgia Institute of Technology School of Earth and Atmospheric Sciences EAS 4641 Spring 2007 Lab 7 Measurement of Ozone Purpose of Lab 7: In this lab you will measure the ambient concentration of ozone

More information

Effects of Precursor Compounds on Natural and Anthropogenic Emissions of Ozone : A Review

Effects of Precursor Compounds on Natural and Anthropogenic Emissions of Ozone : A Review Effects of Precursor Compounds on Natural and Anthropogenic Emissions of Ozone : A Review + Dr. Bindu Khare, x Dr. Kanchan Khare + Dr. Bindu Khare, Lecturer sl. Gr, Dr. B.R.A. Polytechnic College, Gwalior.

More information

Rubisco is about 20% of the plant protein and is argued to be the most abundant protein on Earth (Sharkey, 1985). This Explain why N compounds

Rubisco is about 20% of the plant protein and is argued to be the most abundant protein on Earth (Sharkey, 1985). This Explain why N compounds 1 Rubisco is about 20% of the plant protein and is argued to be the most abundant protein on Earth (Sharkey, 1985). This Explain why N compounds released when organic matter is combusted. 2 TRY database,

More information

Effect of global change on ozone air quality in the United States. Shiliang Wu

Effect of global change on ozone air quality in the United States. Shiliang Wu Effect of 2000-2050 global change on ozone air quality in the United States Shiliang Wu School of Engineering and Applied Sciences Harvard University, Cambridge, MA May 23, 2007 work supported by the EPA-STAR

More information

climate change Contents CO 2 (ppm)

climate change Contents CO 2 (ppm) climate change CO 2 (ppm) 2007 Joachim Curtius Institut für Physik der Atmosphäre Universität Mainz Contents 1. Summary 2. Background 3. Climate change: observations 4. CO 2 : ocean acidification 5. OtherGreenhouse

More information

Tropospheric Ozone Status and Links to Climate Issues

Tropospheric Ozone Status and Links to Climate Issues Tropospheric Ozone Status and Links to Climate Issues David Simpson 1,2, Birthe Marie Steensen 1 Michael Gauss 1 1. Norwegian Meteorological Institute, Oslo, Norway 2. Chalmers University of Technology,

More information

Global Ocean and Atmosphere Temperature Trends Compared

Global Ocean and Atmosphere Temperature Trends Compared Warmer Oceans result in coral bleaching and the death of coral reefs support more powerful hurricanes 32 Global Ocean and Atmosphere Temperature Trends Compared 33 Warmer Oceans and Coral Bleaching 1997-1998

More information

The Greenhouse Effect

The Greenhouse Effect Name: #: Date: 5.8 The Greenhouse Effect The greenhouse effect traps heat in the atmosphere. This helps the Earth remain warm enough for humans. Without the greenhouse effect, human would not be able to

More information

Climate: Earth s Dynamic Equilibrium

Climate: Earth s Dynamic Equilibrium Climate: Earth s Dynamic Equilibrium review session CCIU April 30, 2016 High-school standard HS-ESS2-4 focuses on the role energy flows play in Earth s climate HS-ESS2-4 Use a model to describe how variations

More information

1. Lab report from each person, not 1 per group. 2. Progress on Lab 5, particle composition? Lab 5 due April Lab 6 due April 20.

1. Lab report from each person, not 1 per group. 2. Progress on Lab 5, particle composition? Lab 5 due April Lab 6 due April 20. 1. Lab report from each person, not 1 per group. 2. Progress on Lab 5, particle composition? Lab 5 due April 13. 3. Lab 6 due April 20. LAB 6: Ozone/NOx Source of Ozone Volatile Organic Compounds (VOCs)

More information

Climate response of direct radiative forcing of anthropogenic black carbon

Climate response of direct radiative forcing of anthropogenic black carbon JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110,, doi:10.1029/2004jd005441, 2005 Climate response of direct radiative forcing of anthropogenic black carbon Serena H. Chung Cooperative Institute for Research

More information

Nutrients elements required for the development, maintenance, and reproduction of organisms.

Nutrients elements required for the development, maintenance, and reproduction of organisms. Nutrient Cycles Energy flows through ecosystems (one way trip). Unlike energy, however, nutrients (P, N, C, K, S ) cycle within ecosystems. Nutrients are important in controlling NPP in ecosystems. Bottom-up

More information

Using Earth System Models to provide better policy-relevant information

Using Earth System Models to provide better policy-relevant information Greencycles II Peyresq May 2010 Using Earth System Models to provide better policy-relevant information (Couples therapy for the uneasy marriage between science and policy) Gavin Schmidt NASA Goddard Institute

More information

Year ppm CO ~ ~ ~ ~365

Year ppm CO ~ ~ ~ ~365 Global warming The last one or two decades have seen extensive debate over the likely consequences of the observed increase in CO 2 content of the atmosphere, CO 2 being one of the principle greenhouse

More information

Concentrations of several of these greenhouse gases (CO 2, CH 4, N 2 O and CFCs) have increased dramatically in the last hundred years due to human

Concentrations of several of these greenhouse gases (CO 2, CH 4, N 2 O and CFCs) have increased dramatically in the last hundred years due to human Global Warming 1.1 The facts: With no atmosphere surrounding the earth the surface temperature would be 17 o C. However, due to the greenhouse gases in the atmosphere that absorb infrared radiation emitted

More information

Global dimensions to ground-level ozone: Transboundary transport and climate change

Global dimensions to ground-level ozone: Transboundary transport and climate change Global dimensions to ground-level ozone: Transboundary transport and climate change Health Effects Institute 2018 Annual Conference Chicago, IL, April 29, 2018 c/o Jean Guo (Columbia University) Arlene

More information

7.014 Lecture 20: Biogeochemical Cycles April 1, 2007

7.014 Lecture 20: Biogeochemical Cycles April 1, 2007 Global Nutrient Cycling - Biogeochemical Cycles 7.14 Lecture 2: Biogeochemical Cycles April 1, 27 Uptake Bioelements in Solution Weathering Precipitation Terrestrial Biomass Decomposition Volatile Elements

More information

Interesting points from presentations

Interesting points from presentations Interesting points from presentations The topics can be broken down, roughly, into the following categories Emissions of NOx, CO, VOCs, and other gases that influence ozone (and, thus, OH) Electric Vehicles

More information

Tropospheric Chemistry and Ground Level Ozone

Tropospheric Chemistry and Ground Level Ozone Tropospheric Chemistry and Ground Level Ozone Tropospheric Chemistry: The Formation of Ground Level Ozone Ozone Modeling and Air Quality Role of Trees in Ozone Formation Reading: Chapters 4&6 Environmental

More information

Recent and future trends in atmospheric methane: Connecting global chemistry, climate and ozone pollution

Recent and future trends in atmospheric methane: Connecting global chemistry, climate and ozone pollution Recent and future trends in atmospheric methane: Connecting global chemistry, climate and ozone pollution Arlene M. Fiore (arlene.fiore@noaa.gov) Acknowledgments: Larry Horowitz, Chip Levy (NOAA/GFDL)

More information

Nitrogen as a Contributor to Climate Change. Nitrogen and Climate Change

Nitrogen as a Contributor to Climate Change. Nitrogen and Climate Change Nitrogen as a Contributor to Climate Change Nitrogen and Climate Change Chris Evans Centre for Ecology and Hydrology, Bangor, UK With contributions gratefully received from: Bridget Emmett, Gina Mills,

More information

Chemical mechanisms and kinetics in atmospheric chemistry Lecture 8: Global budgets and emissions inventories

Chemical mechanisms and kinetics in atmospheric chemistry Lecture 8: Global budgets and emissions inventories Chemical mechanisms and kinetics in atmospheric chemistry Lecture 8: Global budgets and emissions inventories Mike Pilling University of Leeds UK Synopsis Global budgets for CH 4, CO, NO x, VOCs (tomorrow

More information

BIOGEOCHEMICAL CYCLES: The RECYCLING of MATERIALS through living organisms and the physical environment.

BIOGEOCHEMICAL CYCLES: The RECYCLING of MATERIALS through living organisms and the physical environment. BIOGEOCHEMICAL CYCLES: The RECYCLING of MATERIALS through living organisms and the physical environment. BIOCHEMIST: Scientists who study how LIFE WORKS at a CHEMICAL level. The work of biochemists has

More information

Announcements. Pollution week continues. Thinking about pollution. Why are polar bears so contaminated?

Announcements. Pollution week continues. Thinking about pollution. Why are polar bears so contaminated? Announcements Grades for exam 2 have been posted March 7 th - Last day to submit LEAD summary to TA, extra credit videos due next Tuesday (no late videos will be accepted) Next Thursday, Environmental

More information

Chemistry in the Environment

Chemistry in the Environment Chemistry in the Environment Section 261 Earth s Atmosphere In your textbook, read about the terms used to describe the physical and chemical properties of Earth s atmosphere Complete each statement 1

More information

PhET Greenhouse Effect

PhET Greenhouse Effect PhET Greenhouse Effect Objective: Describe how the greenhouse effect affects temperature on the earth and to use evidence to support whether the greenhouse effect is good or bad for the earth. Introduction:

More information

12. Ozone pollution. Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017

12. Ozone pollution. Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017 12. Ozone pollution Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017 The industrial revolution and air pollution Pittsburgh in the 1940s Make great efforts to build China into a

More information

Chapter 6 of WGI AR6: Intention at the scoping meeting and the outline

Chapter 6 of WGI AR6: Intention at the scoping meeting and the outline Chapter 6 of WGI AR6: Intention at the scoping meeting and the outline William Collins 1 and Hong Liao 2 Chapter 6 CLAs 1 Lawrence Berkeley Laboratory and University of California, Berkeley 2 Nanjing University

More information

BIOGEOCHEMICAL CYCLES INTRODUCTION THE CYCLING PROCESS TWO CYCLES: CARBON CYCLE NITROGEN CYCLE HUMAN IMPACTS GLOBAL WARMING AQUATIC EUTROPHICATION

BIOGEOCHEMICAL CYCLES INTRODUCTION THE CYCLING PROCESS TWO CYCLES: CARBON CYCLE NITROGEN CYCLE HUMAN IMPACTS GLOBAL WARMING AQUATIC EUTROPHICATION BIOGEOCHEMICAL CYCLES INTRODUCTION THE CYCLING PROCESS TWO CYCLES: CARBON CYCLE NITROGEN CYCLE HUMAN IMPACTS GLOBAL WARMING AQUATIC EUTROPHICATION BIOGEOCHEMICAL CYCLES: The RECYCLING of MATERIALS through

More information

Global Climatic Change. GEOG/ENST 2331 Lecture 22 Ahrens: Chapter 16

Global Climatic Change. GEOG/ENST 2331 Lecture 22 Ahrens: Chapter 16 Global Climatic Change GEOG/ENST 2331 Lecture 22 Ahrens: Chapter 16 Global Climatic Change! Review: Radiation balance! Enhanced greenhouse effect! human-induced change! Climate feedbacks Climatic change!

More information

Biogeochemical Cycles Webquest

Biogeochemical Cycles Webquest Name: Date: Biogeochemical Cycles Webquest In this webquest you will search for information that will answer questions about the water, carbon/oxygen, nitrogen and phosphorous cycles using the listed websites.

More information

Atmospheric chemistry Summary

Atmospheric chemistry Summary Atmospheric chemistry Summary Pontus Roldin Div. Nuclear Physics Department of Physics Lund University Summary 1 Chapman mechanism (1930) The Chapman mechanism for stratospheric ozone (1) O 2 + hn O +

More information

Chapter 15 Air Pollution and Stratospheric Ozone Depletion

Chapter 15 Air Pollution and Stratospheric Ozone Depletion Chapter 15 Air Pollution and Stratospheric Ozone Depletion Air Pollution Air pollution- the introduction of chemicals, particulate matter, or microorganisms into the atmosphere at concentrations high enough

More information

ENSC425/625 Climate Change and Global Warming

ENSC425/625 Climate Change and Global Warming ENSC425/625 Climate Change and Global Warming 1 Emission scenarios of greenhouse gases Projections of climate change Regional climate change (North America) Observed Changes and their Uncertainty 2 Figure

More information

The impacts of short lived ozone precursors on climate and air quality Meridith M. Fry JGCRI Seminar March 12, 2013

The impacts of short lived ozone precursors on climate and air quality Meridith M. Fry JGCRI Seminar March 12, 2013 The impacts of short lived ozone precursors on climate and air quality Meridith M. Fry JGCRI Seminar March 12, 2013 This research has been funded wholly or in part by the U.S. EPA under the Science to

More information

Climate Change. Air Quality. Stratospheric. Ozone. NAS study on International Transport of Air Pollution NOAA Perspective

Climate Change. Air Quality. Stratospheric. Ozone. NAS study on International Transport of Air Pollution NOAA Perspective Climate Change Air Quality Stratospheric Ozone NAS study on International Transport of Air Pollution NOAA Perspective A.R. Ravishankara NOAA Climate Research and Modeling Program David Parrish NOAA/ESRL/Chemical

More information

Climate Dynamics (PCC 587): Climate Forcings

Climate Dynamics (PCC 587): Climate Forcings Climate Dynamics (PCC 587): Climate Forcings DARGAN M. W. FRIERSON UNIVERSITY OF WASHINGTON, DEPARTMENT OF ATMOSPHERIC SCIENCES DAY 7: 10-16-13 Outline of This Topic Climate forcings Things that directly

More information

ENVIS- IITM NEWSLETTER The Air Quality: A Global Challenge

ENVIS- IITM NEWSLETTER The Air Quality: A Global Challenge ENVIS- IITM NEWSLETTER The Air Quality: A Global Challenge GLOBAL WARMING Editorial Prof. B.N. Goswami (Director, IITM, Pune) Dr. G. Beig (ENVIS Co-ordinetor) Ms. Neha S. Parkhi (Program Officer) Mr. Rajnikant

More information

TODAY: TOPIC #6 WRAP UP!! Atmospheric Structure & Composition

TODAY: TOPIC #6 WRAP UP!! Atmospheric Structure & Composition TODAY: TOPIC #6 WRAP UP!! Atmospheric Structure & Composition There s one more thing to correct in our the depiction of incoming Solar....... the atmosphere is NOT totally TRANSPARENT to INCOMING Solar

More information

Name: Class: Date: 6. Most air pollution is produced by a. thermal inversions. c. ozone layer depletion. b. fuel burning. d. volcanic eruptions.

Name: Class: Date: 6. Most air pollution is produced by a. thermal inversions. c. ozone layer depletion. b. fuel burning. d. volcanic eruptions. Name: Class: Date: Air Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is often used to remove poisonous gases from industrial

More information

3/4/2014. Air Pollution. Chapter 15 Air Pollution and Stratospheric Ozone Depletion. Major Air Pollutants. Primary Pollutants

3/4/2014. Air Pollution. Chapter 15 Air Pollution and Stratospheric Ozone Depletion. Major Air Pollutants. Primary Pollutants Air Pollution Air pollution- the introduction of chemicals, particulate matter, or microorganisms into the atmosphere at concentrations high enough to harm plants, animals, and materials such as buildings,

More information

Control and Management. The Biosphere SG Biology

Control and Management. The Biosphere SG Biology Control and Management The Biosphere SG Biology Learning Outcomes 1 State that pollution affects air, fresh water, sea and land. State that the main sources of pollution are domestic, agricultural and

More information

3 3 CYCLES OF MATTER

3 3 CYCLES OF MATTER 3 3 CYCLES OF MATTER REVIEW: 1. What is an element? 2. What is a compound? 3. What are the 6 elements that are most important to living things? Matter = a substance that takes up space. BIOGEOCHEMICAL

More information

2 Atmospheric Heating

2 Atmospheric Heating CHAPTER 15 2 Atmospheric Heating SECTION The Atmosphere BEFORE YOU READ After you read this section, you should be able to answer these questions: How does energy travel from the sun to Earth? What are

More information

Chapter 19 Global Change. Wednesday, April 18, 18

Chapter 19 Global Change. Wednesday, April 18, 18 Chapter 19 Global Change Module 62 Global Climate Change and the Greenhouse Effect After reading this module you should be able to distinguish among global change, global climate change, and global warming.

More information

Module 1. Introduction to Green Manufacturing and Environmental Issues

Module 1. Introduction to Green Manufacturing and Environmental Issues Module 1. Introduction to Green Manufacturing and Environmental Issues NSF Summer Institute on Nano Mechanics and Materials: A Short Course on Nanotechnology, Biotechnology, and Green Manufacturing for

More information

Interconnections between Air Pollution, Climate Change and Health

Interconnections between Air Pollution, Climate Change and Health Interconnections between Air Pollution, Climate Change and Health Denise Mauzerall Princeton University National Academies Institute of Medicine San Francisco, CA September 10, 2007 Air Pollution Adversely

More information

Main Natural Sources of Greenhouse Gases

Main Natural Sources of Greenhouse Gases Main Natural Sources of Greenhouse Gases Content Atmospheric Composition Composition of the Earth s Atmosphere Greenhouse Gases The Radiative Forcing bar chart: AR5 version Natural Greenhouse Gases Water

More information

Global modeling and projection of shortlived climate pollutants ~ Near-term projection with IIASA scenarios ~

Global modeling and projection of shortlived climate pollutants ~ Near-term projection with IIASA scenarios ~ Global modeling and projection of shortlived climate pollutants ~ Near-term projection with IIASA scenarios ~ Kengo Sudo 1, A. Wada 1, T. Takemura 2, Z. Klimont 3, J. Kurokawa 4, and H Akimoto 4 1 Graduate

More information

Topic # 7 ATMOSPHERIC STRUCTURE & CHEMICAL COMPOSITION

Topic # 7 ATMOSPHERIC STRUCTURE & CHEMICAL COMPOSITION Topic # 7 ATMOSPHERIC STRUCTURE & CHEMICAL COMPOSITION All about the GASES IN THE ATMOSPHERE, esp. GREENHOUSE GASES! Class Notes pp 37-41 OBJECTIVES: To understand: -- the VERTICALSTRUCTURE of the atmosphere

More information

Nutrient Cycling & Soils

Nutrient Cycling & Soils Nutrient Cycling & Soils tutorial by Paul Rich Outline 1. Nutrient Cycles What are nutrient cycles? major cycles 2. Water Cycle 3. Carbon Cycle 4. Nitrogen Cycle 5. Phosphorus Cycle 6. Sulfur Cycle 7.

More information

COPERNICUS Air quality monitoring satellite missions and user needs

COPERNICUS Air quality monitoring satellite missions and user needs COPERNICUS Air quality monitoring satellite missions and user needs Yasjka MEIJER ESA-ESTEC, Noordwijk 17 February 2017 Reasons to care about atmospheric composition (D. Jacob, U. Harvard) Disasters Visibility

More information

THREE YEARS OF SCIAMACHY CARBON MONOXIDE MEASUREMENTS

THREE YEARS OF SCIAMACHY CARBON MONOXIDE MEASUREMENTS THREE YEARS OF SCIAMACHY CARBON MONOXIDE MEASUREMENTS Khlystova, I. G, M. Buchwitz, J. P. Burrows, H. Bovensmann Institute of Environmental Physics (iup) / Institute of Remote Sensing (ife), University

More information

Pollution Climate Interactions during the 20th Century

Pollution Climate Interactions during the 20th Century Pollution Climate Interactions during the 20th Century Alumni Conference, G&G Department, Yale University November 7, 2009 Koch, D., A spreading drop plume model for Venus. J. Geophys. Res., 1994. Koch,

More information

2.2 Nutrient Cycles in Ecosystems

2.2 Nutrient Cycles in Ecosystems 2.2 Nutrient Cycles in Ecosystems are chemicals required for growth and other life processes. Nutrients move through the biosphere in Nutrients often accumulate in areas called Without interference, generally

More information