Cost Modeling of SOFC Technology

Size: px
Start display at page:

Download "Cost Modeling of SOFC Technology"

Transcription

1 Cost Modeling of SOFC Technology Eric J Carlson Suresh Sriramulu Peter Teagan Yong Yang First International Conference on Fuel Cell Development and Deployment University of Connecticut Storrs, Connecticut March 10, Acorn Park Cambridge, Massachusetts carlsone@tiaxllccom

2 Summary Updates to a 1999 SOFC cost model resulted in less than a ten percent increase in the cost of the stack on a kilowatt basis Model Total Cost ($/kw) Co-Fired Multi-Fired Drivers for Lower Cost Lower YSZ material cost Drivers for Higher Cost More interconnect material Additional QC steps and equipment Overall process yield assumptions Slightly lower power density for the baseline case SOFC Cost Modeling Presentation_UConn Conference_Mar04ppt 1

3 Project Overview For the SECA Core Technology Program (CTP), we updated a 1999 SOFC cost projection Cost and performance/mechanical models linked to capture the influence of design, performance, and mechanical limitations on cost Assessed the impact of manufacturing issues (eg, tolerances and quality control) on cost Model used to assess the impact of manufacturing volumes on cost We solicited inputs from the SECA industrial teams and the CTP participants SOFC Cost Modeling Presentation_UConn Conference_Mar04ppt 2

4 Modeling Approach Manufacturing Cost The model uses a set of databases to calculate cost for defined production/process flow scenarios Inputs Design Performance Parameters Processes and Process Flow Production Scenarios Calculation Engine (Activity-Based) Process flow Equipment options Outputs (Results) Tables Graphs Crystal Ball Analyses Manufacturing Costs Material Cost Database Material Properties Database Purchased Components Formulation Database Process Database Capital Equipment Database Labor Real estate Overhead Vendors Cost of material Density Particle size distribution Surface area Stress vs probability of failure Cost Specifications Anode Cathode Electrolyte Interconnects Equipment process data Throughput Size limit Automation Scrap Yield Cost vs product volume SOFC Cost Modeling Presentation_UConn Conference_Mar04ppt 3

5 Modeling Approach Performance Thermal and Stress A performance-thermal-mechanical model developed for NETL was used to estimate power density and stress as a function of layer thickness Performance Model Material Failure Data + Stress Probability of Failure (%) Electrodes Electrolyte Stress (MPa) Parameters from ORNL, Edgar Lara-Curzio Power Density Stress Related Yield Losses SOFC Cost Modeling Presentation_UConn Conference_Mar04ppt 4

6 Model Assumptions The 2010 SECA goals target a system manufacturing cost of $400/kW This project focused on the stack materials only Only the electrochemical (anode, cathode, and electrolyte) and interconnect materials are considered in this model The interconnect cost does not include a coating Factory costs were estimated Corporate overhead, profit, and installation costs were not included High volume production was assumed for the baseline cost estimate (total of 250 MW with 5 kw stack as basic unit) SOFC Cost Modeling Presentation_UConn Conference_Mar04ppt 5

7 Results 2003 Baseline Material Costs (Area Basis) On an area basis, the 2003 model material cost decreased, largely driven by the reduced electrolyte (YSZ) cost $250 $200 Co-Fired 1999 Multi-Fired 2003 Multi-Fired Material Costs Costs $250 $200 Multi-Fired $/m2 $150 $100 $/m 2 $150 $100 $50 $50 $- Anode Cathode Electrolyte Interconnect $- Anode Cathode Electrolyte Interconnect Material Cost ($/m 2 ) Co-Fired Multi-Fired 1999 Model Model SOFC Cost Modeling Presentation_UConn Conference_Mar04ppt 6

8 Results 2003 Baseline Process Costs by Layer (Area Basis) Process costs increased by 60-75% because of added QC steps, the final assembly step, and reduced yields Process Costs Costs $120 Co-Fired $140 Multi-Fired $100 $120 $80 $100 $/m2 $60 $40 $/m2 $80 $60 $40 $20 $20 $- Anode Cathode Electrolyte Interconnect Fabrication $- Anode Cathode Electrolyte Interconnect Fabrication 1999 Multi-Fired 2003 Multi-Fired Processes Cost ($/m 2 ) Co-Fired Multi-Fired 1999 Model $82 $ Model $143 $169 SOFC Cost Modeling Presentation_UConn Conference_Mar04ppt 7

9 Results Anode cost is large because of the materials costs, while the interconnects are massive Material cost ($/m 2 ) Cost ($/m 2 ) Materials Total Interconnect 45% Anode 48% Anode $126 Cathode $15 Electrolyte $6 $136 $22 $12 Interconnect $119 $138 Electrolyte 2% Cathode 5% Fabrication $126 Total $266 $434 Materials represent approximately 60% of the stack cost SOFC Cost Modeling Presentation_UConn Conference_Mar04ppt 8

10 Results 2003 Cost Vs 1999 Cost In 2003 lower material costs partially offset the increases in process cost resulting in similar $/kw cost and $/m 2 costs with the previous study $ / kw $100 $90 $80 $70 $60 $50 $40 $30 $20 $10 $0 Total Cost ($/kw) Total Cost ($/m 2 ) $ / m2 $450 $400 $350 $300 $250 $200 $150 $100 $50 $0 Co-Fired Multi-Fired Co-Fired Multi-Fired Co-Fired Multi-Fired Co-Fired Multi-Fired Material Process SOFC Cost Modeling Presentation_UConn Conference_Mar04ppt 9

11 Results Sensitivity Analysis Base Case Unit cell cost per kilowatt is most sensitive to the thickness of each EEA layer and YSZ price Sensitivity Chart Target Forecast: Multi-Fired Metal Planar Cost ($/kw) Anode Layer Thickness (um) 59 Electrolyte Layer Thickness (um) 58 Cathode Layer Thickness (um) 30 8 mol% YSZ 24 SS430 sheet 21 Nickel Sintering Furnace 09 Sintering Cycle Time (min) 07 Auxiliary Equipment Cost 06 Equipment Installation Cost Measured by Rank Correlation The electrolyte cost is small, but its thickness has a large impact on power density SOFC Cost Modeling Presentation_UConn Conference_Mar04ppt 10

12 Results Stack Model Achieving high power densities is critical to lower stack costs 120 Multi-Fired Cost vs Power Density Cost ($/kw) Anode Cathode Layer Thickness (µm) Electrolyte 5~20 Status Fixed Fixed Vary Power Density (mw/cm 2 ) SOFC Cost Modeling Presentation_UConn Conference_Mar04ppt 11

13 Results Quality Control Assembled stack cost will be highly sensitive to the percentage of defective EEAs Stack Cost ($/kw) $700 $600 $500 $400 $300 $200 $100 $0 00% 05% 10% 15% 20% Percentage of Defective EEAs For example, for the MF process, a 1% defect level could increase the stack cost from $92/kW to $278/kW SOFC Cost Modeling Presentation_UConn Conference_Mar04ppt 12

14 Results Economies of Scale The stack cost decreases by 80%, driven by more efficient processing, as production volume increases Economies of Scale (Multi-Fired Process) $ $ Stack Cost ($kw) $300 $200 MW Reduction Material $73 $56 13x Process $385 $6 107x Stack Cost % of Reduction $ $ Annual Production Volume (MW) SOFC Cost Modeling Presentation_UConn Conference_Mar04ppt 13

15 Conclusions Increasing power density will be critical to achievement of low stack cost since materials represent approximately 60% of the cost Quality control of the repeat units (electrode electrolyte assemblies) will be critical to stack yield and cost Increasing production volume 50-fold from 5MW to 250MW decreased process costs resulting in an 80% reduction in stack cost SOFC Cost Modeling Presentation_UConn Conference_Mar04ppt 14

16 Acknowledgements Thank You! This project was funded under DOE contract: DE-FC26-02NT41568 Final Report available in April We would like to thank: Shawna Toth, Donald Collins, and Wayne Surdoval of the National Energy Technology Laboratory and the SECA Core Technology and Industry Teams SOFC Cost Modeling Presentation_UConn Conference_Mar04ppt 15

Preparation and characterization of metal supported solid oxide fuel cells with screen-printed electrodes and thin-film electrolyte

Preparation and characterization of metal supported solid oxide fuel cells with screen-printed electrodes and thin-film electrolyte Preparation and characterization of metal supported solid oxide fuel cells with screen-printed electrodes and thin-film electrolyte Feng HAN 1 *, Robert SEMERAD 2, Patric SZABO 1, Rémi COSTA 1 feng.han@dlr.de

More information

Capture the Energy 2012 Conference and Annual Meeting March 7 & 8, 2012 Troy, New York

Capture the Energy 2012 Conference and Annual Meeting March 7 & 8, 2012 Troy, New York Capture the Energy 2012 Conference and Annual Meeting March 7 & 8, 2012 Troy, New York Solid Oxide Fuel Cells Perspective & Update on the State-of-the-Art Arkady Malakhov 771 Elmgrove Road, Rochester,

More information

Fuel Cell - What is it and what are the benefits? Crina S. ILEA, Energy Lab, Bergen

Fuel Cell - What is it and what are the benefits? Crina S. ILEA, Energy Lab, Bergen Fuel Cell - What is it and what are the benefits? Crina S. ILEA, 10.01.2017 Energy Lab, Bergen CMI Founded in 1988 Two departments: Parts & Services Research & Development Prototype development from idea

More information

Screen-printed La 0.1 Sr 0.9 TiO 3-δ - Ce 1-x Gd x O 2-δ anodes for SOFC application

Screen-printed La 0.1 Sr 0.9 TiO 3-δ - Ce 1-x Gd x O 2-δ anodes for SOFC application Screen-printed La 0.1 Sr 0.9 TiO 3-δ - Ce 1-x Gd x O 2-δ anodes for SOFC application Elisa Mercadelli (1), A.Gondolini (1), G. Constantin (2,3), L. Dessemond (2,3), V. Yurkiv (4), R. Costa (4) and A. Sanson

More information

Deliverable 19: Cost analysis and benchmarking of EVOLVE stack WP 6

Deliverable 19: Cost analysis and benchmarking of EVOLVE stack WP 6 Deliverable 19: Cost analysis and benchmarking of EVOLVE stack WP 6 Authors Dr. Henrik Hedlund & Dr. Saema Ansar Expected delivery time: 31/01/2017 Delivery time: 31/01/2017 Project acronym: EVOLVE Project

More information

R. Costa*, G. Schiller, K. A. Friedrich & R.Costa 1, F. Han 1, P. Szabo 1, V. Yurkiv 2, R. Semerad 3, L.Dessemond 4

R. Costa*, G. Schiller, K. A. Friedrich & R.Costa 1, F. Han 1, P. Szabo 1, V. Yurkiv 2, R. Semerad 3, L.Dessemond 4 DLR.de Chart 1 Performances and limitations of metal supported cells with strontium titanate based fuel electrode: a step towards the next generation of solid oxide cells R. Costa*, G. Schiller, K. A.

More information

Advanced materials for SOFCs

Advanced materials for SOFCs Advanced materials for SOFCs Yoed Tsur Department of Chemical Engineering Technion Outline Intro: why SOFCs are important? Types of SOFCs Hybrid SOFC-something for power generation: NG utilization Materials

More information

Development of innovative metal-supported IT-SOFC technology

Development of innovative metal-supported IT-SOFC technology PROJECT SUMMARY NO PS210 Development of innovative metal-supported IT-SOFC technology OBJECTIVES The aim of this project was to develop and demonstrate cells and stacks based on the innovative metal supported

More information

New materials for AFC anodes

New materials for AFC anodes New materials for AFC anodes Application of Novel Electrode structures developed for SOFC technologies into AFC systems to increase anode performance and cycling durability. Alkaline fuel cells background

More information

Comparison of On-board Hydrogen Storage Options

Comparison of On-board Hydrogen Storage Options Comparison of On-board Hydrogen Storage Options Fuel Cell Seminar November 14-18, 2005 Stephen Lasher Eric Carlson John Bowman Yong Yang Mark Marion TIAX LLC 15 Acorn Park Cambridge, MA 02140-2390 Tel.

More information

R. Costa* 1, F. Han 1, P. Szabo 1, V. Yurkiv 2, R. Semerad 3, L.Dessemond 4

R. Costa* 1, F. Han 1, P. Szabo 1, V. Yurkiv 2, R. Semerad 3, L.Dessemond 4 DLR.de Chart 1 Performances and limitations of metal supported cells with strontium titanate based fuel electrode: a step towards the next generation of solid oxide cells R. Costa* 1, F. Han 1, P. Szabo

More information

The mechanical and electrical properties of Ni/YSZ anode support for solid oxide fuel cells

The mechanical and electrical properties of Ni/YSZ anode support for solid oxide fuel cells The mechanical and electrical properties of Ni/YSZ anode support for solid oxide fuel cells Changrong He, Tao Chen, Wei Guo Wang Ningbo Institute of Material Technology and Engineering (NIMTE), Chinese

More information

Green usage of fossil fuels with solid oxide fuel cell

Green usage of fossil fuels with solid oxide fuel cell 211 2nd International Conference on Environmental Science and Development IPCBEE vol.4 (211) (211) IACSIT Press, Singapore Green usage of fossil fuels with solid oxide fuel cell H.Kazemi Esfeh Faculty

More information

STACK PERFORMANCE OF INTERMEDIATE TEMPERATURE-OPERATING SOLID OXIDE FUEL CELLS USING STAINLESS STEEL INTERCONNECTS AND ANODE-SUPPORTED SINGLE CELLS

STACK PERFORMANCE OF INTERMEDIATE TEMPERATURE-OPERATING SOLID OXIDE FUEL CELLS USING STAINLESS STEEL INTERCONNECTS AND ANODE-SUPPORTED SINGLE CELLS Proceedings of FUELCELL25 Third International Conference on Fuel Cell Science, Engineering and Technology May 23-25, 25, Ypsilanti, Michigan FUELCELL25-715 STACK PERFORMANCE OF INTERMEDIATE TEMPERATURE-OPERATING

More information

Fuel Cell Systems: an Introduction for the Chemical Engineer

Fuel Cell Systems: an Introduction for the Chemical Engineer Fuel Cell Systems: an Introduction for the Chemical Engineer Professor Donald J. Chmielewski Center for Electrochemical Science and Engineering Illinois Institute of Technology Presented to the Chicago

More information

Ammonia as Hydrogen Carrier

Ammonia as Hydrogen Carrier Hydrogen ü Primary fuel source for fuel cell ü Low volume density ü Difficulty in storage and transportation Ammonia as Hydrogen Carrier Ammonia ü High H 2 density ü Carbon-free ü High boiling point ü

More information

qsofc assurance of Solid Oxide Fuel Cell stacks Markus Rautanen VTT Technical Research Centre of Finland

qsofc assurance of Solid Oxide Fuel Cell stacks Markus Rautanen VTT Technical Research Centre of Finland qsofc Automated massmanufacturing and quality assurance of Solid Oxide Fuel Cell stacks Markus Rautanen VTT Technical Research Centre of Finland www.qsofc.eu markus.rautanen@vtt.fi Programme Review Days

More information

Manufacturing of Metal Foam Supported SOFCs with Graded Ceramic Layer Structure and Thinfilm Electrolyte

Manufacturing of Metal Foam Supported SOFCs with Graded Ceramic Layer Structure and Thinfilm Electrolyte Manufacturing of Metal Foam Supported SOFCs with Graded Ceramic Layer Structure and Thinfilm Electrolyte Feng Han 1, Robert Semerad 2, and Rémi Costa 1 1 German Aerospace Center 2 Ceraco Ceramic Coating

More information

Chapter 7. Evaluation of Electrode Performance by. Electrochemical Impedance

Chapter 7. Evaluation of Electrode Performance by. Electrochemical Impedance Chapter 7 Evaluation of Electrode Performance by Electrochemical Impedance Spectroscopy (EIS) 7.1 Introduction A significant fraction of internal resistance of a cell comes from the interfacial polarization

More information

Introduction Fuel Cells

Introduction Fuel Cells Introduction Fuel Cells Fuel cell applications PEMFC PowerCell AB, S2 PEMFC, 5-25 kw Toyota Mirai a Fuel Cell Car A look inside The hydrogen tank 1. Inside Layer of polymer closest to the H2 gas 2. Intermediate

More information

Numerical Simulation of Electrolyte- Supported Planar Button Solid Oxide Fuel Cell

Numerical Simulation of Electrolyte- Supported Planar Button Solid Oxide Fuel Cell Numerical Simulation of Electrolyte- Supported Planar Button Solid Oxide Fuel Cell A. Aman, R. Gentile, Y. Chen, X. Huang, Y. Xu, N. Orlovskaya Excerpt from the Proceedings of the 2012 COMSOL Conference

More information

SOFC Powders and Unit Cell Research at NIMTE. Jian Xin Wang, Jing Shao, You Kun Tao, Wei Guo Wang

SOFC Powders and Unit Cell Research at NIMTE. Jian Xin Wang, Jing Shao, You Kun Tao, Wei Guo Wang 595 10.1149/1.3205571 The Electrochemical Society SOFC Powders and Unit Cell Research at NIMTE Jian Xin Wang, Jing Shao, You Kun Tao, Wei Guo Wang Division of Fuel Cell and Energy Technology Ningbo Institute

More information

SOLID OXIDE FUEL CELLS (SOFC)

SOLID OXIDE FUEL CELLS (SOFC) SOLID OXIDE FUEL CELLS (SOFC) Customized Solutions Innovation in Environmental Technology and Power Generation Product Overview SOFC SOFC Products Electrolyte Supported Cells Kerafol offers SOFCs with

More information

LIFE06 ENV/DK/ DEMO SOFC Project Summary

LIFE06 ENV/DK/ DEMO SOFC Project Summary DEMO SOFC Project Summary About the SOFC technology Energy production and transport based on fossil fuel are among the largest contributors to greenhouse gas emissions. Solid Oxide Fuel Cells (SOFC) offer

More information

Electrolytes: Stabilized Zirconia

Electrolytes: Stabilized Zirconia Laurea Magistrale in Scienza dei Materiali Materiali Inorganici Funzionali Electrolytes: Stabilized Zirconia Prof. Antonella Glisenti - Dip. Scienze Chimiche - Università degli Studi di Padova Bibliography

More information

Effect of Contact between Electrode and Interconnect on Performance of SOFC Stacks

Effect of Contact between Electrode and Interconnect on Performance of SOFC Stacks DOI: 10.1002/fuce.201000176 Effect of Contact between Electrode and Interconnect on Performance of SOFC Stacks W. B. Guan 1, H. J. Zhai 1, L. Jin 1,T.S.Li 1, and W. G. Wang 1 * 1 Ningbo Institute of Material

More information

Fuel Cell Systems: an Introduction for the Engineer (and others)

Fuel Cell Systems: an Introduction for the Engineer (and others) Fuel Cell Systems: an Introduction for the Engineer (and others) Professor Donald J. Chmielewski Center for Electrochemical Science and Engineering Illinois Institute of Technology Presented to the E 3

More information

Novel Mn 1.5 Co 1.5 O 4 spinel cathodes for intermediate temperature solid oxide fuel cells

Novel Mn 1.5 Co 1.5 O 4 spinel cathodes for intermediate temperature solid oxide fuel cells Novel Mn 1.5 Co 1.5 O 4 spinel cathodes for intermediate temperature solid oxide fuel cells Huanying Liu, a, b Xuefeng Zhu, a * Mojie Cheng, c You Cong, a Weishen Yang a * a State Key Laboratory of Catalysis,

More information

Microtubular SOFCs for power generation, steam electrolysis and syngas production

Microtubular SOFCs for power generation, steam electrolysis and syngas production Microtubular SOFCs for power generation, steam electrolysis and syngas production M.A. Laguna-Bercero*, H. Monzón, A. Larrea, V.M. Orera Instituto de Ciencia de Materiales de Aragón (ICMA) Zaragoza, Spain

More information

Development of Direct Ammonia Fuel Cells for Efficient Stationary CHP Applications Andrew McFarlan

Development of Direct Ammonia Fuel Cells for Efficient Stationary CHP Applications Andrew McFarlan Development of Direct Ammonia Fuel Cells for Efficient Stationary CHP Applications Andrew McFarlan Ammonia, a Sustainable, Emission-Free Fuel October 15 & 16, 2007 Rationale for Direct Ammonia Fuel Cells

More information

UET Welcomes IEEE PES Seattle Chapter. May 2014

UET Welcomes IEEE PES Seattle Chapter. May 2014 UET Welcomes IEEE PES Seattle Chapter May 2014 UniEnergy Technologies Mission: Be a major global provider of bulk energy storage solutions through innovation, quality and strategic partnerships We will

More information

Yuan Ze University 元智大學 Department of Mechanical Engineering. SOFC Science and Technology

Yuan Ze University 元智大學 Department of Mechanical Engineering. SOFC Science and Technology FUEL CELL CENTER Yuan Ze University 元智大學 Department of Mechanical Engineering ---ooo--- SOFC Science and Technology Dr. Guo-bin Jung Outline Chapter 1. Introduction to Solid Oxide Fuel Cell Chapter 2.

More information

PEM & Alkaline Electrolyzers Bottom-up Manufacturing Cost Analysis

PEM & Alkaline Electrolyzers Bottom-up Manufacturing Cost Analysis PEM & Alkaline Electrolyzers Bottom-up Manufacturing Cost Analysis Yong Yang Austin Power David Hart E4tech November 10, 2014 Austin Power Engineering LLC 1 Cameron ST Wellesley, MA 02482 USA www.austinpowereng.com

More information

Advanced Lithium-ion Battery Manufacturing R&D

Advanced Lithium-ion Battery Manufacturing R&D EVS28 KINTEX, Korea, May 3-6, 2015 Advanced Lithium-ion Battery Manufacturing R&D James F. Miller Argonne National Laboratory, Argonne, Illinois, USA 60439 Introduction I. The cost of lithium-ion batteries

More information

Electrochemistry is fundamentally different from combustion. What if we treated fuel cells differently from a heat engines?

Electrochemistry is fundamentally different from combustion. What if we treated fuel cells differently from a heat engines? Electrochemistry is fundamentally different from combustion. What if we treated fuel cells differently from a heat engines? What if carbon-capture was an integral part of a power cycle? Oxy-FC is a novel

More information

Electrodes and fuel cells cases and visions

Electrodes and fuel cells cases and visions Electrodes and fuel cells cases and visions Peter Holtappels Head of Programme Electrochemistry peho@risoe.dtu.dk Fuel Cells and Solid State Chemistry Division Risø National Laboratory for Sustainable

More information

Design and Fabrication of Air breathing Solid Oxide Fuel Cell and its performance testing using Hydrogen gas

Design and Fabrication of Air breathing Solid Oxide Fuel Cell and its performance testing using Hydrogen gas Design and Fabrication of Air breathing Solid Oxide Fuel Cell and its performance testing using Hydrogen gas 1 V. Savithiri, 2 R. Pradeep, 3 K. Praveen Krishna 1Department of Mechanical Engineering, St.

More information

Final publishable summary report Executive Summary

Final publishable summary report Executive Summary Final publishable summary report Executive Summary Beyond the state of the art, the EVOLVE cell concept aims at combining the beneficial characteristics of the previous cell generations, the so called

More information

Affordable Multi-Layer Ceramic (MLC) Manufacturing for Power Systems (AMPS)

Affordable Multi-Layer Ceramic (MLC) Manufacturing for Power Systems (AMPS) Affordable Multi-Layer Ceramic (MLC) Manufacturing for Power Systems (AMPS) Final Report - Phases I and II Reporting Period Start Date: 1 October 1999 Reporting Period End Date: 31 March 2002 Author: E.

More information

Cost Comparison of Fan-out Wafer-Level Packaging to Fan-out Panel- Based Packaging

Cost Comparison of Fan-out Wafer-Level Packaging to Fan-out Panel- Based Packaging Cost Comparison of Fan-out Wafer-Level Packaging to Fan-out Panel- Based Packaging Chet Palesko, Amy Lujan SavanSys Solutions LLC 10409 Peonia Ct. Austin, TX 78733 Ph: 512-402-9943 chetp@savansys.com,

More information

Study of SOFC Operational Behavior by Applying Diagnostic Methods

Study of SOFC Operational Behavior by Applying Diagnostic Methods Study of SOFC Operational Behavior by Applying In-Situ Diagnostic Methods Günter Schiller, Wolfgang Bessler, Caroline Willich, K. Andreas Friedrich Deutsches Zentrum für Luft- und Raumfahrt, Institut für

More information

Design, Efficiency and Materials for Carbon/Air Fuel Cells

Design, Efficiency and Materials for Carbon/Air Fuel Cells UCRL-PRES-154748 Design, Efficiency and Materials for Carbon/Air Fuel Cells Direct Carbon Fuel Cell Workshop NETL, Pittsburgh PA by John F. Cooper Lawrence Livermore National Laboratory PO Box 808 L-352,

More information

10 kw SOFC Power System Commercialization SECA Semi-Annual Report 41244R04

10 kw SOFC Power System Commercialization SECA Semi-Annual Report 41244R04 Project Start Date (revised): 1/1/02 Reporting Period Start Date: 7/1/03 Reporting Period End Date: 12/31/03 Principal Authors: Dan Norrick Cummins Power Generation Brad Palmer Cummins Power Generation

More information

Rune Bredesen Vice President Research

Rune Bredesen Vice President Research Hydrogen related R&D at SINTEF Materials and Chemistry Rune Bredesen Vice President Research SINTEF Materials and Chemistry SINTEF Materials and Chemistry Who we are SINTEF is a non profit polytechnic

More information

ESL ElectroScience, 416 East Church Road, King of Prussia, PA Abstract

ESL ElectroScience, 416 East Church Road, King of Prussia, PA Abstract Manufacture of LSM and GD Thick Film Pastes for SOFs in ISO 00 Environment. H. Feingold a, P. Palanisamy a, K. Takarabe b, Z. Topka a, and R. S. Webb a a ESL ElectroScience, East hurch Road, King of Prussia,

More information

Investigations on polarization losses in planar Solid Oxide Fuel Cells

Investigations on polarization losses in planar Solid Oxide Fuel Cells Investigations on polarization losses in planar Solid Oxide Fuel Cells S.Senthil Kumar, Akshay Iyer, B. ShriPrakash, S.T. Aruna CSIR National Aerospace Laboratories Bangalore-560017 Presentation at COMSOL

More information

Study of SOFC Stabilisation under Load Using EIS Analysis and Polarisation Curves

Study of SOFC Stabilisation under Load Using EIS Analysis and Polarisation Curves Department Of Mechanical Engineering Study of SOFC Stabilisation under Load Using EIS Analysis and Polarisation Curves Abdolkarim Sheikhansari (a.sheikhansari@sheffield.ac.uk) Jonathan Paragreen Simon

More information

Energy from Renewables: Envisioning a Brighter Future. Fuel Cells Charles Vesely

Energy from Renewables: Envisioning a Brighter Future. Fuel Cells Charles Vesely Energy from Renewables: Envisioning a Brighter Future Fuel Cells Charles Vesely Who are we? Cummins Power Generation (AKA Onan) World Headquarters, Central Engineering, and Manufacturing for the Americas

More information

Testing SOFCs with Blends of Hydrogen and Methane

Testing SOFCs with Blends of Hydrogen and Methane Testing SOFCs with Blends of Hydrogen and Methane Gerhard Buchinger 1,2, Thomas Raab 1, Stefan Griesser 1, Vincent Lawlor 1, Jürgen Kraut 3, Renate Hiesgen 3, Dieter Meissner 1 1 Upper Austrian University

More information

A0606. Functional SOFC Interfaces Created by Aerosol-Spray Deposition

A0606. Functional SOFC Interfaces Created by Aerosol-Spray Deposition A0606 Functional SOFC Interfaces Created by Aerosol-Spray Deposition Neil Kidner, Kari Riggs, Gene Arkenberg, Matthew Seabaugh, Scott Swartz Nexceris, LLC 404 Enterprise Drive, Lewis Center Tel.: +1-614-842-6606

More information

Fuel Cells for Stationary Power Generation

Fuel Cells for Stationary Power Generation Fuel Cells for Stationary Power Generation A Comprehensive Analysis of Technology, Plant Construction, and Marketing Strategy for Small Buildings The University of Oklahoma Fuel Cell Corporation April

More information

Maximizing Hydrogen Production of A Solid Oxide Electrolyser Cell

Maximizing Hydrogen Production of A Solid Oxide Electrolyser Cell 212 International Conference on Clean and Green Energy IPCBEE vol.27 (212) (212) IACSIT Press, Singapore Maximizing Hydrogen Production of A Solid xide Electrolyser Cell Qiong Cai 1+, Claire S. Adjiman

More information

A Study of the Impact of Sulphur on the Performance of Intermediate Temperature Solid Oxide Fuel Cells with Nickel Gadolinium Doped Ceria Anodes

A Study of the Impact of Sulphur on the Performance of Intermediate Temperature Solid Oxide Fuel Cells with Nickel Gadolinium Doped Ceria Anodes A Study of the Impact of Sulphur on the Performance of Intermediate Temperature Solid Oxide Fuel Cells with Nickel Gadolinium Doped Ceria Anodes Dan Brett 1&2, Pattaraporn Lohsoontorn 2, Nigel Brandon

More information

Carbon Tolerant Ni/ScCeSZ SOFC Anode by Aqueous Tape Casting

Carbon Tolerant Ni/ScCeSZ SOFC Anode by Aqueous Tape Casting Carbon Tolerant Ni/ScCeSZ SOFC Anode by Aqueous Tape Casting Nor Anisa Arifin Supervisors: Prof Tim Button Prof Robert Steinberger-Wilckens Centre for Fuel Cell & Hydrogen Research School of Chemical Engineering

More information

SOFC Development and Characterisation at DLR Stuttgart

SOFC Development and Characterisation at DLR Stuttgart SOFC Development and Characterisation at DLR Stuttgart G. Schiller German Aerospace Center (DLR) Institute of Technical Thermodynamics 2nd Indo-German Workshop on Fuel Cells and Hydrogen Energy, Karlsruhe,

More information

Chromium impact on Strontium and Manganese-free cathode materials

Chromium impact on Strontium and Manganese-free cathode materials Chromium impact on Strontium and Manganese-free cathode materials M.K. Stodolny a B.A. Boukamp b D.H.A. Blank b G. Rietveld a F.P.F. van Berkel a a University of Twente, Department of Science and Technology

More information

Advances in Low Temperature Coatings for Solid Oxide Fuel Cell Components

Advances in Low Temperature Coatings for Solid Oxide Fuel Cell Components Advances in Low Temperature Coatings for Solid Oxide Fuel Cell Components N. J. Kidner a, S. Ibanez a, M. M. Seabaugh a, and S. L. Swartz a a Nexceris LLC, Lewis Center, Ohio 43035, USA In the development

More information

Effect of Starting Materials on the Characteristics of (La 1-x Sr x ) Mn 1+y O 3-δ Powder Synthesized by GNP

Effect of Starting Materials on the Characteristics of (La 1-x Sr x ) Mn 1+y O 3-δ Powder Synthesized by GNP Korea-America nano forum Effect of Starting Materials on the Characteristics of (La 1-x Sr x ) Mn 1+y O 3-δ Powder Synthesized by GNP 2007. 04. 26 orea nstitute of eramic ngineering & echnology MI-Jai

More information

Optimizing Immersion Silver Chemistries For Copper

Optimizing Immersion Silver Chemistries For Copper Optimizing Immersion Silver Chemistries For Copper Ms Dagmara Charyk, Mr. Tom Tyson, Mr. Eric Stafstrom, Dr. Ron Morrissey, Technic Inc Cranston RI Abstract: Immersion silver chemistry has been promoted

More information

Development and demonstration of alkaline fuel cell technology: An overview of EU-funded projects led by AFC Energy plc.

Development and demonstration of alkaline fuel cell technology: An overview of EU-funded projects led by AFC Energy plc. Development and demonstration of alkaline fuel cell technology: An overview of EU-funded projects led by AFC Energy plc. 1 AFC Energy Plc: An Introduction Vision To develop and produce a reliable alkaline

More information

High Temperature Fuel Cells (SOFC) Status

High Temperature Fuel Cells (SOFC) Status High Temperature Fuel Cells (SOFC) Status Mogens Mogensen Fuel Cells and Solid State Chemistry Department Risø National Laboratory Roskilde, Denmark 2 nd International Hydrogen Train and Hydrail Conference,

More information

Optimizing Immersion Silver Chemistries For Copper

Optimizing Immersion Silver Chemistries For Copper Optimizing Immersion Silver Chemistries For Copper Ms Dagmara Charyk, Mr. Tom Tyson, Mr. Eric Stafstrom, Dr. Ron Morrissey, Technic Inc Cranston RI Abstract: Immersion silver chemistry has been promoted

More information

Shinichi Makino 1, Kazuya Yamada 1,Masatoshi Hodotsuka 1, Kentaro Matsunaga 1,

Shinichi Makino 1, Kazuya Yamada 1,Masatoshi Hodotsuka 1, Kentaro Matsunaga 1, Influence of Steam Conversion Rate and Cathode Gas Composition on Performance of High-Temperature Steam Electrolysis Cell Shinichi Makino 1, Kazuya Yamada 1,Masatoshi Hodotsuka 1, Kentaro Matsunaga 1,

More information

Micro Fuel Cells Potential

Micro Fuel Cells Potential Mech 549 Nov. 6, 2007 Micro Fuel Cells Potential Longer Duration for equivalent weight & volume Energy Density Instant Charge Flat Discharge Low Self-Discharge Little Short-circuit protection required

More information

INNOVATIVE RESEARCH AND PRODUCTS, INC. EN-103 FUEL CELLS, HYDROGEN ENERGY AND RELATED NANOTECHNOLOGY A GLOBAL INDUSTRY AND MARKET ANALYSIS

INNOVATIVE RESEARCH AND PRODUCTS, INC. EN-103 FUEL CELLS, HYDROGEN ENERGY AND RELATED NANOTECHNOLOGY A GLOBAL INDUSTRY AND MARKET ANALYSIS irap INNOVATIVE RESEARCH AND PRODUCTS, INC. EN-103 FUEL CELLS, HYDROGEN ENERGY AND RELATED NANOTECHNOLOGY A GLOBAL INDUSTRY AND MARKET ANALYSIS Alton Parish Project Analyst INNOVATIVE RESEARCH AND PRODUCTS

More information

Supplementary Information

Supplementary Information Supplementary Information Promotion of Water-Mediated Carbon Removal by Nanostructured Barium Oxide/Nickel Interfaces in Solid Oxide Fuel Cells Lei Yang 1, YongMan Choi 2, Wentao Qin 1, Haiyan Chen 3,

More information

Standardization in SOFC Testing

Standardization in SOFC Testing Standardization in SOFC Testing Abstract The fuel industry has begun to pursue standardization of testing methods to enable comparison of results among participants: within laboratories, among different

More information

Joint Technology Initiatives Collaborative Project (FCH) FCH-JU WP4 - Development of lab-scale cell components

Joint Technology Initiatives Collaborative Project (FCH) FCH-JU WP4 - Development of lab-scale cell components Joint Technology Initiatives Collaborative Project (FCH) FCH-JU-2010-1 WP4 - Development of lab-scale cell components DELIVERABLE 4.3- Prepared by: HOGANAS Document control data Document ref. : METPROCELL-WP4-

More information

METSAPP Metal supported SOFC technology for stationary and mobile applications (GA number )

METSAPP Metal supported SOFC technology for stationary and mobile applications (GA number ) METSAPP Metal supported SOFC technology for stationary and mobile applications (GA number 278257) Niels Christiansen Topsoe Fuel Cell A/S Project & Partnership General Overview Metal supported SOFC technology

More information

Titanium coatings deposited by thermal spraying for bipolar plates of PEM electrolyzers

Titanium coatings deposited by thermal spraying for bipolar plates of PEM electrolyzers 1 > Titanium coatings - ise13147 > A. S. Gago et al. ISE 213 > September 9, 213 Titanium coatings deposited by thermal spraying for bipolar plates of PEM electrolyzers A. S. Gago, A. S. Ansar, N. Wagner,

More information

Modeling of Local Cell Degradation in Solid Oxide Fuel Cells: Cumulative Effect of Critical Operating Points

Modeling of Local Cell Degradation in Solid Oxide Fuel Cells: Cumulative Effect of Critical Operating Points Modeling of Local Cell Degradation in Solid Oxide Fuel Cells: Cumulative Effect of Critical Operating Points Zacharie Wuillemin, Antonin Faes, Stefan Diethelm, Arata Nakajo, Nordahl Autissier, Jan Van

More information

Chapter Four. Process Selection

Chapter Four. Process Selection Chapter Four Process Selection Reading : Reference book M.F. Ashby- Chapter 7 There is an interaction between material, shape and process Function Materials properties and shape limit the choice of process.

More information

Integrated Electrochemical Thermal Ammonia Production Process

Integrated Electrochemical Thermal Ammonia Production Process Integrated Electrochemical Thermal Ammonia Production Process Junhua Jiang, Ted Aulich, Alexey Ignatchenko, and Chris Zygarlicke, Energy & Environmental Research Center (EERC) University of North Dakota

More information

PERFORMANCE OF Ni- ELECTRODEPOSITED GDC ANODES FOR SOLID OXIDE FUEL CELLS

PERFORMANCE OF Ni- ELECTRODEPOSITED GDC ANODES FOR SOLID OXIDE FUEL CELLS PERFORMANCE OF Ni- ELECTRODEPOSITED GDC ANODES FOR SOLID OXIDE FUEL CELLS Zadariana Jamil 1,2, Enrique Ruiz-Trejo 1, Paul Boldrin 1 and Nigel P Brandon 1 1 Imperial College London,UK 2 Faculty of Civil

More information

Advanced Analytical Chemistry Lecture 10. Chem 4631

Advanced Analytical Chemistry Lecture 10. Chem 4631 Advanced Analytical Chemistry Lecture 10 Chem 4631 What is a fuel cell? An electro-chemical energy conversion device A factory that takes fuel as input and produces electricity as output. O 2 (g) H 2 (g)

More information

Status and Trends for Stationary Fuel Cell Power Systems

Status and Trends for Stationary Fuel Cell Power Systems Status and Trends for Stationary Fuel Cell Power Systems Dan Rastler Technical Leader, Distributed Energy Resources Program drastler@epri.com 650-855-2521 Discussion Topics Review Technical and R&D Status

More information

Fuel cell products for global energy markets. Introduction to Ceres Power September 2009

Fuel cell products for global energy markets. Introduction to Ceres Power September 2009 Fuel cell products for global energy markets Introduction to Ceres Power September 2009 bob.flint@cerespower.com Contents Overview of Ceres Power Product programmes Product development and manufacturing

More information

Development of Novel Anode Material for Intermediate Temperature SOFC (IT-SOFC)

Development of Novel Anode Material for Intermediate Temperature SOFC (IT-SOFC) Development of Novel Anode Material for Intermediate Temperature SOFC (IT-SOFC) Amit Sinha *, D. N. Miller and J.T.S. Irvine School of Chemistry, University of St Andrews North Haugh, St Andrews KY16 9ST

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

MIE 517 Final Celebration of Learning Wednesday, April 19, 2017, 2-4:30pm

MIE 517 Final Celebration of Learning Wednesday, April 19, 2017, 2-4:30pm MIE 517 Final Celebration of Learning Wednesday, April 19, 2017, 2-4:30pm Instructions: Answer all questions and show all work for which you wish to receive credit in the answer booklets. You may use one

More information

Prof. Mario L. Ferrari

Prof. Mario L. Ferrari Sustainable Energy Mod.1: Fuel Cells & Distributed Generation Systems Dr. Ing. Mario L. Ferrari Thermochemical Power Group (TPG) - DiMSET University of Genoa, Italy Lesson IV: fuel cells (PEFC or PEM)

More information

Determination of Life Times of HT-PEMFC MEAs and Fuel Cell Systems

Determination of Life Times of HT-PEMFC MEAs and Fuel Cell Systems Determination of Life Times of HT-PEMFC MEAs and Fuel Cell Systems F. Javier Pinar, Maren Rastedt, Nadine Pilinski and Peter Wagner 07.04.2016 Prague (Czech Republic) CISTEM Expert Workshop side event

More information

Novel Sulfur-Tolerant Anodes for Solid Oxide Fuel Cells

Novel Sulfur-Tolerant Anodes for Solid Oxide Fuel Cells Novel Sulfur-Tolerant Anodes for Solid Oxide Fuel Cells Final Report Reporting Period: October 1, 2004 to December 31, 2008 DOE Contract No.: DOE - DE-FC26-04NT42219 DOE Project Manager: Dr. Briggs White

More information

Summer School June 2-4 th 2015

Summer School June 2-4 th 2015 MAT4BAT Advanced materials for batteries Summer School June 2-4 th 2015 «Electrode formulation and processing» Dane Sotta (CEA-Liten, France) Mat4Bat Summer School Dane Sotta (CEA) June 3 rd 2015 1 Outline

More information

Microsystem Integration (March 20, 2017)

Microsystem Integration (March 20, 2017) Microsystem Integration (March 20, 2017) Mid-term exam: open notes/computers/ - 1:00 to 1:50 p.m., Wednesday, March 22. Homeworks #1 to 7. - Solutions of #1 to 7 are posted. Workshops #1 to 15. - Workshops

More information

CFY - STACK AS PLATFORM FOR SOFC/SOEC APPLICATIONS. Content FROM FUELS TO ELECTRICITY

CFY - STACK AS PLATFORM FOR SOFC/SOEC APPLICATIONS. Content FROM FUELS TO ELECTRICITY CFY - STACK AS PLATFORM FOR SOFC/SOEC APPLICATIONS Content Introduction CFY-Stack Stack Technology Performance and Durability Experience from System Operation Outlook IKTS - Overview Regular staff: 438

More information

Performance of a 10 kw SOFC Demonstration Unit

Performance of a 10 kw SOFC Demonstration Unit PUBLICATION [P2] Performance of a 10 kw SOFC Demonstration Unit In: ECS Transactions 35 (1), pp. 113-120 2011 The Electrochemical Society Reproduced by the permission of ECS The Electrochemical Society

More information

EVALUATION OF INTERCONNECT ALLOYS AND CATHODE CONTACT COATINGS FOR SOFC STACKS

EVALUATION OF INTERCONNECT ALLOYS AND CATHODE CONTACT COATINGS FOR SOFC STACKS ECN-RX--05-084 EVALUATION OF INTERCONNECT ALLOYS AND CATHODE CONTACT COATINGS FOR SOFC STACKS Nico Dekker and Bert Rietveld (ECN), Joachim Laatsch and Frank Tietz (Forschungszentrum Jülich, Germany) Published

More information

A Stable Graphite Negative Electrode for the Lithium- Sulfur Battery

A Stable Graphite Negative Electrode for the Lithium- Sulfur Battery A Stable Graphite Negative Electrode for the Lithium- Sulfur Battery Fabian Jeschull, Daniel Brandell, Kristina Edström, Matthew J. Lacey Department of Chemistry - Ångström Laboratory, Uppsala University,

More information

OPPORTUNITIES FOR HYDROGEN-BASED ENERGY STORAGE FOR ELECTRIC UTILITIES 1

OPPORTUNITIES FOR HYDROGEN-BASED ENERGY STORAGE FOR ELECTRIC UTILITIES 1 OPPORTUNITIES FOR HYDROGEN-BASED ENERGY STORAGE FOR ELECTRIC UTILITIES 1 T. Ramsden 2, B. Kroposki 2, J. Levene 2 Abstract One potential market opportunity for hydrogen is the use of hydrogen as an energy

More information

Welcome to IPAIRS Version 2.0

Welcome to IPAIRS Version 2.0 Patent Search Engine Help Welcome to IPAIRS Version 2.0 Granted Patents Published Applications Application Status Agent Register Patent Eregister APPLICATION NUMBER APPLICANT NAME 1954/DEL/2010 DATE OF

More information

Titanium coatings deposited by thermal spraying for bipolar plates of PEM electrolysers

Titanium coatings deposited by thermal spraying for bipolar plates of PEM electrolysers 1> Titanium coatings - A73 > A. S. Gago et al. ECFC 213 > July 4, 213 Titanium coatings deposited by thermal spraying for bipolar plates of PEM electrolysers A. S. Gago, A. S. Ansar, N. Wagner, J. Arnold,

More information

LOW TEMPERATURE PHOTONIC SINTERING FOR PRINTED ELECTRONICS. Dr. Saad Ahmed XENON Corporation November 19, 2015

LOW TEMPERATURE PHOTONIC SINTERING FOR PRINTED ELECTRONICS. Dr. Saad Ahmed XENON Corporation November 19, 2015 LOW TEMPERATURE PHOTONIC SINTERING FOR PRINTED ELECTRONICS Dr. Saad Ahmed XENON Corporation November 19, 2015 Topics Introduction to Pulsed Light Photonic sintering for Printed Electronics R&D Tools for

More information

High Efficiency Operation Method for Solid Oxide Fuel Cell System

High Efficiency Operation Method for Solid Oxide Fuel Cell System 62 China Steel Technical Report, No. 29, High pp.62-66, Efficiency (2016) Operation Method for Solid Oxide Fuel Cell System High Efficiency Operation Method for Solid Oxide Fuel Cell System CHUN-HSIU WANG

More information

TOMOGRAPHIC AND HYPERSPECTRAL ANALYSIS OF POROUS THREE-DIMENSIONAL SOLID OXIDE FUEL CELL CATHODES AT MULTIPLE LENGTH SCALES

TOMOGRAPHIC AND HYPERSPECTRAL ANALYSIS OF POROUS THREE-DIMENSIONAL SOLID OXIDE FUEL CELL CATHODES AT MULTIPLE LENGTH SCALES TOMOGRAPHIC AND HYPERSPECTRAL ANALYSIS OF POROUS THREE-DIMENSIONAL SOLID OXIDE FUEL CELL CATHODES AT MULTIPLE LENGTH SCALES Joshua Taillon, Christopher Pellegrinelli, Yilin Huang, Eric Wachsman, and Lourdes

More information

Ceramic Microchannel Devices for Thermal Management. C. Lewinsohn, J. Fellows, and H. Anderson Ceramatec, Inc. Salt Lake City, UT

Ceramic Microchannel Devices for Thermal Management. C. Lewinsohn, J. Fellows, and H. Anderson Ceramatec, Inc. Salt Lake City, UT Ceramic Microchannel Devices for Thermal Management C. Lewinsohn, J. Fellows, and H. Anderson Ceramatec, Inc. Salt Lake City, UT The Right Size for The Right Physics centi milli micro 2 Multiscale Structure

More information

Efforts toward Introduction of SOFC-MGT Hybrid System to the Market

Efforts toward Introduction of SOFC-MGT Hybrid System to the Market 1 Efforts toward Introduction of SOFC-MGT Hybrid System to the Market KAZUO TOMIDA *1 KIMI KODO *2 DAIGO KOBAYASHI *2 YOSHIKI KATO *2 SHIGENORI SUEMORI *3 YASUTAKA URASHITA *4 Toward a future low-carbon

More information

Electrolysis for energy storage

Electrolysis for energy storage Electrolysis for energy storage Mogens B. Mogensen and Christodoulos Chatzichristodoulou Department of Energy Conversion and Storage Technical University of Denmark Acknowledgements to colleagues at DTU

More information

A Novel Metal Supported SOFC Fabrication Method Developed in KAIST: a Sinter-Joining Method

A Novel Metal Supported SOFC Fabrication Method Developed in KAIST: a Sinter-Joining Method Journal of the Korean Ceramic Society Vol. 53, No. 5, pp. 478~482, 2016. http://dx.doi.org/10.4191/kcers.2016.53.5.478 Review A Novel Metal Supported SOFC Fabrication Method Developed in KAIST: a Sinter-Joining

More information

Electrical Property of Thick Film Electrolyte for Solid Oxide Fuel Cell

Electrical Property of Thick Film Electrolyte for Solid Oxide Fuel Cell Journal of Metals, Materials and Minerals, Vol.18 No.2 pp.7-11, 28 Electrical Property of Thick Film Electrolyte for Solid Oxide Fuel Cell Thitimaporn DUANGMANEE 1, Suda WANNAKITTI 2, Rapeepong SUWANWARANGKUL

More information