Hydraulic Jumps. CIVE 401: Fall Team 10: Yalin Mao, Natalie Pace, Kyle Nickless. November 19, 2014

Size: px
Start display at page:

Download "Hydraulic Jumps. CIVE 401: Fall Team 10: Yalin Mao, Natalie Pace, Kyle Nickless. November 19, 2014"

Transcription

1 Hydraulic Jumps CIVE 401: Fall 014 Team 10: Yalin Mao, Natalie Pace, Kyle Nickless November 19, 014

2 1 INTRODUCTION The fields of fluid mechanics and hydraulics contain a wide range of phenomena. Some concepts are well understood and can be easily modeled (laminar flow) while others are more chaotic and often difficult to represent numerically. One important area of interest within fluid mechanics is the phenomenon of the hydraulic jump. A hydraulic jump occurs in open-channel flow when the height of water above a fixed surface increases from a low depth to a high depth. In practice, these levels are referred to as supercritical flow depth and subcritical flow depth, respectively. A basic visual demonstration of a hydraulic jump is shown in Figure 1. Figure 1. A Weak Hydraulic Jump In this example, the flow upstream of the jump has a high velocity (V 1 ) and shallow depth (y 1 ). Downstream, the flow velocity has decreased (V ) and the depth has increased (y ). When this occurs, the flow almost instantly becomes turbulent and the rough, rapidly changing flow condition can cause significant energy dissipation. The practical application of this energy loss is discussed later in this report. Hydraulic jumps have been studied for over two and a half centuries and include contributions from a range of historical pioneers. Although the description of a hydraulic jump was first documented by Leonardo da Vinci, the first experimental investigations are credited to Italian engineer Bidone in 1818 (Subramanya 48). Many of the occurrences of hydraulic jumps in horizontal channels have since been numerically modeled and are well understood. However,

3 if the bed slope is relatively steep, the jump becomes harder to analyze (Cruise 400). For this reason, hydraulic jumps are still of research interest today. For practical purposes, the effect of a water-weight component that results from a steep channel is often neglected. Perhaps the most important parameter used in the analysis of hydraulic jumps is the Froude number. The Froude number (Fr) is a function of flow velocity and depth, as well as standard gravity. The value of Fr within the open channel dictates the classification of a particular hydraulic jump. If Fr is less than 1, a hydraulic jump is impossible because it violates the second law of thermodynamics (White 7). For Fr greater than or equal to 1, there are several ways a jump can occur. For example, an Fr of 6.0 would indicate a steady jump, where the downstream flow becomes steady and energy dissipation is between 45 and 70 percent. The jump demonstrated in Figure 1 (a weak jump) has an Fr between 1.7 and.5. The different Froude numbers and their associated classifications are shown in Figure. Figure. Hydraulic Jump Classification

4 3 These Froude numbers represent the parameters of the upstream condition and are often labeled as Fr 1. After a jump occurs, the downstream Fr is less than 1.0. Therefore, a jump only occurs when the Fr changes from 1.0 to <1.0. The position in an open channel where a jump occurs is referred to as the critical point. At this location, the water height changes from being less than the critical depth to greater than critical depth. This is also where the Froude number is reduced to less than 1.0. CALCULATIONS Hydraulic jumps seem complex and almost impossible to predict at first glance. While the flow at the jump is turbulent and complex, the flow upstream (1) and downstream () of the jump can be considered steady, uniform, and one dimensional. Because of these assumptions, a momentum equation can be derived (Eq. 1). F 1 F = ρq(v V 1 ) = ρv 1 y 1 b(v V 1 ) (Eq. 1) Where: F = hydrostatic pressure force ρ = density of water Q = discharge V = velocity y = depth of water from the free surface b = channel width It is important to note that the discharge, Q, is the same upstream and downstream. This is important because then the principle of conservation of mass can be applied to relate the velocity and water depth as seen in Equation.

5 4 Q 1 = Q V 1 y 1 b = V y b V 1 y 1 = V y (Eq. ) It is also important to note that these equations are derived for rectangular channels in which the width remains constant. The hydrostatic pressure force,f, is the pressure of water over the cross-sectional area of the channel. For rectangular channels, this force is determined as such: F = pa = γh A = γ y yb. Note that γ is the specific weight of water, and can be written as γ = ρg, where g is the acceleration of gravity. Then by using these equations, the momentum equation can be simplified to become Equation 3. ρg y 1 b ρg y b = ρv 1y 1 b(v V 1 ) y 1 y = V 1y 1 g (V V 1 ) (Eq. 3) Bernoulli s equation is another useful principle that can be applied in this situation to develop an energy equation for hydraulic jumps (Eq. 4). Where: h L = head loss y 1 + V 1 = y g + V + h g L (Eq. 4) The head loss in this system is due to the jump itself and the energy that is dissipated from it, and minor losses such as shear stress from the walls can be ignored. The energy equation is useful for finding the power that is dissipated by the jump. The power is the force multiplied by distance over time, and can be equated as such: P = FV = γh l AV = γh l Q. The Froude number cannot be ignored when evaluating hydraulic jumps. By combining Equations and 3, and remembering that the Froude number equation is Fr = V 1 gy, a new

6 5 equation can be derived in which the depths upstream and downstream depend only on the Froude number of the upstream flow (Eq. 5). y 1 y = V 1y 1 g (V 1y 1 V y 1 ) y (y 1 y ) y 1 (y 1 y ) = V 1 gy 1 y y 1 + y y 1 Fr = 0 y 1 ± Fr = y 1 ( Fr y 1 ) = y 1 (Eq. 5) With the derived equations, many different problems can be solved for hydraulic jumps. For example, if the upstream velocity and water depth are known, the downstream water depth can be found by using the upstream Froude number and Equation 5. Then by applying the conservation of mass, the downstream velocity can now be found, as well as the downstream Froude number. While the velocities and water depths can be found with the derived equations, determining the length of the jump is a much more complex task and cannot be fit to theoretical equations. The length of the jump can only be studied by experimentation. As discussed earlier, the Froude number is a key factor to the type of jump that will be seen. The hydraulic jump can have a variety of forms, simply due to the different conditions of the velocity and water depth. Please refer to Table 1 for typical classifications of hydraulic jumps based on the Froude number. Hydraulic jumps do not only occur in flat, rectangular channels. Hydraulic jumps can occur in channels with different shapes, the equations above are specifically for a rectangular

7 6 geometry and would need to be altered slightly for the different cross-sectional area. Jumps also occur in channels with a sloped bed (Figure 3) and with sluice gates, which actually produces a submerged hydraulic jump that does not occur on the surface (Figure 4). Figure 3. Hydraulic jump with a sloped bed Figure 4. Submerged hydraulic jump from a sluice gate EFFECTS AND APPLICATIONS Uncontrolled hydraulic jumps can cause serious consequences such as the failure of the Taum Sauk Pumped Storage Hydroelectric Power Plant's upper reservoir.

8 7 Taum Sauk has two reservoirs. The lower reservoir is located downstream of Johnson's Shutins along the East Fork in Missouri, and the upper reservoir is located 800 feet higher. The upper reservoir holds 1.5 billion gallons of water when it is full (Figure 5) (Watkins 006). Figure 5. The Taum Sauk Pumped Storage Hydroelectric Power Plant's Upper Reservoir On December 14, 005, the reservoir experienced a failure in which the water overtopped the dike. During 1 minutes, 1.5 billion gallons of water roared down a tributary of the East Fork and straight toward the upstream portion of Johnson's Shut-ins State Park. The average flow was 80,000 cfs, which is larger than the average flow of the Mississippi River. As a result of hydraulic jump, a large scour hole was formed at the transition between the upper portion and the lower portion of Proffit Mountain. The hole was more than 0 feet deep, but it was likely larger before the diminishing flow containing near the end since many debris and stones filled the hole at the end of flow (Figure 6).

9 8 Figure 6. A Large Scour Hole Formed by Hydraulic Jump Hydraulic jumps can cause serious corrosion. However, after accurate calculation and rational design, hydraulic jumps can be helpful. Hydraulic jumps are mainly used: to dissipate energy and thus prevent scouring action on the downstream side of hydraulic structures to maintain high water level on the downstream side of channel for irrigation to reduce uplift pressure under the foundations of hydraulic structures to mix coagulant chemicals in water treatment plants to remove air from water supply and sewage lines to prevent air locking

10 9 A hydraulic jump primarily serves as an energy dissipater to dissipate the excess energy of flowing water on the downstream portion of hydraulic structures. The downstream portion of hydraulic structures needs energy dissipation in order to prevent damage to the downstream channel. That energy dissipation portion is called a stilling basin. Stilling basins are usually provided with special appurtenances including chute blocks, baffles piers and end sills. Chute blocks split and aerate incoming flow; baffle piers dissipate energy mostly by resistance; and end sills reduce further the length of the jump and control scouring action by lifting up the outgoing stream (Cruise et al. 007). This kind of stilling basin is not only highly efficient in dissipating energy, but also very stable.

11 10 REFERENCES Cruise, James F., Sherif, Mohsen M., Singh, Vijay P. (007). Elementary Hydraulics. Cengage Learning, Ohio. "Hydraulic Jump and Its Practical Applications." 8 Apr Web. < Munson, Bruce R., Young, Donald F., Okiishi, Theodore H., Huebsch, Wade W. (013). Fundamentals of Fluid Mechanics, 7th Ed., John Wiley & Sons, Inc., New Jersey. Chapter 10, pp Subramanya, K. (009). Flow in Open Channels, 3rd Ed. Tata McGraw-Hill Publishing. New Delhi, India. Watkins, C. (006). "The St. Francois Mountains -Missouri's Hard Rock Core." RollaNet, < (Oct. 7, 014). White, Frank M. (011). Fluid Mechanics, 7th Ed., McGraw-Hill, New York. Chapter 10, pp 7-73.

Open Channel Flow. Ch 10 Young, Handouts

Open Channel Flow. Ch 10 Young, Handouts Open Channel Flow Ch 10 Young, Handouts Introduction Many Civil & Environmental engineering flows have a free surface open to the atmosphere Rivers, streams and reservoirs Flow in partially filled pipes

More information

Lab #3 Conservation Equations and the Hydraulic Jump CEE 331 Fall 2004

Lab #3 Conservation Equations and the Hydraulic Jump CEE 331 Fall 2004 CEE 33 Lab 3 Page of 8 Lab #3 Conservation Equations and the Hydraulic Jump CEE 33 Fall 004 Safety The major safety hazard in this laboratory is a shock hazard. Given that you will be working with water

More information

Lab #3 Conservation Equations and the Hydraulic Jump CEE 331 Fall 2003

Lab #3 Conservation Equations and the Hydraulic Jump CEE 331 Fall 2003 CEE 33 Lab 3 Page of 8 Lab #3 Conservation Equations and the Hydraulic Jump CEE 33 Fall 003 Safety The major safety hazard in this laboratory is a shock hazard. Given that you will be working with water

More information

Objective Questions:-

Objective Questions:- Objective Questions:- 1. The phenomenon occurring in an open channel when a rapidly flowing stream abruptly changes to slowly flowing stream causing a distinct rise of liquid surface, is a. Water hammer

More information

Drop Height For Channel Erosion Control

Drop Height For Channel Erosion Control Drop Height For Channel Erosion Control James C.Y. Guo, Professor and Director Department of Civil Engineering, U. of Colorado at Denver, Denver, Colorado 8017 E-mail: James.Guo@cudenver.edu Introduction

More information

(b) Discuss in brief shaft spillway with neat sketches. Marks 04. OR Q (2) Explain in brief USBR stilling basin. Marks 08

(b) Discuss in brief shaft spillway with neat sketches. Marks 04. OR Q (2) Explain in brief USBR stilling basin. Marks 08 (b) Discuss in brief shaft spillway with neat sketches. Marks 04 OR Q (2) Explain in brief USBR stilling basin. Marks 08 Stilling Basins The basins are usually provided with special appurtenances including

More information

Low Gradient Velocity Control Short Term Steep Gradient Channel Lining Medium-Long Term Outlet Control Soil Treatment Permanent [1]

Low Gradient Velocity Control Short Term Steep Gradient Channel Lining Medium-Long Term Outlet Control Soil Treatment Permanent [1] Energy Dissipaters DRAINAGE CONTROL TECHNIQUE Low Gradient Velocity Control Short Term Steep Gradient Channel Lining Medium-Long Term Outlet Control Soil Treatment Permanent [1] [1] The design of permanent

More information

Design of Stilling Basin Model with Impact Wall and end Sill

Design of Stilling Basin Model with Impact Wall and end Sill Abstract Research Journal of Recent Sciences ISSN 2277-2502 Design of Stilling Basin Model with Impact Wall and end Sill Tiwari H.L. Department of Civil Engineering, Maulana Azad National Institute of

More information

Analysis of Side Sluice in Trapezoidal Channel

Analysis of Side Sluice in Trapezoidal Channel Analysis of Side Sluice in Trapezoidal Channel Dr. L. G. Patil 1, Amol M. Kode 2 1 Associate Professor, Department of Civil Engineering, SGGSIE&T, Nanded 2 M. Tech Student, Department of Civil Engineering,

More information

HYDRAULIC DEMONSTRATION CHANNEL

HYDRAULIC DEMONSTRATION CHANNEL HYDRAULIC DEMONSTRATION CHANNEL PACKING LIST Pitot-Static Tube and Manometer Tube Flow Meters 1. 48 Long Differential Manometer 2. Clear Tubing 3. Pitot-static Tube Clamp 4. Pitot-static Tube 1. Venturi

More information

Lab 3: Conservation Equations and the Hydraulic Jump

Lab 3: Conservation Equations and the Hydraulic Jump Lab 3: Conservation Equations and the Hydraulic Jump CEE 330 - Fall 20 SAFETY The major safety hazard in this laboratory is a shock hazard. Given that you will be working with water and items running on

More information

CVE 372 HYDROMECHANICS OPEN CHANNEL FLOW I

CVE 372 HYDROMECHANICS OPEN CHANNEL FLOW I CVE 372 HYDROMECHANICS OPEN CHANNEL FLOW I Dr. Bertuğ Akıntuğ Department of Civil Engineering Middle East Technical University Northern Cyprus Campus CVE 372 Hydromechanics 1/50 Overview 3.1 General Characteristics

More information

THE CHANGES OF FLOW PROFILE DUE TO THE CONSTRUCTION OF CYLINDRICAL STRUCTURE AS A HYDRAULIC CONTROL STRUCTURE IN OPEN CHANNEL

THE CHANGES OF FLOW PROFILE DUE TO THE CONSTRUCTION OF CYLINDRICAL STRUCTURE AS A HYDRAULIC CONTROL STRUCTURE IN OPEN CHANNEL THE CHANGES OF FLOW PROFILE DUE TO THE CONSTRUCTION OF CYLINDRICAL STRUCTURE AS A HYDRAULIC CONTROL STRUCTURE IN OPEN CHANNEL M. R. M, Adib 1, A. N. Azrin 1, T. Wardah 2 and A. Junaidah 2 1 Department

More information

EXPERIMENTAL STUDY OF EFFECT OF END SILL ON STILLING BASIN PERFORMANCE

EXPERIMENTAL STUDY OF EFFECT OF END SILL ON STILLING BASIN PERFORMANCE EXPERIMENTAL STUDY OF EFFECT OF END SILL ON STILLING BASIN PERFORMANCE H.L.Tiwari Department of Civil Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh INDIA Arun Goel

More information

Effective Analysis by Arrangement of Multi-Baffle at Weir Downstream

Effective Analysis by Arrangement of Multi-Baffle at Weir Downstream Engineering, 2016, 8, 872-882 http://www.scirp.org/journal/eng ISSN Online: 1947-394X ISSN Print: 1947-3931 Effective Analysis by Arrangement of Multi-Baffle at Weir Downstream Joon-Gu Kang River Experiment

More information

Geneva Dam. Design of a Steep, Temporary, Riprap Ramp

Geneva Dam. Design of a Steep, Temporary, Riprap Ramp Geneva Dam Design of a Steep, Temporary, Riprap Ramp A Run-of of-river Dam Analysis for Geneva Dam Credit to: Yu-Chun Su, Ph.D., P.E., CFM David T. Williams. Ph.D., P.E, CFM Presentation Purpose History

More information

International Journal of Civil Engineering and Technology (IJCIET), ISSN (Print), INTERNATIONAL JOURNAL OF CIVIL ENGINEERING

International Journal of Civil Engineering and Technology (IJCIET), ISSN (Print), INTERNATIONAL JOURNAL OF CIVIL ENGINEERING INTERNATIONAL JOURNAL OF CIVIL ENGINEERING AND TECHNOLOGY (IJCIET) ISSN 0976 630 (Print) ISSN 0976 6316(Online) Volume 5, Issue 3, March (2014), pp. 32-49 IAEME: www.iaeme.com/ijciet.asp Journal Impact

More information

International Journal of Civil Engineering and Technology (IJCIET), ISSN (Print), INTERNATIONAL JOURNAL OF CIVIL ENGINEERING

International Journal of Civil Engineering and Technology (IJCIET), ISSN (Print), INTERNATIONAL JOURNAL OF CIVIL ENGINEERING INTERNATIONAL JOURNAL OF CIVIL ENGINEERING AND TECHNOLOGY (IJCIET) ISSN 0976 630 (Print) ISSN 0976 6316(Online) Volume 5, Issue 3, March (2014), pp. 32-49 IAEME: www.iaeme.com/ijciet.asp Journal Impact

More information

CE2253 APPLIED HYDRAULIC ENGINEERING (FOR IV - SEMESTER)

CE2253 APPLIED HYDRAULIC ENGINEERING (FOR IV - SEMESTER) CE2253 APPLIED HYDRAULIC ENGINEERING (FOR IV - SEMESTER) UNIT I to V QUESTION BANK Prepared by, M.SUGANYA. B.E., LECTURER / CIVIL DEPARTMENT OF CIVIL ENGINEERING CE2253 APPLIED HYDRAULIC ENGINEERING UNIT

More information

7.0 ENERGY DISSIPATION DESIGN

7.0 ENERGY DISSIPATION DESIGN SPALDING COUNTY, GEORGIA CHAPTER 7 7.0 ENERGY DISSIPATION DESIGN... 7-1 7.1 SYMBOLS AND DEFINITIONS... 7-1 7.2 DESIGN CRITERIA... 7-1 7.2.1 INTRODUCTION... 7-1 7.2.2 GENERAL CRITERIA... 7-2 7.2.3 EROSION

More information

ONE DIMENSIONAL DAM BREAK FLOOD ANALYSIS FOR KAMENG HYDRO ELECTRIC PROJECT, INDIA

ONE DIMENSIONAL DAM BREAK FLOOD ANALYSIS FOR KAMENG HYDRO ELECTRIC PROJECT, INDIA ONE DIMENSIONAL DAM BREAK FLOOD ANALYSIS FOR KAMENG HYDRO ELECTRIC PROJECT, INDIA S. Masood Husain Nitya Nand Rai Director Assistant Director Foundation Engineering & Special Analysis Directorate Central

More information

FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER

FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER ANKARA UNIVERSITY FACULTY OF AGRICULTURE DEPARTMENT OF AGRICULTURAL MACHINERY AND TECHNOLOGIES ENGINEERING 1 4. ELEMENTARY FLUID DYNAMICS -THE BERNOULLI EQUATION

More information

Pawana Dam Energy Dissipation A Case Study

Pawana Dam Energy Dissipation A Case Study Australian Journal of Basic and Applied Sciences, 4(8): 36-367, 00 ISSN 99-878 Pawana Dam Energy Dissipation A Case Study Hinge G.A. Balkrishna S. 3 Khare K.C Research Scholar and Assistant Professor,

More information

UNIT I: UNIFORM FLOW PART B

UNIT I: UNIFORM FLOW PART B UNIT I: UNIFORM FLOW PART-A 1 Define open channel flow with example BT-1-1 2 Distinguish between open channel flow and pipe flow. BT-4-1 3 Compute the hydraulic mean depth of a small channel 1m wide, 0.5m

More information

of the Crump weir Modelling of composite type variation

of the Crump weir Modelling of composite type variation Modelling of composite type variation of the Crump weir Ashley Maritz BEng Honours Student Department of Civil Engineering University of Pretoria aamaritz9@gmail.com Dr Pieter Wessels Specialist Engineer

More information

Advances in Environmental Biology

Advances in Environmental Biology Advances in Environmental Biology, 8(3) August 204, Pages: 787-792 AENSI Journals Advances in Environmental Biology ISSN-995-0756 EISSN-998-066 Journal home page: http://www.aensiweb.com/aeb/ Numerical

More information

Flow Measuring Structures

Flow Measuring Structures Flow Measuring Structures Flow measurement structures are required in irrigation canals in order to facilitate the distribution of water through out the system and to keep account for seepage losses, etc.

More information

STUDY OF SHAPE OF INTERMEDIATE SILL ON THE DESIGN OF STILLING BASIN MODEL

STUDY OF SHAPE OF INTERMEDIATE SILL ON THE DESIGN OF STILLING BASIN MODEL STUDY OF SHAPE OF INTERMEDIATE SILL ON THE DESIGN OF STILLING BASIN MODEL H. L. Tiwari 1, Avinash Panwar 2, Bharat Gehlot 3, Jalam Singh 4 1 Department of Civil Engineering, Maulana Azad National Institute

More information

Improving Concrete Containment Structures Associated With Fixed-Cone Valves

Improving Concrete Containment Structures Associated With Fixed-Cone Valves Utah State University DigitalCommons@USU All Graduate Plan B and other Reports Graduate Studies 5-2011 Improving Concrete Containment Structures Associated With Fixed-Cone Valves B. Skyler Buck Utah State

More information

Water Control Structures Selected Design Guidelines Alberta Environment Page 17-1

Water Control Structures Selected Design Guidelines Alberta Environment Page 17-1 Alberta Transportation Water Control Structures Selected Design Guidelines Alberta Environment Page 17-1 17.0 MAIN CANAL CONVEYANCE STRUCTURES 17.1 General Conveyance structures typically employed on main

More information

Effect of Types of Weir on Discharge

Effect of Types of Weir on Discharge UNIMAS e-journal of Civil Engineering Effect of Types of Weir on Discharge L L Caroline 1, Nasser R Afshar 2 Date Received: 17 th July 214 Date Published: 1 st October 214 Abstract - The measurement of

More information

Flood Risk Analysis of Bridge A Case Study

Flood Risk Analysis of Bridge A Case Study ISBN 978-93-84468-11-8 Proceedings of International Conference on Architecture And Civil Engineering (ICAACE'14) Dubai, December 25-26, 2014, pp. 128-134 Flood Risk Analysis of Bridge A Case Study Safa

More information

South Diversion Channel Project

South Diversion Channel Project Physical Modeling Report II October 23, 2009 South Diversion Channel Project Recommendations on Flow Diversion System and Structures Based on Physical Model Studies at UNM Hydraulics Laboratory Prepared

More information

Created by Simpo PDF Creator Pro (unregistered version) Asst.Prof.Dr. Jaafar S. Maatooq

Created by Simpo PDF Creator Pro (unregistered version)  Asst.Prof.Dr. Jaafar S. Maatooq Lect.No.9 2 nd Semester Barrages, Regulators, Dams 1 of 15 In order to harness the water potential of a river optimally, it is necessary to construct two types of hydraulic structures, as shown in Figure

More information

Index. Page numbers followed by f indicate figures.

Index. Page numbers followed by f indicate figures. Index Aerodynamic method, 103, 110 111 Algae, 131, 173, 175 Alternate depth, 88 Alternating block method, 132, 140 141 Attenuation, 106, 107f, 118, 120 Page numbers followed by f indicate figures. Baseflow

More information

INTERSTAGE BRINE FLOW IN MSF CHAMBERS. R. Rautenbach and S. Schäfer Institute für Verfahrenstechnik, RWTH Aachen, Aachen, Germany

INTERSTAGE BRINE FLOW IN MSF CHAMBERS. R. Rautenbach and S. Schäfer Institute für Verfahrenstechnik, RWTH Aachen, Aachen, Germany INTERSTAGE BRINE FLOW IN MSF CHAMBERS R. Rautenbach and S. Schäfer Institute für Verfahrenstechnik, RWTH Aachen, Aachen, Germany Keywords : Orifices, Hydraulic, thermosyphon Contents 1. Introduction. Open

More information

Literature Review and Objectives of Study

Literature Review and Objectives of Study Chapter 2 Literature Review and Objectives of Study 2.1 Introduction Chapter 1 briefly introduces problem statement and need to address the issue of energy dissipation. Statistics and studies made by International

More information

DETERMINING THE ADEQUATE CREST HEIGHT OF SUPPRESSED RECTANGULAR BROAD CRESTED WEIRS UNDER SUB- CRITICAL FLOW CONDITIONS

DETERMINING THE ADEQUATE CREST HEIGHT OF SUPPRESSED RECTANGULAR BROAD CRESTED WEIRS UNDER SUB- CRITICAL FLOW CONDITIONS International Journal of Civil Engineering and Technology (IJCIET) Volume 9 Issue 7 July 2018 pp. 689 697 Article ID: IJCIET_09_07_071 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=9&itype=7

More information

Oxygen Transfer and Energy Dissipation by Nappe and Skimming Flow over Stepped Weir Structure

Oxygen Transfer and Energy Dissipation by Nappe and Skimming Flow over Stepped Weir Structure International Conference on Education, Management, Computer and Society (EMCS 016) Oxygen Transfer and Energy Dissipation by Nappe and Skimming Flow over Stepped Weir Structure Jin-ong Kim Sun-Jung Kim

More information

DEPARTMENT OF CIVIL ENGINEERING CE6403/ APPLIED HYDRAULIC ENGINEERING QUESTION BANK TWO MARKS UNIT I UNIFORM FLOW 1. Differentiate open channel flow from pipe flow. 2. What is specific energy and is the

More information

Hydraulics of Jinnah Barrage; Existing Structure and Rehabilitation Alternatives

Hydraulics of Jinnah Barrage; Existing Structure and Rehabilitation Alternatives Pak. J. Engg. & Appl. Sci. Vol. 4, Jan 2009 (p. 66-73) Hydraulics of Jinnah Barrage; Existing Structure and Rehabilitation Alternatives Z. A. Chaudhry 1 1 Professor, Civil Engineering Department, University

More information

Pressure Fluctuations On The Slabs Of Stilling Basins Under Hydraulic Jump

Pressure Fluctuations On The Slabs Of Stilling Basins Under Hydraulic Jump City University of New York (CUNY) CUNY Academic Works International Conference on Hydroinformatics 8-1-2014 Pressure Fluctuations On The Slabs Of Stilling Basins Under Hydraulic Jump Abdollah Sobani Follow

More information

North Domingo Baca Extension at Barstow

North Domingo Baca Extension at Barstow Modeling Report April 5, 2001 North Domingo Baca Extension at Barstow Prepared for the Albuquerque Metropolitan Arroyo Flood Control Authority Julie Coonrod, Ph.D., P.E. Department of Civil Engineering

More information

Appendix C, Attachment 4 June 11, Diversion Channel Outlet Hydraulic Modeling RAS and ADH

Appendix C, Attachment 4 June 11, Diversion Channel Outlet Hydraulic Modeling RAS and ADH Diversion Channel Outlet Hydraulic Modeling RAS and ADH 11 June 2012 1 Contents Introduction... 3 HEC-RAS modeling of Outlet... 3 Transition Structure Geometry... 3 ADH Modeling of Outlet and Floodplain...

More information

EXAMPLE SHEET FOR TOPIC 2 AUTUMN Q1. What is the significance of the Reynolds number Re for the flow of fluid in a circular pipe?

EXAMPLE SHEET FOR TOPIC 2 AUTUMN Q1. What is the significance of the Reynolds number Re for the flow of fluid in a circular pipe? EXMPLE SHEET FOR TOPI 2 UTUMN 2013 Q1. What is the significance of the Reynolds number Re for the flow of fluid in a circular pipe? If the friction factor for a pipe is given by λ = 64/Re for laminar flow,

More information

IDEAS ON THE DESIGN OF EARTH MOUNDS AND DAMS TO PROTECT HIGHWAYS AGAINST SNOW AVALANCHES.

IDEAS ON THE DESIGN OF EARTH MOUNDS AND DAMS TO PROTECT HIGHWAYS AGAINST SNOW AVALANCHES. IDEAS ON THE DESIGN OF EARTH MOUNDS AND DAMS TO PROTECT HIGHWAYS AGAINST SNOW AVALANCHES. ABSTRACT H Norem, Norwegian University of Science and Technology Høgskoleringen 7A, N-7491 Trondheim, Norway E-mail:

More information

Physical models application of flow analysis in regulated reservoir dams

Physical models application of flow analysis in regulated reservoir dams River Basin Management III 15 Physical models application of flow analysis in regulated reservoir dams M. R. M. Tabatabai 1, S. Faghihirad 2 & M. Kolahdoozan 3 1 Water Engineering Department, Power and

More information

WATER AND WASTEWATER ENGINEERING HYDRAULICS

WATER AND WASTEWATER ENGINEERING HYDRAULICS WATER AND WASTEWATER ENGINEERING HYDRAULICS T J Casey AQUAVARRA RESEARCH LIMITED 22A Brookfield Avenue Blackrock Co. Dublin. October 2004 Author s Note Water and Wastewater Engineering Hydraulics was first

More information

Basic Design of Replogle Flumes

Basic Design of Replogle Flumes ITRC Report No. R 02-010 IRRIGATION TRAINING AND RESEARCH CENTER California Polytechnic State University San Luis Obispo, California 93407 www.itrc.org Basic Design of Replogle Flumes Replogle flumes are

More information

Measuring flow in open channels (weirs)

Measuring flow in open channels (weirs) The 20 th week Measuring flow in open channels (weirs) Broad-Crested and Sharp-Crested Weirs Weirs are overflow structures that alter the flow so that: 1. Volumetric flow rate can be calculated, 2. Flooding

More information

Index. outlet protection Rev. 12/93

Index. outlet protection Rev. 12/93 6 Index outlet protection level spreader outlet stabilization structure 6.40.1 6.41.1 Rev. 12/93 Practice Standards and Specifications 6.40 level spreader Definition Purpose Conditions Where Practice Applies

More information

water ISSN

water ISSN Water 2015, 7, 5115-5133; doi:10.3390/w7095115 Article OPEN ACCESS water ISSN 2073-4441 www.mdpi.com/journal/water Hydraulic Jump and Energy Dissipation with Sluice Gate Youngkyu Kim 1, Gyewoon Choi 2,

More information

Coastal and Hydraulics Laboratory

Coastal and Hydraulics Laboratory ERDC/CHL TR-10-1 Numerical Model of the Hoosic River Flood- Control Channel, Adams, MA Richard L Stockstill, Jane M. Vaughan, and Keith Martin February 2010 Coastal and Hydraulics Laboratory Approved for

More information

Energy Dissipation within In-Ground Stilling Basin

Energy Dissipation within In-Ground Stilling Basin 5 th International Symposium on Hydraulic Structures Brisbane, Australia, 25-27 June 24 Hydraulic Structures and Society: Engineering Challenges and Extremes ISBN 9787427256 - DOI:.4264/uql.24.33 Energy

More information

Evaluation of Energy Dissipation Using Different Drop Broken-Back Culverts Under Pressure Flow Conditions

Evaluation of Energy Dissipation Using Different Drop Broken-Back Culverts Under Pressure Flow Conditions E154 Evaluation of Energy Dissipation Using Different Drop Broken-Back Culverts Under Pressure Flow Conditions AVDHESH K. TYAGI, 1 ABDELFATAH ALI, 2 AND MATTHEW HAMILTON 2 1 Oklahoma Infrastructure Consortium,

More information

Irrigation Structures 2. Dr. M. R. Kabir

Irrigation Structures 2. Dr. M. R. Kabir CHAPTER 9 Irrigation Structures 2 Dr. M. R. Kabir Professor and Head, Department of Civil Engineering University of Asia Pacific (UAP), Dhaka LECTURE 22 What is Cross Drainage Works? In an irrigation project,

More information

Lateral Inflow into High-Velocity Channels

Lateral Inflow into High-Velocity Channels Lateral Inflow into High-Velocity Channels by Richard L. Stockstill PURPOSE: This Coastal and Hydraulics Engineering Technical Note (CHETN) investigates lateral flow discharging into a high-velocity channel.

More information

Lateral Outflow from Supercritical Channels

Lateral Outflow from Supercritical Channels Lateral Outflow from Supercritical Channels J. Coonrod 1, J. Ho 2 and N. Bernardo 3 1 Associate Professor, Department of Civil Engineering, University of New Mexico, Albuquerque, NM 87131; PH (505) 277-3233;

More information

TOSHKA SPILLWAY BARRAGES STABILITY ANALYSIS

TOSHKA SPILLWAY BARRAGES STABILITY ANALYSIS Ninth International Water Technology Conference, IWTC9 5, Sharm El-Sheikh, Egypt 57 TOSHKA SPILLWAY BARRAGES STABILITY ANALYSIS Sherine S. Ismail * and Medhat Aziz ** * Researcher, Nile Research Institute,

More information

Hydraulics and Hydrology (250130)

Hydraulics and Hydrology (250130) Hydraulics and Hydrology (250130) General information School: ETSECCPB Departments: 751 - Departament d'enginyeria Civil i Ambiental, 250 - Escola Tècnica Superior d'enginyers de Camins, Canals i Ports

More information

Level 6 Graduate Diploma in Engineering Hydraulics and hydrology

Level 6 Graduate Diploma in Engineering Hydraulics and hydrology 910-103 Level 6 Graduate Diploma in Engineering Hydraulics and hydrology Sample Paper You should have the following for this examination one answer book ordinary graph paper pen, pencil, ruler Work sheet

More information

Utilization of Water Flow in Existing Canal System for Power Generation through Flow Acceleration Using Converging Nozzles

Utilization of Water Flow in Existing Canal System for Power Generation through Flow Acceleration Using Converging Nozzles American Journal of Engineering Research (AJER) e-issn: 2320-0847 p-issn : 2320-0936 Volume-5, Issue-5, pp-115-123 www.ajer.org Research Paper Open Access Utilization of Water Flow in Existing Canal System

More information

DETERMINATION OF DISCHARGE COEFFICIENT AND HEAD-DISCHARGE RELATIONSHIPS OF DIFFERENT HYDRAULIC STRUCTURES

DETERMINATION OF DISCHARGE COEFFICIENT AND HEAD-DISCHARGE RELATIONSHIPS OF DIFFERENT HYDRAULIC STRUCTURES Journal of Indian Water Resources Society, Vol 34, No.1, January, 2014 DETERMINATION OF DISCHARGE COEFFICIENT AND HEAD-DISCHARGE RELATIONSHIPS OF DIFFERENT HYDRAULIC STRUCTURES P. P. Dabral 1, P. K. Pandey

More information

A dimensional analysis for determining optimal discharge and penstock diameter in impulse and reaction water turbines

A dimensional analysis for determining optimal discharge and penstock diameter in impulse and reaction water turbines A dimensional analysis for determining optimal discharge and penstock diameter in impulse and reaction water turbines Arturo S. Leon (Corresponding author). School of Civil and Construction Engineering,

More information

RBC flume. All it takes for environmental research. Contents. 1. Introduction. 2. The flumes of Eijkelkamp Agrisearch Equipment

RBC flume. All it takes for environmental research. Contents. 1. Introduction. 2. The flumes of Eijkelkamp Agrisearch Equipment 13.17.02 RBC flume operating instructions Contents 1. Introduction... 1 2. The flumes of Eijkelkamp Agrisearch Equipment... 1 3. Principles of discharge-measuring flumes... 2 4. Selection and location

More information

Asst.Prof.Dr. Jaafar S. Maatooq. 1 st Semester HYDRAULIC STRUCTUER, KINDS & FUNCTIONS 1 of 26

Asst.Prof.Dr. Jaafar S. Maatooq. 1 st Semester HYDRAULIC STRUCTUER, KINDS & FUNCTIONS 1 of 26 1 st Semester HYDRAULIC STRUCTUER, KINDS & FUNCTIONS 1 of 26 1 st Semester HYDRAULIC STRUCTUER, KINDS & FUNCTIONS 2 of 26 Water is often more useful to people when it is properly controlled, conveyed,

More information

PRELIMINARY DESIGN OF THE HYDRAULIC STRUCTURES DAM IN THE PISÃO RIVER

PRELIMINARY DESIGN OF THE HYDRAULIC STRUCTURES DAM IN THE PISÃO RIVER PRELIMINARY DESIGN OF THE HYDRAULIC STRUCTURES DAM IN THE PISÃO RIVER Margarida Isabel Godinho Sobral Department of Civil Engineering and Architecture, Instituto Superior Técnico - Lisbon, Portugal SUMMARY

More information

CE Hydraulics. Andrew Kennedy 168 Fitzpatrick

CE Hydraulics. Andrew Kennedy 168 Fitzpatrick CE 40450 Hydraulics Andrew Kennedy 168 Fitzpatrick Andrew.kennedy@nd.edu Final Exam, 8AM May 7, Will cover entire course 155 Fitzpatrick Around half on material since last midterm Like 1.5 midterms in

More information

APPLICATION OF 1-D HEC-RAS MODEL IN DESIGN OF CHANNELS

APPLICATION OF 1-D HEC-RAS MODEL IN DESIGN OF CHANNELS APPLICATION OF 1-D HEC-RAS MODEL IN DESIGN OF CHANNELS Darshan J. Mehta * Mr. Manthan Ramani Mr. Maulik Joshi Asst. Prof., CED, S.S.A.S.I.T, Surat U.G, Student, CED, S.S.A.S.I.T, Surat U.G, Student, CED,

More information

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF CIVIL ENGINEERING CE 6403 APPLIED HYDRAULIC ENGINEERING UNIT I: UNIFORM FLOW

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF CIVIL ENGINEERING CE 6403 APPLIED HYDRAULIC ENGINEERING UNIT I: UNIFORM FLOW DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF CIVIL ENGINEERING CE 6403 APPLIED HYDRAULIC ENGINEERING UNIT I: UNIFORM FLOW PART A (2 marks) 1. Distinguish between open channel flow and conduit

More information

LOCAL SCOUR AROUND SPUR DIKES

LOCAL SCOUR AROUND SPUR DIKES Eleventh International Water Technology Conference, IWTC11 27 Sharm El-Sheikh, Egypt 779 LOCAL SCOUR AROUND SPUR DIKES M. M. Ezzeldin 1, T. A. Saafan 2, O. S. Rageh 3 and L. M. Nejm 4 1, 2 Professors,

More information

Government Center Water Treatment Plant Kamphaeng Phet Province, Thailand

Government Center Water Treatment Plant Kamphaeng Phet Province, Thailand Government Center Water Treatment Plant Kamphaeng Phet Province, Thailand 1. Background information Kamphaeng Phet is a province in the lower north of Thailand. The Ping River (main tributary of the Chao

More information

Effect of Wedge Shape Deflector on Dissipating Energy in Triangular Flip Buckets

Effect of Wedge Shape Deflector on Dissipating Energy in Triangular Flip Buckets 2011, Scienceline Publication Journal of Civil Engineering and Urbanism Volume 3, Issue 2: 56-61 (2013) (Received: February 10, 2013; Accepted: March 18, 2013; Published: March 30, 2013) ISSN-2252-0430

More information

IMPACT AND PUNCTURING OF JARI TUNNEL AND ENLARGEMENT OF EXISTING TAPPINGS FOR ADDITIONAL WATER SUPPLY AND POWER GENERATION

IMPACT AND PUNCTURING OF JARI TUNNEL AND ENLARGEMENT OF EXISTING TAPPINGS FOR ADDITIONAL WATER SUPPLY AND POWER GENERATION 117 Paper No. 738 IMPACT AND PUNCTURING OF JARI TUNNEL AND ENLARGEMENT OF EXISTING TAPPINGS FOR ADDITIONAL WATER SUPPLY AND POWER GENERATION JAVED MUNIR, SYED ABBAS ALI, IRFAN MAHMOOD 118 Javed Munir,

More information

Stilling basin design for inlet sluice with vertical drop structure: Scale model results vs. literature formulae

Stilling basin design for inlet sluice with vertical drop structure: Scale model results vs. literature formulae Sustainable Hydraulics in the Era of Global Change Erpicum et al. (Eds.) 2016 Taylor & Francis Group, London, ISBN 978-1-138-02977-4 Stilling basin design for inlet sluice with vertical drop structure:

More information

CE 240 Soil Mechanics & Foundations Lecture 4.3. Permeability I (Das, Ch. 6)

CE 240 Soil Mechanics & Foundations Lecture 4.3. Permeability I (Das, Ch. 6) CE 240 Soil Mechanics & Foundations Lecture 4.3 Permeability I (Das, Ch. 6) Outline of this Lecture 1. Permeability in Soils 2. Bernoulli s Equation 3. Darcy s Law 4. Hydraulic Conductivity 5. Hydraulic

More information

Course syllabus Fluid Mechanics

Course syllabus Fluid Mechanics Course syllabus Fluid Mechanics COURSE DETAILS Type of study programme Study programme Course title Course code ECTS (Number of credits allocated) Course status Year of study Course Web site Total lesson

More information

Chapter 9 Hydraulic Structures

Chapter 9 Hydraulic Structures Chapter 9 Hydraulic Structures Contents Structures in Streams... 1 Grade Control Structures... 2 Overview... 2 Simplified Design Procedures for Drop Structures... 4 2.2.1 Introduction... 4 2.2.2 Geometry...

More information

Highway Drainage 1- Storm Frequency and Runoff 1.1- Runoff Determination

Highway Drainage 1- Storm Frequency and Runoff 1.1- Runoff Determination Highway Drainage Proper drainage is a very important consideration in design of a highway. Inadequate drainage facilities can lead to premature deterioration of the highway and the development of adverse

More information

Determining Optimal Discharge and Optimal Penstock Diameter in Water Turbines

Determining Optimal Discharge and Optimal Penstock Diameter in Water Turbines Utah State University DigitalCommons@USU International Symposium on Hydraulic Structures Jun 9th, 1:30 PM - 3:30 PM Determining Optimal Discharge and Optimal Penstock Diameter in Water Turbines Arturo

More information

Outlet Flow Velocity in Circular Culvert

Outlet Flow Velocity in Circular Culvert Archives of Hydro-Engineering and Environmental Mechanics Vol. 61 (2014), No. 3 4, pp. 193 203 DOI: 10.1515/heem-2015-0013 IBW PAN, ISSN 1231 3726 Outlet Flow Velocity in Circular Culvert Wojciech Szpakowski

More information

Energy Dissipation over Stepped Gabion Weir

Energy Dissipation over Stepped Gabion Weir International Journal of Dynamics of Fluids. ISSN 0973-1784 Volume 13, Number 1 (2017), pp. 153-159 Research India Publications http://www.ripublication.com Energy Dissipation over Stepped Gabion Weir

More information

4.2 Discharge measurement by Velocity Area Method (Chitale, 1974)

4.2 Discharge measurement by Velocity Area Method (Chitale, 1974) 4.2 Discharge measurement by Velocity Area Method (Chitale, 1974) This method comprises measuring the mean velocity V and the flow area 'A' and computing the discharge Q from the continuity equation. The

More information

DESIGN CRITERIA FOR TERMINAL STORAGE RESERVOIRS

DESIGN CRITERIA FOR TERMINAL STORAGE RESERVOIRS DESIGN CRITERIA FOR TERMINAL STORAGE RESERVOIRS Joint Booster Pump Station #3 Reservoir Nicole Rutigliano, P.E. May 29, 2014 PROJECT BACKGROUND Integrated Pipeline Project 149 miles of pipeline 3 booster

More information

CLAY STREET BRIDGE REPLACEMENT

CLAY STREET BRIDGE REPLACEMENT HYDROLOGY /HYDRAULICS REPORT. EL DORADO COUNTY CLAY STREET BRIDGE REPLACEMENT Prepared by: Joseph Domenichelli Domenichelli & Associates 1107 Investment Blvd., Suite 145 El Dorado Hills, California 95762

More information

iv) Alberta fish weirs

iv) Alberta fish weirs Fish passage at culverts in New Zealand 36 iv) Alberta fish weirs The fish weirs used by Alberta Transportation are weir baffles with a partial slot (Figure 16). The best designs from Rajaratnam et al.

More information

Evaluation of Stability for Ecological Revetment Method with Stone Mattress and Vegetation Mound Using ANSYS Fluent

Evaluation of Stability for Ecological Revetment Method with Stone Mattress and Vegetation Mound Using ANSYS Fluent , pp.363-372 http://dx.doi.org/10.14257/ijunesst.2016.9.1.37 Evaluation of Stability for Ecological Revetment Method with Stone Mattress and Vegetation Mound Using ANSYS Fluent Hyo Seon Park 1, Dong Woo

More information

Energy Dissipation Regimes and Stability of the Overflow Dam (Spillway) for the Mekin Dam in Cameroon

Energy Dissipation Regimes and Stability of the Overflow Dam (Spillway) for the Mekin Dam in Cameroon International Refereed Journal of Engineering and Science (IRJES) ISSN (Online) 2319-183X, (Print) 2319-1821 Volume 6, Issue 6 (June 2017), PP.28-34 Energy Dissipation Regimes and Stability of the Overflow

More information

Study on the flow of water through non- submerged vegetation

Study on the flow of water through non- submerged vegetation Hydrology Days 5 Study on the flow of water through non- submerged vegetation Nehal L 1 Water Conservancy and Hydropower Engineering College. Hohai University. Nanjing, China. Yan Zhong Ming 1 Water Conservancy

More information

APPENDIX G HYDRAULIC GRADE LINE

APPENDIX G HYDRAULIC GRADE LINE Storm Drainage 13-G-1 APPENDIX G HYDRAULIC GRADE LINE 1.0 Introduction The hydraulic grade line is used to aid the designer in determining the acceptability of a proposed or evaluation of an existing storm

More information

IMECE DESIGN AND ANALYSIS OF SMALL SCALE HORIZONTAL ARCHIMEDEAN SCREW FOR ELECTRIC POWER GENERATION

IMECE DESIGN AND ANALYSIS OF SMALL SCALE HORIZONTAL ARCHIMEDEAN SCREW FOR ELECTRIC POWER GENERATION Proceedings of the ASME 2017 International Mechanical Engineering Congress and Exposition IMECE2017 November 3-9, 2017, Tampa, Florida, USA IMECE2017-72580 DESIGN AND ANALYSIS OF SMALL SCALE HORIZONTAL

More information

MILL CREEK FISH PASSAGE CONCEPTUAL DESIGNS FINAL REPORT

MILL CREEK FISH PASSAGE CONCEPTUAL DESIGNS FINAL REPORT MILL CREEK FISH PASSAGE CONCEPTUAL DESIGNS FINAL REPORT Prepared for Tri State Steelheaders Contact: Brian Burns 216 N. Roosevelt, PO Box 1375 Walla Walla, WA 99362 Prepared by Waterfall Engineering, L.L.C.

More information

Standards for Soil Erosion and Sediment Control in New Jersey May 2012 STANDARD FOR SLOPE PROTECTION STRUCTURES. Definition

Standards for Soil Erosion and Sediment Control in New Jersey May 2012 STANDARD FOR SLOPE PROTECTION STRUCTURES. Definition STANDARD FOR SLOPE PROTECTION STRUCTURES Definition Structures to safely conduct surface runoff from the top of a slope to the bottom of the slope. Purpose The purpose of this practice is to convey storm

More information

Development of a Stage-Discharge Rating for Site Van Bibber Creek at Route 93

Development of a Stage-Discharge Rating for Site Van Bibber Creek at Route 93 Development of a Stage-Discharge Rating for Site 330 - Van Bibber Creek at Route 93 Prepared for: Urban Drainage and Flood Control District 2480 W. 26 th Avenue Suite 156-B Denver, CO 80211 May 19, 2006

More information

A Course Material on Applied Hydraulic Engineering

A Course Material on Applied Hydraulic Engineering A Course Material on Applied Hydraulic Engineering CE6403 LTPC 31 04 OBJECTIVES: To introduce the students to various hydraulic engineering problems like open channel flows and hydraulic machines. At

More information

RIVER STRUCTURAL WORKS AND OPERATION. Diversion Works (by Bizuneh Asfaw) Date of the project report

RIVER STRUCTURAL WORKS AND OPERATION. Diversion Works (by Bizuneh Asfaw) Date of the project report RIVER STRUCTURAL WORKS AND OPERATION Diversion Works (by Bizuneh Asfaw) Date of the project report 1 Table of Content 3.1 Introduction 3 3.1.1 General definition of headworks 3 3.1. Classification of diversion

More information

UNIVERSITY OF ENGINEERING AND TECHNOLOGY TAXILA CIVIL ENGINEERING DEPARTMENT OUTCOME BASED EDUCATION CE-308: FLUID MECHANICS II

UNIVERSITY OF ENGINEERING AND TECHNOLOGY TAXILA CIVIL ENGINEERING DEPARTMENT OUTCOME BASED EDUCATION CE-308: FLUID MECHANICS II UNIVERSITY OF ENGINEERING AND TECHNOLOGY TAXILA CIVIL ENGINEERING DEPARTMENT OUTCOME BASED EDUCATION CE-308: FLUID MECHANICS II Course Contents: Fluid flow in pipes Reynold's number and its significance.

More information

River Processes River action (fluvial)

River Processes River action (fluvial) River action (fluvial) is probably the single most important geomorphic agent and their influence in geomorphology can hardly be overestimated. 1 To understand the complexity associated with river flow

More information

Journal of Engineering Science and Technology Review 9 (2) (2016) Research Article

Journal of Engineering Science and Technology Review 9 (2) (2016) Research Article Jestr Journal of Engineering Science and Technology Review 9 (2) (2016) 72-79 Research Article JOURNAL OF Engineering Science and Technology Review www.jestr.org Fluid Flow Phenomenon in a Three-Bladed

More information