NCHRP Progress Review. Seismic Analysis and Design of. Embankments, and Buried Structures. January 22, 2007

Size: px
Start display at page:

Download "NCHRP Progress Review. Seismic Analysis and Design of. Embankments, and Buried Structures. January 22, 2007"

Transcription

1 NCHRP Progress Review Seismic Analysis and Design of Retaining i Walls, Slopes and Embankments, and Buried Structures January 22, 2007

2 Objectives of NCHRP Project Develop analytical methods and recommended LRFD specifications for seismic design of retaining i walls, buried structures, t slopes, and embankments The specifications shall be compatible and consistent with the philosophy and format of the AASHTO LRFD Bridge Design Specifications Ref: NCHRP Research Project Statement Project 12-70, FY 2004

3 Background NCHRP Project Builds on other projects involving development of LRFD specifications NCHRP completed in 2003 NCHRP completed in 2006 Scope of NCHRP & NCHRP Limited to bridges and components directly attached (wing walls and abutments) Included determination of ground motions Excluded retaining walls, buried structures, slopes, and embankments

4 Need for NCHRP Project Difficulties with retaining wall designs M-O method blows up with steep back slopes and high pga s Uncertainty in selecting seismic coefficient Limited guidance for some walls (e.g., soldier pile, tieback, and soil nail walls) Lack of written guidelines for slope stability Appropriate seismic coefficient Analysis method (i.e., FS versus deformations) Liquefaction effects

5 Need for NCHRP Project (cont.) Lack of methods in Section 12 of LRFD on seismic design of buried structures (i.e., drainage culverts and pipes, box culverts, pedestrian tunnels) Transient versus permanent ground displacement Permanent ground displacement (flotation, lateral spread, & settlement) Flexible versus rigid pipe

6 Goals for Project Improve existing methods or develop new methods that overcome shortcomings Optimize design approach for routine design and for special cases Avoid hidden conservatism Ensure applicability to WUS and CEUS Include no seismic i design provision i Be consistent with AASHTO LRFD Bridge Design Specifications Revisions to ground motions from NCHRP Project Other changes

7 Status of Project Work completed (April 2004 Dec. 2006) Reviewed literature, identified issues & proposed methodologies Prepared 1 st Interim Report (Jan. 2005) Prepared 2 nd Interim Report (Mar. 2006) Developed preliminary specifications, commentaries & example problems Prepared 3 rd Interim Report (Nov. 2006) Work to complete (Jan July 2007) Prepare 2 nd draft specifications, commentaries & example problems (May 2007) Finalize report, specifications and commentaries & example problems (July 2007)

8 Overview of Proposed Approach Ground motion recommendations Initial screening Adjustments for wave scattering Determination of PGV from S 1 Revised displacement charts/equations Guidance on soil property selection Undrained strengths Importance of c and Φ Design recommendations Method of analysis (simple & generalized) Design Checks (global, external & internal)

9 Overview of Proposed Approach Design of retaining walls Method of active pressure determination Didn t abandon M-O. Introduced (1) revised seismic coefficient for scattering, and (2) effects of c Recommended generalized slope stability approach for many situations (layered soil profiles, geometric constraints, etc.) Passive pressures from log spiral with cohesion Slopes & Embankments Adjustments for wave scattering & displacement Buried Structures Procedures for treating transient ground displacements

10

11 Seismic i Loads & Load Factors Ground motions USGS developed new maps for AASHTO 7% in 75 year design basis PGA, S s, and S 1 NEHRP site factors CD with coordinate look-up Proposed screening for No Analysis at nonliquefiable sites

12 Seismic Loads & Load Factors Height-dependent scattering adjustments k max = α PGA α = 1 + H/100 [(0.5/β)-1] where H = fill height β = F v S 1 /PGA β=1.5 β=1.0 β=0.5

13 Seismic Loads & Load Factors Displacement-related seismic coefficient 0.5 k max for design permitted Assumes 1-2 inches of displacement acceptable Newmark displacement estimates d=f(k y /k max, PGA, PGV) PGV=f(S 1 )

14 Gravity / Semi Gravity Walls Seismic active and passive earth pressure determination Determine active pressures using either Simplified M-O equation for active pressure Generalized limit equilibrium methods Determine Passive Pressures from log spiral charts M-O active earth pressure cut backslope criteria Slope Angle Flat 3H:1V Slope of Active Wedge 1.5H:1V 2H:1V Figure X.7-2 Application of M-O Method for Non-Homogeneous Soil

15 Gravity / Semi Gravity Walls Active earth pressures for c-φφ soils Use where backfill soils are cohesive or failure plane in native backcut Capillary stress in silty soils max. c=50~100 psf Figure B-1 Seismic Active Figure B-1 Seismic Active Earth Pressure Coefficient for φ = 30

16 Gravity / Semi Gravity Walls Seismic passive earth pressure for c- φ soils Use log spiral methods rather than M-O OEquations Capillary stress in silty soils max. c=50~100 psf Figure B-1 Seismic Active Earth Pressure Coefficient for φ = 30 Figure B-3. Seismic i Passive Earth Pressure Coefficient based on Log Spiral Procedure

17 Gravity / Semi Gravity Walls Generalized equilibrium methods Use where M-O approach not suitable: soil conditions or backslope geometry/steep cut slopes Earth pressures applied as boundary force in commercially available slope stability programs Wall displacement analysis Use where D/C Ratio > 1 (FS < 1) Allowable sliding displacements > 1 to 2 inches, supporting larger reductions in seismic coefficient

18 Non-Gravity Cantilever Walls Seismic passive earth pressure e Limit equilibrium method (free- or fixed-earth pressure) for most analyses Use log spiral method with adjustment t for soil inertial effect Wall displacement analysis / numerical methods Beam column approach Software available (P-Y Wall, L-Pile, COM624, BMCOL) P-multiplier developed FE or FD modeling allowed

19 General MSE Walls Initial static design meets AASHTO Specifications Adequate performance: Global/External/Internal Stability Method of Analysis Performance Criteria No excessive sliding or rotation of structural No structural failure of reinforcing strips or facing elements Analyses Eliminate A m = (1.45 A) A factor (Segrestin and Bastick, 1988) ) Displacement-based design (if necessary)

20 Method of Analysis Anchored Walls Assume seismic active pressures can be mobilized due to anchor stretch. Seismic active earth pressures Use of generalized limit equilibrium methods (layered natural al c φ soils) Use k=k max Use total stress strength parameters c φ Assume uniform active pressure distribution Key product is location of critical failure surface for anchor location

21 Soil Nail Walls Design and analysis procedures are similar to those for MSE Walls No AASHTO LRFD Specifications currently exist for soil nail walls 2005 NCHRP Project Report may form the basis for a specification Currently, designs follow guidelines in FHWA G.E.C. No. 7 (2003) which describes two computer codes, GOLDNAIL and SNAIL Use AASHTO MSE Wall acceleration factor Allow displacement-based design

22 Slopes & Embankments Methodology Recommends screening level (nonliquefiable sites) 3H:1V: pga > 0.3g 2H:1V: pga > 0.2g Estimate seismic coefficient similar to retaining walls Includes adjustment for scattering (H > 20ft) and for cohesion Reduce seismic coefficient by 50% if several inches of deformation acceptable Other Considerations Proposes screening for liquefaction (liquefaction unlikely if N value > 5 bpf and pga < 0.15g) Includes use of numerical modeling methods

23 Buried Structures General Ground Shaking (TGD) Detailed Procedures Ovaling/Racking Deformations Axial/Curvature Deformations - not required due to limited length Ground Failure (PGD) General Methodology Analysis Simplified Procedures Ovaling & Racking Numerical Modeling Methods (Recommended Alternative) Complex Geometry Long Span Critical Structure Highly Variable Subsurface Conditions High Seismic Areas Under High Embankment

24 Buried Structures General Vulnerability Screening Factors Level of Shaking Soil Conditions Structure Properties No Analysis Requirements (Screening Level) S 1 0.2g (or PGV 10 in/sec) for D > 1.0 m S 1 0.3g 03g(orPGV 15 in/sec) for D 10m 1.0 PGV (in/s) = x C 1) C 1 = LogS (2.3 LogS ) 2

Recommended Specifications, Commentaries, and Example Problems

Recommended Specifications, Commentaries, and Example Problems Draft Final Report Volume 2 to the NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM (NCHRP) on Project 12-70 Seismic Analysis and Design of Retaining Walls, Buried Structures, Slopes, and Embankments Recommended

More information

TRB Webinar: Load and Resistance Factor Design Analysis for Seismic Design of Slopes and Retaining Walls

TRB Webinar: Load and Resistance Factor Design Analysis for Seismic Design of Slopes and Retaining Walls TRB Webinar: Load and Resistance Factor Design Analysis for Seismic Design of Slopes and Retaining Walls TRB Announcements: We have emailed you the presenters slides in today s webinar reminder email.

More information

STATUS REPORT: NCHRP PROJECTS TO UPDATE GEOTECHNICAL PROVISIONS IN THE SEISMIC SECTIONS OF THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS

STATUS REPORT: NCHRP PROJECTS TO UPDATE GEOTECHNICAL PROVISIONS IN THE SEISMIC SECTIONS OF THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS STATUS REPORT: NCHRP PROJECTS TO UPDATE GEOTECHNICAL PROVISIONS IN THE SEISMIC SECTIONS OF THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS Abstract D.G. Anderson 1, G.R. Martin 2, I.P. Lam 3, and J.N- Wang

More information

TABLE OF CONTENTS. vii

TABLE OF CONTENTS. vii TABLE OF CONTENTS CHAPTER 1: INTRODUCTION...1 1.1 Scope...1 1.1.1 Screening...2 1.1.2 Detailed Evaluation...2 1.1.3 Retrofit Design Strategies...2 1.2 Design Earthquakes, Ground Motions, and Performance

More information

GEOTECHNICAL SEISMIC DESIGN

GEOTECHNICAL SEISMIC DESIGN Chapter 14 GEOTECHNICAL SEISMIC DESIGN FINAL SCDOT GEOTECHNICAL DESIGN MANUAL June 2010 SCDOT Geotechnical Design Manual GEOTECHNICAL SEISMIC DESIGN Table of Contents Section Page 14.1 Introduction...14-1

More information

Dynamic Earth Pressures - Simplified Methods

Dynamic Earth Pressures - Simplified Methods Dynamic Earth Pressure - Simplifed Methods Page 1 Dynamic Earth Pressures - Simplified Methods Reading Assignment Lecture Notes Other Materials Ostadan and White paper Wu and Finn paper Homework Assignment

More information

OVERVIEW OF NCHRP RESEARCH. David B. Beal 1

OVERVIEW OF NCHRP RESEARCH. David B. Beal 1 OVERVIEW OF NCHRP RESEARCH David B. Beal 1 Abstract The policies and procedures of the National Cooperative Highway Research Program (NCHRP), an applied research program, are discussed. A brief overview

More information

Table of Contents 18.1 GENERAL Overview Responsibilities References

Table of Contents 18.1 GENERAL Overview Responsibilities References Table of Contents Section Page 18.1 GENERAL... 18.1-1 18.1.1 Overview... 18.1-1 18.1.2 Responsibilities... 18.1-1 18.1.3 References... 18.1-2 18.2 MISCELLANEOUS FOUNDATION DESIGNS... 18.2-1 18.2.1 Buildings...

More information

Seismic Design & Retrofit of Bridges- Geotechnical Considerations

Seismic Design & Retrofit of Bridges- Geotechnical Considerations Seismic Design & Retrofit of Bridges Part 4: Geotechnical Presented by Dr. Ken Fishman,P.E. McMahon & Mann Consulting Engineers, P.C. 1 MULTIDISCIPLINARY CENTER FOR EARTHQUAKE ENGINEERING RESEARCH MCEER

More information

Earthquake Design of Flexible Soil Retaining Structures

Earthquake Design of Flexible Soil Retaining Structures Earthquake Design of Flexible Soil Retaining Structures J.H. Wood John Wood Consulting, Lower Hutt 207 NZSEE Conference ABSTRACT: Many soil retaining wall structures are restrained from outward sliding

More information

GEOTECHNICAL RESISTANCE FACTORS

GEOTECHNICAL RESISTANCE FACTORS Chapter 9 GEOTECHNICAL RESISTANCE FACTORS Final SCDOT GEOTECHNICAL DESIGN MANUAL 9-i Table of Contents Section Page 9.1 Introduction... 9-1 9.2 Soil Properties... 9-2 9.3 Resistance Factors for LRFD Geotechnical

More information

GEOTECHNICAL LRFD DESIGN

GEOTECHNICAL LRFD DESIGN Chapter 8 GEOTECHNICAL LRFD DESIGN Final SCDOT GEOTECHNICAL DESIGN MANUAL August 2008 Table of Contents Section Page 8.1 Introduction... 8-1 8.2 LRFD Design Philosophy... 8-2 8.3 Limit States... 8-3 8.4

More information

Chapter 18 EARTH RETAINING STRUCTURES

Chapter 18 EARTH RETAINING STRUCTURES Chapter 18 EARTH RETAINING STRUCTURES Final SCDOT GEOTECHNICAL DESIGN MANUAL June 2010 SCDOT Geotechnical Design Manual Earth Retaining Structures Table of Contents Section Page 18.1 Introduction...18-1

More information

GEOGRIDS IN WALLS AND SLOPES. Corbet S.P 1 & Diaz M 2. AECOM Ltd Chelmsford, CM1 1HT. ( ) 2

GEOGRIDS IN WALLS AND SLOPES. Corbet S.P 1 & Diaz M 2. AECOM Ltd Chelmsford, CM1 1HT. (  ) 2 GEOGRIDS IN WALLS AND SLOPES Corbet S.P 1 & Diaz M 2 1 AECOM Ltd Chelmsford, CM1 1HT. (e-mail: steve.corbet@aecom.com ) 2 AECOM Ltd Chelmsford, CM1 1HT. (e-mail: maria.espinoza@aecom.com ) INTRODUCTION

More information

EARTHQUAKE GEOTECHNICAL ENGINEERING

EARTHQUAKE GEOTECHNICAL ENGINEERING UME School, Fall Term 2017 1 ST WEEK Basic Concepts of Wave Propagation in Elastic Continua. 1D Linear and Linear-Equivalent Ground Response Analyses. Introduction to 1D Non-Linear and 2D Linear Ground

More information

SCDOT Geotechnical Manual Updates. Nicholas E. Harman, MS PE

SCDOT Geotechnical Manual Updates. Nicholas E. Harman, MS PE SCDOT Geotechnical Manual Updates Nicholas E. Harman, MS PE Background GDM version 1.0 introduced in August 2008 Chapters 1 to 12 Appendix A GDM version 1.1 introduced in June 2010 Chapters 13 to 26 Appendices

More information

5-20 FOUNDATION REPORT/GEOTECHNICAL DESIGN

5-20 FOUNDATION REPORT/GEOTECHNICAL DESIGN 5-20 FOUNDATION REPORT/GEOTECHNICAL DESIGN REPORT CHECKLIST FOR EARTH RETAINING SYSTEMS Introduction This checklist was developed to assist the geotechnical project professionals in preparing the Foundation

More information

DESIGNING AND CONSTRUCTION OF T-WALL RETAINING WALL SYSTEM

DESIGNING AND CONSTRUCTION OF T-WALL RETAINING WALL SYSTEM Istanbul Bridge Conference August 11-13, 2014 Istanbul, Turkey DESIGNING AND CONSTRUCTION OF T-WALL RETAINING WALL SYSTEM T. C. NEEL and K.BOZKURT ABSTRACT This work shall consist of the design, manufacture

More information

Nonlinear Modeling of Dynamic Soil-Structure Interaction: A Practitioner s Viewpoint

Nonlinear Modeling of Dynamic Soil-Structure Interaction: A Practitioner s Viewpoint Nonlinear Modeling of Dynamic Soil-Structure Interaction: A Practitioner s Viewpoint By (Arul) K. Arulmoli Earth Mechanics, Inc. Fountain Valley, California Workshop on Nonlinear Modeling of Geotechnical

More information

SEISMIC PERFORMANCE OF EMBANKMENTS

SEISMIC PERFORMANCE OF EMBANKMENTS SEISMIC PERFORMANCE OF EMBANKMENTS Richard W. Stephenson, Ph.D., P.E. Professor of Civil, Architectural and Environmental Engineering Wanxing Liu Graduate Student University of Missouri-Rolla (UMR) Geotechnical

More information

Geoguide 6 The New Guide to Reinforced Fill Structure and Slope Design in Hong Kong

Geoguide 6 The New Guide to Reinforced Fill Structure and Slope Design in Hong Kong Geoguide 6 The New Guide to Reinforced Fill Structure and Slope Design in Hong Kong Geotechnical Engineering Office Civil Engineering Department The Government of the Hong Kong Special Administrative Region

More information

Chapter 18 EARTH RETAINING STRUCTURES GEOTECHNICAL DESIGN MANUAL

Chapter 18 EARTH RETAINING STRUCTURES GEOTECHNICAL DESIGN MANUAL Chapter 18 EARTH RETAINING STRUCTURES GEOTECHNICAL DESIGN MANUAL January 2019 Table of Contents Section Page 18.1 Introduction... 18-1 18.2 Earth Retaining Structure Classification... 18-2 18.2.1 Load

More information

Analysis of Newmark method on type 1 semi-gravity reinforsced. concrete cantilever retaining walls with and without sound wall.

Analysis of Newmark method on type 1 semi-gravity reinforsced. concrete cantilever retaining walls with and without sound wall. Analysis of Newmark method on type semi-gravity reinforsced concrete cantilever retaining walls with and without sound wall Xiaozang Chen University of California-Davis REU Institution: University of California-San

More information

Geotechnical Engineering Software GEO5

Geotechnical Engineering Software GEO5 Geotechnical Engineering Software GEO5 GEO5 software suite is designed to solve various geotechnical problems. The easy -to -use suite consists of individual programs with an unified and user-friendly

More information

Client Project Job # Wall Loc. SBWall Report deg 120 pcf 950 psf deg 0.0 ft. 6.0 ft 6.0 ft 2.0 ft. W16x50.

Client Project Job # Wall Loc. SBWall Report deg 120 pcf 950 psf deg 0.0 ft. 6.0 ft 6.0 ft 2.0 ft. W16x50. SBWall Report Soils Data Soil Friction Angle, phi Soil Unit Weight, gamma Soil Surcharge (uniform), qs Passive Resistance, FSp Passive Wedge Width, PW*B Backfill Slope Angle, beta Ignore Passive Resistance,

More information

Chapter 15 SHALLOW FOUNDATIONS

Chapter 15 SHALLOW FOUNDATIONS Chapter 15 SHALLOW FOUNDATIONS Final SCDOT GEOTECHNICAL DESIGN MANUAL June 2010 SCDOT Geotechnical Design Manual Shallow Foundations Table of Contents Section Page 15.1 Introduction...15-1 15.2 Design

More information

NCHRP REPORT 611. Seismic Analysis and Design of Retaining Walls, Buried Structures, Slopes, and Embankments

NCHRP REPORT 611. Seismic Analysis and Design of Retaining Walls, Buried Structures, Slopes, and Embankments NCHRP REPORT 611 NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM Seismic Analysis and Design of Retaining Walls, Buried Structures, Slopes, and Embankments TRANSPORTATION RESEARCH BOARD 2008 EXECUTIVE COMMITTEE*

More information

NCHRP LRFD DESIGN SPECIFICATIONS FOR SHALLOW FOUNDATIONS. Final Report September 2009

NCHRP LRFD DESIGN SPECIFICATIONS FOR SHALLOW FOUNDATIONS. Final Report September 2009 NCHRP 24-31 LRFD DESIGN SPECIFICATIONS FOR SHALLOW FOUNDATIONS Final Report September 2009 APPENDIX B FINDINGS STATE OF PRACTICE, SERVICEABILITY, AND DATABASES Prepared for National Cooperative Highway

More information

MWDSLS SEISMIC DESIGN GUIDELINES Last Updated: December 22, 2011 POLICY

MWDSLS SEISMIC DESIGN GUIDELINES Last Updated: December 22, 2011 POLICY MWDSLS SEISMIC DESIGN GUIDELINES Last Updated: December 22, 2011 This policy document was the cooperative effort of many professionals and will result in designs which will substantially enhance the seismic

More information

Development of Lateral Earth Pressures on a Rigid Wall due to Seismic Loading

Development of Lateral Earth Pressures on a Rigid Wall due to Seismic Loading Development of Lateral Earth Pressures on a Rigid Wall due to Seismic Loading Gordon Fung, P. Eng. Geotechnical Engineer, MEG Consulting Ltd., Richmond, BC. Ender J. Parra, Ph.D., P. Eng. Principal, MEG

More information

AASHTO LRFD Seismic Bridge Design. Jingsong Liu July 20, 2017

AASHTO LRFD Seismic Bridge Design. Jingsong Liu July 20, 2017 AASHTO LRFD Seismic Bridge Design Jingsong Liu July 20, 2017 History of AASHTO Seismic Specifications 1981: ATC-6, Seismic Design Guidelines for Highway Bridges. 1983: Guide Specifications for Seismic

More information

CONSIDERATIONS ON THE SEISMIC DESIGN OF HIGH CONCRETE FACE ROCKFILL DAMS (CFRDs) Bayardo Materón - Gabriel Fernandez

CONSIDERATIONS ON THE SEISMIC DESIGN OF HIGH CONCRETE FACE ROCKFILL DAMS (CFRDs) Bayardo Materón - Gabriel Fernandez CONSIDERATIONS ON THE SEISMIC DESIGN OF HIGH CONCRETE FACE ROCKFILL DAMS (CFRDs) Bayardo Materón - Gabriel Fernandez CONCRETE FACE ROCKFILL DAMS CFRDs- HAVE INCREASED IN HEIGHT TO NEAR 300M. RECENT SEISMIC

More information

The Updated Drilled Shaft Manual: Potential Impacts on AASHTO Specifications. J. Turner & D. Brown May 24, 2010 AASHTO T-15 Sacramento, CA

The Updated Drilled Shaft Manual: Potential Impacts on AASHTO Specifications. J. Turner & D. Brown May 24, 2010 AASHTO T-15 Sacramento, CA The Updated Drilled Shaft Manual: Potential Impacts on AASHTO Specifications J. Turner & D. Brown May 24, 2010 AASHTO T-15 Sacramento, CA Drilled Shafts: Construction Procedures and LRFD Design Methods

More information

ODOT BRIDGE FOUNDATION DESIGN PRACTICES AND PROCEDURES

ODOT BRIDGE FOUNDATION DESIGN PRACTICES AND PROCEDURES ODOT BRIDGE FOUNDATION DESIGN PRACTICES AND PROCEDURES OREGON DEPARTMENT OF TRANSPORTATION BRIDGE ENGINEERING SECTION OCTOBER 2005 FOREWORD This document was developed to assist Geotechnical Engineers

More information

Stability of a Mechanically Stabilized Earth Wall

Stability of a Mechanically Stabilized Earth Wall Stability of a Mechanically Stabilized Earth Wall GEO-SLOPE International Ltd. www.geo-slope.com 1400, 633-6th Ave SW, Calgary, AB, Canada T2P 2Y5 Main: +1 403 269 2002 Fax: +1 403 266 4851 Introduction

More information

CHAPTER 11: WALLS.

CHAPTER 11: WALLS. CHAPTER 11: WALLS MODULAR BLOCK WALL (DRY CAST) Rather than being pre-approved as systems, the components of Modular block walls (dry cast) are pre-approved separately. The approved MBW components are

More information

Seismic Considerations and Design Methodology for Lightweight Cellular Concrete Embankments and Backfill

Seismic Considerations and Design Methodology for Lightweight Cellular Concrete Embankments and Backfill Seismic Considerations and Design Methodology for Lightweight Cellular Concrete Embankments and Backfill STGEC 2018, Louisville KY Steven F. Bartlett, Ph.D. P.E Department of Civil and Environmental Engineering

More information

Prediction Method for Reservoir Collapse During Earthquakes

Prediction Method for Reservoir Collapse During Earthquakes 6 th International Conference on Earthquake Geotechnical Engineering 1-4 November 2015 Christchurch, New Zealand Prediction Method for Reservoir Collapse During Earthquakes H. Nomura 1, Y. Akasaka 1 ABSTRACT

More information

Earth Retaining System

Earth Retaining System Hashemite University Department of Civil Engineering Foundation Engineering Dr. Omar Al-Hattamleh Earth Retaining System Earth slopes and earth retaining structures Used to maintain two different ground

More information

FACSIMILE/ MAIL TRANSMISSION. Date: December 2, 2011 File:

FACSIMILE/ MAIL TRANSMISSION. Date: December 2, 2011 File: PUAR Engineering Consultants Inc #200-100 Park Royal South W.Vancouver, BC, Canada V7T 1A2 Fax: 604-922-5054; Tel: 604-913-7827 FACSIMILE/ MAIL TRANSMISSION Date: December 2, 2011 File: 07-2-256 To: BRIAN

More information

Introduction to SoilWorks for Practical Design. MIDAS Information Technology

Introduction to SoilWorks for Practical Design. MIDAS Information Technology Introduction to SoilWorks for Practical Design MIDAS Information Technology Index Product Overview About SoilWorks Smart SoilWorks Pre-Processing Geometry Modeling Properties Mesh Generation Analysis Types

More information

The Design of Reinforced Earth Walls

The Design of Reinforced Earth Walls The Design of Reinforced Earth Walls Jérémy PLANCQ Design Engineer, Terre Armée France Fundamental Mechanisms The Reinforced Earth is a composite material with an anisotropic artificial cohesion Layers

More information

A Review of Soil Nailing Design Approaches

A Review of Soil Nailing Design Approaches A Review of Soil Nailing Design Approaches S.N.L. Taib 1 Abstract A number of design manuals and recommendations; namely by the HA 68 [4] (U.K.), BS8006 [1] (U.K.), RDGC [7] (France) and FHWA [5] (USA)

More information

PILE DESIGN METHOD FOR IMPROVED GROUND USING THE VACUUM CONSOLIDATION METHOD

PILE DESIGN METHOD FOR IMPROVED GROUND USING THE VACUUM CONSOLIDATION METHOD PILE DESIGN METHOD FOR IMPROVED GROUND USING THE VACUUM CONSOLIDATION METHOD K Tomisawa, Civil Engineering Research of Hokkaido, Japan S Nishimoto, Civil Engineering Research of Hokkaido, Japan Abstract

More information

AASHTO Recommends All MSE Walls be Larger, More Expensive Retaining Wall Global Stability & AASHTO LRFD

AASHTO Recommends All MSE Walls be Larger, More Expensive Retaining Wall Global Stability & AASHTO LRFD AASHTO Recommends All MSE Walls be Larger, More Expensive Retaining Wall Global Stability & AASHTO LRFD The implementation of the AASHTO LRFD Bridge Design Specifications includes two significant, expensive,

More information

Tailings dam raise with reinforced walls

Tailings dam raise with reinforced walls Tailings dam raise with reinforced walls Jorge Alvarez Tiburcio Anddes Asociados S.A.C.,Peru ABSTRACT This paper presents the design of a tailings dam raise with reinforced walls lined with geomembrane,

More information

ENGINEERING DIRECTIVE

ENGINEERING DIRECTIVE Number: E-95-001 Date: 2/2/95 ENGINEERING DIRECTIVE Ross B. Dindio (Signature on Original) CHIEF ENGINEER The purpose of this engineering directive is to formally notify ALL Department engineering personnel

More information

twenty six concrete construction: foundation design ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SPRING 2013

twenty six concrete construction: foundation design ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SPRING 2013 ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SPRING 2013 lecture twenty six concrete construction: www.tamu.edu foundation design Foundations 1 Foundation the engineered

More information

Modeling and Design of Bridge Super Structure and Sub Structure

Modeling and Design of Bridge Super Structure and Sub Structure Topic 3 Day 2 Modeling and Design of Bridge Super Structure and Sub Structure Naveed Anwar 1. Over view of Bridge Design Process and Bridge Types 2. Advances and recent trends in Modeling and Analysis

More information

GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE

GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE Prof. J. N. Mandal Department of Civil Engineering, IIT Bombay, Powai, Mumbai 400076, India. Tel.022-25767328 email: cejnm@civil.iitb.ac.in Module - 6

More information

An Investigation on the Dynamic Behaviour of Soil Nail Walls

An Investigation on the Dynamic Behaviour of Soil Nail Walls An Investigation on the Dynamic Behaviour of Soil Nail Walls Jaya V *1, Annie Joy 2 Civil Engineering Department, Kerala University College of Engineering, Trivandrum, India *1 jayasraj@gmail.com; 2 annjoy87@gmail.com

More information

Senior Researcher, Foundation & Geotechnical Engineering Labrotory, Structures Technology Division. Director, Structures Technology Division

Senior Researcher, Foundation & Geotechnical Engineering Labrotory, Structures Technology Division. Director, Structures Technology Division PAPER Seismic Design of Retaining Wall all Considering the Dynamic Response Characteristic Kenji WATANABE, ANABE, Dr.. Eng. Senior Researcher, Foundation & Geotechnical Engineering Labrotory, Structures

More information

2010 MAULE CHILE EARTHQUAKE WALL PERFORMANCE AND ITS APPLICATION TO IMPROVEMENT OF THE AASHTO LRFD SEISMIC WALL DESIGN SPECIFICATIONS

2010 MAULE CHILE EARTHQUAKE WALL PERFORMANCE AND ITS APPLICATION TO IMPROVEMENT OF THE AASHTO LRFD SEISMIC WALL DESIGN SPECIFICATIONS 2010 MAULE CHILE EARTHQUAKE WALL PERFORMANCE AND ITS APPLICATION TO IMPROVEMENT OF THE AASHTO LRFD SEISMIC WALL DESIGN SPECIFICATIONS Abstract Tony M. Allen, P.E. 1 The 2010 Maule Chile earthquake provided

More information

CHALLENGES OF NEW REACTOR SITING EVALUATION IN THE GEOTECHNICAL ENGINEERING FIELD Weijun Wang 1 and Zuhan Xi 2

CHALLENGES OF NEW REACTOR SITING EVALUATION IN THE GEOTECHNICAL ENGINEERING FIELD Weijun Wang 1 and Zuhan Xi 2 Transactions, SMiRT-23, Paper ID 082 CHALLENGES OF NEW REACTOR SITING EVALUATION IN THE GEOTECHNICAL ENGINEERING FIELD Weijun Wang 1 and Zuhan Xi 2 1 Senior Geotechnical Engineer, US Nuclear Regulatory

More information

Part III Special Topics of Bridges

Part III Special Topics of Bridges ENCE717 Bridge Engineering Special Topics of Bridges III Chung C. Fu, Ph.D., P.E. (http: www.best.umd.edu) 1 Part III Special Topics of Bridges 6. Dynamic/Earthquake Analysis (17.0) i. Basics of Bridge

More information

Design Example 2 Reinforced Concrete Wall with Coupling Beams

Design Example 2 Reinforced Concrete Wall with Coupling Beams Design Example 2 Reinforced Concrete Wall with Coupling Beams OVERVIEW The structure in this design example is a six story office building with reinforced concrete walls as its seismic force resisting

More information

Seismic Design of a Railway Viaduct in a High Seismic Zone

Seismic Design of a Railway Viaduct in a High Seismic Zone Seismic Design of a Railway Viaduct in a High Seismic Zone 9 th Small Bridges Conference, Australia 2019 Seismic Design of a Railway Viaduct in a High Seismic Zone 1. Project Overview 2. Typical Project

More information

A numerical simulation on the dynamic response of MSE wall with LWA backfill

A numerical simulation on the dynamic response of MSE wall with LWA backfill Numerical Methods in Geotechnical Engineering Hicks, Brinkgreve & Rohe (Eds) 2014 Taylor & Francis Group, London, 978-1-138-00146-6 A numerical simulation on the dynamic response of MSE wall with LWA backfill

More information

KEYSTONE HARDSCAPES WALL DESIGN/ESTIMATING Valera Pro Series Retaining Wall Units

KEYSTONE HARDSCAPES WALL DESIGN/ESTIMATING Valera Pro Series Retaining Wall Units KEYSTONE HARDSCAPES WALL DESIGN/ESTIMATING Valera Pro Series Retaining Wall Units Tri-Plane Face Unit Straight Face Unit Deco Face Unit Note: Product availability, face finish, and dimensions vary by manufacturer.

More information

twenty seven concrete construction: foundation design Foundation Structural vs. Foundation Design Structural vs. Foundation Design

twenty seven concrete construction: foundation design Foundation Structural vs. Foundation Design Structural vs. Foundation Design ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SRING 2017 lecture twenty seven Foundation the engineered interface between the earth and the structure it supports that transmits

More information

20 th STATEWIDE CONFERENCE ON LOCAL BRIDGES. Excavation Protection System Planning & Design

20 th STATEWIDE CONFERENCE ON LOCAL BRIDGES. Excavation Protection System Planning & Design 20 th STATEWIDE CONFERENCE ON LOCAL BRIDGES Excavation Protection System Planning & Design Syracuse, New York 5 November 2014 Training Manual Excavation Protection System Planning & Design Syracuse, New

More information

Chapter 1 INTRODUCTION

Chapter 1 INTRODUCTION Chapter 1 Final SCDOT GEOTECHNICAL DESIGN MANUAL August 2008 Table of Contents Section Page 1.1 Introduction... 1 1.2 Preconstruction Division... 1 1.2.1 Regional Production Groups... 2 1.2.2 Preconstruction

More information

STATIC AND SEISMIC PRESSURES FOR DESIGN OF

STATIC AND SEISMIC PRESSURES FOR DESIGN OF STATIC AND SEISMIC PRESSURES FOR DESIGN OF RETAINING WALLS By Guoxi Wu, Ph.D., P. Eng. A Presentation to BC Hydro Generation Engineering on September 27, 2017 (modified pages 64 & 65 in December 2017 for

More information

13.4 FOUNDATIONS FOR SINGLE-FAMILY HOUSES

13.4 FOUNDATIONS FOR SINGLE-FAMILY HOUSES 13.32 CHAPTER THIRTEEN FIGURE 13.31 The excavation for the grade beams is complete, and the tops of the prestressed piles are trimmed so that they are relatively flush. fissuring and sand boils, then this

More information

KEYSTONE HARDSCAPES WALL DESIGN/ESTIMATING Broadstone Series Retaining Wall Units

KEYSTONE HARDSCAPES WALL DESIGN/ESTIMATING Broadstone Series Retaining Wall Units STONE HARDSCAPES WALL DESIGN/ESTIMATING Broadstone Series Retaining Wall Units Broadstone 4" Broadstone 6" Broadstone 8" Note: Product availability, face finish, and dimensions vary by manufacturer. Please

More information

LRFD Bridge Design Manual Changes

LRFD Bridge Design Manual Changes LRFD Bridge Design Manual Changes Dave Dahlberg Bridge Design Manual & Policy Engineer May 17, 2017 Bridge Office mndot.gov/bridge Overview 1) Concrete mix designations 2) Reinforcing bar development and

More information

Shake Table Testing of GRS Bridge Abutments

Shake Table Testing of GRS Bridge Abutments Shake Table Testing of GRS Bridge Abutments Prof. John S. McCartney and Yewei Zheng University of California San Diego Department of Structural Engineering Presentation to: NHERI-UCSD Geotechnical Workshop

More information

twenty four foundations and retaining walls Foundation Structural vs. Foundation Design Structural vs. Foundation Design

twenty four foundations and retaining walls Foundation Structural vs. Foundation Design Structural vs. Foundation Design ALIED ARCHITECTURAL STRUCTURES: STRUCTURAL ANALYSIS AND SYSTEMS DR. ANNE NICHOLS SRING 2018 lecture twenty four Foundation the engineered interface between the earth and the structure it supports that

More information

Assessment of Displacement Demand for Earth Retaining Structures

Assessment of Displacement Demand for Earth Retaining Structures Assessment of Displacement Demand for Earth Retaining Structures Rohit Tiwari 1*, Nelson T. K. Lam 2* and Elisa Lumantarna 3* 1. Corresponding Author. Ph.D. Student, Department of Infrastructure Engineering,

More information

3.5 Tier 1 Analysis Overview Seismic Shear Forces

3.5 Tier 1 Analysis Overview Seismic Shear Forces Chapter 3.0 - Screening Phase (Tier ) 3.5 Tier Analysis 3.5. Overview Analyses performed as part of Tier of the Evaluation Process are limited to Quick Checks. Quick Checks shall be used to calculate the

More information

Sheetpile Wall Report

Sheetpile Wall Report 16 ft cut Sheetpile Wall Report Project Information Designed By: LAA Organization: 16 ft cut Date: 05/09/2012 Project: Job #: 4952-6 Client: Support condition = Cantilever Unit system = English (ft, lb,

More information

INDOT Wall System Approval Criteria and Design Review

INDOT Wall System Approval Criteria and Design Review INDOT Wall System Approval Criteria and Design Review Yuhui Hu, P.E. Office of Geotechnical Services, INDOT March 12, 2014 Slide 1 Outline Types of earth retaining structures Types of Mechanically Stabilized

More information

Performance of Reinforced Earth Retaining Wall with Fly Ash under Static and Dynamic Loading

Performance of Reinforced Earth Retaining Wall with Fly Ash under Static and Dynamic Loading Performance of Reinforced Earth Retaining Wall with Fly Ash under Static and Dynamic Loading 1 Umesh Kumar N, 2 Padmashree M. Kalliamni 1 Geotechnical Engineer, 2 Assistant professor, 1 Civil Engineering

More information

Numerical Modeling of Dynamic Soil-Structure Interaction in Bridges with HP Driven Piles

Numerical Modeling of Dynamic Soil-Structure Interaction in Bridges with HP Driven Piles Numerical Modeling of Dynamic Soil-Structure Interaction in Bridges with HP Driven Piles Yu Bao, Andrew Rietz and Steven Halewski, Rochester Institute of Technology, Rochester, NY, USA HP-Pile foundations

More information

Performance Objectives and the AASHTO Guide Specifications for LRFD Seismic Bridge Design

Performance Objectives and the AASHTO Guide Specifications for LRFD Seismic Bridge Design Performance Objectives and the AASHTO Guide Specifications for LRFD Seismic Bridge Design Elmer E. Marx, PE, SE State of Alaska DOT&PF Bridge Section Juneau, Alaska Performance Objectives AASHTO Guide

More information

Types : Metal rockers, rollers or slides or merely rubber or laminated rubber, POT - PTFE

Types : Metal rockers, rollers or slides or merely rubber or laminated rubber, POT - PTFE Bridge Components Loading Codal Provisions Suhasini Madhekar College of Engineering Pune Faculty Development Program on Fundamentals of Structural Dynamics and Application to Earthquake Engineering 12

More information

FOUNDATIONS AND RETAINING WALLS UPDATE GEOTECHNICAL CONSULTANT WORKSHOP, JUNE

FOUNDATIONS AND RETAINING WALLS UPDATE GEOTECHNICAL CONSULTANT WORKSHOP, JUNE FOUNDATIONS AND RETAINING WALLS UPDATE GEOTECHNICAL CONSULTANT WORKSHOP, JUNE 05 2018 FOUNDATIONS AND RETAINING WALLS UPDATE Alexander B.C. Dettloff, P.E. State Foundations Engineer ODOT Office of Geotechnical

More information

This point intends to acquaint the reader with some of the basic concepts of the earthquake engineer:

This point intends to acquaint the reader with some of the basic concepts of the earthquake engineer: Chapter II. REVIEW OF PREVIOUS RESEARCH II.1. Introduction: The purpose of this chapter is to review first the basic concepts for earthquake engineering. It is not intended to review the basic concepts

More information

Evaluation of Pseudo Static coefficient for Soil nailed walls on the basis of Seismic behavior levels

Evaluation of Pseudo Static coefficient for Soil nailed walls on the basis of Seismic behavior levels Research Journal of Recent Sciences ISSN 2277-2502. Evaluation of Pseudo Static coefficient for Soil nailed walls on the basis of Seismic behavior levels Abstract Majid yazdandoust 1*, Ali komak panah

More information

Grade separated interchange at the intersection of U.S. Hwy 17 Bypass and Farrow Parkway

Grade separated interchange at the intersection of U.S. Hwy 17 Bypass and Farrow Parkway Grade separated interchange at the intersection of U.S. Hwy 17 Bypass and Farrow Parkway Jeff Sizemore, P.E. Geotechnical Design Support Engineer SCDOT Ed Tavera, P.E. Principal Geotechnical Engineer Geoengineers

More information

Table of Contents 5.1 GENERAL Overview Investigation and Engineering Information

Table of Contents 5.1 GENERAL Overview Investigation and Engineering Information Table of Contents Section Page 5.1 GENERAL... 5.1-1 5.1.1 Overview... 5.1-1 5.1.2 Investigation and Engineering Information... 5.1-2 5.2 PRELIMINARY GEOTECHNCIAL REPORTS... 5.2-1 5.2.1 Preliminary Geotechnical

More information

Revision Nalcor Doc. No. MFA-SN-CD-0000-GT-DC C1 Date Page SLI Doc. No EC Dec-2013 ii DESIGN CRITERIA - GEOTECHNICAL

Revision Nalcor Doc. No. MFA-SN-CD-0000-GT-DC C1 Date Page SLI Doc. No EC Dec-2013 ii DESIGN CRITERIA - GEOTECHNICAL SLI Doc. No. 505573-3000-40EC-0003 01 5-Dec-2013 ii TABLE OF CONTENTS Page No. 1 INTRODUCTION... 1 2 CREST ELEVATIONS... 2 2.1 Cofferdams... 2 2.2 North Spur... 3 3 STABILITY ANALYSIS LOADING CASES AND

More information

REPORT LRFD CALIBRATION OF COHERENT GRAVITY METHOD FOR METALLICALLY REINFORCED MSE WALLS

REPORT LRFD CALIBRATION OF COHERENT GRAVITY METHOD FOR METALLICALLY REINFORCED MSE WALLS REPORT LRFD CALIBRATION OF COHERENT GRAVITY METHOD FOR METALLICALLY REINFORCED MSE WALLS 5 4 Standardized normal variable (z) 3 2-5 5 5 2 - -2-3 -4 Reliability index = 2.38 Pullout resistance of steel

More information

Figure 1 Swing Span Supported by Center Pivot Pier and Two Rest Piers

Figure 1 Swing Span Supported by Center Pivot Pier and Two Rest Piers Abstract SEISMIC RETROFIT OF UNREINFORCED STONE MASONRY BRIDGE PIERS AND DISCRETE ELEMENT ANALYSIS Jaw-Nan (Joe) Wang 1 ; Michael J. Abrahams 2 The seismic behavior of unreinforced stone masonry structures

More information

MSE WALLS CASE STUDIES. by John G. Delphia, P.E. TxDOT Bridge Division Geotechnical Branch

MSE WALLS CASE STUDIES. by John G. Delphia, P.E. TxDOT Bridge Division Geotechnical Branch MSE WALLS CASE STUDIES by John G. Delphia, P.E. TxDOT Bridge Division Geotechnical Branch COMMON RETAINING WALL TYPES CONCRETE BLOCK MSE TEMPORARY EARTH SPREAD FOOTING Gabions Drilled Shaft Soil Nail Tiedback

More information

3. Analysis Procedures

3. Analysis Procedures 3. Analysis Procedures 3.1 Scope This chapter sets forth requirements for analysis of buildings using the Systematic Rehabilitation Method. Section 3.2 specifies general analysis requirements for the mathematical

More information

Seismic Impact Zone Demonstration, Ponds M5 and M7, Reid Gardner Station

Seismic Impact Zone Demonstration, Ponds M5 and M7, Reid Gardner Station TECHNICAL MEMORANDUM Seismic Impact Zone Demonstration, Ponds M5 and M7, Reid Gardner Station PREPARED FOR: COPY TO: PREPARED BY: REVIEWED BY: Michael Rojo/NV Energy Tony Garcia, CEM/NV Energy Mathew Johns,

More information

Bijan Khaleghi, Ph, D. P.E., S.E.

Bijan Khaleghi, Ph, D. P.E., S.E. 0 Submission date: July, 0 Word count: 0 Author Name: Bijan Khaleghi Affiliations: Washington State D.O.T. Address: Linderson Way SW, Tumwater WA 0 INTEGRAL BENT CAP FOR CONTINUOUS PRECAST PRESTRESSED

More information

Upon speaking with the representatives with Technical Foundations as well as Walder Foundations, it was determined that:

Upon speaking with the representatives with Technical Foundations as well as Walder Foundations, it was determined that: As part of our analyses, we have considered the design and construction of the cantilever retaining wall that will be located along the north side of Lucks Lane, between Falling Creek and Gladstone Glen

More information

Effect of Seismic Reinforcement of Sheet Pile Quay Wall Using Ground Anchor

Effect of Seismic Reinforcement of Sheet Pile Quay Wall Using Ground Anchor Effect of Seismic Reinforcement of Sheet Pile Quay Wall Using Ground Anchor M. Yoshida & M. Mitou Penta-Ocean Construction Co., Ltd., Japan O. Kiyomiya Waseda University, Japan S. Tashiro TOA Corporation,

More information

MOA Project # Golden View Drive Intersection & Safety Upgrades

MOA Project # Golden View Drive Intersection & Safety Upgrades Appropriate transitions can include extending the insulation beyond the roadway improvements, reducing the insulation thickness, or angling the insulation downward. Use of a frost tolerant section, an

More information

Advance Design of RC Structure Retaining Wall

Advance Design of RC Structure Retaining Wall 1 Retaining Wall Retaining Walls What are retaining walls Retaining walls are soil-structure systems intended to support earth backfills. Type of retaining walls Gravity retaining wall gravity walls rely

More information

October BC MoTI

October BC MoTI 4.1 Scope... 3 4.2 Definitions... 3 4.3 Abbreviation and Symbols... 4 4.3.2 Symbols... 4 4.4 Earthquake effects... 4 4.4.2 Importance categories... 4 4.4.3 Seismic hazard... 5 4.4.3.1 General... 5 4.4.3.2

More information

CIVIL BREADTH Exam Specifications

CIVIL BREADTH Exam Specifications NCEES Principles and Practice of Engineering Examination CIVIL BREADTH and GEOTECHNICAL DEPTH Exam Specifications Effective Beginning with the April 2015 Examinations The civil exam is a breadth and depth

More information

Reinforcement of Slopes for Seismic Stability

Reinforcement of Slopes for Seismic Stability Missouri University of Science and Technology Scholars' Mine International Conference on Case Histories in Geotechnical Engineering (2008) - Sixth International Conference on Case Histories in Geotechnical

More information

Downloaded from Downloaded from /1

Downloaded from  Downloaded from  /1 PURWANCHAL UNIVERSITY VI SEMESTER FINAL EXAMINATION-2003 LEVEL : B. E. (Civil) SUBJECT: BEG359CI, Foundation Engineering. Full Marks: 80 TIME: 03:00 hrs Pass marks: 32 Candidates are required to give their

More information