An Overview of the Integral Molten Salt Reactor

Size: px
Start display at page:

Download "An Overview of the Integral Molten Salt Reactor"

Transcription

1 1 Presentation to IAEA MSR Workshop 1 st Nov 2016 An Overview of the Integral Molten Salt Reactor 1

2 2 DISCLAIMER This presentation may contain forward-looking information as such term is defined under applicable Canadian securities laws. Forward-looking information is disclosure regarding possible events, conditions or results of operations that is based on assumptions about future economic conditions and courses of action and may include future-oriented financial information ( FOFI ) and information presented in the form of a financial outlook with respect to prospective results of operations, financial position or cash flows that is presented either as a forecast or a projection. Investors are advised that forward-looking information is subject to a variety of risks, uncertainties and other factors that could cause actual results to differ materially from expectations as expressed or implied within this presentation. Forward-looking information reflects current expectations with respect to current events and is not a guarantee of future performance. Any forward-looking information that may be included or incorporated by reference in this presentation, including any FOFI or a financial outlook, is presented solely for the purpose of conveying the current anticipated expectations of management and may not be appropriate for any other purposes. Investors are therefore cautioned not to place undue reliance on any such forward-looking information and are advised that the company is not under any obligation to update such information, other than as may be required under applicable securities laws and/or as agreed to in contract. 2

3 3 INTRODUCTION TO TERRESTRIAL ENERGY Terrestrial Energy Commercializing an Advanced Nuclear technology that can compete with fossils fuels combustion and change the game Technology next generation Molten Salt Reactor ( MSR ) High technology readiness for market deployment in the 2020s Completing basic/preliminary engineering work - TEI s Canadian siting project: first commercial IMSR power plant (400 MWth reactor) at a site in Canada in the 2020s Commenced Phase I of CNSC VDR - TEUSA s US siting project: first commercial IMSR power plant (400 MWth reactor) at a site in US in the 2020s Invited to submit Part II DOE loan guarantee application Idaho National Laboratory, ID, USA is a lead candidate site Terrestrial Energy is a leading advanced reactor developer in a fast developing cleantech sector 3

4 4 RECENT MILESTONES 1Q 2016 April 2016 June 2016 August 2016 September 2016 Commenced regulatory engagement - signed CNSC Service Agreement for IMSR Vendor Design Review Awarded $5.7mn cleantech grant by SDTC Canadian Federal Government Formed Corporate Industrial Advisory Board with senior executives from ENW, OPG, PSEG, Southern Company Terrestrial Energy USA Ltd (TEUSA) awarded GAIN grant from United States Department of Energy $22.5mn funding milestone reached on completion of $5.3mn Series 2 Preferred Investment Round TEUSA receives invitation to submit Part II for a United States Department of Energy $800 Mn to $1.2 Bn loan guarantee to support engineering, licensing and construction of first U.S. IMSR power plant 4

5 5 TERRESTRIAL ENERGY S CORPORATE INDUSTRIAL ADVISORY BOARD Power Utilities Industrial Duke Energy owns and operates six nuclear power stations in North Carolina and South Carolina, USA. - Represented by John W. (Bill) Pitesa, Chief Nuclear Officer Energy Northwest operates the Columbia Generating Station, located in Richland, Washington, USA. - Represented by Mark Reddemann, Chief Executive Officer NB Power owns and operates the Point Lepreau Nuclear Generating Station, New Brunswick, Canada. - Represented by Gaëtan Thomas President and Chief Executive Officer Ontario Power Generation owns and operates the Pickering and Darlington Nuclear Power Stations in Ontario, Canada. - Represented by Jeff Lyash, President and Chief Executive Officer PSEG Nuclear operates the Salem and Hope Creek Nuclear Generating Stations in Lower Alloways Creek, New Jersey, USA, and is a part owner of the Peach Bottom Nuclear generation station in Delta, Pennsylvania, USA. - Represented by William Levis, PSEG Power, President and Chief Operating Officer Southern Nuclear Operating Company operates the Alvin W. Vogtle Electric Generating Plant near Waynesboro, Georgia, USA, and the Edwin I. Hatch Nuclear Plant near Baxley, Georgia, USA, and the Joseph M. Farley Nuclear Plant near Dothan, Alabama, USA. - Represented by Stephen Kuczynski, Chairman, President and Chief Executive Officer Caterpillar is the leading manufacturer of construction and mining equipment, diesel and natural gas engines, industrial gas turbines and diesel-electric locomotives. - Represented by Dan Henderson Director of Research and Advanced Engineering 5

6 6 TECHNOLOGY 6

7 7 ADVANTAGES OF MOLTEN SALT REACTORS Safety Enhanced ability for passive decay heat removal Inherent Stability from strong negative reactivity coefficients Low pressure and no chemical driving force Caesium and Iodine stable within the fuel salt Reduced Capital Cost Inherent safety can simplify entire facility Low pressure, high thermal efficiency, superior coolants (smaller pumps, heat exchangers). No complex refuelling mechanisms Long Lived Waste Issues Ideal system for consuming existing transuranic wastes Even MSR-Burner designs can close cycle for almost no transuranics going to waste Resource Sustainability and Low Fuel Cycle Cost Th-U233 thermal or U-Pu fast breeders obvious but MSR-Burners on LEU also very efficient on uranium use 7

8 8 THE 1970s SINGLE FLUID, GRAPHITE MODERATED MOLTEN SALT BREEDER REACTOR (MSBR) 1000 MWe 8

9 9 CHALLENGES OF 1970 S MSR-BREEDER DESIGN Online Fission Product Removal Tritium Control Reactivity Temperature Coefficients (only weakly negative) Use of Highly Enriched Uranium Long Term Corrosion or Radiation Damage Graphite Replacement Operations 9

10 10 ARE BREEDERS NEEDED NOW? Breeder approach is a needed long term goal and work should continue but world has immediate need of nuclear power replacing fossil fuel Uranium is quite abundant. Quoted resources are only what is confirmed by expensive drilling. More exploration equals more resources MSR-Burner approach of running of Low Enriched Uranium solves many challenges The last major work of ORNL in the late 1970s was a MSR- Burner, the Denatured Molten Salt Reactor (DMSR) 10

11 11 ISSUES SOLVED BY THE MSR-BURNER APPROACH Fission product removal No need for any salt processing Salts used as batches with periodic fuel additions Tritium Control Able to use non FLiBe carrier salts to curtail tritium production NaF, RbF, ZrF4 and KF among potential ingredients Reactivity Coefficients MSR-Burners have superior reactivity coefficients (solves positive graphite temperature coefficient seen in Th-U233 Breeder) Low Enriched Uranium Only Highly proliferation resistant as U always LEU (denatured), Pu at low concentration and poor isotopic blend. No blankets or fuel processing needed Unlike almost all advanced reactors, Startup and Makeup fuel can be 5% enrichment or lower (commercially pragmatic) 11

12 REMAINING CHALLENGES ARE MATERIALS RELATED 12 Long Term Corrosion or Radiation Damage High Nickel alloys or even stainless steels perform superbly but proving a 30+ year lifetime a challenge for both reactor vessel and primary heat exchanger Use and Replacement of Graphite Unclad graphite use gives very strong advantages Very low enrichment fuel (~2% enriched LEU) Makes Out of Core Criticality virtually impossible Protects vessel wall from high neutron flux Graphite s lifetime however is directly related to power density 12

13 13 WHAT IS TERRESTRIAL ENERGY S IMSR? Integral Molten Salt Reactor LEU fueled MSR-Burner design like the 1980 DMSR Integrates all primary systems into a sealed reactor vessel 7 year Core unit Seal and Swap approach to graphite lifetime Planned as 400 MWth (~ 192 MWe) 3.6 m wide Core-unit for eased transportability Alternate Non-FLiBE salt possible and new off gas system New passive decay heat removal in situ without dump tanks Safety at forefront which leads to cost innovation 13

14 14 SCHEMATIC VIEW OF IMSR POWER TRAIN 14

15 15 IMSR SINGLE UNIT, TWIN SILOS FOR SWITCHLOADING 15

16 16 IMSR OVERALL FACILITY LAYOUT Fuel oil and water tanks Reactor Auxiliary Building Cooling Towers Turbine Building Steam Generators Control Building Grid Connect Yard 16

17 17 IMSR NPP CONSISTS OF NUCLEAR ISLAND AND BALANCE-OF-PLANT Balance-of-Plant Nuclear Island IMSR Nuclear Island produces 600 o C industrial heat. Balance-of-Plant can be a broad range of industrial applications not just power provision 17

18 18 IN-SITU DECAY HEAT REMOVAL NEW INNOVATION Freeze Valve and Dump Tank the traditional approach Results in unwanted lower penetrations and regulator likely to assume failure to drain is possible IMSR approach has long been in-situ decay heat removal Convection and natural circulation brings decay heat to vessel wall Radiant transfer to Guard Vessel (Guard=Containment) 700 C surface 9x radiant heat compared to 300 C From there, water jacket options or PRISM like RVACS Reactor Vessel Auxiliary Cooling System 18

19 19 PRISM RVACS Well Studied and Accepted 19

20 20 DRAWBACKS OF RVACS DESIGN FOR MSR USE Drawbacks of RVACS include the potential activation of passing air to Argon41 (110 min half life) Significant neutron shielding required to bring Ar41 rates to acceptable (and what level is publically acceptable?) As well, any remote possibility of breach of containment (Guard Vessel) means a relatively direct pathway for radionuclides 20

21 21 TERRETRIAL ENERGY S NEW IRVACS IMSR utilizes a new innovative concept, proving extremely robust Basic concept is a closed cycle innovation of RVACS that retains a further barrier to the outside world New Internal RVACS or IRVACS moves heat by a closed cycle flow of nitrogen to a false roof acting as a large heat exchanger above the structural roof Fails Better If roof penetrated, outside air improves performance Modeling (including 140 million mesh CFD) showing excellent behaviour for even most severe accident scenarios of losing all secondary heat transfer 21

22 IRVACS 22 22

23 23 IRVACS 23

24 24 CHALLENGES SOLVED WITH IMSR Sealed for life offers enormous regulatory advantages to accelerate development Spent vessel is now intermediate storage of graphite Airborne release risk during graphite replacement eliminated Long cool down time before moving unit Material lifetime and corrosion issues greatly eased Good fuel economy on Once Through Future recycling to close fuel cycle and improve fuel economy commercially attractive Offers obvious razor blade analogy of continuous sales to attract industrial partners 24

25 25 CONTACT DETAILS David LeBlanc Ph. D. Chief Technology Officer Terrestrial Energy Inc Upper Middle Rd East, Suite 102 Oakville ON L6H 0C3 CANADA T: +1(905) E: 25

INTEGRAL MOLTEN SALT REACTOR

INTEGRAL MOLTEN SALT REACTOR 1 INTERNATIONAL WORKSHOP ON ADVANCED REACTOR SYSTEMS AND FUTURE ENERGY MARKET NEEDS David Leblanc, President and CTO Terrestrial Energy April 12 th, 2017 INTEGRAL MOLTEN SALT REACTOR 1 2 IMSR TECHNOLOGY

More information

The DMSR: Keeping it Simple

The DMSR: Keeping it Simple The DMSR: Keeping it Simple March 29 th 2010 2 nd Thorium Energy Conference Dr. David LeBlanc Physics Dept, Carleton University, Ottawa & Ottawa Valley Research Associates Ltd. d_leblanc@rogers.com What

More information

The Tube in Tube Two Fluid Approach

The Tube in Tube Two Fluid Approach The Tube in Tube Two Fluid Approach March 29 th 2010 2 nd Thorium Energy Conference Dr. David LeBlanc Physics Dept, Carleton University, Ottawa & Ottawa Valley Research Associates Ltd. d_leblanc@rogers.com

More information

A Brief History of Molten Salt Reactors

A Brief History of Molten Salt Reactors A Brief History of Molten Salt Reactors EVOL Workshop IPN-Orsay, France May 21-22, 2012 Dr. David E. Holcomb Reactor and Nuclear Systems Division HolcombDE@ornl.gov First a Couple of Quotes That Point

More information

Molten Salt Reactors: A 2 Fluid Approach to a Practical Closed Cycle Thorium Reactor

Molten Salt Reactors: A 2 Fluid Approach to a Practical Closed Cycle Thorium Reactor Molten Salt Reactors: A 2 Fluid Approach to a Practical Closed Cycle Thorium Reactor Oct 25 th 2007 Presentation to the Ottawa Chapter of the Canadian Nuclear Society Dr. David LeBlanc Physics Department

More information

Molten Salt Reactor Technology for Thorium- Fueled Small Reactors

Molten Salt Reactor Technology for Thorium- Fueled Small Reactors Molten Salt Reactor Technology for Thorium- Fueled Small Reactors Dr. Jess C. Gehin Senior Nuclear R&D Manager Reactor and Nuclear Systems Division gehinjc@ornl.gov, 865-576-5093 Advanced SMR Technology

More information

PLANT VOGTLE UNITS 3 AND 4

PLANT VOGTLE UNITS 3 AND 4 PLANT VOGTLE UNITS 3 AND 4 ZERO GREENHOUSE GASES Nuclear energy facilities release zero greenhouse gases while producing electricity. A single uranium pellet the size of a pencil eraser produces as much

More information

Thorium and Uranium s Mutual Symbiosis: The Denatured Molten Salt Reactor DMSR

Thorium and Uranium s Mutual Symbiosis: The Denatured Molten Salt Reactor DMSR Thorium and Uranium s Mutual Symbiosis: The Denatured Molten Salt Reactor DMSR Dr. David LeBlanc Physics Dept, Carleton University, Ottawa & Ottawa Valley Research Associates Ltd. d_leblanc@rogers.com

More information

Practical Aspects of Liquid-Salt-Cooled Fast-Neutron Reactors

Practical Aspects of Liquid-Salt-Cooled Fast-Neutron Reactors Practical Aspects of Liquid-Salt-Cooled Fast-Neutron Reactors Charles Forsberg (ORNL) Per F. Peterson (Univ. of California) David F. Williams (ORNL) Oak Ridge National Laboratory P.O. Box 2008; Oak Ridge,

More information

FOR A FUTURE WE CAN BELIEVE IN. International Thorium Energy Conference 2015

FOR A FUTURE WE CAN BELIEVE IN. International Thorium Energy Conference 2015 FOR A FUTURE WE CAN BELIEVE IN International Thorium Energy Conference 2015 ( 10-13 - 2015 ) LFTR: In search of the Ideal Pathway to Thorium Utilization Development Program Update. Current Status Benjamin

More information

(This paper was taken from Terrestrial Energy s web site June )

(This paper was taken from Terrestrial Energy s web site June ) (This paper was taken from Terrestrial Energy s web site June 18 2016) How it Works Molten Salt Reactors ( MSRs ) are nuclear reactors that use a fluid fuel in the form of a molten fluoride or chloride

More information

Liquid Fueled Reactors: Molten Salt Reactor Technology

Liquid Fueled Reactors: Molten Salt Reactor Technology Liquid Fueled Reactors: Molten Salt Reactor Technology Dr. Jess C. Gehin Lead, Reactor Technology R&D Integration Reactor and Nuclear Systems Division gehinjc@ornl.gov, 865-576-5093 Thorium Energy Conference

More information

Transmutation of Transuranic Elements and Long Lived Fission Products in Fusion Devices Y. Gohar

Transmutation of Transuranic Elements and Long Lived Fission Products in Fusion Devices Y. Gohar Transmutation of Transuranic Elements and Long Lived Fission Products in Fusion Devices Y. Gohar Fusion Power Program Technology Division Argonne National Laboratory 9700 S. Cass Avenue, Argonne, IL 60439,

More information

Stable Salt Reactors - A roadmap to Thorium

Stable Salt Reactors - A roadmap to Thorium Stable Salt Reactors - A roadmap to Thorium 1) Activities Moltex development status 2018 2) Moltex approach to Fuel Cycle, and the road to Thorium Adam Owens adamowens@moltexenergy.com Thorium World 28

More information

The role of Thorium for facilitating large scale deployment of nuclear energy

The role of Thorium for facilitating large scale deployment of nuclear energy The role of Thorium for facilitating large scale deployment of nuclear energy R.K. Sinha Chairman, Atomic Energy Commission Government of India IAEA International Ministerial Conference on Nuclear Power

More information

INTRODUCTION TO SMR S

INTRODUCTION TO SMR S 1 INTRODUCTION TO SMR S Ferry Roelofs 20 April 2018 EU DuC = N 2 CONTENTS 1. What is an SMR? 2. Why SMR s? 3. Which SMR s? WHAT IS AN SMR? 3 4 WHAT IS AN SMR? DEFINITION: IAEA IAEA Small to Medium sized

More information

Liquid Fluoride Reactors: A Luxury of Choice

Liquid Fluoride Reactors: A Luxury of Choice Liquid Fluoride Reactors: A Luxury of Choice Oct 20 th 2009 Thorium Energy Alliance Conference Dr. David LeBlanc Physics Dept, Carleton University, Ottawa & Ottawa Valley Research Associates Ltd. d_leblanc@rogers.com

More information

Molten Salt Reactors

Molten Salt Reactors Molten Salt Reactors May 30th 2013 Presentation to 5th Thorium Energy Alliance Conference Chicago Dr. David LeBlanc Terrestrial Energy Inc. dleblanc@terrestrialenergyinc.com The Basics: Molten Salt Reactors

More information

Denatured Molten Salt Reactors (DMSR): An Idea Whose Time Has Finally Come? Abstract

Denatured Molten Salt Reactors (DMSR): An Idea Whose Time Has Finally Come? Abstract Denatured Molten Salt Reactors (DMSR): An Idea Whose Time Has Finally Come? D. LeBlanc 1,2 1 Physics Dept, Carleton University, Ottawa, Canada 2 Ottawa Valley Research Associates Ltd. Abstract Molten Salt

More information

Molten Salt Reactors and the Oil Sands: Odd Couple or Key to North American Energy Independence?

Molten Salt Reactors and the Oil Sands: Odd Couple or Key to North American Energy Independence? Molten Salt Reactors and the Oil Sands: Odd Couple or Key to North American Energy Independence? June 12 th 2012 Presentation to Canadian Nuclear Society, Western Focus Track Dr. David LeBlanc Ottawa Valley

More information

Chemical Engineering 412

Chemical Engineering 412 Chemical Engineering 412 Introductory Nuclear Engineering Lecture 20 Nuclear Power Plants II Nuclear Power Plants: Gen IV Reactors Spiritual Thought 2 Typical PWR Specs Reactor Core Fuel Assembly Steam

More information

Abundant and Reliable Energy from Thorium. Kirk Sorensen Flibe Energy UT Energy Week February 17, 2015

Abundant and Reliable Energy from Thorium. Kirk Sorensen Flibe Energy UT Energy Week February 17, 2015 Abundant and Reliable Energy from Thorium Kirk Sorensen Flibe Energy UT Energy Week February 17, 2015 This is incorrect. Nuclear energy is our greatest hope for the future. Nuclear energy contains over

More information

Enhanced CANDU 6. Safe, dependable and clean energy solutions

Enhanced CANDU 6. Safe, dependable and clean energy solutions Enhanced CANDU 6 Safe, dependable and clean energy solutions The SNC-Lavalin Solution With more than a century of experience in the power sector, and over 60 years invested in the nuclear industry, SNC-Lavalin

More information

Workshop on PR&PP Evaluation Methodology for Gen IV Nuclear Energy Systems. Tokyo, Japan 22 February, Presented at

Workshop on PR&PP Evaluation Methodology for Gen IV Nuclear Energy Systems. Tokyo, Japan 22 February, Presented at PR&PP Collaborative Study with GIF System Steering Committees A Compilation of Design Information and Crosscutting Issues Related to PR&PP Characterization Presented at Workshop on PR&PP Evaluation Methodology

More information

Thorium an alternative nuclear fuel cycle

Thorium an alternative nuclear fuel cycle Thorium an alternative nuclear fuel cycle 5th Smart Grids & Clean Power Conference, Cambridge, 5 June 2013 www.cir-strategy.com/events/cleanpower Kevin Hesketh, Senior Research Fellow Outline General Principles

More information

THE KNOWN UNKNOWNS OF MOLTEN SALT REACTORS

THE KNOWN UNKNOWNS OF MOLTEN SALT REACTORS THE KNOWN UNKNOWNS OF MOLTEN SALT REACTORS R. Ortega Pelayo 1, M. Edwards 2 1 Canadian Nuclear Laboratories,Chalk River, Ontario, Canada (286 Plant Road, Stn. 42, (613) 584 3311 ext. 44155, rosaelia.ortegapelayo@cnl.ca)

More information

REGULATING INNOVATIVE NUCLEAR TECHNOLOGIES

REGULATING INNOVATIVE NUCLEAR TECHNOLOGIES REGULATING INNOVATIVE NUCLEAR TECHNOLOGIES Mr. Ramzi Jammal Executive Vice-President and Chief Regulatory Operations Officer 2018 Pacific Basin Nuclear Conference Sep 30 - Oct 04, 2018 CANADIAN NUCLEAR

More information

Molten Salt Reactors

Molten Salt Reactors Nuclear Engineering Panel Technical Presentation Molten Salt Reactors Date: Wednesday, 19 th March 2014 Time: 5.30 pm for 6.00 pm Venue: Engineers Australia Harricks Auditorium, Ground Floor, 8 Thomas

More information

Background. Introduction. Overview of vendor design review process

Background. Introduction. Overview of vendor design review process Executive Summary A pre-licensing review of a new nuclear power plant (NPP), also referred to as a vendor design review (VDR), provides an opportunity for CNSC staff to assess a design prior to any licensing

More information

FBNR Letter FIXED BED NUCLEAR REACTOR FBNR

FBNR Letter FIXED BED NUCLEAR REACTOR FBNR FBNR Letter FIXED BED NUCLEAR REACTOR FBNR http://www.rcgg.ufrgs.br/fbnr.htm Farhang.Sefidvash@ufrgs.br Dear coworkers and potential coworkers around the world, As number of coworkers is increasing, we

More information

Status Report IMSR-400

Status Report IMSR-400 Status Report IMSR-400 Overview Full name Integral Molten Salt Reactor-400 Acronym IMSR-400 Reactor type Molten Salt Reactor Purpose Commercial Coolant Fluoride Salts Moderator Graphite Neutron Thermal

More information

Update on the Development, Deployment and Regulation of Small Modular Reactors

Update on the Development, Deployment and Regulation of Small Modular Reactors Update on the Development, Deployment and Regulation of Small Modular Reactors Commission Meeting August 22-23, 2018 CMD 18-M31 CNSC Staff Presentation e-doc 5401043 (PPT) e-doc 5605405 (PDF) Table of

More information

Nexus of Safeguards, Security and Safety for Advanced Reactors

Nexus of Safeguards, Security and Safety for Advanced Reactors Nexus of Safeguards, Security and Safety for Advanced Reactors Dr. George Flanagan Oak Ridge National Laboratory, USA Dr. Robert Bari Brookhaven National Laboratory, USA Presentation for the Global Nexus

More information

NuScale: Expanding the Possibilities for Nuclear Energy

NuScale: Expanding the Possibilities for Nuclear Energy NuScale: Expanding the Possibilities for Nuclear Energy D. T. Ingersoll Director, Research Collaborations Georgia Tech NE 50 th Anniversary Celebration November 1, 2012 NuScale Power, LLC 2012 Allowing

More information

2012 Deep River Science Academy Summer Lecture GENERATION IV SUPERCRITICAL WATER-COOLED REACTOR

2012 Deep River Science Academy Summer Lecture GENERATION IV SUPERCRITICAL WATER-COOLED REACTOR 2012 Deep River Science Academy Summer Lecture GENERATION IV SUPERCRITICAL WATER-COOLED REACTOR M. Yetisir Deep River, 2012 July 12 What is a Gen IV Reactor Contents How does nuclear plant work? What is

More information

Innovative Nuclear Systems as a Solution to Small Scale Nuclear Energy

Innovative Nuclear Systems as a Solution to Small Scale Nuclear Energy INPRO Dialogue Forum on Generation IV Nuclear Energy Systems Vienna, Austria, 13 15 April 2016 Innovative Nuclear Systems as a Solution to Small Scale Nuclear Energy Hadid Subki Nuclear Power Technology

More information

Advanced Reactors Mission, History and Perspectives

Advanced Reactors Mission, History and Perspectives wwwinlgov Advanced Reactors Mission, History and Perspectives Phillip Finck, PhD Idaho National Laboratory Senior Scientific Advisor June 17, 2016 A Brief History 1942 CP1 First Controlled Chain Reaction

More information

Molten-Salt Reactor FUJI and Related Thorium Cycles

Molten-Salt Reactor FUJI and Related Thorium Cycles Thorium Energy Alliance Spring Conference 2010, March 29-30, 2010, Mountain View, USA 1 Molten-Salt Reactor FUJI and Related Thorium Cycles Ritsuo Yoshioka (Presenter)* K. Furukawa, Y. Kato, K. Mitachi

More information

Molten Salt Converter Reactors: DMSR to SmAHTR and Back

Molten Salt Converter Reactors: DMSR to SmAHTR and Back Molten Salt Converter Reactors: DMSR to SmAHTR and Back March 22 nd 2013 Presentation to University of Ontario Institute of Technology Dr. David LeBlanc Terrestrial Energy Inc. dleblanc@terrestrialenergyinc.com

More information

Molten Salt Reactors (MSRs)

Molten Salt Reactors (MSRs) Molten Salt Reactors (MSRs) Dr. Charles W. Forsberg Oak Ridge National Laboratory * P.O. Box 2008 Oak Ridge TN 37830-6179 Tel: (865) 574-6783 Fax: (865) 574-9512 E-mail: forsbergcw@ornl.gov Manuscript

More information

Basic dynamics of graphite moderated LEU fueled MSRs

Basic dynamics of graphite moderated LEU fueled MSRs UTK seminar, July 18th 2014 Basic dynamics of graphite moderated LEU fueled MSRs Dr. Ondřej Chvála Seminar overview Historical context and lessons MSR salt & lattice choices Reactor dynamics:

More information

PRISM Heat Removal Safety Systems

PRISM Heat Removal Safety Systems PRISM Heat Removal Safety Systems 5 th IAEA/GIF SFR Safety Workshop David Powell Ph.D. 23/24 June 2015 Copyright 2013 GE Hitachi Nuclear Energy International All rights reserved PRISM: The Commercialization

More information

Department of Nuclear Energy. Division of Nuclear Power. Nuclear Power. International Atomic Energy Agency. Akira OMOTO IAEA

Department of Nuclear Energy. Division of Nuclear Power. Nuclear Power. International Atomic Energy Agency. Akira OMOTO IAEA Nuclear Power Akira OMOTO Division of Nuclear Power Department of Nuclear Energy IAEA International Atomic Energy Agency blank page.doc 40/1000mm 35/1000mm 40/1000mm 95/1000mm What is nuclear fission?

More information

NUCLEAR POWER NEW NUCLEAR POWER PLANTS IN 2012

NUCLEAR POWER NEW NUCLEAR POWER PLANTS IN 2012 NUCLEAR POWER NEW NUCLEAR POWER PLANTS IN 2012 AP1000 IN FEBRUARY 2012, THE FIRST NUCLEAR POWER PLANTS IN THE US IN 35 YEARS WERE LICENSCED TO BEGIN CONSTRUCTION. TWO WESTINGHOUSE AP1000 NUCEAR REACTOR

More information

INAC-ENFIR Recife, November Molten Salt Nuclear Reactors

INAC-ENFIR Recife, November Molten Salt Nuclear Reactors INAC-ENFIR Recife, November 24-29 2013 Molten Salt Nuclear Reactors Dr Cassiano R E de Oliveira Department of Chemical and Nuclear Engineering The University of New Mexico cassiano@unm.edu Outline Motivation

More information

IAEA-J4-TM TM for Evaluation of Design Safety

IAEA-J4-TM TM for Evaluation of Design Safety Canadian Nuclear Utility Principles for Beyond Design Basis Accidents IAEA-J4-TM-46463 TM for Evaluation of Design Safety Mark R Knutson P Eng. Director of Fukushima Projects Ontario Power Generation Overview

More information

An Overview of the ACR Design

An Overview of the ACR Design An Overview of the ACR Design By Stephen Yu, Director, ACR Development Project Presented to US Nuclear Regulatory Commission Office of Nuclear Reactor Regulation September 25, 2002 ACR Design The evolutionary

More information

Power Stations Nuclear power stations

Power Stations Nuclear power stations Power Stations Nuclear power stations Introduction A nuclear power plant is a thermal power station in which the heat source is a nuclear reactor. The heat is used to generate steam which drives a steam

More information

HSR HARD SPECTRUM REACTOR. Andrei Andrei : founder and CEO of Aristos Power

HSR HARD SPECTRUM REACTOR. Andrei Andrei : founder and CEO of Aristos Power HSR HARD SPECTRUM REACTOR Andrei Andrei : founder and CEO of Aristos Power The trilemma of nuclear power Regulator acceptance Investor acceptance Public acceptance REGULATOR ACCEPTANCE I SAFEGUARDS I.

More information

Design features of Advanced Sodium Cooled Fast Reactors with Emphasis on Economics

Design features of Advanced Sodium Cooled Fast Reactors with Emphasis on Economics FR09 7-11 December 2009 Kyoto, Japan Design features of Advanced Sodium Cooled Fast Reactors with Emphasis on Economics B. Riou AREVA NP D. Verwaerde EDF-R&D G. Mignot CEA Cadarache French SFR program

More information

Module 12 Generation IV Nuclear Power Plants. Atominstitute of the Austrian Universities Stadionallee 2, 1020 Vienna, Austria

Module 12 Generation IV Nuclear Power Plants. Atominstitute of the Austrian Universities Stadionallee 2, 1020 Vienna, Austria Module 12 Generation IV Nuclear Power Plants Prof.Dr. H. Böck Atominstitute of the Austrian Universities Stadionallee 2, 1020 Vienna, Austria boeck@ati.ac.at Generation IV Participants Evolution of Nuclear

More information

Molten Salt Reactor system

Molten Salt Reactor system Molten Salt Reactor system 2009-2012 Status J. Serp & H. Boussier* Chair of the Molten Salt Reactor System Steering Committee * Former Chairman Slides prepared in collaboration with CNRS (France) and JRC

More information

DOE Small Modular Reactor Licensing Technical Support Program Overview for National Conference of State Legislatures June 19, 2014

DOE Small Modular Reactor Licensing Technical Support Program Overview for National Conference of State Legislatures June 19, 2014 DOE Small Modular Reactor Licensing Technical Support Program Overview for National Conference of State Legislatures June 19, 2014 Tim Beville Office of Nuclear Energy U.S. Department of Energy Administration

More information

Fluoride Salt Cooled High Temperature Reactors

Fluoride Salt Cooled High Temperature Reactors Fluoride Salt Cooled High Temperature Reactors Workshop on Advanced Reactors PHYSOR 2012 Knoxville, TN April 15, 2012 David Holcomb HolcombDE@ornl.gov FHRs Combine Desirable Attributes From Other Reactor

More information

Nuclear Power Plant Safety Basics. Construction Principles and Safety Features on the Nuclear Power Plant Level

Nuclear Power Plant Safety Basics. Construction Principles and Safety Features on the Nuclear Power Plant Level Nuclear Power Plant Safety Basics Construction Principles and Safety Features on the Nuclear Power Plant Level Safety of Nuclear Power Plants Overview of the Nuclear Safety Features on the Power Plant

More information

Nuclear Power Plant Safety Basics. Construction Principles and Safety Features on the Nuclear Power Plant Level

Nuclear Power Plant Safety Basics. Construction Principles and Safety Features on the Nuclear Power Plant Level Nuclear Power Plant Safety Basics Construction Principles and Safety Features on the Nuclear Power Plant Level Safety of Nuclear Power Plants Overview of the Nuclear Safety Features on the Power Plant

More information

This description was taken from the Advances in Small Modular Reactor Technology Developments 2016 Edition booklet.

This description was taken from the Advances in Small Modular Reactor Technology Developments 2016 Edition booklet. Status Report LFTR Overview Full name Liquid-Fluoride Thorium Reactor Acronym LFTR Reactor type Molten Salt Reactor Purpose Commercial Coolant Molten fluoride Moderator Graphite Neutron Thermal Spectrum

More information

Chemical Engineering 412

Chemical Engineering 412 Chemical Engineering 412 Introductory Nuclear Engineering Lecture 19 Nuclear Power Plants I Nuclear Power Plants: LWRs Spiritual Thought 2 You have a cool, rockin day, brutha! Critical Bare Reactor Summary

More information

TOO GOOD TO LEAVE ON THE SHELF

TOO GOOD TO LEAVE ON THE SHELF As published in Mechanical Engineering magazine. 2010 ASME. Used with permission. TOO GOOD TO LEAVE ON THE SHELF A reactor design mothballed 40 years ago doesn t seem like a technology with much potential.

More information

Fast Reactor Operating Experience in the U.S.

Fast Reactor Operating Experience in the U.S. Fast Reactor Operating Experience in the U.S. Harold F. McFarlane Deputy Associate Laboratory Director for Nuclear Science and Technology www.inl.gov 3 March 2010 [insert optional photo(s) here] Thanks

More information

OPG s Response to Fukushima Event- Update

OPG s Response to Fukushima Event- Update OPG s Response to Fukushima Event- Update Darlington and Pickering Joint Community Advisory Committee Meeting- January 21, 2014 Mark Knutson- Director- Fukushima Support Tho-Dien Le- Projects Design Manager-

More information

Fusion-Fission Hybrid Systems

Fusion-Fission Hybrid Systems Fusion-Fission Hybrid Systems Yousry Gohar Argonne National Laboratory 9700 South Cass Avenue, Argonne, IL 60439 Fusion-Fission Hybrids Workshop Gaithersburg, Maryland September 30 - October 2, 2009 Fusion-Fission

More information

A REPORT ON CANADA S LARGEST CLEAN POWER PROJECT DARLINGTON REFURBISHMENT

A REPORT ON CANADA S LARGEST CLEAN POWER PROJECT DARLINGTON REFURBISHMENT A REPORT ON CANADA S LARGEST CLEAN POWER PROJECT DARLINGTON REFURBISHMENT AUGUST 2016 READY TO EXECUTE The Darlington Nuclear Generating Station has been safely and reliably producing almost 20 per cent

More information

Westinghouse-UK Partnership for Development of a Small Modular Reactor Nuclear Programme

Westinghouse-UK Partnership for Development of a Small Modular Reactor Nuclear Programme Westinghouse-UK Partnership for Development of a Small Modular Reactor Nuclear Programme Simon Marshall UK Business & Project Development Director Nuclear Power Plants 1 The Westinghouse Small Modular

More information

FJ/OH The 2004 Frédéric JOLIOT & Otto HAHN Summer School. August 25 September 3, 2004 CADARACHE, France TOPIC 2 THE REACTORS AND THEIR FUELS

FJ/OH The 2004 Frédéric JOLIOT & Otto HAHN Summer School. August 25 September 3, 2004 CADARACHE, France TOPIC 2 THE REACTORS AND THEIR FUELS FJ/OH 2004 The 2004 Frédéric JOLIOT & Otto HAHN Summer School August 25 September 3, 2004 CADARACHE, France TOPIC 2 THE REACTORS AND THEIR FUELS **** Reactors with Molten Salts: Options and Missions Charles

More information

Progress in Molten Salt Reactor (MSR) Modeling Seminar Series Ondřej Chvála

Progress in Molten Salt Reactor (MSR) Modeling Seminar Series Ondřej Chvála Nuclear Engineering Seminar 2013 Progress in Molten Salt Reactor (MSR) Modeling Seminar Series Ondřej Chvála Seminar overview Historical and international context of the work. Contemporary

More information

Comparison of Molten Salt and High-Pressure Helium for the NGNP Intermediate Heat Transfer Fluid

Comparison of Molten Salt and High-Pressure Helium for the NGNP Intermediate Heat Transfer Fluid Comparison of Molten Salt and High-Pressure Helium for the NGNP Intermediate Heat Transfer Fluid Per F. Peterson, H. Zhao, and G. Fukuda U.C. Berkeley Report UCBTH-03-004 December 5, 2003 INTRODUCTION

More information

Nuclear Energy Revision Sheet

Nuclear Energy Revision Sheet Nuclear Energy Revision Sheet Question I Identify the NPP parts by writing the number of the correct power plant part in the blank. Select your answers from the list provided below. 1 Reactor 2 Steam generator

More information

Advanced Reactor Overview

Advanced Reactor Overview NIC/ETEC Nuclear Supplier Workshop September 6-7, 2017 Pollard Technology Conference Center Oak Ridge, TN Advanced Reactor Overview Steve Freel President & CEO Studsvik Scandpower What is an Advanced Reactor?

More information

Electromagnetic flowmeter, 861 Electromagnetic pumps, 844 characteristics, 845 efficiency, 845 End blanket effects, 869 Energy costs, summary, 921 Eng

Electromagnetic flowmeter, 861 Electromagnetic pumps, 844 characteristics, 845 efficiency, 845 End blanket effects, 869 Energy costs, summary, 921 Eng PART III INDEX Activity coefficients, at infinite dilution, 808 Additives, effect on solubility of corrosion products in bismuth, 727 Alloy steel, 743 Annual aqueous processing costs vs plant throughput,

More information

The Curious Tale of Molten Salt Reactors

The Curious Tale of Molten Salt Reactors The Curious Tale of Molten Salt Reactors May 2 nd 2013 Presentation to Canadian Nuclear Society, Ottawa Branch Dr. David LeBlanc Terrestrial Energy Inc. dleblanc@terrestrialenergyinc.com The Basics: Molten

More information

Small Modular Reactors

Small Modular Reactors Small Modular Reactors Presentation to FES Evening Seminar 13 Nov 2012 Kevin Hesketh Senior Research Fellow Outline There is increasing international interest in small modular reactors (SMRs) This presentation

More information

Nuclear power. ME922/927 Nuclear 1

Nuclear power. ME922/927 Nuclear 1 Nuclear power ME922/927 Nuclear 1 The process The production of electricity by nuclear fission. Torness power station The impact of a neutron with a U 235 nucleus causes the fission process, from which

More information

Westinghouse AP1000. Reactor

Westinghouse AP1000. Reactor Westinghouse AP1000 A Third Generation Nuclear Reactor International Council on Systems Engineering (INCOSE) September 18, 2013 Andrew Drake, PMP Director, AP1000 Engineering Completion Engineering, Equipment

More information

The Thorium Fuel Cycle

The Thorium Fuel Cycle The Thorium Fuel Cycle ThEC13 Daniel Mathers daniel.p.mathers@nnl.co.uk Outline Content: Background Sustainability, proliferation resistance, economics, radiotoxicity Advantages and disadvantages Fuel

More information

Lecture (3) on. Nuclear Reactors. By Dr. Emad M. Saad. Mechanical Engineering Dept. Faculty of Engineering. Fayoum University

Lecture (3) on. Nuclear Reactors. By Dr. Emad M. Saad. Mechanical Engineering Dept. Faculty of Engineering. Fayoum University 1 Lecture (3) on Nuclear Reactors By Dr. Emad M. Saad Mechanical Engineering Dept. Faculty of Engineering Fayoum University Faculty of Engineering Mechanical Engineering Dept. 2015-2016 2 Nuclear Fission

More information

A Summary of Generation IV Non-Classical Nuclear Systems

A Summary of Generation IV Non-Classical Nuclear Systems TWG-4, Non-Classical A Summary of Generation IV Non-Classical Nuclear Systems Generation IV Roadmap TW-4, Non-Classical Concepts Generation IV Roadmap Session II ANS Winter Meeting Reno, NV November 13,

More information

The Advanced High-Temperature Reactor: High-Temperature Fuel, Molten Salt Coolant, and Liquid-Metal-Reactor Plant.

The Advanced High-Temperature Reactor: High-Temperature Fuel, Molten Salt Coolant, and Liquid-Metal-Reactor Plant. INES-1 Paper # 71 The Advanced High-Temperature Reactor: High-Temperature Fuel, Molten Salt Coolant, and Liquid-Metal-Reactor Plant Charles Forsberg Oak Ridge National Laboratory* P.O. Box 2008 Oak Ridge,

More information

Current Situation of MSR Development in Japan. Yoichiro SHIMAZU Graduate School of Engineering Hokkaido University, Japan

Current Situation of MSR Development in Japan. Yoichiro SHIMAZU Graduate School of Engineering Hokkaido University, Japan Current Situation of MSR Development in Japan Yoichiro SHIMAZU Graduate School of Engineering Hokkaido University, Japan 1 Related Organizations International Thorium Molten-Salt Forum (ITHMSF ) President:

More information

Fast and High Temperature Reactors for Improved Thermal Efficiency and Radioactive Waste Management

Fast and High Temperature Reactors for Improved Thermal Efficiency and Radioactive Waste Management What s New in Power Reactor Technologies, Cogeneration and the Fuel Cycle Back End? A Side Event in the 58th General Conference, 24 Sept 2014 Fast and High Temperature Reactors for Improved Thermal Efficiency

More information

AREVA HTR Concept for Near-Term Deployment

AREVA HTR Concept for Near-Term Deployment AREVA HTR Concept for Near-Term Deployment L. J. Lommers, F. Shahrokhi 1, J. A. Mayer III 2, F. H. Southworth 1 AREVA Inc. 2101 Horn Rapids Road; Richland, WA 99354 USA phone: +1-509-375-8130, lewis.lommers@areva.com

More information

Online Reprocessing Simulation for Thorium-Fueled Molten Salt Breeder Reactor

Online Reprocessing Simulation for Thorium-Fueled Molten Salt Breeder Reactor Online Reprocessing Simulation for Thorium-Fueled Molten Salt Breeder Reactor Andrei Rykhlevskii, Alexander Lindsay, Kathryn Huff Advanced Reactors and Fuel Cycles Group University of Illinois at Urbana-Champaign

More information

Advanced Fuel CANDU Reactor. Complementing existing fleets to bring more value to customers

Advanced Fuel CANDU Reactor. Complementing existing fleets to bring more value to customers Advanced Fuel CANDU Reactor Complementing existing fleets to bring more value to customers Depleted Enriched Spent Fuel Storage Recovered Actinides Thorium Cycle LWR NUE Enrichment Thorium Mine + Fissile

More information

Molten Salt Converter Reactors: From DMSR to SmAHTR

Molten Salt Converter Reactors: From DMSR to SmAHTR Molten Salt Converter Reactors: From DMSR to SmAHTR Jan 10 th 2013 Conference on Molten Salts in Nuclear Technology Dr. David LeBlanc Terrestrial Energy Inc. Formerly Ottawa Valley Research Associates

More information

This description was taken from the Advances in Small Modular Reactor Technology Developments 2016 Edition booklet.

This description was taken from the Advances in Small Modular Reactor Technology Developments 2016 Edition booklet. Status Report SSR-U Overview Full name Stable Salt Reactor Acronym SSR-U Reactor type Molten Salt Reactor Purpose Commercial Coolant Fluoride Salts Moderator Graphite Neutron Thermal Spectrum Thermal capacity

More information

SEALER: A small lead-cooled reactor for power production in the Canadian Arctic

SEALER: A small lead-cooled reactor for power production in the Canadian Arctic 1 IAEA-CN245-431 SEALER: A small lead-cooled reactor for power production in the Canadian Arctic J. Wallenius 1, S. Qvist 1, I. Mickus 1, S. Bortot 1, J. Ejenstam 1,2, P. Szakalos 1 1 LeadCold Reactors,

More information

Chemical Engineering 412

Chemical Engineering 412 Chemical Engineering 412 Introductory Nuclear Engineering Lecture 19 Nuclear Power Plants I Nuclear Power Plants: LWRs Spiritual Thought 2 Jesus uses an unfathomable measurement here because His Atonement

More information

Japan Revival Strategy by Thorium MSR

Japan Revival Strategy by Thorium MSR Japan Revival Strategy by Thorium MSR Takashi Kamei Ritsumeikan University, Kyoto, Japan HAE00675@nifty.com Thank you to all. We are facing lots of problems Transportation Power generation Global warming

More information

The Nuclear Fuel Cycle Lecture 5

The Nuclear Fuel Cycle Lecture 5 The Nuclear Fuel Cycle Lecture 5 David J. Hamilton d.hamilton@physics.gla.ac.uk 7th February 2011 1. Overview Limitations of thermal recycling of Pu. Fast critical reactors: core physics; breeders; transmutation.

More information

University of Zagreb, Croatia. ACR-1000: Advanced CANDU Reactor Design for Improved Safety, Economics and Operability

University of Zagreb, Croatia. ACR-1000: Advanced CANDU Reactor Design for Improved Safety, Economics and Operability University of Zagreb, Croatia ACR-1000: Advanced CANDU Reactor Design for Improved Safety, Economics and Operability Dr. Nik Popov Manager, ACR Licensing 2007 April 26 Copyright AECL 2007 Presentation

More information

Corrosion of Structural Materials in Molten Fluoride and Chloride Salts

Corrosion of Structural Materials in Molten Fluoride and Chloride Salts Corrosion of Structural Materials in Molten Fluoride and Chloride Salts Stephen Raiman, James Keiser Oak Ridge National Laboratory USA 1st IAEA workshop on Challenges for Coolants in the Fast Spectrum:

More information

Overview of GEN IV Demonstration Projects in China Jiashu, TIAN, EG Member China National Nuclear Corporation

Overview of GEN IV Demonstration Projects in China Jiashu, TIAN, EG Member China National Nuclear Corporation Overview of GEN IV Demonstration Projects in China Jiashu, TIAN, EG Member China National Nuclear Corporation 4th GIF Symposium Presentation UIC, Paris, France October 16-17, 2018 Main Outlines VHTR -

More information

FHRs and the Future of Nuclear Energy

FHRs and the Future of Nuclear Energy FHRs and the Future of Nuclear Energy Presented to DOE FHR Workshop At Oak Ridge National Laboratory Sept. 20-21, 2010 By Sherrell Greene Director, Nuclear Technology Programs Oak Ridge National Laboratory

More information

Basic neutronics and dynamics of graphite moderated LEU fueled MSRs

Basic neutronics and dynamics of graphite moderated LEU fueled MSRs CVUT seminar, May 13th 2014 Basic neutronics and dynamics of graphite moderated LEU fueled MSRs Dr. Ondřej Chvála Seminar overview Historical context and lessons MSR salt & lattice choices

More information

Nuclear Reactor Types. An Environment & Energy FactFile provided by the IEE. Nuclear Reactor Types

Nuclear Reactor Types. An Environment & Energy FactFile provided by the IEE. Nuclear Reactor Types Nuclear Reactor Types An Environment & Energy FactFile provided by the IEE Nuclear Reactor Types Published by The Institution of Electrical Engineers Savoy Place London WC2R 0BL November 1993 This edition

More information

Generation IV Water-Cooled Reactor Concepts

Generation IV Water-Cooled Reactor Concepts Generation IV Water-Cooled Reactor Concepts Technical Working Group 1 - Advanced Water- Cooled Reactors Generation IV Roadmap Session ANS Winter Meeting Reno, NV November 13, 2001 1 TWG 1 Members Mario

More information

Concept and technology status of HTR for industrial nuclear cogeneration

Concept and technology status of HTR for industrial nuclear cogeneration Concept and technology status of HTR for industrial nuclear cogeneration D. Hittner AREVA NP Process heat needs from industry Steam networks In situ heating HTR, GFR 800 C VHTR > 800 C MSR 600 C SFR, LFR,

More information

Status of SMR Designs and their associated Fuel Cycle for Immediate-, Near-, and Long-term Deployment

Status of SMR Designs and their associated Fuel Cycle for Immediate-, Near-, and Long-term Deployment Consultants Meeting on SMR Technology for Near Term Deployment, 2 4 May 2011 Status of SMR Designs and their associated Fuel Cycle for Immediate-, Near-, and Long-term Deployment M. Hadid Subki Nuclear

More information

Issues with petroleum

Issues with petroleum Issues with petroleum Limited reserves (near peak in Hubbert curve) Trade deficit (most oil imported) Externalities (military costs, environmental impacts) Environmental pollution (persistent combustion

More information

Team 16: The Nuclear Family EN-FISSIONING A SUSTAINABLE FUTURE

Team 16: The Nuclear Family EN-FISSIONING A SUSTAINABLE FUTURE Team 16: The Nuclear Family EN-FISSIONING A SUSTAINABLE FUTURE Outline 2 Systems Designs Power Cycle Economics Conclusion Questions https://inlportal.inl.gov/portal/server.pt?open=514&objid=1269&mode=2&f

More information