Dynamic Earth Pressures - Simplified Methods

Size: px
Start display at page:

Download "Dynamic Earth Pressures - Simplified Methods"

Transcription

1 Dynamic Earth Pressure - Simplifed Methods Page 1 Dynamic Earth Pressures - Simplified Methods Reading Assignment Lecture Notes Other Materials Ostadan and White paper Wu and Finn paper Homework Assignment Use an 1D EQL ground response model and acceleration time history developed in homework assignment #3 (Matahina Dam - scaled to the fundamental period of the surrounding soil) to do the following: a. Calculate the dynamic thrust against a buried rigid wall using the Ostadan-White method for the new Orson-Spencer Hall structure that is 10 m below the ground surface, assuming site class C. Use Vs values consistent with the mid-range of the site class (20 points). b. Calculate the dynamic pressure distribution to be applied against the buried structure using the Ostadan-White method for the same structure. Show this distribution versus depth on a depth plot. (10 points) Use the M-O method to estimate the factor of safety against sliding and overturning for a gravity wall using the acceleration time history from the previous homework assignment 3. (20 points) The wall is a yielding wall retaining wall and is 4 m high and is 1 m thick at the base and tapers to 0.6 m at the top. The retained backfill behind the is flat (i.e., horizontal) and has a unit weight of 22 kn/m^3 with a drained friction angle of 35 degrees and the backfill is unsaturated. Also, the base of the wall rests on backfill material and is embedded 0.6 m in this material at its base. Assume that the horizontal acceleration used in the design is 50 percent of the peak ground acceleration. You may also neglect the vertical component of acceleration.

2 Dynamic Earth Pressure - Simplifed Methods Page 2 Coulomb Theory Note Eq of Kramer has an error.

3 Dynamic Earth Pressure - Simplifed Methods Page 3 Mononobe - Okabe - Active Case

4 Dynamic Earth Pressure - Simplifed Methods Page 4 Mononobe - Okabe - Active Case (cont.)

5 Dynamic Earth Pressure - Simplifed Methods Page 5 Mononobe - Okabe Passive Case

6 Dynamic Earth Pressure - Simplifed Methods Page 6 Mononobe - Okabe Application Wednesday, February 12, :32 PM (from AASHTO LRFD Bridge Design Specifications, 2012) Steven F. Bartlett, 2014

7 Dynamic Earth Pressure - Simplifed Methods Page 7 Mononobe - Okabe Application (cont.) Wednesday, February 12, :32 PM (from AASHTO LRFD Bridge Design Specifications, 2012) Steven F. Bartlett, 2014

8 Dynamic Earth Pressure - Simplifed Methods Page 8 Other Methods Allowed within AASHTO Wednesday, February 12, :32 PM (from AASHTO LRFD Bridge Design Specifications, 2012) Steven F. Bartlett, 2014

9 Dynamic Earth Pressure - Simplifed Methods Page 9 Gravity Wall Example

10 Dynamic Earth Pressure - Simplifed Methods Page 10 Cantilevered Wall Example

11 Dynamic Earth Pressure - Simplifed Methods Page 11 Cantilevered Wall Example (cont.)

12 Dynamic Earth Pressure - Simplifed Methods Page 12 Cantilevered Wall Example (cont.) Summary Results static dynamic F.S. Sliding = FS static 1.25 to 2 F.S. Overturning = FS static 2 to 3 Pasted from <file:///c:\users\sfbartlett\documents\my%20courses\7330\spreadsheets \CantileveredWall.xls>

13 Dynamic Earth Pressure - Simplifed Methods Page 13 Seed and Whitman - Simplified Method the base.

14 Dynamic Earth Pressure - Simplifed Methods Page 14 Choudhury et al. 2006

15 Dynamic Earth Pressure - Simplifed Methods Page 15 Choudhury et al (cont.) Rigid Case

16 Dynamic Earth Pressure - Simplifed Methods Page 16 Choudhury et al (cont.) horizontal acceleration vertical acceleration mass of wedge weight of wedge

17 Dynamic Earth Pressure - Simplifed Methods Page 17 Choudhury et al (cont.) Q = total inertial force T = period of wave Pae = static +s ismic active thrust active

18 Dynamic Earth Pressure - Simplifed Methods Page 18 Choudhury et al (cont.) passive

19 Dynamic Earth Pressure - Simplifed Methods Page 19 Choudhury et al (cont.) Results - Active case Static case kh and kv = 0

20 Dynamic Earth Pressure - Simplifed Methods Page 20 Choudhury et al (cont.) kv = 0

21 Dynamic Earth Pressure - Simplifed Methods Page 21 Choudhury et al (cont.) kv = 0.5 kh

22 Dynamic Earth Pressure - Simplifed Methods Page 22 Choudhury et al (cont.) Results - Passive Case Static case kh and kv = 0

23 Dynamic Earth Pressure - Simplifed Methods Page 23 Choudhury et al (cont.) kv = 0

24 Dynamic Earth Pressure - Simplifed Methods Page 24 Choudhury et al (cont.) kv = 0.5 kh

25 Dynamic Earth Pressure - Simplifed Methods Page 25 Choudhury et al (cont.) Comparison with Mononobe-Okabe Method

26 Dynamic Earth Pressure - Simplifed Methods Page 26 Choudhury et al (cont.) Comparison with Mononobe-Okabe Method

27 Dynamic Earth Pressure - Simplifed Methods Page 27 Non-Yielding Walls

28 Dynamic Earth Pressure - Simplifed Methods Page 28 Non-Yielding Walls (cont.)

29 Dynamic Earth Pressure - Simplifed Methods Page 29 Non-Yielding Walls -Observations from Earthquakes

30 Dynamic Earth Pressure - Simplifed Methods Page 30 Non-Yielding Walls - Ostadan and White Assumptions and Method Assume the building basemat is founded on rock. Input ground motion at basemat elevation. The walls of the building are effectively rigid. 30 foot-embedment considered 5 percent material damping of soil Poisson s ratio of soil = 1/3 Kinematic SSI is considered. Inertial SSI is not considered. The solution is derived from SSI analyses using SASSI. L

31 Dynamic Earth Pressure - Simplifed Methods Page 31 Non-Yielding Walls - Ostadan and White (cont.) Amplitude at low frequency

32 Dynamic Earth Pressure - Simplifed Methods Page 32 Non-Yielding Walls - Ostadan and White (cont.)

33 Dynamic Earth Pressure - Simplifed Methods Page 33 Non-Yielding Walls - Ostadan and White (cont.) Recall that M-O method is only valid for yielding wall; hence it forms a lower bound The use of the low frequency (i.e., long period) amplitude is based on the findings of the Lotung experiment site (see previous).

34 Dynamic Earth Pressure - Simplifed Methods Page 34 Non-Yielding Walls - Ostadan and White (cont.) L = infinite

35 Dynamic Earth Pressure - Simplifed Methods Page 35 Non-Yielding Walls - Ostadan and White (cont.)

36 Dynamic Earth Pressure - Simplifed Methods Page 36 Ostadan and White (Steps) Perform seismic ground response analysis (using SHAKE) and obtain the acceleration response spectrum at the base mat level in the free-field at 30% damping. Obtain the total mass using: m = 0.50 ρ H 2 Ψ ν 3. Obtain the total seismic lateral force by multiplying the mass from Step 2 by the spectral amplitude of the free-field response (Step 1) at the soil column frequency. F = m S a where Sa is the spectral acceleration at the base mat level for the free field at the fundamental frequency of the soil column with 30 percent damping Calculate the max. lateral earth pressure (ground surface) by dividing the results for step 3 by the area under the normal soil pressure curve (normalized area = H) Calculate the lateral pressure distribution verses depth by multiply the max. lateral earth pressure by the p(y) function below. p(y) = y y y y y 5 where y is the normalized height (Y/H) measured from the base of the wall.

37 Dynamic Earth Pressure - Simplifed Methods Page 37 Ostadan and White (Summary) The method was verified by comparing the results of the simple computational steps with the direct solution from SASSI. The verification included 4 different wall heights, 6 different input time histories and 4 different soil properties. The method is very simple and only involves free-field (e.g. SHAKE) analysis and a number of hand computational steps. The method has been adopted by building code (NEHRP 2000) and will be included in the next version of ASCE The Ostadan-White method is by no means a complete solution to the seismic soil pressure problem. It is merely a step forward at this time. Solution! Perfect isolation!

38 Dynamic Earth Pressure - Simplifed Methods Page 38 Blank

Seismic Soil Pressure for Building Walls-An Updated Approach

Seismic Soil Pressure for Building Walls-An Updated Approach 11 th International Conference on Soil Dynamics and Earthquake Engineering (11 th ICSDEE) and the 3 rd International Conference on Earthquake Geotechnical Engineering (3 rd ICEGE), University of California,

More information

CHALLENGES OF NEW REACTOR SITING EVALUATION IN THE GEOTECHNICAL ENGINEERING FIELD Weijun Wang 1 and Zuhan Xi 2

CHALLENGES OF NEW REACTOR SITING EVALUATION IN THE GEOTECHNICAL ENGINEERING FIELD Weijun Wang 1 and Zuhan Xi 2 Transactions, SMiRT-23, Paper ID 082 CHALLENGES OF NEW REACTOR SITING EVALUATION IN THE GEOTECHNICAL ENGINEERING FIELD Weijun Wang 1 and Zuhan Xi 2 1 Senior Geotechnical Engineer, US Nuclear Regulatory

More information

Earthquake Design of Flexible Soil Retaining Structures

Earthquake Design of Flexible Soil Retaining Structures Earthquake Design of Flexible Soil Retaining Structures J.H. Wood John Wood Consulting, Lower Hutt 207 NZSEE Conference ABSTRACT: Many soil retaining wall structures are restrained from outward sliding

More information

Assessment of Displacement Demand for Earth Retaining Structures

Assessment of Displacement Demand for Earth Retaining Structures Assessment of Displacement Demand for Earth Retaining Structures Rohit Tiwari 1*, Nelson T. K. Lam 2* and Elisa Lumantarna 3* 1. Corresponding Author. Ph.D. Student, Department of Infrastructure Engineering,

More information

NCHRP Progress Review. Seismic Analysis and Design of. Embankments, and Buried Structures. January 22, 2007

NCHRP Progress Review. Seismic Analysis and Design of. Embankments, and Buried Structures. January 22, 2007 NCHRP 12-70 Progress Review Seismic Analysis and Design of Retaining i Walls, Slopes and Embankments, and Buried Structures January 22, 2007 Objectives of NCHRP 12-70 Project Develop analytical methods

More information

Seismic Considerations and Design Methodology for Lightweight Cellular Concrete Embankments and Backfill

Seismic Considerations and Design Methodology for Lightweight Cellular Concrete Embankments and Backfill Seismic Considerations and Design Methodology for Lightweight Cellular Concrete Embankments and Backfill STGEC 2018, Louisville KY Steven F. Bartlett, Ph.D. P.E Department of Civil and Environmental Engineering

More information

Development of Lateral Earth Pressures on a Rigid Wall due to Seismic Loading

Development of Lateral Earth Pressures on a Rigid Wall due to Seismic Loading Development of Lateral Earth Pressures on a Rigid Wall due to Seismic Loading Gordon Fung, P. Eng. Geotechnical Engineer, MEG Consulting Ltd., Richmond, BC. Ender J. Parra, Ph.D., P. Eng. Principal, MEG

More information

GEOTECHNICAL SEISMIC DESIGN

GEOTECHNICAL SEISMIC DESIGN Chapter 14 GEOTECHNICAL SEISMIC DESIGN FINAL SCDOT GEOTECHNICAL DESIGN MANUAL June 2010 SCDOT Geotechnical Design Manual GEOTECHNICAL SEISMIC DESIGN Table of Contents Section Page 14.1 Introduction...14-1

More information

Seismic design of basement walls: Evaluation the current practice in British Columbia

Seismic design of basement walls: Evaluation the current practice in British Columbia T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A Seismic design of basement walls: Evaluation the current practice in British Columbia Mahdi Taiebat, Ph.D., P.Eng. Department of Civil Engineering,

More information

Geotechnical Analysis of Stepped Gravity Walls

Geotechnical Analysis of Stepped Gravity Walls Geotechnical Analysis of Stepped Gravity Walls Baleshwar Singh 1 * and Birjukumar Mistri 2 1 Associate Professor, Civil Engineering Department, IIT Guwahati, India 2 Former Post-Graduate Student, Civil

More information

MWDSLS SEISMIC DESIGN GUIDELINES Last Updated: December 22, 2011 POLICY

MWDSLS SEISMIC DESIGN GUIDELINES Last Updated: December 22, 2011 POLICY MWDSLS SEISMIC DESIGN GUIDELINES Last Updated: December 22, 2011 This policy document was the cooperative effort of many professionals and will result in designs which will substantially enhance the seismic

More information

SOIL-STRUCTURE INTERACTION EFFECTS ON NUCLEAR STRUCTURES FOUNDED ON ROCK SITES

SOIL-STRUCTURE INTERACTION EFFECTS ON NUCLEAR STRUCTURES FOUNDED ON ROCK SITES SOIL-STRUCTURE INTERACTION EFFECTS ON NUCLEAR STRUCTURES FOUNDED ON ROCK SITES L. M. Anderson 1, A. Hashemi 2 and F. Ostadan 3 ABSTRACT Following the US NRC 50.54 letter, all operating plants in the United

More information

Recommended Specifications, Commentaries, and Example Problems

Recommended Specifications, Commentaries, and Example Problems Draft Final Report Volume 2 to the NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM (NCHRP) on Project 12-70 Seismic Analysis and Design of Retaining Walls, Buried Structures, Slopes, and Embankments Recommended

More information

SEISMIC SOIL-STRUCTURE INTERACTION (SSI) EFFECTS FOR A DIFFERENT TYPE OF BUILDINGS IN DENSE URBAN AREA

SEISMIC SOIL-STRUCTURE INTERACTION (SSI) EFFECTS FOR A DIFFERENT TYPE OF BUILDINGS IN DENSE URBAN AREA SEISMIC SOIL-STRUCTURE INTERACTION (SSI) EFFECTS FOR A DIFFERENT TYPE OF BUILDINGS IN DENSE URBAN AREA Ovidiu BOGDAN 1, Dan M. GHIOCEL 2 and Dan CRETU 3 ABSTRACT The paper presents the results of a project

More information

Performance of Reinforced Earth Retaining Wall with Fly Ash under Static and Dynamic Loading

Performance of Reinforced Earth Retaining Wall with Fly Ash under Static and Dynamic Loading Performance of Reinforced Earth Retaining Wall with Fly Ash under Static and Dynamic Loading 1 Umesh Kumar N, 2 Padmashree M. Kalliamni 1 Geotechnical Engineer, 2 Assistant professor, 1 Civil Engineering

More information

Seismic SSI Response of Reactor Building Structures

Seismic SSI Response of Reactor Building Structures Seismic SSI Response of Reactor Building Structures ABSTRACT Dan M. Ghiocel GP Technologies, Inc., 6 South Main St., 2 nd Floor, Pittsford, New York 14534, USA, e-mail: dan.ghiocel@ghiocel-tech.com Luben

More information

Research Article Seismic Earth Pressures of Retaining Wall from Large Shaking Table Tests

Research Article Seismic Earth Pressures of Retaining Wall from Large Shaking Table Tests Advances in Materials Science and Engineering Volume 215, Article ID 83653, 8 pages http://dx.doi.org/1.1155/215/83653 Research Article Seismic Earth Pressures of Retaining Wall from Large Shaking Table

More information

FIFTH SHORT COURSE SOIL DYNAMICS IN ENGINEERING PRACTICE WHEELING, IL, APRIL 29-30, 2013

FIFTH SHORT COURSE SOIL DYNAMICS IN ENGINEERING PRACTICE WHEELING, IL, APRIL 29-30, 2013 FIFTH SHORT COURSE SOIL DYNAMICS IN ENGINEERING PRACTICE WHEELING, IL, APRIL 29-30, 2013 PERFORMANCE BASED SEISMIC DESIGN OF RIGID RETAINING WALLS (WITH DESIGN CHARTS) SHAMSHER PRAKASH EMERITUS PROFESSOR

More information

APPENDIX A - SIZING OF BRIDGE AND SUPPORT SYSTEM

APPENDIX A - SIZING OF BRIDGE AND SUPPORT SYSTEM APPENDIX A - SIZING OF BRIDGE AND SUPPORT SYSTEM Steel Bridge Selection of Type of Steel Bridge Acrow Bridge From the personal communication with Acrow bridges regional office in Colorado (Needham, Randy),

More information

INELASTIC SEISMIC RESPONSE ANALYSES OF REINFORCED CONCRETE BRIDGE PIERS WITH THREE-DIMENSIONAL FE ANALYSIS METHOD. Guangfeng Zhang 1, Shigeki Unjoh 2

INELASTIC SEISMIC RESPONSE ANALYSES OF REINFORCED CONCRETE BRIDGE PIERS WITH THREE-DIMENSIONAL FE ANALYSIS METHOD. Guangfeng Zhang 1, Shigeki Unjoh 2 INELASTIC SEISMIC RESPONSE ANALYSES OF REINFORCED CONCRETE BRIDGE PIERS WITH THREE-DIMENSIONAL FE ANALYSIS METHOD Abstract Guangfeng Zhang 1, Shigeki Unjoh 2 This paper aims to provide an analysis method

More information

sixteen seismic design Earthquake Design Earthquake Design Earthquake Design dynamic vs. static loading hazard types hazard types: ground shaking

sixteen seismic design Earthquake Design Earthquake Design Earthquake Design dynamic vs. static loading hazard types hazard types: ground shaking APPLIED ARCHITECTURAL STRUCTURES: STRUCTURAL ANALYSIS AND SYSTEMS DR. ANNE NICHOLS FALL 2017 lecture sixteen dynamic vs. static loading amplification of static affect time duration acceleration & velocity

More information

Evaluation of Geosynthetic Forces in GRSRW under Dynamic Condition

Evaluation of Geosynthetic Forces in GRSRW under Dynamic Condition Evaluation of Geosynthetic Forces in GRSRW under Dynamic Condition Kooshyar Passbakhsh, Maryam Yazdi Abstract Geosynthetics have proved to be suitable for reinforced soil retaining walls. Based on the

More information

Figure 1 Swing Span Supported by Center Pivot Pier and Two Rest Piers

Figure 1 Swing Span Supported by Center Pivot Pier and Two Rest Piers Abstract SEISMIC RETROFIT OF UNREINFORCED STONE MASONRY BRIDGE PIERS AND DISCRETE ELEMENT ANALYSIS Jaw-Nan (Joe) Wang 1 ; Michael J. Abrahams 2 The seismic behavior of unreinforced stone masonry structures

More information

Senior Researcher, Foundation & Geotechnical Engineering Labrotory, Structures Technology Division. Director, Structures Technology Division

Senior Researcher, Foundation & Geotechnical Engineering Labrotory, Structures Technology Division. Director, Structures Technology Division PAPER Seismic Design of Retaining Wall all Considering the Dynamic Response Characteristic Kenji WATANABE, ANABE, Dr.. Eng. Senior Researcher, Foundation & Geotechnical Engineering Labrotory, Structures

More information

Seismic Behavior of Concrete Retaining Wall with Shear Key, Considering Soil-Structure Interaction

Seismic Behavior of Concrete Retaining Wall with Shear Key, Considering Soil-Structure Interaction Seismic Behavior of Concrete Retaining Wall with Shear Key, Considering Soil-Structure Interaction Majid Ebad Sichani & Khosro Bargi School of Civil Engineering, College of Engineering, University of Tehran,

More information

RetainPro 10. Retaining Wall Design ENERCALC, INC RetainPro Software, div. ENERCALC, INC.

RetainPro 10. Retaining Wall Design ENERCALC, INC RetainPro Software, div. ENERCALC, INC. RetainPro 10 Retaining Wall Design ENERCALC, INC RetainPro 10 Cantilevered Retaining Walls Restrained Retaining Walls Gravity Retaining Walls Gabion Walls Segmental Block Retaining Walls Sheet Pile Retaining

More information

vulcanhammer.net Visit our companion site

vulcanhammer.net Visit our companion site this document downloaded from vulcanhammer.net Since 997, your complete online resource for information geotecnical engineering and deep foundations: The Wave Equation Page for Piling Online books on all

More information

GEOTECHNICAL RESISTANCE FACTORS

GEOTECHNICAL RESISTANCE FACTORS Chapter 9 GEOTECHNICAL RESISTANCE FACTORS Final SCDOT GEOTECHNICAL DESIGN MANUAL 9-i Table of Contents Section Page 9.1 Introduction... 9-1 9.2 Soil Properties... 9-2 9.3 Resistance Factors for LRFD Geotechnical

More information

EARTHQUAKE GEOTECHNICAL ENGINEERING

EARTHQUAKE GEOTECHNICAL ENGINEERING UME School, Fall Term 2017 1 ST WEEK Basic Concepts of Wave Propagation in Elastic Continua. 1D Linear and Linear-Equivalent Ground Response Analyses. Introduction to 1D Non-Linear and 2D Linear Ground

More information

SEISMIC ANALYSIS OF REINFORCED EARTH WALL: A REVIEW

SEISMIC ANALYSIS OF REINFORCED EARTH WALL: A REVIEW Int. J. Struct. & Civil Engg. Res. 2015 Siddharth Mehta and Siddharth Shah, 2015 Review Article ISSN 2319 6009 www.ijscer.com Vol. 4, No. 1, February 2015 2015 IJSCER. All Rights Reserved SEISMIC ANALYSIS

More information

Soil-Structure interaction effects on seismic response of a 16 storey RC framed building with shear wall

Soil-Structure interaction effects on seismic response of a 16 storey RC framed building with shear wall American Journal of Engineering Research (AJER) e-issn : 2320-0847 p-issn : 2320-0936 Volume-2 pp-53-58 www.ajer.org Research Paper Open Access Soil-Structure interaction effects on seismic response of

More information

Analysis of Newmark method on type 1 semi-gravity reinforsced. concrete cantilever retaining walls with and without sound wall.

Analysis of Newmark method on type 1 semi-gravity reinforsced. concrete cantilever retaining walls with and without sound wall. Analysis of Newmark method on type semi-gravity reinforsced concrete cantilever retaining walls with and without sound wall Xiaozang Chen University of California-Davis REU Institution: University of California-San

More information

Chapter 13 SEISMICALLY ISOLATED STRUCTURE DESIGN REQUIREMENTS

Chapter 13 SEISMICALLY ISOLATED STRUCTURE DESIGN REQUIREMENTS Chapter 13 SEISMICALLY ISOLATE STRUCTURE ESIGN REQUIREMENTS 13.1 GENERAL 13.1.1 Scope. Every seismically isolated structure and every portion thereof shall be designed and constructed in accordance with

More information

BUILDING CODE MANUAL COUNTY OF LOS ANGELES DEPARTMENT OF PUBLIC WORKS BUILDING AND SAFETY DIVISION Based on the 2017 LACBC

BUILDING CODE MANUAL COUNTY OF LOS ANGELES DEPARTMENT OF PUBLIC WORKS BUILDING AND SAFETY DIVISION Based on the 2017 LACBC BUILDING CODE MANUAL COUNTY OF LOS ANGELES DEPARTMENT OF PUBLIC WORKS BUILDING AND SAFETY DIVISION Based on the 2017 LACBC No. 35 Article 1 07-12-17 Page 1 of 8 DESIGN OF RETAINING WALLS ISSUE Section.1

More information

Seismic Response of Reinforced Soil Retaining Walls with Block Facings

Seismic Response of Reinforced Soil Retaining Walls with Block Facings Missouri University of Science and Technology Scholars' Mine International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics 21 - Fifth International Conference on

More information

Part III Special Topics of Bridges

Part III Special Topics of Bridges ENCE717 Bridge Engineering Special Topics of Bridges III Chung C. Fu, Ph.D., P.E. (http: www.best.umd.edu) 1 Part III Special Topics of Bridges 6. Dynamic/Earthquake Analysis (17.0) i. Basics of Bridge

More information

Nonlinear Modeling of Dynamic Soil-Structure Interaction: A Practitioner s Viewpoint

Nonlinear Modeling of Dynamic Soil-Structure Interaction: A Practitioner s Viewpoint Nonlinear Modeling of Dynamic Soil-Structure Interaction: A Practitioner s Viewpoint By (Arul) K. Arulmoli Earth Mechanics, Inc. Fountain Valley, California Workshop on Nonlinear Modeling of Geotechnical

More information

Soil-Structure Interaction Effects on Building Response in Recent Earthquakes

Soil-Structure Interaction Effects on Building Response in Recent Earthquakes Proceedings Third UJNR Workshop on Soil-Structure Interaction, March 29-3, 24, Menlo Park, California, USA. Soil-Structure Interaction Effects on Building Response in Recent Earthquakes Yasuhiro Hayashi

More information

SEISMIC SOIL-STRUCTURE INTERACTION ANALYSIS INCLUDING GROUND MOTION INCOHERENCY EFFECTS

SEISMIC SOIL-STRUCTURE INTERACTION ANALYSIS INCLUDING GROUND MOTION INCOHERENCY EFFECTS October 2-7, 28, Beijing, China Paper 4-2-25 SEISMIC SOIL-STRUCTURE INTERACTION ANALYSIS INCLUDING GROUND MOTION INCOHERENCY EFFECTS Farhang Ostadan, Nan Deng 2, Orhan Gurbuz 3 and Sanjeev Malushte 4 Bechtel

More information

BEHAVIOUR OF SHALLOW FOUNDATIONS OVER SOFT CLAY DAMPERS

BEHAVIOUR OF SHALLOW FOUNDATIONS OVER SOFT CLAY DAMPERS IGC 2009, Guntur, INDIA BEHAVIOUR OF SHALLOW FOUNDATIONS OVER SOFT CLAY DAMPERS Sanjib Singha Research Scholar, Department of Civil Engineering, National Institute of Technology, Silchar 788010, India,

More information

FACSIMILE/ MAIL TRANSMISSION. Date: December 2, 2011 File:

FACSIMILE/ MAIL TRANSMISSION. Date: December 2, 2011 File: PUAR Engineering Consultants Inc #200-100 Park Royal South W.Vancouver, BC, Canada V7T 1A2 Fax: 604-922-5054; Tel: 604-913-7827 FACSIMILE/ MAIL TRANSMISSION Date: December 2, 2011 File: 07-2-256 To: BRIAN

More information

TABLE OF CONTENTS. vii

TABLE OF CONTENTS. vii TABLE OF CONTENTS CHAPTER 1: INTRODUCTION...1 1.1 Scope...1 1.1.1 Screening...2 1.1.2 Detailed Evaluation...2 1.1.3 Retrofit Design Strategies...2 1.2 Design Earthquakes, Ground Motions, and Performance

More information

twenty four foundations and retaining walls Foundation Structural vs. Foundation Design Structural vs. Foundation Design

twenty four foundations and retaining walls Foundation Structural vs. Foundation Design Structural vs. Foundation Design ALIED ARCHITECTURAL STRUCTURES: STRUCTURAL ANALYSIS AND SYSTEMS DR. ANNE NICHOLS SRING 2018 lecture twenty four Foundation the engineered interface between the earth and the structure it supports that

More information

"Research Note" DISCRETE ELEMENT METHOD ANALYSIS OF RETAINING WALL EARTH PRESSURE IN STATIC AND PSEUDO-STATIC CONDITIONS *

Research Note DISCRETE ELEMENT METHOD ANALYSIS OF RETAINING WALL EARTH PRESSURE IN STATIC AND PSEUDO-STATIC CONDITIONS * Iranian Journal of Science & Technology, Transaction B, Engineering, Vol. 3, No. B Printed in The Islamic Republic of Iran, 26 Shiraz University "Research Note" DISCRETE ELEMENT METHOD ANALYSIS OF RETAINING

More information

SEISMIC EARTH PRESSURES ON REINFORCED SOIL RETAINING STRUCTURES

SEISMIC EARTH PRESSURES ON REINFORCED SOIL RETAINING STRUCTURES Seismic IGC 2009, Earth Guntur, Pressures INDIA on Reinforced Soil Retaining Structures SEISMIC EARTH PRESSURES ON REINFORCED SOIL RETAINING STRUCTURES Babloo Chaudhary Postgraduate Student, Indian Institute

More information

1557. Pseudo-static calculation method of the seismic residual deformation of a geogrid reinforced soil retaining wall with a liquefied backfill

1557. Pseudo-static calculation method of the seismic residual deformation of a geogrid reinforced soil retaining wall with a liquefied backfill 1557. Pseudo-static calculation method of the seismic residual deformation of a geogrid reinforced soil retaining wall with a liquefied backfill Liyan Wang 1, Guoxing Chen 2, Peng Gao 3, Shangkun Chen

More information

STATIC AND SEISMIC PRESSURES FOR DESIGN OF

STATIC AND SEISMIC PRESSURES FOR DESIGN OF STATIC AND SEISMIC PRESSURES FOR DESIGN OF RETAINING WALLS By Guoxi Wu, Ph.D., P. Eng. A Presentation to BC Hydro Generation Engineering on September 27, 2017 (modified pages 64 & 65 in December 2017 for

More information

Analysis of a Multi-Tower Frame Structure connected at different levels using ETABS

Analysis of a Multi-Tower Frame Structure connected at different levels using ETABS Analysis of a Multi-Tower Frame Structure connected at different levels using ETABS RISHABH SISODIA 1, N. Tej Kiran 2, K. Sai Sekhar Reddy 3 1Student, Dept. of Structural and Geotechnical Engineering,

More information

Construction and Long Term Performance of Transportation Infrastructure Constructed Using EPS Geofoam on Soft Soil

Construction and Long Term Performance of Transportation Infrastructure Constructed Using EPS Geofoam on Soft Soil Construction and Long Term Performance of Transportation Infrastructure Constructed Using EPS Geofoam on Soft Soil Sites in Salt SltLk Lake Valley, Vll Utah S. Bartlett, E. Lawton, C. Farnsworth, D. Negussey,

More information

twenty six concrete construction: foundation design ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SPRING 2013

twenty six concrete construction: foundation design ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SPRING 2013 ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SPRING 2013 lecture twenty six concrete construction: www.tamu.edu foundation design Foundations 1 Foundation the engineered

More information

Analysis of a Road Embankment with Pond Ash in an Active Seismic Region

Analysis of a Road Embankment with Pond Ash in an Active Seismic Region Analysis of a Road Embankment with Pond Ash in an Active Seismic Region Balendra Mouli Marrapu & Ravi Sankar Jakka Indian Institute of Technology Roorkee, India (247667) SUMMARY: Huge quantities of ash

More information

A COMPARISON OF SASSI2010 and SAP2000 FIXED-BASE ANALYSIS RESULTS FOR VALIDATION OF A LARGE SCALE NUCLEAR REACTOR BUILDING MODEL

A COMPARISON OF SASSI2010 and SAP2000 FIXED-BASE ANALYSIS RESULTS FOR VALIDATION OF A LARGE SCALE NUCLEAR REACTOR BUILDING MODEL Transactions, SMiRT-22 A COMPARISON OF SASSI2010 and SAP2000 FIXED-BASE ANALYSIS RESULTS FOR VALIDATION OF A LARGE SCALE NUCLEAR REACTOR BUILDING MODEL Mohsin R. Khan 1, Ming S. Yang 1, J.C. Chen 1, and

More information

NUMERICAL MODELING OF REINFORCED SOIL RETAINING WALLS SUBJECTED TO BASE ACCELERATION

NUMERICAL MODELING OF REINFORCED SOIL RETAINING WALLS SUBJECTED TO BASE ACCELERATION 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No. 2621 NUMERICAL MODELING OF REINFORCED SOIL RETAINING WALLS SUBJECTED TO BASE ACCELERATION Magdy M. EL-EMAM

More information

Structure-To-Soil-Structure Interaction Analysis: A Case Study

Structure-To-Soil-Structure Interaction Analysis: A Case Study Missouri University of Science and Technology Scholars' Mine International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics 2010 - Fifth International Conference

More information

Prediction Method for Reservoir Collapse During Earthquakes

Prediction Method for Reservoir Collapse During Earthquakes 6 th International Conference on Earthquake Geotechnical Engineering 1-4 November 2015 Christchurch, New Zealand Prediction Method for Reservoir Collapse During Earthquakes H. Nomura 1, Y. Akasaka 1 ABSTRACT

More information

INDOT Wall System Approval Criteria and Design Review

INDOT Wall System Approval Criteria and Design Review INDOT Wall System Approval Criteria and Design Review Yuhui Hu, P.E. Office of Geotechnical Services, INDOT March 12, 2014 Slide 1 Outline Types of earth retaining structures Types of Mechanically Stabilized

More information

DESIGNING AND CONSTRUCTION OF T-WALL RETAINING WALL SYSTEM

DESIGNING AND CONSTRUCTION OF T-WALL RETAINING WALL SYSTEM Istanbul Bridge Conference August 11-13, 2014 Istanbul, Turkey DESIGNING AND CONSTRUCTION OF T-WALL RETAINING WALL SYSTEM T. C. NEEL and K.BOZKURT ABSTRACT This work shall consist of the design, manufacture

More information

Seismic Considerations of Circuit Breakers

Seismic Considerations of Circuit Breakers Seismic Considerations of Circuit Breakers Willie Freeman, IEEE 693 Working Group ABB Inc, Mt. Pleasant PA, USA IEEE Tutorial - 2008 Abstract: The tutorial covers the seismic qualification of high voltage

More information

Effects of Seismic Motion Incoherency on SSI and SSSI Responses of Nuclear Structures for Different Soil Site Conditions

Effects of Seismic Motion Incoherency on SSI and SSSI Responses of Nuclear Structures for Different Soil Site Conditions Effects of Seismic Motion Incoherency on SSI and SSSI Responses of Nuclear Structures for Different Soil Site Conditions Dr. Dan M. Ghiocel Email: dan.ghiocel@ghiocel-tech.com Phone: 585-641-0379 Ghiocel

More information

Chapter 13: Retaining Walls

Chapter 13: Retaining Walls Chapter 13: Retaining Walls Introduction In general, retaining walls can be divided into two major categories: (a) conventional retaining walls and (b) mechanically stabilized earth walls Conventional

More information

by Dr. Mark A. Ketchum, OPAC Consulting Engineers for the EERI 100 th Anniversary Earthquake Conference, April 17, 2006

by Dr. Mark A. Ketchum, OPAC Consulting Engineers for the EERI 100 th Anniversary Earthquake Conference, April 17, 2006 Principles of Earthquake Engineering of Bridges Part 1: Principles & Approach by Dr. Mark A. Ketchum, OPAC Consulting Engineers for the EERI 100 th Anniversary Earthquake Conference, April 17, 2006 Presentation

More information

Effect of Seismic Reinforcement of Sheet Pile Quay Wall Using Ground Anchor

Effect of Seismic Reinforcement of Sheet Pile Quay Wall Using Ground Anchor Effect of Seismic Reinforcement of Sheet Pile Quay Wall Using Ground Anchor M. Yoshida & M. Mitou Penta-Ocean Construction Co., Ltd., Japan O. Kiyomiya Waseda University, Japan S. Tashiro TOA Corporation,

More information

twenty seven concrete construction: foundation design Foundation Structural vs. Foundation Design Structural vs. Foundation Design

twenty seven concrete construction: foundation design Foundation Structural vs. Foundation Design Structural vs. Foundation Design ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SRING 2017 lecture twenty seven Foundation the engineered interface between the earth and the structure it supports that transmits

More information

Downloaded from Downloaded from /1

Downloaded from  Downloaded from  /1 PURWANCHAL UNIVERSITY VI SEMESTER FINAL EXAMINATION-2003 LEVEL : B. E. (Civil) SUBJECT: BEG359CI, Foundation Engineering. Full Marks: 80 TIME: 03:00 hrs Pass marks: 32 Candidates are required to give their

More information

Seismic Protection of Lead-Cooled Reactors

Seismic Protection of Lead-Cooled Reactors Seismic Protection of Lead-Cooled Reactors Finite Element Modelling and Dynamic Analyses of Isolated NPPs Francisco Beltrán SILER Project Training Course Verona, May 2012 TABLE OF CONTENTS 1 2 3 4 5 6

More information

Seismic Design of a Railway Viaduct in a High Seismic Zone

Seismic Design of a Railway Viaduct in a High Seismic Zone Seismic Design of a Railway Viaduct in a High Seismic Zone 9 th Small Bridges Conference, Australia 2019 Seismic Design of a Railway Viaduct in a High Seismic Zone 1. Project Overview 2. Typical Project

More information

Base isolation. Philippe Bisch IOSIS, EGIS group. EUROCODE 8 Background and Applications

Base isolation. Philippe Bisch IOSIS, EGIS group. EUROCODE 8 Background and Applications EUROCODE 8 Background and Applications Dissemination of information for training Lisbon, 10-11 February 2011 1 Base isolation Philippe Bisch IOSIS, EGIS group EUROCODE 8 Background and Applications BASE

More information

Load Bearing Mechanism of Piled Raft Foundation during Earthquake

Load Bearing Mechanism of Piled Raft Foundation during Earthquake Proceedings Third UJNR Workshop on Soil-Structure Interaction, March 9-,, Menlo Park, California, USA. Load Bearing Mechanism of Piled Raft during Earthquake Shoichi Nakai a), Hiroyuki Kato a), Riei Ishida

More information

INNOVATIVE SEISMIC ANALYSIS SOLUTIONS APPLIED ON THE GENERATION MPOWER PROJECT

INNOVATIVE SEISMIC ANALYSIS SOLUTIONS APPLIED ON THE GENERATION MPOWER PROJECT Transactions, SMiRT-22 INNOVATIVE SEISMIC ANALYSIS SOLUTIONS APPLIED ON THE GENERATION MPOWER PROJECT Michael D. McHood 1, Lisa M. Anderson 2, Carlos Coronado 2, James Marrone 3, John Demitz 4, Martin

More information

Seismic Evaluation of a 1930 Steel Bridge with Lightly Reinforced Concrete Piers

Seismic Evaluation of a 1930 Steel Bridge with Lightly Reinforced Concrete Piers Seismic Evaluation of a 1930 Steel Bridge with Lightly Reinforced Concrete Piers R. Tinawi & M. Leclerc École Polytechnique de Montréal, Canada D. Mitchell McGill University, Canada A. Massad Hydro-Québec,

More information

SEISMIC SOIL-PILE GROUP INTERACTION ANALYSIS OF A BATTERED PILE GROUP

SEISMIC SOIL-PILE GROUP INTERACTION ANALYSIS OF A BATTERED PILE GROUP 4 th International Conference on Earthquake Geotechnical Engineering June 25-28, 27 Paper No. 1733 SEISMIC SOIL-PILE GROUP INTERACTION ANALYSIS OF A BATTERED PILE GROUP Nan DENG 1, Richard KULESZA 2 and

More information

Seismic Strengthening of an Arch-Gravity Dam

Seismic Strengthening of an Arch-Gravity Dam Seismic Strengthening of an Arch-Gravity Dam S. Malla & B. Otto Axpo AG, Baden, Switzerland SUMMARY: The 25 m high Illsee dam is being strengthened to meet the requirements of the Swiss guidelines for

More information

ANALYTICAL AND EXPERIMENTAL ANALYSIS OF RETAINING WALL IN STATIC AND SEISMIC CONDITIONS: A REVIEW

ANALYTICAL AND EXPERIMENTAL ANALYSIS OF RETAINING WALL IN STATIC AND SEISMIC CONDITIONS: A REVIEW International Journal of Civil Engineering and Technology (IJCIET) Volume 9, Issue 2, February 2018, pp. 522 530, Article ID: IJCIET_09_02_051 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=9&itype=2

More information

Dynamic Analysis of Large Steel Tanks

Dynamic Analysis of Large Steel Tanks Transactions of the 17 th International Conference on Structural Mechanics in Reactor Technology (SMiRT 17) Prague, Czech Republic, August 17 22, 2003 Paper # K14-1 Dynamic Analysis of Large Steel Tanks

More information

3. Analysis Procedures

3. Analysis Procedures 3. Analysis Procedures 3.1 Scope This chapter sets forth requirements for analysis of buildings using the Systematic Rehabilitation Method. Section 3.2 specifies general analysis requirements for the mathematical

More information

Seismic SSI Incoherency Effects for CANDU Reactor Building Structure

Seismic SSI Incoherency Effects for CANDU Reactor Building Structure Seismic SSI Incoherency Effects for CANDU Reactor Building Structure Dan M. Ghiocel GP Technologies, Inc., 6 South Main St., 2 nd Floor, Pittsford, New York 14534, USA, Email: dan.ghiocel@ghiocel-tech.com

More information

TRB Webinar: Load and Resistance Factor Design Analysis for Seismic Design of Slopes and Retaining Walls

TRB Webinar: Load and Resistance Factor Design Analysis for Seismic Design of Slopes and Retaining Walls TRB Webinar: Load and Resistance Factor Design Analysis for Seismic Design of Slopes and Retaining Walls TRB Announcements: We have emailed you the presenters slides in today s webinar reminder email.

More information

Assessment of the Dynamic Response of the Soil to Strong Ground Motion at a Wind Farm

Assessment of the Dynamic Response of the Soil to Strong Ground Motion at a Wind Farm Assessment of the Dynamic Response of the Soil to Strong Ground Motion at a Wind Farm A.Cichowicz Council for Geoscience, South Africa SUMMARY: An assessment of the dynamic response of the soil to strong

More information

ABSTRACT 1. INTRODUCTION

ABSTRACT 1. INTRODUCTION Seismic response analysis of pile foundations W.D. Liam Finn, G. Wu, T. Thavaraj Department of Civil Engineering, University ofbritish Columbia, Vancouver, British Columbia V6T1Z4, Canada ABSTRACT A method

More information

A numerical simulation on the dynamic response of MSE wall with LWA backfill

A numerical simulation on the dynamic response of MSE wall with LWA backfill Numerical Methods in Geotechnical Engineering Hicks, Brinkgreve & Rohe (Eds) 2014 Taylor & Francis Group, London, 978-1-138-00146-6 A numerical simulation on the dynamic response of MSE wall with LWA backfill

More information

Revision Nalcor Doc. No. MFA-SN-CD-0000-GT-DC C1 Date Page SLI Doc. No EC Dec-2013 ii DESIGN CRITERIA - GEOTECHNICAL

Revision Nalcor Doc. No. MFA-SN-CD-0000-GT-DC C1 Date Page SLI Doc. No EC Dec-2013 ii DESIGN CRITERIA - GEOTECHNICAL SLI Doc. No. 505573-3000-40EC-0003 01 5-Dec-2013 ii TABLE OF CONTENTS Page No. 1 INTRODUCTION... 1 2 CREST ELEVATIONS... 2 2.1 Cofferdams... 2 2.2 North Spur... 3 3 STABILITY ANALYSIS LOADING CASES AND

More information

Influence of Orientation of Piles on Seismic Response of Pile Groups

Influence of Orientation of Piles on Seismic Response of Pile Groups International Journal of Civil Engineering Research. ISSN 2278-3652 Volume 5, Number 3 (2014), pp. 261-268 Research India Publications http://www.ripublication.com/ijcer.htm Influence of Orientation of

More information

Effect of vertical earthquake shaking on displacement of earth retaining structures

Effect of vertical earthquake shaking on displacement of earth retaining structures Effect of vertical earthquake shaking on displacement of earth retaining structures P. Brabhaharan, G.J. Fairless & H.E. Chapman Opus International Consultants, Wellington, New Zealand. ABSTRACT: Seismic

More information

A New Approach for Estimating the Seismic Soil Pressure on Retaining Walls

A New Approach for Estimating the Seismic Soil Pressure on Retaining Walls Transaction A: Civil Engineering Vol. 17, No. 4, pp. 273{284 c Sharif University of Technology, August 2010 A New Approach for Estimating the Seismic Soil Pressure on Retaining Walls Abstract. S. Maleki

More information

Design of Semi gravity Retaining Walls

Design of Semi gravity Retaining Walls Design of Semi gravity Retaining Walls Example 13.1 A semi gravity retaining wall consisting of plain concrete (weight = 145 lb/ft³) is shown in Figure 13.9. The bank of supported earth is assumed to weigh

More information

Seismic Analysis and Response Fundamentals. Lee Marsh Senior Project Manager BERGER/ABAM Engineers, Inc

Seismic Analysis and Response Fundamentals. Lee Marsh Senior Project Manager BERGER/ABAM Engineers, Inc Seismic Analysis and Response Fundamentals Lee Marsh Senior Project Manager BERGER/ABAM Engineers, Inc Learning Outcomes Identify Earthquake Inertial Forces/Loadings Describe the Interrelation Between

More information

Soil structure interaction of RC building with different foundations and soil types

Soil structure interaction of RC building with different foundations and soil types International Research Journal of Engineering and Technology (IRJET) e-issn: 395-5 Soil structure interaction of RC building with different foundations and soil types Suman, Dr.Sunil Kumar Tengali M.Tech

More information

Influence of Vertical Acceleration on Seismic Response of Endbearing

Influence of Vertical Acceleration on Seismic Response of Endbearing American Journal of Engineering Research (AJER) e-issn : 2320-0847 p-issn : 2320-0936 Volume-4 pp-33-41 www.ajer.org Research Paper Open Access Influence of Vertical Acceleration on Seismic Response of

More information

DYNAMIC RESPONSE OF BLOCK TYPE QUAY WALL

DYNAMIC RESPONSE OF BLOCK TYPE QUAY WALL 8 th INTERNATIONAL CONFERENCE ON COASTAL AND PORT ENGINEERING IN DEVELOPING COUNTRIES COPEDEC 2012, IIT Madras, Chennai, INDIA. 20 24 Feb. 2012 DYNAMIC RESPONSE OF BLOCK TYPE QUAY WALL H. Karakus 1, A.

More information

Tailings dam raise with reinforced walls

Tailings dam raise with reinforced walls Tailings dam raise with reinforced walls Jorge Alvarez Tiburcio Anddes Asociados S.A.C.,Peru ABSTRACT This paper presents the design of a tailings dam raise with reinforced walls lined with geomembrane,

More information

Soil Structure Interaction and Seismic Design Code Provision

Soil Structure Interaction and Seismic Design Code Provision pp. 75 87 Sagar Karki Chhetri 1, Kamal Bahadur Thapa 2 1,2 Department of Civil Engineering, Pulchowk Campus, Institute of Engineering, Tribhuvan University, Nepal Corresponding Email: 1 sgr.dares@gmail.com

More information

Dynamic interaction of adjacent tall building structures on deep foundations

Dynamic interaction of adjacent tall building structures on deep foundations Earthquake Resistant Engineering Structures VIII 173 Dynamic interaction of adjacent tall building structures on deep foundations M. A. Rahgozar & M. Ghandil Department of Civil Engineering, University

More information

Torsional and Seismic Behavior of Shear Wall Dominant Flat Plate Buildings

Torsional and Seismic Behavior of Shear Wall Dominant Flat Plate Buildings Torsional and Seismic Behavior of Shear Wall Dominant Flat Plate Buildings Ramya S R 1, Dr. P M Ravindra 2 1M. Tech Student, Department of Civil Engineering, Bangalore Institute of Technology, Bengaluru-

More information

Load Bearing Mechanism of Piled Raft Foundation during Earthquake

Load Bearing Mechanism of Piled Raft Foundation during Earthquake Proceedings Third UJNR Workshop on Soil-Structure Interaction, March 9-,, Menlo Park, California, USA. Load Bearing Mechanism of Piled Raft during Earthquake Shoichi Nakai a), Hiroyuki Kato a), Riei Ishida

More information

ANALYSIS OF A SQUAT CONCRETE WALL, DIFFERENCE IN TRANSLATION DURING SEISMIC EXCITATION DUE TO FOUNDATION SUPPORT. ABSTRACT

ANALYSIS OF A SQUAT CONCRETE WALL, DIFFERENCE IN TRANSLATION DURING SEISMIC EXCITATION DUE TO FOUNDATION SUPPORT. ABSTRACT ANALYSIS OF A SQUAT CONCRETE WALL, DIFFERENCE IN TRANSLATION DURING SEISMIC EXCITATION DUE TO FOUNDATION SUPPORT. E. R. Thorhallsson 1, I. S. Rikhardsson 2, A.M. Olafsson 3 and H.S. Olafsson 4 ABSTRACT

More information

Seismic Response of Cantilever Retaining Walls: Verification of Centrifuge Experiments

Seismic Response of Cantilever Retaining Walls: Verification of Centrifuge Experiments 1 st International Conference on Natural Hazards & Infrastructure 28-3 June, 216, Chania, Greece Seismic Response of Cantilever Retaining Walls: Verification of Experiments E. Garini 1, L. Tsantilas, and

More information

Rocking Seismic Isolation of Bridges Supported by Direct Foundations

Rocking Seismic Isolation of Bridges Supported by Direct Foundations Caltrans-PEER Seismic Research Seminar Sacramento, CA, USA Rocking Seismic Isolation of Bridges Supported by Direct Foundations June 8, 29 Kazuhiko Kawashima Tokyo Institute of Technology Requirements

More information

Shake-Table Tests and Simulation Analyses on EPS Fill for Road Widening

Shake-Table Tests and Simulation Analyses on EPS Fill for Road Widening Shake-Table Tests and Simulation Analyses on EPS Fill for Road Widening Junichi Nishikawa and Suguru Watanabe: Hokkaido Civil Engineering Research Institute 1-3 Hiragishi, Toyohira-ku, Sapporo, Japan E-mail;

More information

Concept of Earthquake Resistant Design

Concept of Earthquake Resistant Design Concept of Earthquake Resistant Design Sudhir K Jain Indian Institute of Technology Gandhinagar November 2012 1 Bhuj Earthquake of 2001 Magnitude 7.7, ~13,805 persons dead Peak ground acceleration ~0.60g

More information

Geotechnical Engineering Software GEO5

Geotechnical Engineering Software GEO5 Geotechnical Engineering Software GEO5 GEO5 software suite is designed to solve various geotechnical problems. The easy -to -use suite consists of individual programs with an unified and user-friendly

More information