a novel high efficient zero-emission process for stationary internal combustion engines utilizing h 2 and o 2

Size: px
Start display at page:

Download "a novel high efficient zero-emission process for stationary internal combustion engines utilizing h 2 and o 2"

Transcription

1 Hydrogen Days April 2016 a novel high efficient zero-emission process for stationary internal combustion engines utilizing h 2 and o 2 a thermodynamic concept Johannes Haller, M.Eng.

2 Agenda 1 Background 2 Research Objectives 3 Novel Process Concept 4 Modeling results 5 Next Steps Johannes Haller, M.Eng. High efficient Zero-Emission Stationary H 2 -O 2 -ICE Hydrogen Days 2016 Prague 1 / 18

3 Background 1 Background 2 Research Objectives 3 Novel Process Concept 4 Modeling results 5 Next Steps Johannes Haller, M.Eng. High efficient Zero-Emission Stationary H 2 -O 2 -ICE Hydrogen Days 2016 Prague 1 / 18

4 Power Storage for the Energy Transition Predicted future electricity surplus in Germany with a rising share of renewables Background (Figure based on Sterner and Stadler, OTH Regensburg, 2014) Johannes Haller, M.Eng. High efficient Zero-Emission Stationary H 2 -O 2 -ICE Hydrogen Days 2016 Prague 2 / 18

5 Power Storage Options Discharge Duration vs. Storage Capacity Background Long-term storage options will be needed on a large scale in the medium term At present only limited mid-term capacity (pump storage plants) and no longterm capacity is available in Germany (Figure based on Sterner and Stadler, OTH Regensburg, 2014) The only options for longterm storage of renewable energy on the necessary scale for Germany are the possible exploitation of scandinavian hydropower and the storage of hydrogen or methane (Windgasstudie of Fraunhofer IWES 2011) Johannes Haller, M.Eng. High efficient Zero-Emission Stationary H 2 -O 2 -ICE Hydrogen Days 2016 Prague 3 / 18

6 Reconversion from Hydrogen to Electricity Comparison of Systems on Commercial Scale ( 300kWel) Background Electrical efficiency 42-60% Specific costs e/kw Average lifetime up to 10 years without overhaul (Dodds et.al.: Hydrogen and fuel cell technologies for heating A review 2015) Johannes Haller, M.Eng. High efficient Zero-Emission Stationary H 2 -O 2 -ICE Hydrogen Days 2016 Prague 4 / 18

7 Reconversion from Hydrogen to Electricity Comparison of Systems on Commercial Scale ( 300kWel) Background Electrical efficiency 42-60% Specific costs e/kw Average lifetime up to 10 years without overhaul (Dodds et.al.: Hydrogen and fuel cell technologies for heating A review 2015) Electrical efficiency 40-45% (>50% with combined cycle) Specific costs e/kw (Biogas CHP unit) Average lifetime years (ASUE BHKW-Kenndaten 2014/2015 ) Johannes Haller, M.Eng. High efficient Zero-Emission Stationary H 2 -O 2 -ICE Hydrogen Days 2016 Prague 4 / 18

8 Research Objectives 1 Background 2 Research Objectives 3 Novel Process Concept 4 Modeling results 5 Next Steps Johannes Haller, M.Eng. High efficient Zero-Emission Stationary H 2 -O 2 -ICE Hydrogen Days 2016 Prague 4 / 18

9 Research Objectives Research Objectives The designed process is intended to Johannes Haller, M.Eng. High efficient Zero-Emission Stationary H 2 -O 2 -ICE Hydrogen Days 2016 Prague 5 / 18

10 Research Objectives Research Objectives The designed process is intended to emid no pollutants (zero-emission) Johannes Haller, M.Eng. High efficient Zero-Emission Stationary H 2 -O 2 -ICE Hydrogen Days 2016 Prague 5 / 18

11 Research Objectives Research Objectives The designed process is intended to emid no pollutants (zero-emission) show a higher efficiency than internal combustion engines fired with hydrogen and air Johannes Haller, M.Eng. High efficient Zero-Emission Stationary H 2 -O 2 -ICE Hydrogen Days 2016 Prague 5 / 18

12 Research Objectives Research Objectives The designed process is intended to emid no pollutants (zero-emission) show a higher efficiency than internal combustion engines fired with hydrogen and air require lower investment costs than todays fuel cell systems Johannes Haller, M.Eng. High efficient Zero-Emission Stationary H 2 -O 2 -ICE Hydrogen Days 2016 Prague 5 / 18

13 Research Objectives Research Objectives The designed process is intended to emid no pollutants (zero-emission) show a higher efficiency than internal combustion engines fired with hydrogen and air require lower investment costs than todays fuel cell systems assure a longer lifetime than todays fuel cell systems due to well-established technology Johannes Haller, M.Eng. High efficient Zero-Emission Stationary H 2 -O 2 -ICE Hydrogen Days 2016 Prague 5 / 18

14 Research Objectives Research Objectives The designed process is intended to emid no pollutants (zero-emission) show a higher efficiency than internal combustion engines fired with hydrogen and air require lower investment costs than todays fuel cell systems assure a longer lifetime than todays fuel cell systems due to well-established technology The Process can provide a bridge technology for stationary applications until fuel cells become cost competitive. Storage is already needed to steady the production in windy regions as grid expansion is not progressing as needed (555GWh lost in 2014) Johannes Haller, M.Eng. High efficient Zero-Emission Stationary H 2 -O 2 -ICE Hydrogen Days 2016 Prague 5 / 18

15 Novel Process Concept 1 Background 2 Research Objectives 3 Novel Process Concept 4 Modeling results 5 Next Steps Johannes Haller, M.Eng. High efficient Zero-Emission Stationary H 2 -O 2 -ICE Hydrogen Days 2016 Prague 5 / 18

16 Concept for a Novel Combined 2-Stroke Cycle Novel Process Concept The two-stage process consists of a two-stroke in-cylinder combustion and an external steam process Johannes Haller, M.Eng. High efficient Zero-Emission Stationary H 2 -O 2 -ICE Hydrogen Days 2016 Prague 6 / 18

17 System Scheme of the Combined Cycle Novel Process Concept Johannes Haller, M.Eng. High efficient Zero-Emission Stationary H 2 -O 2 -ICE Hydrogen Days 2016 Prague 7 / 18

18 System Scheme and Thermodynamic Cycle Changes of State in PV and TS Diagrams Novel Process Concept Johannes Haller, M.Eng. High efficient Zero-Emission Stationary H 2 -O 2 -ICE Hydrogen Days 2016 Prague 8 / 18

19 Complete Modeled Thermodynamic Process Cycle Novel Process Concept Johannes Haller, M.Eng. High efficient Zero-Emission Stationary H 2 -O 2 -ICE Hydrogen Days 2016 Prague 9 / 18

20 Modeling results 1 Background 2 Research Objectives 3 Novel Process Concept 4 Modeling results 5 Next Steps Johannes Haller, M.Eng. High efficient Zero-Emission Stationary H 2 -O 2 -ICE Hydrogen Days 2016 Prague 9 / 18

21 Is it a Cycle? Modeling results Evaporation and overheating temperatures in the heat exchanger have to be below exhaust gas temperatures to be able to close the cycle. Steam temperatures are limited by engine material limits. Johannes Haller, M.Eng. High efficient Zero-Emission Stationary H 2 -O 2 -ICE Hydrogen Days 2016 Prague 10 / 18

22 Model Validation Computation of a Hydrogen-Air Internal Combustion Engine Modeling results Results are in good agreement with literature data and losses are accounted for with an isentropic efficiency of 85% Johannes Haller, M.Eng. High efficient Zero-Emission Stationary H 2 -O 2 -ICE Hydrogen Days 2016 Prague 11 / 18

23 Modeling Results Computed Using Real Gas Data in the Software EES Modeling results For a maximum cylinder pressure of 100 bar and an isentropic efficiency of 85% the modeled inner efficiency of the combined process can outreach the efficiency of an ICE operated with air by more than 20% Johannes Haller, M.Eng. High efficient Zero-Emission Stationary H 2 -O 2 -ICE Hydrogen Days 2016 Prague 12 / 18

24 Limiting Factors To Avoid Knocking and Comply with Material Limits Modeling results Limitations to the process: T max 2000 C p max 100 bar T exhaust 1300 C In comparison to an otto or diesel cycle, the compression ratio is not limited by the maximum cylinder pressure, but by the decreasing power output and the maximum possible exhaust gas temperature Johannes Haller, M.Eng. High efficient Zero-Emission Stationary H 2 -O 2 -ICE Hydrogen Days 2016 Prague 13 / 18

25 Next Steps 1 Background 2 Research Objectives 3 Novel Process Concept 4 Modeling results 5 Next Steps Johannes Haller, M.Eng. High efficient Zero-Emission Stationary H 2 -O 2 -ICE Hydrogen Days 2016 Prague 13 / 18

26 A: Zero-Dimensional Model Consideration of Time-Dependent Processes Next Steps In a zero-dimensional model, losses caused by friction and nonideal combustion can be directly modeled considering engine geometry Johannes Haller, M.Eng. High efficient Zero-Emission Stationary H 2 -O 2 -ICE Hydrogen Days 2016 Prague 14 / 18

27 Next Steps B: 3-D CFD Simulation Discretization & Dynamic Remeshing Geometry is based on a series engine, computational mesh is dynamically deformed and refined at locatins with high gradients Johannes Haller, M.Eng. High efficient Zero-Emission Stationary H2 -O2 -ICE Hydrogen Days 2016 Prague 15 / 18

28 Next Steps B: 3-D CFD Simulation Validation Against Velocity Measurements in an Optical Research Engine Calculated velocity fields are in well agreement with measurements, further improvement by variation of mesh size and turbulence model Johannes Haller, M.Eng. High efficient Zero-Emission Stationary H2 -O2 -ICE Hydrogen Days 2016 Prague 16 / 18

29 C: Optimization & Prototype Optimization of Valve Timing, Injection Timing, Ignition Timing Next Steps Johannes Haller, M.Eng. High efficient Zero-Emission Stationary H 2 -O 2 -ICE Hydrogen Days 2016 Prague 17 / 18

30 Discussion Thank you for your attention! Johannes Haller, M.Eng. High efficient Zero-Emission Stationary H 2 -O 2 -ICE Hydrogen Days 2016 Prague 18 / 18

wb Thermodynamics 2 Lecture 11 Energy Conversion Systems

wb Thermodynamics 2 Lecture 11 Energy Conversion Systems wb1224 - Thermodynamics 2 Lecture 11 Energy Conversion Systems Piero Colonna, Lecturer Prepared with the help of Teus van der Stelt 16-12-2010 Delft University of Technology 3mE, Process and Energy Dept.

More information

Practice Final Exam (A) Six problems. (Open-book, HW solutions, and notes) (Plus /minus 10 % error acceptable for all numerical answers)

Practice Final Exam (A) Six problems. (Open-book, HW solutions, and notes) (Plus /minus 10 % error acceptable for all numerical answers) ME 3610 Practice Final Exam (A) Six problems. (Open-book, HW solutions, and notes) (Plus /minus 10 % error acceptable for all numerical answers) (18 points) 1. A gasoline engine operating on the ideal

More information

Advanced Combustion Research. at Stony Brook University: What is the Future for Combustion Engines?

Advanced Combustion Research. at Stony Brook University: What is the Future for Combustion Engines? Advanced Combustion Research at Stony Brook University: What is the Future for Combustion Engines? Benjamin Lawler, Ph.D. Engine Combustion Research Group October 24 th, 2018 Advanced Energy Research and

More information

R13. (12M) efficiency.

R13. (12M) efficiency. SET - 1 II B. Tech I Semester Regular/Supplementary Examinations, Oct/Nov - 2016 THERMAL AND HYDRO PRIME MOVERS (Electrical and Electronics Engineering) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper

More information

CFD modeling of Plasmatron Methane Reformer

CFD modeling of Plasmatron Methane Reformer PSFC/JA-05-14 CFD modeling of Plasmatron Methane Reformer L. Bromberg August 25, 2005 Massachusetts Institute of Technology Plasma Science and Fusion Center Supported by Chevron Texaco, ArvinMeritor and

More information

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING FINAL EXAMINATION, DECEMBER 2008 MIE 411H1 F - THERMAL ENERGY CONVERSION

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING FINAL EXAMINATION, DECEMBER 2008 MIE 411H1 F - THERMAL ENERGY CONVERSION UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING FINAL EXAMINATION, DECEMBER 2008 MIE 411H1 F - THERMAL ENERGY CONVERSION Exam Type: X Examiner: J.S. Wallace You may use your copy of the

More information

Design Optimisation of the Graz Cycle Prototype Plant

Design Optimisation of the Graz Cycle Prototype Plant Institute for Thermal Turbomaschinery and Machine Dynamics Graz University of Technology Erzherzog-Johann-University Design Optimisation of the Graz Cycle Prototype Plant Presentation at the ASME Turbo

More information

Gas vs. Diesel Generator Sets Performance Cost & Application Differences

Gas vs. Diesel Generator Sets Performance Cost & Application Differences Gas vs. Diesel Generator Sets Performance Cost & Application Differences Page 1 Agenda Introduction Distributed Energy Products Diesel, Gas and Turbine generator sets How Engines Accept Loads Gas Product

More information

Numerical Investigation of the Flow Dynamics of a Supersonic Fluid Ejector

Numerical Investigation of the Flow Dynamics of a Supersonic Fluid Ejector Proceedings of the International Conference on Heat Transfer and Fluid Flow Prague, Czech Republic, August 11-12, 2014 Paper No. 171 Numerical Investigation of the Flow Dynamics of a Supersonic Fluid Ejector

More information

Hydrogen Internal Combustion Engine Lab. H2 TecnoVeritas Technology. White Paper

Hydrogen Internal Combustion Engine Lab. H2 TecnoVeritas Technology. White Paper Hydrogen Internal Combustion Engine Lab CARBON CONNECTIONS Carbon Connections is a R&D program sponsored by the British government which the main objective is to develop clean forms of generating energy.

More information

Hydrogen storage & distribution

Hydrogen storage & distribution Hydrogen storage & distribution in a Power to H2 context April 2014 l Air Liquide Nordic Countries Air Liquide - Our activities World leader in gases for industry, health and the environment Production

More information

Numerical and Experimental Modeling of Producer Gas Carburettor

Numerical and Experimental Modeling of Producer Gas Carburettor Numerical and Experimental Modeling of Producer Gas Carburettor S.S.Vinay l, S.D.Ravi 2, G PremaKumar 3 and N.K.S.Rajan 4 l M.E Student, Bangalore University, Bangalore. 2 Project Assistant, CGPL, Dept

More information

System Identification and Performance Improvement to a Micro Gas Turbine Applying Biogas

System Identification and Performance Improvement to a Micro Gas Turbine Applying Biogas System Identification and Performance Improvement to a Micro Gas Turbine Applying Biogas Chun Hsiang Yang, Cheng Chia Lee and Chiun Hsun Chen Abstract In this study, the effects of biogas s on the performance

More information

System Identification and Performance Improvement to a Micro Gas Turbine Applying Biogas

System Identification and Performance Improvement to a Micro Gas Turbine Applying Biogas System Identification and Performance Improvement to a Micro Gas Turbine Applying Biogas Chun Hsiang Yang, Cheng Chia Lee and Chiun Hsun Chen Abstract In this study, the effects of biogas s on the performance

More information

CONVION September 21, 2016 Nordic Biogas 2016 Tuomas Hakala Public

CONVION September 21, 2016 Nordic Biogas 2016 Tuomas Hakala Public CONVION September 21, 2016 Nordic Biogas 2016 Tuomas Hakala Public www.convion.fi Convion BACKGROUND An R&D unit of Wärtsilä Corporation through 2000-2012 Convion started in 2013 following a spin-off CURRENT

More information

R13. II B. Tech I Semester Regular/Supplementary Examinations, Oct/Nov THERMODYNAMICS (Com. to ME, AE, AME) Time: 3 hours Max.

R13. II B. Tech I Semester Regular/Supplementary Examinations, Oct/Nov THERMODYNAMICS (Com. to ME, AE, AME) Time: 3 hours Max. SET - 1 1. a) Discuss about PMM I and PMM II b) Explain about Quasi static process. c) Show that the COP of a heat pump is greater than the COP of a refrigerator by unity. d) What is steam quality? What

More information

VALIDATION OF PRODUCER GAS CARBURETOR USING CFD

VALIDATION OF PRODUCER GAS CARBURETOR USING CFD International Journal of Latest Research in Science and Technology Volume 2, Issue 6: Page No.90-94,November-December 2013 http://www.mnkjournals.com/ijlrst.htm ISSN (Online):2278-5299 VALIDATION OF PRODUCER

More information

Eng Thermodynamics I - Examples 1

Eng Thermodynamics I - Examples 1 Eng3901 - Thermodynamics I - Examples 1 1 pdv Work 1. Air is contained in a vertical frictionless piston-cylinder. The mass of the piston is 500 kg. The area of the piston is 0.005 m 2. The air initially

More information

COURSE CODE : 4024 COURSE CATEGORY : B PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5

COURSE CODE : 4024 COURSE CATEGORY : B PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 COURSE TITLE : THERMAL ENGINEERING COURSE CODE : 4024 COURSE CATEGORY : B PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE MODULE TOPIC PERIODS 1 Fundamentals of thermodynamics, Thermodynamic

More information

Combined Heat and Power System

Combined Heat and Power System Combined Heat and Power System By Ryan Christie, Ronald Stepanek, Nathan Duray, Joseph Mudd, Cory Donavon and Jason Dikes Team 11 Concept Generation Document Submitted towards partial fulfillment of the

More information

Long-term experience report on the use of screw expanders in commercial small power plants named IC60 based on the Organic Rankine Cycle (ORC)

Long-term experience report on the use of screw expanders in commercial small power plants named IC60 based on the Organic Rankine Cycle (ORC) Long-term experience report on the use of screw expanders in commercial small power plants named IC60 based on the Organic Rankine Cycle (ORC) Dipl.-Ing. M. Müller, GMK mbh, Bargeshagen/Rostock; Dr.-Ing.

More information

19-6 The First Law of Thermodynamics

19-6 The First Law of Thermodynamics 19-6 The First Law of Thermodynamics The change in internal energy of a closed system will be equal to the energy added to the system minus the work done by the system on its surroundings. This is the

More information

Screw Engine as Expansion Machine Applied in an ORC- Test-Installation - the First Operating Experiences

Screw Engine as Expansion Machine Applied in an ORC- Test-Installation - the First Operating Experiences Screw Engine as Expansion Machine Applied in an ORC- Test-Installation - the First Operating Experiences Lubrication system for a screw machine in reverse rotation Dipl.-Ing. Albrecht Eicke, University

More information

Reg. No. : Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Second Semester

Reg. No. : Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Second Semester ws15 Reg. No. : Question Paper Code : 27425 B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015. Time : Three hours Second Semester Marine Engineering MV 6201 MARINE ENGINEERING THERMODYNAMICS (Regulations

More information

The impact of the next big thing: (Solar) energy storage

The impact of the next big thing: (Solar) energy storage The impact of the next big thing: (Solar) energy storage Prof. Dr.-Ing. Michael Sterner et al. FENES, OTH Regensburg (Technical University OAS Regensburg) Solar Plaza Solar Trade Mission: Saudi Arabia

More information

Engineering Thermodynamics

Engineering Thermodynamics Unit 61: Engineering Thermodynamics Unit code: D/601/1410 QCF level: 5 Credit value: 15 Aim This unit will extend learners knowledge of heat and work transfer. It will develop learners understanding of

More information

Stationary Combustion Systems Chapter 6

Stationary Combustion Systems Chapter 6 Stationary Combustion Systems Chapter 6 Stationary combustion systems presently supply most of the earth s electricity. Conversion will take time, so study of these systems in order to improve them is

More information

RESONANCE STIRLING ENGINE: CHP for SMALL (RESIDENTIAL) BUILDINGS

RESONANCE STIRLING ENGINE: CHP for SMALL (RESIDENTIAL) BUILDINGS RESONANCE STIRLING ENGINE: CHP for SMALL (RESIDENTIAL) BUILDINGS Rud. SCHMID AG, Switzerland (R. Schmid, J.P. Budliger) INTRODUCTION: - STIRLING ENGINES for Combined Heat and Power (CHP) RESONANCE FREE

More information

Learning objectives and outcomes

Learning objectives and outcomes Ene-59.4301 Energy Systems for Communities Micro-Cogeneration Kari Alanne Senior University Lecturer, D.Sc (Tech.) Learning objectives and outcomes After this lecture the student will know the definitions

More information

Eng Thermodynamics I - Examples 1

Eng Thermodynamics I - Examples 1 Eng3901 - Thermodynamics I - Examples 1 1 pdv Work 1. Air is contained in a vertical frictionless piston-cylinder. The mass of the piston is 500 kg. The area of the piston is 0.005 m 2. The air initially

More information

Sustainable Energy Mix for the Future Example Germany

Sustainable Energy Mix for the Future Example Germany Sustainable Energy Mix for the Future Example Germany Prof. Dr. Hans-Martin Henning Fraunhofer Institute for Solar Energy Systems ISE, Freiburg and Karlsruhe Institute of Technology KIT REvision 2015 Tokyo,

More information

Energy Analysis of Gas Engine Biogas Power Plant 835 kw in Kampar - Indonesia

Energy Analysis of Gas Engine Biogas Power Plant 835 kw in Kampar - Indonesia Energy Analysis of Gas Engine Biogas Power Plant 835 kw in Kampar - Indonesia Awaludin Martin a,* Muhammad Syarif, a and Romy, a a) Department of Mechanical Engineering, Faculty of Engineering, Universitas

More information

a. The power required to drive the compressor; b. The inlet and output pipe cross-sectional area. [Ans: kw, m 2 ] [3.34, R. K.

a. The power required to drive the compressor; b. The inlet and output pipe cross-sectional area. [Ans: kw, m 2 ] [3.34, R. K. CHAPTER 2 - FIRST LAW OF THERMODYNAMICS 1. At the inlet to a certain nozzle the enthalpy of fluid passing is 2800 kj/kg, and the velocity is 50 m/s. At the discharge end the enthalpy is 2600 kj/kg. The

More information

AREN 2110: Thermodynamics Spring 2010 Homework 7: Due Friday, March 12, 6 PM

AREN 2110: Thermodynamics Spring 2010 Homework 7: Due Friday, March 12, 6 PM AREN 2110: Thermodynamics Spring 2010 Homework 7: Due Friday, March 12, 6 PM 1. Answer the following by circling the BEST answer. 1) The boundary work associated with a constant volume process is always

More information

Thermodynamics and Heat Engines

Thermodynamics and Heat Engines Unit 13: Unit code Fundamentals of Thermodynamics and Heat Engines D/615/1487 Unit level 4 Credit value 15 Introduction Thermodynamics is one of the most common applications of science in our lives, and

More information

Simulation of Low-Btu Syngas Combustion in Trapped Vortex Combustor

Simulation of Low-Btu Syngas Combustion in Trapped Vortex Combustor Simulation of Low-Btu Syngas Combustion in Trapped Vortex Combustor K. Zbeeb and C. Ghenai 1 Ocean and Mechanical Engineering Department College of Engineering and Computer Outline Project Goal and Objectives

More information

wind2hydrogen Dr. Dipl.-Ing. Walter Böhme MSc. MBA OMV Aktiengesellschaft 10th A3PS-Conference Eco-Mobility 2015 Vienna, November 9 th, 2015

wind2hydrogen Dr. Dipl.-Ing. Walter Böhme MSc. MBA OMV Aktiengesellschaft 10th A3PS-Conference Eco-Mobility 2015 Vienna, November 9 th, 2015 wind2hydrogen Dr. Dipl.-Ing. Walter Böhme MSc. MBA OMV Aktiengesellschaft 10th A3PS-Conference Eco-Mobility 2015 Vienna, November 9 th, 2015 OMV Gas & Power Due to Climate Change Change is necessary General

More information

Keywords: - Waste heat Recovery, Desalination, Turbo spin heat exchanger, Heat transfer, Diesel engine exhaust

Keywords: - Waste heat Recovery, Desalination, Turbo spin heat exchanger, Heat transfer, Diesel engine exhaust EXPERIMENTAL STUDY ON WASTE HEAT RECOVERY FROM EXHAUST OF DIESEL ENGINE USING HEAT EXCHANGER Kavin Suthar 1, Vinaykumar 2 1 ME Thermal Engineering Student, MIT, Piludara 2 Assistant Professor in Mechanical

More information

CHAPTER 1 BASIC CONCEPTS

CHAPTER 1 BASIC CONCEPTS GTU Paper Analysis CHAPTER 1 BASIC CONCEPTS Sr. No. Questions Jan 15 Jun 15 Dec 15 May 16 Jan 17 Jun 17 Nov 17 May 18 Differentiate between the followings; 1) Intensive properties and extensive properties,

More information

boostheat, A global player for energy transition

boostheat, A global player for energy transition 1 boostheat, A global player for energy transition 2 PIONEER OF A NEW WORLD OF ENERGY BOOSTHEAT MANUFACTURES THE WORLD'S MOST ENERGY-EFFICIENT BOILER. THANKS TO BIOGAS THIS BOILER IS 100% GREEN TODAY.

More information

Application of Exergy Analysis. Value and Limitations

Application of Exergy Analysis. Value and Limitations Application of Exergy Analysis Value and Limitations Power Plant Exergy Flows and Destruction Stack 2 Other Losses 1 Fuel 92 27 65 20 Steam 43 7 Shaft Power 32 Combustion Heat Transfer Turbine Steam 3

More information

Market models for storages in renewable energy networks

Market models for storages in renewable energy networks Market models for storages in renewable energy networks Energy Storage 13th/14th March 2012, Düsseldorf Dipl.-Ing. Patrick Hochloff, Dr. Ing. Kurt Rohrig Market models for storages in renewable energy

More information

Development of 1MW high efficiency gas engine cogeneration system

Development of 1MW high efficiency gas engine cogeneration system International Gas Union Research Conference 2011 Development of 1MW high efficiency gas engine cogeneration system Main author H. SAITO (Tokyo Gas Co., Ltd.) JAPAN Co-author K. HORIMOTO, T. NOGUCHI, M.

More information

Performance evaluation of a small-scale polygeneration plant including a desiccant cooling system and an innovative natural gas ICE

Performance evaluation of a small-scale polygeneration plant including a desiccant cooling system and an innovative natural gas ICE Performance evaluation of a small-scale polygeneration plant including a desiccant cooling system and an innovative natural gas ICE Armando Portoraro Energetics Department Politecnico di Torino (Italy)

More information

Power to Gas in the Energy Transition

Power to Gas in the Energy Transition Power to Gas in the Energy Transition Philippe BOUCLY Special Adviser Lyon, 22 April 2015 1 What is Power to Gas? Power to Gas : Transformation through electrolysis of surplus of electricity into gas,

More information

Energy and Exergy Analysis of a Simple Gas Turbine Cycle with Wet Compression

Energy and Exergy Analysis of a Simple Gas Turbine Cycle with Wet Compression Mechanical Engineering Research; Vol. 8 No. 1; 218 ISSN 1927-67 E-ISSN 1927-615 Published by Canadian Center of Science and Education Energy and Exergy Analysis of a Simple Gas Turbine Cycle with Wet Compression

More information

Dynamic modeling and transient analysis of a molten salt heated recompression supercritical CO 2 Brayton cycle

Dynamic modeling and transient analysis of a molten salt heated recompression supercritical CO 2 Brayton cycle Dynamic modeling and transient analysis of a molten salt heated recompression supercritical CO 2 Brayton cycle For the 6 th International Supercritical CO 2 Power Cycles Symposium Jinyi ZHANG EDF R&D China

More information

Lubrication-installation of screw engine applied in an Organic Rankine Cycle

Lubrication-installation of screw engine applied in an Organic Rankine Cycle Lubrication-installation of screw engine applied in an Organic Rankine Cycle Slawomir Smolen, Albrecht Eicke University of Applied Sciences Bremen, Faculty Nature & Engineering, Department of Mechanical

More information

HW-1: Due Tuesday 13 Jun 2017 by 2:00:00 pm EDT to Your Division s GradeScope Site

HW-1: Due Tuesday 13 Jun 2017 by 2:00:00 pm EDT to Your Division s GradeScope Site HW-1: Due Tuesday 13 Jun 2017 by 2:00:00 pm EDT to A residential ceiling fan is shown in the photograph below. It consists of an electric motor, the fan blades, and the light. Sketch each of these three

More information

CONVION May 7, 2018 Convion Fuel Cells Public.

CONVION May 7, 2018 Convion Fuel Cells Public. www.convion.fi High temperature SOFC fuel cells with biogas in practice Tuomas Hakala Co-founder, Convion Oy Convion Oy BACKGROUND Corporate R&D of Wärtsilä through 2000-2012 Convion started in 2013 by

More information

University of Strathclyde Faculty of Engineering

University of Strathclyde Faculty of Engineering University of Strathclyde Faculty of Engineering Energy Systems and the Environment: Part A Examination Monday 19 January 2004 14.00-17.00, M329 Full-time students should attempt FOUR questions, 1 from

More information

Flexibility of thermal power generation for RES supply in Germany until 2020

Flexibility of thermal power generation for RES supply in Germany until 2020 21, rue d Artois, F-758 PARIS C1_21_214 CIGRE 214 http : //www.cigre.org Flexibility of thermal power generation for RES supply in Germany until 22 G. Brauner 1, S. Bofinger 2, W. Glauninger 3, I. Pyc

More information

Operation Plan of a Photovoltaic and Diesel Engine Combined System with the Power Prediction Method. Abeer Galal El-Sayed

Operation Plan of a Photovoltaic and Diesel Engine Combined System with the Power Prediction Method. Abeer Galal El-Sayed Journal of American Science 20;9(5) Operation Plan of a Photovoltaic and Diesel Engine Combined System with the Power Prediction Method Abeer Galal El-Sayed Department of Electric Engineering, Faculty

More information

1. Topic- 2. Content- 3. Objectives- 4. Procedures/Methods- Date: July 16, 2010 Teacher Name: Lalaine B. Bagui. Subject: Physics HEAT ENGINES

1. Topic- 2. Content- 3. Objectives- 4. Procedures/Methods- Date: July 16, 2010 Teacher Name: Lalaine B. Bagui. Subject: Physics HEAT ENGINES Date: July 16, 2010 Teacher Name: Lalaine B. Bagui 1. Topic- Grade: Fourth year High School Subject: Physics HEAT ENGINES 2. Content- 1. Second Law of Thermodynamics 2. Heat Engines and how they work 3.

More information

SUCCESSFUL IMPLEMENTATION OF POWER-TO-GAS IN EUROPE - A ROADMAP FOR FLANDERS

SUCCESSFUL IMPLEMENTATION OF POWER-TO-GAS IN EUROPE - A ROADMAP FOR FLANDERS SUCCESSFUL IMPLEMENTATION OF POWER-TO-GAS IN EUROPE - A ROADMAP FOR FLANDERS European Utility Week 2015, 4 Nov 2015 Session 13: Main energy storage applications and how they are evolving By Denis Thomas,

More information

EXPERIMENTAL ANALYSIS OF TRIPLE FLUID VAPOUR ABSORPTION REFRIGERATION SYSTEM DRIVEN BY ELECTRICAL ENERGY AND ENGINE WASTE HEAT. Kancheepuram, India

EXPERIMENTAL ANALYSIS OF TRIPLE FLUID VAPOUR ABSORPTION REFRIGERATION SYSTEM DRIVEN BY ELECTRICAL ENERGY AND ENGINE WASTE HEAT. Kancheepuram, India EXPERIMENTAL ANALYSIS OF TRIPLE FLUID VAPOUR ABSORPTION REFRIGERATION SYSTEM DRIVEN BY ELECTRICAL ENERGY AND ENGINE WASTE HEAT Balasubramanian ANDI 1*, Venkatesan JAYARAMAN 2, Suresh SIVAN 3, Mariappan

More information

MANAGING ENERGY EFFICIENTLY ENVIRONMENTAL INDUSTRY

MANAGING ENERGY EFFICIENTLY ENVIRONMENTAL INDUSTRY MANAGING ENERGY EFFICIENTLY ENVIRONMENTAL INDUSTRY We have a duty to protect the environment and human health from the effects of waste management and disposal. Operators are growing increasingly aware

More information

MID-CENTURY STRATEGY FOR THE EU

MID-CENTURY STRATEGY FOR THE EU MID-CENTURY STRATEGY FOR THE EU Projections based on the PRIMES model IENE, November 23-24, 2018 Pantelis Capros E3MLab National Technical University of Athens The EU has already defined ambitious targets

More information

Basic Thermodynamics and System Analysis for Fuel Cells

Basic Thermodynamics and System Analysis for Fuel Cells 2 nd Joint European Summer School on Fuel Cell and Hydrogen Technology Crete, 17 th 28 th Sept. 2012 Basic Thermodynamics and System Analysis for Fuel Cells Prof. Dr. Robert Steinberger-Wilckens Centre

More information

Refrigeration Kylteknik

Refrigeration Kylteknik Värme- och strömningsteknik Thermal and flow engineering Refrigeration 424159.0 Kylteknik Ron Zevenhoven Exam 24-3-2017 4 questions, max. points = 4 + 6 + 10 + 10 = 30 All support material is allowed except

More information

Energiewende. Germany s energy system and the status of the energy transition. Markus Kurdziel

Energiewende. Germany s energy system and the status of the energy transition. Markus Kurdziel Energiewende Germany s energy system and the status of the energy transition Markus Kurdziel Programm Office International Climate Initiative BMUB (PB IKI) Sacramento, Aug 5th 2015 15-08-04 Referent 1

More information

S.Y. Diploma : Sem. III [PG/PT/ME] Thermal Engineering

S.Y. Diploma : Sem. III [PG/PT/ME] Thermal Engineering S.Y. Diploma : Sem. III [PG/PT/ME] Thermal Engineering Time: 3 Hrs. Prelim Question Paper Solution [Marks : 70 Q.1 Attempt any FIVE of the following. [10] Q.1(a) Explain difference between Thermodynamic

More information

Ph.D. Qualifying Exam. Thermodynamics. Spring 2011

Ph.D. Qualifying Exam. Thermodynamics. Spring 2011 Student Code Number: Ph.D. Qualifying Exam Thermodynamics Spring 2011 Professor Tonghun Lee Professor Abraham Engeda Directions: Open Book (only one book allowed) and closed notes Answer all six questions

More information

Implementation of energy efficiency programs using cogeneration based on internal combustion engines

Implementation of energy efficiency programs using cogeneration based on internal combustion engines Implementation of energy efficiency programs using cogeneration based on internal combustion engines Eduard MINCIUC University Politehnica of Bucharest, Bucharest, Romania eduard.minciuc@energ.pub.ro Roxana

More information

ME ENGINEERING THERMODYNAMICS UNIT III QUESTION BANK SVCET

ME ENGINEERING THERMODYNAMICS UNIT III QUESTION BANK SVCET 1. A vessel of volume 0.04m 3 contains a mixture of saturated water and steam at a temperature of 250 0 C. The mass of the liquid present is 9 kg. Find the pressure, mass, specific volume, enthalpy, entropy

More information

CFD Analysis for Production of Carbon Nanotubes

CFD Analysis for Production of Carbon Nanotubes International Journal of Current Engineering and Technology ISSN 2277-4106 2014 INPRESSCO. All Rights Reserved. Available at http://inpressco.com/category/ijcet Research Article CFD Analysis for Production

More information

Enhancement of CO2 Refrigeration Cycle Using an Ejector: 1D Analysis

Enhancement of CO2 Refrigeration Cycle Using an Ejector: 1D Analysis Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2006 Enhancement of CO2 Refrigeration Cycle Using an Ejector: 1D Analysis Elias

More information

MCE535 Thermal Power and Propulsive Systems. Lecture 04: 04/10/2017

MCE535 Thermal Power and Propulsive Systems. Lecture 04: 04/10/2017 MCE535 Thermal Power and Propulsive Systems Lecture 04: 04/10/2017 Dr. Ayokunle O. Balogun (A212) balogun.ayokunle@lmu.edu.ng Class: Thursday (3 5 pm) Etiquettes and MOP Attendance is a requirement. There

More information

Simulation of the hydrogen fueling process

Simulation of the hydrogen fueling process Star Global Conference - Vienna 2014 Dr. David Wenger 18.03.14 Key Facts Engineering company with 15 employees Location: Ulm, Germany CEO: Dr.-Ing. David Wenger Services: Thermodynamics CFD Simulation

More information

Energy Storage Technologies andapplications

Energy Storage Technologies andapplications Energy Storage Technologies andapplications Allianz Global Corporate & Specialty SE Expert Days 2017 Green Energy November 2-3, 2017, The Charles Hotel, Munich Dr. Andreas Hauer Executive Board of Directors

More information

Balancing variability in a 100% renewable scenario. Alice Hooker-Stroud

Balancing variability in a 100% renewable scenario. Alice Hooker-Stroud Balancing variability in a 100% renewable scenario Alice Hooker-Stroud alice.hooker-stroud@cat.org.uk (1973) (2014) Wales Institute for Sustainable Education Less hand on, more sitting at a

More information

Main Technology Policy Messages/Recommendations

Main Technology Policy Messages/Recommendations TECHNOLOGY COLLABORATION PROGRAMMES (TCPs) EUWP ANNUAL BRIEFING TEMPLATE TCP NAME Report Date Clean and Efficient ( TCP) 2/19/2018 Main Technology Policy Messages/Recommendations extracted from the TCP

More information

HYDROGEN MANUFACTURING USING LOW CURRENT, NON-THERMAL PLASMA BOOSTED FUEL CONVERTERS

HYDROGEN MANUFACTURING USING LOW CURRENT, NON-THERMAL PLASMA BOOSTED FUEL CONVERTERS PSFC/RR-01-1 HYDROGEN MANUFACTURING USING LOW CURRENT, NON-THERMAL PLASMA BOOSTED FUEL CONVERTERS L. Bromberg, D.R. Cohn, A. Rabinovich and N. Alexeev December 11, 2000 * Plasma Science and Fusion Center

More information

POWER-TO-GAS ROADMAP FOR FLANDERS

POWER-TO-GAS ROADMAP FOR FLANDERS POWER-TO-GAS ROADMAP FOR FLANDERS Selection of results of a 15 presentation Denis THOMAS, EU Regulatory Affairs and Business Development Manager for Renewable Hydrogen, Hydrogenics 06.04.2016, Hydrogen

More information

Three-Dimensional Numerical Simulation of a Model Wind Turbine

Three-Dimensional Numerical Simulation of a Model Wind Turbine Three-Dimensional Numerical Simulation of a Model Wind Turbine N. Tabatabaei 1, M.J. Cervantes 1,2, C. Trivedi 2, J-O Aidanpää 1 1 Luleå University of Technology, Sweden 2 Norwegian University of Science

More information

R13 SET - 1 '' ''' '' ' '''' Code No: RT31035

R13 SET - 1 '' ''' '' ' '''' Code No: RT31035 R13 SET - 1 III B. Tech I Semester Regular/Supplementary Examinations, October/November - 2016 THERMAL ENGINEERING II (Mechanical Engineering) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists

More information

SYNERGI MELLEM BIOGAS- OPGRADERING OG SOEC

SYNERGI MELLEM BIOGAS- OPGRADERING OG SOEC SYNERGI MELLEM BIOGAS- OPGRADERING OG SOEC Christian Dannesboe Center for Biorefinery Technologies AU BIOGAS PLANT FOULUM Biogas produced from manure Production of 100 Nm3/h Biogas is 40% CO 2. (Only 60%

More information

Tribhuvan University Institute of Engineering Pulchowk Campus, Lalitpur, Nepal M. Sc. Engineering in Renewable Energy Engineering OUTLINES OF COURSES

Tribhuvan University Institute of Engineering Pulchowk Campus, Lalitpur, Nepal M. Sc. Engineering in Renewable Energy Engineering OUTLINES OF COURSES Tribhuvan University Institute of Engineering Pulchowk Campus, Lalitpur, Nepal M. Sc. Engineering in Renewable Energy Engineering OUTLINES OF COURSES Year : I S. N. 1 801 ME Fundamentals of Thermal Engineering

More information

Computational Analyses of Combustive Vortex Flows in Liquid Rocket Engines

Computational Analyses of Combustive Vortex Flows in Liquid Rocket Engines McNair Scholars Research Journal Volume 2 Article 2 2015 Computational Analyses of Combustive Vortex Flows in Liquid Rocket Engines Nadia M. Numa numan@my.erau.edu Follow this and additional works at:

More information

Workshop Grid plus Storage

Workshop Grid plus Storage ADELE-ING Workshop Grid plus Storage Dr-Ing. Pio Alessandro Lombardi Lehrstuhl Elektrische Netze und Erneuerbare Energie 1. Motivation German Energiewende 35% of electricity production by RES by 2030 high

More information

New technologies for the Mid-century strategy

New technologies for the Mid-century strategy E3MLab www.e3mlab.eu 1 New technologies for the Mid-century strategy Pantelis Capros Professor of Energy Economics National Technical University of Athens E3MLab, Athens November 2017 Industry Buildings

More information

Dry Low-NOx Combustion Technology for Novel Clean Coal Power Generation Aiming at the Realization of a Low Carbon Society

Dry Low-NOx Combustion Technology for Novel Clean Coal Power Generation Aiming at the Realization of a Low Carbon Society Dry Low-NOx Combustion Technology for Novel Clean Coal Power Generation Aiming at the Realization of a Low Carbon Society 24 SATOSCHI DODO *1 MITSUHIRO KARISHUKU *2 NOBUO YAGI *2 TOMOHIRO ASAI *3 YASUHIRO

More information

CFD Analysis of a Mixture Flow in a Producer Gas Carburetor for optimizing the design configuration

CFD Analysis of a Mixture Flow in a Producer Gas Carburetor for optimizing the design configuration CFD Analysis of a Mixture Flow in a Producer Gas Carburetor for optimizing the design configuration T.R.Ani1 l, S.D.Ravi 2, M.Shashikanth 2, P.G.Tewari 3 and N.K.S.Rajan 4 l Research student, and Assistant

More information

Introduction and Applications in the Power Plant Sector

Introduction and Applications in the Power Plant Sector Thermolib The Key to Thermal Management in Simulink Introduction and Applications in the Power Plant Sector Release 5.3 5.3.0.x/5.3.0 Content Introduction Features & Benefits Examples Power Plant Sector

More information

IJESRT. Scientific Journal Impact Factor: (ISRA), Impact Factor: 2.114

IJESRT. Scientific Journal Impact Factor: (ISRA), Impact Factor: 2.114 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY IC ENGINE WET LINERS THERMAL ANALYSIS Dineshkumar S *, Sriprashanth.V Assistant Professor,Department of Mechanical engineering,

More information

UTC R170. Hydrogen Flammability Limits and Implications on Fire Safety of Transportation Vehicles. Umit O. Koylu

UTC R170. Hydrogen Flammability Limits and Implications on Fire Safety of Transportation Vehicles. Umit O. Koylu Hydrogen Flammability Limits and Implications on Fire Safety of Transportation Vehicles by Umit O. Koylu UTC R170 A University Transportation Center Program at Missouri University of Science & Technology

More information

Combined Heat and Power

Combined Heat and Power Lecture 12 Combined Heat and Power Combustion Turbines and Co-generation Combustion Turbines and Combined Heat and Power (CHP) Systems See B. K. Hodge, Chapter 5 and Chapter 11. ISBN: 978-0-470-14250-9

More information

High efficient peak power on demand. Answers for energy.

High efficient peak power on demand.  Answers for energy. www.siemens.com/energy High efficient peak power on demand POWER-GEN Asia 2011 KLCC, Malaysia, Kuala Lumpur September 27 29, 2011 Authors: Jan Dirk Beiler Siemens AG Energy Sector Fossil Power Generation

More information

Comparison between Gas and Oil Injection into the Blast Furnace: A Detailed Theoretical Study

Comparison between Gas and Oil Injection into the Blast Furnace: A Detailed Theoretical Study Comparison between Gas and Oil Injection into the Blast Furnace: A Detailed Theoretical Study D. Andahazy, S. Slaby, G. Löffler, F. Winter Ch. Feilmayr, T. Bürgler Christian Doppler Laboratory for Chemical

More information

00046 Term-End Examination June, 2015

00046 Term-End Examination June, 2015 No. of Printed Pages : 5 BIME-013 B.Tech. - VIEP - MECHANICAL ENGINEERING (BTMEVI) 00046 Term-End Examination June, 2015 BIME-013 : TURBO MACHINES Time : 3 hours Maximum Marks : 70 Note : Answer any five

More information

Hydrogen: The Missing Piece of the Zero Carbon Puzzle

Hydrogen: The Missing Piece of the Zero Carbon Puzzle Hydrogen: The Missing Piece of the Zero Carbon Puzzle An IHS Markit study considering the potential role of hydrogen in a netzero carbon Europe September 2018 Table of Contents Introduction Hydrogen can

More information

PHYSICO-MATHEMATICAL MODEL OF A HOT AIR ENGINE USING HEAT FROM LOW-TEMPERATURE RENEWABLE SOURCES OF ENERGY

PHYSICO-MATHEMATICAL MODEL OF A HOT AIR ENGINE USING HEAT FROM LOW-TEMPERATURE RENEWABLE SOURCES OF ENERGY U.P.B. Sci. Bull., Series D, Vol. 78, Iss. D, 216 ISSN 1223-727 PHYSICO-MATHEMATICAL MODEL OF A HOT AIR ENGINE USING HEAT FROM LOW-TEMPERATURE RENEWABLE SOURCES OF ENERGY Vlad Mario HOMUTESCU 1, Marius-Vasile

More information

Component Performance - Inlet, Burner and Nozzle

Component Performance - Inlet, Burner and Nozzle Component Performance - Inlet, Burner and Nozzle Introduction Changes in gas properties as it flows through the engine Sources of losses and figures of merit Efficiencies of the inlet, burner and exhaust

More information

On the topic of gas turbine combustion

On the topic of gas turbine combustion On the topic of gas turbine combustion, Answers for energy. Outline Part 1, Overview of gas turbine combustion Part 2, Modeling of gas turbine combustion Page 2 Part 1: Overview of gas turbine combustion

More information

A novel CO 2 -capturing natural gas combined cycle with LNG cold energy utilization

A novel CO 2 -capturing natural gas combined cycle with LNG cold energy utilization Available online at www.sciencedirect.com ScienceDirect Energy Procedia 61 (2014 ) 899 903 The 6 th International Conference on Applied Energy ICAE2014 A novel CO 2 -capturing natural gas combined cycle

More information

Fluid dynamics of a post-combustion chamber in electric arc steelmaking plants

Fluid dynamics of a post-combustion chamber in electric arc steelmaking plants Computational Methods and Experimental Measurements XV 205 Fluid dynamics of a post-combustion chamber in electric arc steelmaking plants L. Labiscsak 1, G. Straffelini 1, C. Corbetta 2 & M. Bodino 2 1

More information

CFD ANALYSIS OF CONVECTIVE FLOW IN A SOLAR DOMESTIC HOT WATER STORAGE TANK

CFD ANALYSIS OF CONVECTIVE FLOW IN A SOLAR DOMESTIC HOT WATER STORAGE TANK International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-2013 1 CFD ANALYSIS OF CONVECTIVE FLOW IN A SOLAR DOMESTIC HOT WATER STORAGE TANK Mr. Mainak Bhaumik M.E. (Thermal

More information

Validation studies of CFD codes on hydrogen combustion

Validation studies of CFD codes on hydrogen combustion Validation studies of CFD codes on hydrogen combustion Sudarat Worapittayaporn, Luciana Rudolph, Harald Dimmelmeier AREVA NP GmbH ERMSAR 2012, Cologne, March 21 23, 2012 Content Introduction Validation

More information

Design and CFD Investigation of Exhaust Gas Recovery System for 4SSC Diesel Engine

Design and CFD Investigation of Exhaust Gas Recovery System for 4SSC Diesel Engine Design and CFD Investigation of Exhaust Gas Recovery System for 4SSC Diesel Engine Bibin P Varghese, V Hariganesh, Ajish Soman Abstract With worldwide reserves of fossil fuels gradually diminishing and

More information

Code No: R Set No. 1

Code No: R Set No. 1 Code No: R050210201 Set No. 1 II B.Tech I Semester Regular Examinations, November 2006 FLUID MECHANICS & HYDRAULIC MACHINERY (Electrical & Electronic Engineering) Time: 3 hours Max Marks: 80 Answer any

More information