Core/Shell Nanoheterostructures

Size: px
Start display at page:

Download "Core/Shell Nanoheterostructures"

Transcription

1 High Temperature Photoluminescence of CdSe/CdS Core/Shell Nanoheterostructures Benjamin T. Diroll and Christopher B. Murray Department of Chemistry and Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, Figure S1. (a,b) Transmission electron microscopy, (c) absorption, and (d) photoluminescence (PL) data collected for a sample of CdSe nanorods (NRs) before and after performing a heating cycle for temperature-dependent PL measurements. The sample was heated to 600 K, then returned to 300 K and dissolved in hexanes to perform measurements. Scale Bars are 50 nm. (e) Steady-state PL from the same CdSe NRs at 300 K, 600 K, and returned to 300 K after heating. (f) Time-resolved photoluminescence signals from the same sample measured at the same temperatures. The results show strong PL quenching and short lifetimes at elevated temperatures similar to previous results. 1,2

2 Figure S2. Black open circles show the experimental values for the change in the energy maximum of the PL for each dot-in-rod and rod-in-rod sample measured in this paper, defined as the change from the maximum at 300 K. The black dashed line is the expected result based upon previous literature findings. 3,4 Blue squares show the change in the bandwidth of sample PL, defined as change in the FWHM compared to the FWHM measured at 300 K. The blue dashed line is the approximate broadening found in the literature. We have further assumed in this fitting that the samples show instrinsic FWHM of ~40 mev from 0 K to 300 K and that the band-gap change from 0 K to 300 K is 50 mev, both consistent with literature findings. 3 Figure S3. A reproduction of the plots from Figure 3 of the main text replacing the heating curve measurements of PL intensity with the cooling curve PL intensity measurements.

3 Figure S4. (a) PL intensity as a function of temperature plotted for three samples of sphere-insphere type CdSe/CdS nanocrystals (NCs) with their corresponding TEM images (b) and absorption spectra (c). Scale bars are 50 nm. Figure S5. (a,b) Scatter plots of the quantum yield measured at room temperature in solution with 450 nm excitation and the PL preserved at 600K and upon cooling back to 300 K. (c,d) Volume fraction of the core as a percentage of the total heterostructure volume, determined by

4 TEM, plotted against the preserved PL at 600 K and the PL intensity upon cooling back to 300 K. The difference symbols and colors represent samples made with different core samples. Figure S6. Enlarged selection from time-dependent PL data collected at 412 K showing the exponential rise in PL intensity fitted with the red line. Figure S7. Solution fluorescence lifetime data extracted for CdSe/CdS core/shell nanocrystals plotted against the fraction of the heterostructure volume occupied by the CdSe core. Lifetime data is extracted empirically according to literature methods. 5 Aggregated data are derived from samples studied in this work and previous work by the authors. 6

5 Figure S8. (a) Arrhenius plots of the non-radiative rate (using the quantum yield of the sample at room temperature weighted by the normalized temperature-dependent intensity and the radiative lifetime from TRPL measurements). Fit lines are linear fits to the data. (b) Extracted parameters from fits of (a), the attempt frequency and the activation energy. Sample numbers are derived from the table below. Figure S9. PL maxima of isotropic CdSe/CdS heterostructures made using seeded-growth techniques. Colors represent different samples.

6 Figure S10. Relative PL intensity in heating and cooling curves of CdSe/CdS dot-in-rod sample that has been overcoated with a CdZnS shell at 190 C. Approximately 90% of the PL is quenched upon returning to 300 K. Figure S11. TEM micrographs of samples used in this study. (a-c) large core dot-in-rod samples; (d) medium core dot-in-rod; (e-g) small core dot-in-rod samples; (h) rod-in-rod sample; samples of dot-in-rod (i) and rod-in-rod (j) synthesized at low temperature and not through seededgrowth. Scale bars are 50 nm (a-h), 10 nm (i), and 20 nm (j). Table of Seeded Core/Shell NRs Used in this Work Sample Core Length Width Volume PL@600K 325K 300K Τ QY (nm) (nm) (nm 3 ) return return (ns) 1 L L L M S S S Rod

7 Photoselection Anisotropy Full details of photoselection methods to determine fluorescence anisotropy can be found elsewhere. In short, anisotropy is defined as 2 in which V and H denote (1 st ) excitation polarizer position (vertical or horizontal) and (2 nd ) emission polarizer position. The factor corrects for the differential throughput of vertical or horizontal polarizations in instrumentation. Photoselection as described here presumes a randomly dispersed sample in which dipoles co-aligned with the incident polarization are selectively excited. This subpopulation of the ensemble is then responsible for emission of light and so any rotation of the sample after excitation decreases the measured anisotropy according to 1 in which τ is the radiative lifetime and is the rotational constant of the fluorophore. Decreasing the solvent viscosity results in smaller, but experiments in this paper are made under conditions such that for all temperatures measured. Typical fluorescence lifetimes of CdSe/CdS NRs are ~10-30 ns and typical rotational constants for the same are >1 μs. 7 References (1) Zhao, Y.; Riemersma, C.; Pietra, F.; Koole, R.; Donegá, C. de M.; Meijerink, A. High- Temperature Luminescence Quenching of Colloidal Quantum Dots. ACS Nano 2012, 6, (2) Rowland, C. E.; Schaller, R. D. Exciton Fate in Semiconductor Nanocrystals at Elevated Temperatures: Hole Trapping Outcompetes Exciton Deactivation. J. Phys. Chem. C 2013, 117, (3) Rainò, G.; Stöferle, T.; Moreels, I.; Gomes, R.; Kamal, J. S.; Hens, Z.; Mahrt, R. F. Probing the Wave Function Delocalization in CdSe/CdS Dot-in-Rod Nanocrystals by Time- and Temperature-Resolved Spectroscopy. ACS Nano 2011, 5, (4) Valerini, D.; Cretí, A.; Lomascolo, M.; Manna, L.; Cingolani, R.; Anni, M. Temperature Dependence of the Photoluminescence Properties of Colloidal CdSe ZnS Core/Shell Quantum Dots Embedded in a Polystyrene Matrix. Phys. Rev. B 2005, 71,

8 (5) She, C.; Demortière, A.; Shevchenko, E. V.; Pelton, M. Using Shape to Control Photoluminescence from CdSe/CdS Core/Shell Nanorods. J. Phys. Chem. Lett. 2011, 2, (6) Diroll, B. T.; Koschitzky, A.; Murray, C. B. Tunable Optical Anisotropy of Seeded CdSe/CdS Nanorods. J. Phys. Chem. Lett. 2014, 5, (7) Kamal, J.; Gomes, R.; Hens, Z.; Karvar, M.; Neyts, K.; Compernolle, S.; Vanhaecke, F. Direct Determination of Absorption Anisotropy in Colloidal Quantum Rods. Phys. Rev. B 2012, 85,

A Statistical Description of CdSe/CdS Dot-in-Rod Heterostructures Scanning Transmission Electron Microscopy

A Statistical Description of CdSe/CdS Dot-in-Rod Heterostructures Scanning Transmission Electron Microscopy A Statistical Description of CdSe/CdS Dot-in-Rod Heterostructures Scanning Transmission Electron Microscopy Benjamin T. Diroll, Natalie Gogotsi, and Christopher B. Murray* *cbmurray@sas.upenn.edu Materials.

More information

Tunable band structure in coreshell quantum dots through alloying of the core

Tunable band structure in coreshell quantum dots through alloying of the core Tunable band structure in coreshell quantum dots through alloying of the core A. Guille ǀ D. Mourad ǀ T. Aubert ǀ A. Houtepen ǀ R. Van Deun ǀ E. Brainis ǀ Z. Hens 1. Introduction Semiconductor nanocrystals

More information

How can we describe a crystal?

How can we describe a crystal? How can we describe a crystal? Examples of common structures: (1) The Sodium Chloride (NaCl) Structure (LiH, MgO, MnO, AgBr, PbS, KCl, KBr) The NaCl structure is FCC The basis consists of one Na atom and

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION SUPPORTING INFORMATION Type-II Core/Crown CdSe/CdTe Semiconductor Nanoplatelets Silvia Pedetti 1,2, Sandrine Ithurria 2, Hadrien Heuclin 1, Gilles Patriarche 3, Benoit Dubertret 2 1 Nexdot, 10 rue Vauquelin

More information

Deliverable D1.4: Report on QDs with tunable color and high quantum yield. Summary

Deliverable D1.4: Report on QDs with tunable color and high quantum yield. Summary Deliverable D.4: Report on QDs with tunable color and high quantum yield Responsible author: Dr Beata Kardynal, FZJ Summary The synthesis of the InP/ZnS nanocrystals with wavelengtnh in the range of green

More information

Supporting Information for. Electrical control of Förster energy transfer.

Supporting Information for. Electrical control of Förster energy transfer. 1 Supporting Information for Electrical control of Förster energy transfer. Klaus Becker 1, John M. Lupton 1*, Josef Müller 1, Andrey. L. Rogach 1, Dmitri V. Talapin, Horst Weller & Jochen Feldmann 1 1

More information

InP/ZnS core-shell quantum dots growth using non-toxic precursors. Summary

InP/ZnS core-shell quantum dots growth using non-toxic precursors. Summary Deliverable D1.3: InP/ZnS core-shell quantum dots growth using non-toxic precursors Responsible authors: Lifei Xi and Beata Kardynal, Forschungszentrum Jülich Summary Growth of InP/ZnS core-shell quantum

More information

Supplementary Note 1: Estimation of the number of the spectroscopic units inside the single Pdots

Supplementary Note 1: Estimation of the number of the spectroscopic units inside the single Pdots Supplementary Note 1: Estimation of the number of the spectroscopic units inside the single Pdots The number of the CP chains inside each PD1-L and PD2-L particle was estimated to be 28 and 444 chains/particle,respectively,

More information

Spectra Chacracterizations of Optical Nanoparticles

Spectra Chacracterizations of Optical Nanoparticles THAI NGUYEN UNIVERSITY OF EDUCATION Spectra Chacracterizations of Optical Nanoparticles Chu Viet Ha Department of Physics 18/2018 1 THAI NGUYEN UNIVERSITY OF EDUCATION Address 20 Luong Ngoc Quyen Street,

More information

Charge-Tunable Optical Properties in Colloidal Semiconductor Nanocrystals

Charge-Tunable Optical Properties in Colloidal Semiconductor Nanocrystals J. Phys. Chem. B 2001, 105, 2369-2373 2369 Charge-Tunable Optical Properties in Colloidal Semiconductor Nanocrystals Moonsub Shim,* Congjun Wang, and Philippe Guyot-Sionnest* James Franck Institute, UniVersity

More information

Investigation on photoluminescence quenching of CdSe/ZnS quantum dots by organic charge transporting materials

Investigation on photoluminescence quenching of CdSe/ZnS quantum dots by organic charge transporting materials Materials Science-Poland, 33(4), 2015, pp. 709-713 http://www.materialsscience.pwr.wroc.pl/ DOI: 10.1515/msp-2015-0120 Investigation on photoluminescence quenching of CdSe/ZnS quantum dots by organic charge

More information

Förster resonance energy transfer in mixed-size CdTe quantum dots. with optimized donor-acceptor concentration ratio

Förster resonance energy transfer in mixed-size CdTe quantum dots. with optimized donor-acceptor concentration ratio Invited Paper Förster resonance energy transfer in mixed-size CdTe quantum dots with optimized donor-acceptor concentration ratio Y. C. Lin a, *, W. C. Chou a, *, A. S. Susha b, and A. L. Rogach b a Department

More information

Single Molecules and Single Gold Nanoparticles: Detection and Spectroscopy

Single Molecules and Single Gold Nanoparticles: Detection and Spectroscopy Single Molecules and Single Gold Nanoparticles: Detection and Spectroscopy T. Jollans, W. Zhang, B. Pradhan A. Carattino, L. Hou, N. Verhart S. Adhikari, M. Caldarola M. Orrit Molecular Nano-Optics and

More information

Radiative Versus Nonradiative Decay Processes in Germanium Nanocrystals Probed by Time-resolved Photoluminescence Spectroscopy

Radiative Versus Nonradiative Decay Processes in Germanium Nanocrystals Probed by Time-resolved Photoluminescence Spectroscopy Mater. Res. Soc. Symp. Proc. Vol. 864 5 Materials Research Society E4.36. Radiative Versus Nonradiative Decay Processes in Germanium Nanocrystals Probed by Time-resolved Photoluminescence Spectroscopy

More information

FRET from Multiple Pathways in Fluorophore Labeled DNA

FRET from Multiple Pathways in Fluorophore Labeled DNA Supporting Information for FRET from Multiple Pathways in Fluorophore Labeled DNA Joseph S. Melinger 1,*, Ani Khachatrian 1, Mario G. Ancona 1, Susan Buckhout-White 3, Ellen R. Goldman 3, Christopher M.

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/3/5/e1603171/dc1 Supplementary Materials for Carbon dots in zeolites: A new class of thermally activated delayed fluorescence materials with ultralong lifetimes

More information

Supporting Information:

Supporting Information: Supporting Information: Radial-Position-Controlled Doping in CdS/ZnS Core/Shell Nanocrystals Yongan Yang, Ou Chen, Alexander Angerhofer and Y. Charles Cao* Department of Chemistry, University of Florida,

More information

Supporting Information to Carbon Nanodots Towards a Comprehensive Understanding of their Photoluminescence

Supporting Information to Carbon Nanodots Towards a Comprehensive Understanding of their Photoluminescence Supporting Information to Carbon Nanodots Towards a Comprehensive Understanding of their Photoluminescence Volker Strauss, a, Johannes T. Margraf, a,b, Christian Dolle, c Benjamin Butz, c Thomas J. Nacken,

More information

Supporting Information for

Supporting Information for Supporting Information for Cation exchange synthesis and optoelectronic properties of type II CdTe- Cu 2-x Te nano-heterostructures Ilka Kriegel, a, b * Andreas Wisnet, d, b Ajay Ram Srimath Kandada, e

More information

Engineering Quantum Dots for Live-Cell Single-Molecule Imaging

Engineering Quantum Dots for Live-Cell Single-Molecule Imaging Engineering Quantum Dots for Live-Cell Single-Molecule Imaging Andrew M. Smith and Shuming Nie Georgia Tech and Emory University Department of Biomedical Engineering 2011 NSF Nanoscale Science and Engineering

More information

Photoluminescence Spectroscopy on Chemically Synthesized Nanoparticles

Photoluminescence Spectroscopy on Chemically Synthesized Nanoparticles Photoluminescence Spectroscopy on Chemically Synthesized Nanoparticles Torben Menke 1 Institut für Angewandte Physik und Zentrum für Mikrostrukturforschung Universität Hamburg Diploma Talk, 18.12.27 1

More information

Supporting Information for: Photochemical Electronic Doping of Colloidal CdSe Nanocrystals

Supporting Information for: Photochemical Electronic Doping of Colloidal CdSe Nanocrystals for: Photochemical Electronic Doping of Colloidal CdSe Nanocrystals Jeffrey D. Rinehart, Alina M. Schimpf, Amanda L. Weaver, Alicia W. Cohn, and Daniel R. Gamelin Department of Chemistry, University of

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1. Mass spectrometry characterization of Au 25, Au 38, Au 144, Au 333, Au ~520 and Au ~940 nanoclusters. (a) MALDI-mass spectra of Au 144, Au 333, Au ~520 and

More information

Colloidal Synthesis of Homogeneously Alloyed CdSe x S 1-x Nanorods with Compositionally Tunable Photoluminescence

Colloidal Synthesis of Homogeneously Alloyed CdSe x S 1-x Nanorods with Compositionally Tunable Photoluminescence Colloidal Synthesis of Homogeneously Alloyed CdSe x S 1-x Nanorods with Compositionally Tunable Photoluminescence Shalini Singh, Ajay Singh, Kumaranand Palaniappan,Kevin M. Ryan * Materials and Surface

More information

Supplementary Figure 1. (a-d). SEM images of h-bn film on iron foil with corresponding Raman spectra. Iron foil was reused for re-growth of h-bn

Supplementary Figure 1. (a-d). SEM images of h-bn film on iron foil with corresponding Raman spectra. Iron foil was reused for re-growth of h-bn Supplementary Figure 1. (a-d). SEM images of h-bn film on iron foil with corresponding Raman spectra. Iron foil was reused for re-growth of h-bn after bubbling transfer. Scale bars (ad) 20 μm. Supplementary

More information

Efficiency Enhancement of Bulk-Heterojunction

Efficiency Enhancement of Bulk-Heterojunction Efficiency Enhancement of Bulk-Heterojunction Hybrid Solar Cells Michael Krüger, Yunfei Zhou, Michael Eck Freiburg Materials Research Centre (FMF), University of Freiburg, Germany Institute for Microsystems

More information

Electricity from the Sun (photovoltaics)

Electricity from the Sun (photovoltaics) Electricity from the Sun (photovoltaics) 0.4 TW US Electricity Consumption 100 100 square kilometers of solar cells could produce all the electricity for the US. But they are still too costly. The required

More information

Fluorescence quenching, Fluorescence anisotropy, Fluorescence resonance energy transfer (FRET)

Fluorescence quenching, Fluorescence anisotropy, Fluorescence resonance energy transfer (FRET) Fluorescence quenching, Fluorescence anisotropy, Fluorescence resonance energy transfer (FRET) Timescale of fluorescence processes The excited electron decay possibilities k f k ph k q k t k ic Biophysics

More information

A Thesis. Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of

A Thesis. Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of COLLOIDAL PBS AND PBS/CDS CORE/SHELL NANOSHEETS S K A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE

More information

Time resolved spectroscopic studies on some nanophosphors

Time resolved spectroscopic studies on some nanophosphors Bull. Mater. Sci., Vol. 31, No. 3, June 2008, pp. 401 407. Indian Academy of Sciences. Time resolved spectroscopic studies on some nanophosphors HARISH CHANDER and SANTA CHAWLA* Electronic Materials Division,

More information

Using Quantum Dots in Fluorescence Resonance Energy Transfer Studies

Using Quantum Dots in Fluorescence Resonance Energy Transfer Studies p.1/31 Using Quantum Dots in Fluorescence Resonance Energy Transfer Studies Rajarshi Guha Pennsylvania State University p.2/31 Introduction Using organic fluorophores as labels A brief overview of fluorescence

More information

Irreversible Temperature Quenching and Antiquenching of. Photoluminescence of ZnS/CdS:Mn/ZnS Quantum Well

Irreversible Temperature Quenching and Antiquenching of. Photoluminescence of ZnS/CdS:Mn/ZnS Quantum Well Irreversible Temperature Quenching and Antiquenching of Photoluminescence of ZnS/CdS:Mn/ZnS Quantum Well Quantum Dots X. Ding 1,a), R.C. Dai 2,a), Z. Zhao 3, Z.P. Wang 2, Z.Q. Sun 1, Z.M. Zhang 2b) and

More information

Cellular imaging using Nano- Materials. A Case-Study based approach Arun Murali, Srivats V

Cellular imaging using Nano- Materials. A Case-Study based approach Arun Murali, Srivats V Cellular imaging using Nano- Materials A Case-Study based approach Arun Murali, Srivats V Agenda Discuss a few papers Explain a couple of new imaging techniques and their benefits over conventional imaging

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide Supplementary Figure S1: Commonly-observed shapes in MoS 2 CVD. Optical micrographs of various CVD MoS2 crystal shapes

More information

Influence of Shelling Temperature and Time on the Optical and Structural Properties of CuInS2/ZnS Quantum Dots

Influence of Shelling Temperature and Time on the Optical and Structural Properties of CuInS2/ZnS Quantum Dots University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 12-2015 Influence of Shelling Temperature and Time on the Optical and Structural Properties of CuInS2/ZnS Quantum Dots Colette

More information

Semiconductor and Metal Nanocrystals

Semiconductor and Metal Nanocrystals Semiconductor and Metal Nanocrystals Synthesis and Electronic and Optical Properties edited by Victor I. Klimov Los Alamos National Laboratory Los Alamos, New Mexico, U.S.A. MARCEL MARCEL DEKKER, INC.

More information

Supporting Information for Particle-size Dependent Förster Resonance Energy Transfer from Upconversion Nanoparticles to Organic Dyes

Supporting Information for Particle-size Dependent Förster Resonance Energy Transfer from Upconversion Nanoparticles to Organic Dyes Supporting Information for Particle-size Dependent Förster Resonance Energy Transfer from Upconversion Nanoparticles to Organic Dyes Verena Muhr a, Christian Würth b, Marco Kraft b, Markus Buchner a, Antje

More information

Gold nanorods as multifunctional probes. in liquid crystalline DNA matrix

Gold nanorods as multifunctional probes. in liquid crystalline DNA matrix Supporting Information Gold nanorods as multifunctional probes in liquid crystalline DNA matrix Joanna Olesiak-Banska, Marta Gordel, Katarzyna Matczyszyn, Vasyl Shynkar, Joseph Zyss, Marek Samoc Extinction

More information

FLUORESCENCE GAS SENSOR BASED ON CdTe QUANTUM DOTS FOR DETECTION OF VOLATILE ORGANIC COMPOUNDS GAS

FLUORESCENCE GAS SENSOR BASED ON CdTe QUANTUM DOTS FOR DETECTION OF VOLATILE ORGANIC COMPOUNDS GAS FLUORESCENCE GAS SENSOR BASED ON CdTe QUANTUM DOTS FOR DETECTION OF VOLATILE ORGANIC COMPOUNDS GAS Norhayati Abu Bakar 1, Aidhia Rahmi 1, Akrajas Ali Umar 1. *, Muhamad Mat Salleh 1 and Muhammad Yahaya

More information

Supplementary Figure 1 TEM of external salt byproducts. TEM image of some salt byproducts precipitated out separately from the Si network, with

Supplementary Figure 1 TEM of external salt byproducts. TEM image of some salt byproducts precipitated out separately from the Si network, with Supplementary Figure 1 TEM of external salt byproducts. TEM image of some salt byproducts precipitated out separately from the Si network, with non-uniform particle size distribution. The scale bar is

More information

Förster Resonance Energy Transfer between Quantum Dot Donors and Quantum Dot Acceptors

Förster Resonance Energy Transfer between Quantum Dot Donors and Quantum Dot Acceptors Sensors 2015, 15, 13288-13325; doi:10.3390/s150613288 Review OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Förster Resonance Energy Transfer between Quantum Dot Donors and Quantum Dot

More information

Chalcogenide Letters Vol. 6, No. 11, November 2009, p

Chalcogenide Letters Vol. 6, No. 11, November 2009, p Chalcogenide Letters Vol. 6, No. 11, November 2009, p. 617 622 TUNABILITY OF STRUCTURAL, SURFACE TEXTURE, COMPOSITIONAL AND OPTICAL PROPERTIES OF CdZnS THIN FILMS BY PHOTO ASSISTED- CHEMICAL BATH DEPOSITION

More information

Supplementary Figure S1. High-resolution XPS spectra in the Cu 2p region and Cu LMM spectra are shown in (A) and (B) respectively for CdSe NCs

Supplementary Figure S1. High-resolution XPS spectra in the Cu 2p region and Cu LMM spectra are shown in (A) and (B) respectively for CdSe NCs Supplementary Figure S1. High-resolution XPS spectra in the Cu 2p region and Cu LMM spectra are shown in (A) and (B) respectively for CdSe NCs treated with 651 Cu + ions per NC and in (C) and (D) respectively

More information

Shape and Property Control of Mn Doped ZnSe. Quantum Dots: From Branched to Spherical

Shape and Property Control of Mn Doped ZnSe. Quantum Dots: From Branched to Spherical Supporting information for Shape and Property Control of Mn Doped ZnSe Quantum Dots: From Branched to Spherical Yimin A. Wu 1*, Jamie H. Warner 1 1 Department of materials, University of Oxford, Parks

More information

Supporting Information. AlN/h-BN Heterostructures for Mg Dopant-Free Deep Ultraviolet Photonics

Supporting Information. AlN/h-BN Heterostructures for Mg Dopant-Free Deep Ultraviolet Photonics Supporting Information AlN/h-BN Heterostructures for Mg Dopant-Free Deep Ultraviolet Photonics D. A. Laleyan 1,2, S. Zhao 1, S. Y. Woo 3, H. N. Tran 1, H. B. Le 1, T. Szkopek 1, H. Guo 4, G. A. Botton

More information

Supplementary Figure 1. Energy-dispersive X-ray spectroscopy (EDS) of a wide-field of a) 2 nm, b) 4 nm and c) 6 nm Cu 2 Se nanocrystals (NCs),

Supplementary Figure 1. Energy-dispersive X-ray spectroscopy (EDS) of a wide-field of a) 2 nm, b) 4 nm and c) 6 nm Cu 2 Se nanocrystals (NCs), Supplementary Figure 1. Energy-dispersive X-ray spectroscopy (EDS) of a wide-field of a) 2 nm, b) 4 nm and c) 6 nm Cu 2 Se nanocrystals (NCs), respectively. To the right of each spectrum us shown a lowmagnification

More information

Supporting Information. Photoinduced Anion Exchange in Cesium Lead Halide Perovskite Nanocrystals

Supporting Information. Photoinduced Anion Exchange in Cesium Lead Halide Perovskite Nanocrystals Supporting Information Photoinduced Anion Exchange in Cesium Lead Halide Perovskite Nanocrystals David Parobek, Yitong Dong, Tian Qiao, Daniel Rossi, Dong Hee Son* Department of Chemistry, Texas A&M University,

More information

Lab 1: Ensemble Fluorescence Basics

Lab 1: Ensemble Fluorescence Basics Lab 1: Ensemble Fluorescence Basics This laboratory module is divided into two sections. The first one is on organic fluorophores, and the second one is on ensemble measurement of FRET (Fluorescence Resonance

More information

Toggling Between Blue and Red Emitting Fluorescent Silver Nanoclusters

Toggling Between Blue and Red Emitting Fluorescent Silver Nanoclusters Supporting Information Toggling Between Blue and Red Emitting Fluorescent Silver Nanoclusters Uttam Anand, Subhadip Ghosh and Saptarshi Mukherjee * Department of Chemistry, Indian Institute of Science

More information

Energy transfer in colloidal CdTe quantum dot nanoclusters

Energy transfer in colloidal CdTe quantum dot nanoclusters Energy transfer in colloidal CdTe quantum dot nanoclusters Clare Higgins, 1 Manuela Lunz, 1 A. Louise Bradley, 1,* Valerie A. Gerard, 2 Stephen Byrne, 2 Yurii K. Gun ko, 2 Vladimir Lesnyak, 3 and Nikolai

More information

Exploring metallic nanoparticles in Biophotonics

Exploring metallic nanoparticles in Biophotonics Exploring metallic nanoparticles in Biophotonics Renato E. de Araujo Laboratório de Óptica Biomédica e Imagem, Universidade Federal de Pernambuco Recife, PE, Brazil. renato.earaujo@ufpe.br LABORATÓRIO

More information

Ligand effect on size, valence state and red/near infrared photoluminescence of bidentate thiol gold nanoclusters - Supporting information

Ligand effect on size, valence state and red/near infrared photoluminescence of bidentate thiol gold nanoclusters - Supporting information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 14 47 Reflector Spec #1 MC[BP = 277.1, 12167] Ligand effect on size, valence state and red/near infrared

More information

Exciton erbium energy transfer in Si nanocrystal-doped SiO 2

Exciton erbium energy transfer in Si nanocrystal-doped SiO 2 Materials Science and Engineering B81 (2001) 3 8 www.elsevier.com/locate/mseb Exciton erbium energy transfer in Si nanocrystal-doped SiO 2 P.G. Kik, A. Polman * FOM Institute for Atomic and Molecular Physics,

More information

Dynamics of Energy Transfer in Large. Plasmonic Aluminum Nanoparticles

Dynamics of Energy Transfer in Large. Plasmonic Aluminum Nanoparticles Supporting Information Dynamics of Energy Transfer in Large Plasmonic Aluminum Nanoparticles Kenneth J. Smith,#, Yan Cheng,#, Ebuka S. Arinze,#, Nicole E. Kim, Arthur E. Bragg, Susanna M. Thon Department

More information

Speed Limit for Triplet-Exciton Transfer in Solid-State PbS Nanocrystal-Sensitized Photon Upconversion

Speed Limit for Triplet-Exciton Transfer in Solid-State PbS Nanocrystal-Sensitized Photon Upconversion SUPPORTING INFORMATION Speed Limit for Triplet-Exciton Transfer in Solid-State PbS Nanocrystal-Sensitized Photon Upconversion Lea Nienhaus, Mengfei Wu, Nadav Geva, # James J. Shepherd, Mark W. B. Wilson,,

More information

Nanomaterials and Analytics Semiconductor Nanocrystals and Carbon Nanotubes. - Introduction and Preparation - Characterisation - Applications

Nanomaterials and Analytics Semiconductor Nanocrystals and Carbon Nanotubes. - Introduction and Preparation - Characterisation - Applications Nanomaterials and Analytics Semiconductor Nanocrystals and Carbon Nanotubes - Introduction and Preparation - Characterisation - Applications Simple molecules

More information

A silicon nanocrystals/polymer nanocomposite as down-conversion layer in organic and hybrid solar cells

A silicon nanocrystals/polymer nanocomposite as down-conversion layer in organic and hybrid solar cells Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2015 Supporting Material for A silicon nanocrystals/polymer nanocomposite as down-conversion layer

More information

Supplementary Figure S1. Scheme for the fabrication of Au nanohole array pattern and

Supplementary Figure S1. Scheme for the fabrication of Au nanohole array pattern and Supplementary Figure S1. Scheme for the fabrication of Au nanohole array pattern and the growth of hematite nanorods on the Au nanohole array substrate. (a) Briefly, the 500 nm sized PS monolayer was assembled

More information

Supplementary Figure 1. Thin layer chromatography of R18 salts with different counterions. The mobility of the R18 salts with TPB counterions is much

Supplementary Figure 1. Thin layer chromatography of R18 salts with different counterions. The mobility of the R18 salts with TPB counterions is much Supplementary Figure 1. Thin layer chromatography of R18 salts with different counterions. The mobility of the R18 salts with TPB counterions is much higher with perchlorate, showing their much higher

More information

Heteroepitaxy of Monolayer MoS 2 and WS 2

Heteroepitaxy of Monolayer MoS 2 and WS 2 Supporting Information Seed Crystal Homogeneity Controls Lateral and Vertical Heteroepitaxy of Monolayer MoS 2 and WS 2 Youngdong Yoo, Zachary P. Degregorio, James E. Johns* Department of Chemistry, University

More information

Transmission Mode Photocathodes Covering the Spectral Range

Transmission Mode Photocathodes Covering the Spectral Range Transmission Mode Photocathodes Covering the Spectral Range 6/19/2002 New Developments in Photodetection 3 rd Beaune Conference June 17-21, 2002 Arlynn Smith, Keith Passmore, Roger Sillmon, Rudy Benz ITT

More information

Supporting Information. Quantum Wells

Supporting Information. Quantum Wells Supporting Information Real-Time Observation of Exciton-Phonon Coupling Dynamics in Self-Assembled Hybrid Perovskite Quantum Wells Limeng Ni, Uyen Huynh, Alexandre Cheminal, Tudor H. Thomas, Ravichandran

More information

Supplementary Information. Using the Plasmon Linewidth to Calculate the Time and Efficiency of Electron Transfer between Gold Nanorods and Graphene

Supplementary Information. Using the Plasmon Linewidth to Calculate the Time and Efficiency of Electron Transfer between Gold Nanorods and Graphene Supplementary Information Using the Plasmon Linewidth to Calculate the Time and Efficiency of Electron Transfer between Gold Nanorods and Graphene Anneli Hoggard 1,2, Lin-Yung Wang 1,2, Lulu Ma 3, Ying

More information

average diameter = 3 nm, from PlasmaChem) was mixed in NLCs to produce QDembedded

average diameter = 3 nm, from PlasmaChem) was mixed in NLCs to produce QDembedded Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supporting information Experimental Section The blended CLC-monomer materials used to fabricate

More information

Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots

Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots Francesco Meinardi*, Hunter Mc Daniel, Francesco Carulli, Annalisa Colombo, Kirill A.

More information

Shape-, Size- and Composition-Controlled Thallium Lead. Halide Perovskite Nanowires and Nanocrystals with. Tunable Band Gaps

Shape-, Size- and Composition-Controlled Thallium Lead. Halide Perovskite Nanowires and Nanocrystals with. Tunable Band Gaps SUPPORTING INFORMATION Shape-, Size- and Composition-Controlled Thallium Lead Halide Perovskite Nanowires and Nanocrystals with Tunable Band Gaps Parth Vashishtha, Dani Z. Metin, Matthew E. Cryer, Kai

More information

350 C for 8 hours in argon atmosphere. Supplementary Figures. Supplementary Figure 1 High-temperature annealing of BP flakes on SiO 2.

350 C for 8 hours in argon atmosphere. Supplementary Figures. Supplementary Figure 1 High-temperature annealing of BP flakes on SiO 2. Supplementary Figures Supplementary Figure 1 High-temperature annealing of BP flakes on SiO 2. (a-d) The optical images of three BP flakes on a SiO 2 substrate before (a,b) and after annealing (c,d) at

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:.8/nature Supplementary Figure Temperature dependent PL decay. Hydrostatically (a, c) and biaxially (b, d) strained CQDs show very similar temperature dependence. It should be noted that the lowest-energy

More information

CHAPTER 6 STRUCTURAL AND OPTICAL PROPERTIES OF. CdSe/CdTe MULTILAYER THIN FILMS

CHAPTER 6 STRUCTURAL AND OPTICAL PROPERTIES OF. CdSe/CdTe MULTILAYER THIN FILMS CHAPTER 6 STRUCTURAL AND OPTICAL PROPERTIES OF CdSe/CdTe MULTILAYER THIN FILMS CHAPTER 6 STRUCTURAL AND OPTICAL PROPERTIES OF CdSe/CdTe MULTILAYER THIN FILMS 6.1 INTRODUCTION Quantum size effects in semiconductors

More information

Enhancement of photoluminescence from excitons in silicon nanocrystals via coupling to surface plasmon polaritons

Enhancement of photoluminescence from excitons in silicon nanocrystals via coupling to surface plasmon polaritons JOURNAL OF APPLIED PHYSICS 102, 023506 2007 Enhancement of photoluminescence from excitons in silicon nanocrystals via coupling to surface plasmon polaritons Eiji Takeda, Minoru Fujii, a Toshihiro Nakamura,

More information

Resonance energy transfer in conjugates of semiconductor nanocrystals and organic dye molecules

Resonance energy transfer in conjugates of semiconductor nanocrystals and organic dye molecules Resonance energy transfer in conjugates of semiconductor nanocrystals and organic dye molecules Mikhail Artemyev Resonance energy transfer in conjugates of semiconductor nanocrystals and organic dye molecules

More information

Supporting Information

Supporting Information Supporting Information Macroscale Lateral Alignment of Semiconductor Nanorods into Freestanding Thin Films Tie Wang, 1 Xirui Wang, 1 Derek LaMontagne, 1 Zhongwu Wang, 2 and Y. Charles Cao 1* 1 Department

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure S1: CDF TEM image taken using the 111 diamond diffraction ring. The image shows that the semi-ball consists of randomly oriented diamond nanocrystals. Ring ED

More information

Author(s) S. W. H. Eijt, P. E. Mijnarends, L. C. van Schaarenburg, A. J. Houtepen, D. Vanmaekelbergh, B. Barbiellini, and A.

Author(s) S. W. H. Eijt, P. E. Mijnarends, L. C. van Schaarenburg, A. J. Houtepen, D. Vanmaekelbergh, B. Barbiellini, and A. Author(s) S. W. H. Eijt, P. E. Mijnarends, L. C. van Schaarenburg, A. J. Houtepen, D. Vanmaekelbergh, B. Barbiellini, and A. Bansil This article is available at IRis: http://iris.lib.neu.edu/physics_fac_pubs/168

More information

Spectroscopy and Microscopy of Single Molecules and Single Gold Nanoparticles

Spectroscopy and Microscopy of Single Molecules and Single Gold Nanoparticles Spectroscopy and Microscopy of Single Molecules and Single Gold Nanoparticles W. Zhang, B. Pradhan, A. Carattino, L. Hou, N. Verhart S. Faez M. Orrit Molecular Nano-Optics and Spins Leiden University (Netherlands)

More information

Reminder: absorption. OD = A = - log (I / I 0 ) = ε (λ) c x. I = I ε(λ) c x. Definitions. Fluorescence quenching and FRET.

Reminder: absorption. OD = A = - log (I / I 0 ) = ε (λ) c x. I = I ε(λ) c x. Definitions. Fluorescence quenching and FRET. Reminder: absorption Special fluorescence applications I 0 I Fluorescence quenching and FRET Miklós Nyitrai; 24 th of Februry 2011. substance OD = A = - log (I / I 0 ) = ε (λ) c x optical density I = I

More information

Tuning the Optical and Electronic Properties of Colloidal Nanocrystals by Lattice Strain

Tuning the Optical and Electronic Properties of Colloidal Nanocrystals by Lattice Strain SUPPLEMENTARY INFORMATION Tuning the Optical and Electronic Properties of Colloidal Nanocrystals by Lattice Strain Andrew M. Smith, Aaron M. Mohs, and Shuming Nie Departments of Biomedical Engineering

More information

Pelotas, , Pelotas, RS, Brazil 2 Instituto de Física, Universidade Federal do Rio Grande do Sul C.P ,

Pelotas, , Pelotas, RS, Brazil 2 Instituto de Física, Universidade Federal do Rio Grande do Sul C.P , XXVII SIM - South Symposium on Microelectronics 1 Structural and luminescence properties of Ge nanocrystals before and after an ion irradiation process 1 F. Nornberg, 2 F. L. Bregolin, 1,2 U. S. Sias francielefnornberg@gmail.com,

More information

Optical Properties of CdSe Nanocrystals

Optical Properties of CdSe Nanocrystals UC Berkeley College of Chemistry Chemistry 125 Physical Chemistry Laboratory Optical Properties of CdSe Nanocrystals Author: Jonathan Melville Lab Partner: David Gygi Graduate Student Instructor: Marieke

More information

Excitation and pressure effects on photoluminescence from silicon-based light emitting diode material

Excitation and pressure effects on photoluminescence from silicon-based light emitting diode material Excitation and pressure effects on photoluminescence from silicon-based light emitting diode material Y. Ishibashi 1,3, A. Nagata 1, T. Kobayashi 1 *, A.D. Prins 2, S. Sasahara 3, J. Nakahara 3, M.A. Lourenco

More information

Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots

Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots Supplementary Information Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots F.X. Redl*, K.-S. Cho *, C.B. Murray*, S. O Brien *IBM, T. J. Watson Research Center,

More information

Measurement of Energy Transfer Time in Colloidal Mn-Doped Semiconductor Nanocrystals

Measurement of Energy Transfer Time in Colloidal Mn-Doped Semiconductor Nanocrystals 4418 J. Phys. Chem. C 2010, 114, 4418 4423 Measurement of Energy Transfer Time in Colloidal Mn-Doped Semiconductor Nanocrystals Hsiang-Yun Chen, Tai-Yen Chen, and Dong Hee Son* Department of Chemistry,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2018 Supporting Information The influence of manganese concentration on the sensitivity

More information

Directional Surface Plasmon Coupled Emission

Directional Surface Plasmon Coupled Emission Journal of Fluorescence, Vol. 14, No. 1, January 2004 ( 2004) Fluorescence News Directional Surface Plasmon Coupled Emission KEY WORDS: Surface plasmon coupled emission; high sensitivity detection; reduced

More information

Colloidal ZnSe, ZnSe/ZnS, and ZnSe/ZnSeS Quantum Dots Synthesized from ZnO

Colloidal ZnSe, ZnSe/ZnS, and ZnSe/ZnSeS Quantum Dots Synthesized from ZnO J. Phys. Chem. B 2004, 108, 17119-17123 17119 Colloidal ZnSe, ZnSe/ZnS, and ZnSe/ZnSeS Quantum Dots Synthesized from ZnO Hsueh-Shih Chen,* Bertrand Lo, Jen-Yu Hwang, Gwo-Yang Chang, Chien-Ming Chen, Shih-Jung

More information

Chapter 2 Optical Properties of Semiconductor Nanorods

Chapter 2 Optical Properties of Semiconductor Nanorods Chapter 2 Optical Properties of Semiconductor Nanorods 2.1 Introduction The optical properties of nanocrystals are dictated by their electronic structure, and we start this section with discussing the

More information

FRET and FRET based Microscopy Techniques

FRET and FRET based Microscopy Techniques Big Question: We can see rafts in Model Membranes (GUVs or Supported Lipid Bilayers, LM), but how to study in cells? Do rafts really exist in cells? Are they static large structures? Are they small transient

More information

Facile Preparation and Ultrastable Performance of Single-Component. White-Light-Emitting Phosphor-in-Glass used for High-Power Warm

Facile Preparation and Ultrastable Performance of Single-Component. White-Light-Emitting Phosphor-in-Glass used for High-Power Warm Supporting Information For Facile Preparation and Ultrastable Performance of Single-Component White-Light-Emitting Phosphor-in-Glass used for High-Power Warm White LEDs Xuejie Zhang, Jinbo Yu, Jing Wang,

More information

Mechanism of the Electrophoretic Deposition of CdSe Nanocrystal Films: Influence of the Nanocrystal Surface and Charge

Mechanism of the Electrophoretic Deposition of CdSe Nanocrystal Films: Influence of the Nanocrystal Surface and Charge 162 J. Phys. Chem. C 2008, 112, 162-171 Mechanism of the Electrophoretic Deposition of CdSe Nanocrystal Films: Influence of the Nanocrystal Surface and Charge Shengguo Jia, Sarbajit Banerjee, and Irving

More information

Optical and Photonic Glasses. Lecture 33. RE Doped Glasses III Decay Rates and Efficiency. Professor Rui Almeida

Optical and Photonic Glasses. Lecture 33. RE Doped Glasses III Decay Rates and Efficiency. Professor Rui Almeida Optical and Photonic Glasses : RE Doped Glasses III Decay Rates and Efficiency Professor Rui Almeida International Materials Institute For New Functionality in Glass Lehigh University Quantum efficiency

More information

Study on growth kinetics of CdSe nanocrystals in oleic acid/dodecylamine

Study on growth kinetics of CdSe nanocrystals in oleic acid/dodecylamine Journal of Crystal Growth 286 (2006) 318 323 www.elsevier.com/locate/jcrysgro Study on growth kinetics of CdSe nanocrystals in oleic acid/dodecylamine Bifeng Pan, Rong He, Feng Gao, Daxiang Cui, Yafei

More information

D. Ehrt*, H. T. Vu, A. Herrmann and G. Völksch

D. Ehrt*, H. T. Vu, A. Herrmann and G. Völksch Advanced Materials Research Online: 28-4-8 ISSN: 1662-8985, Vols. 39-4, pp 231-236 doi:1.428/www.scientific.net/amr.39-4.231 28 Trans Tech Publications, Switzerland Luminescent ZnO-Al 2 O 3 -SiO 2 glasses

More information

Assembling Ordered Nanorod Superstructures and Their Application as Microcavity Lasers

Assembling Ordered Nanorod Superstructures and Their Application as Microcavity Lasers Supporting Information Assembling Ordered Nanorod Superstructures and Their Application as Microcavity Lasers Pai Liu 1, Shalini Singh 1, Yina Guo 2, Jian-Jun Wang 1, Hongxing Xu 3, Christophe Silien 4,

More information

Supporting Information. Solution-Processed 2D PbS Nanoplates with Residual Cu 2 S. Exhibiting Low Resistivity and High Infrared Responsivity

Supporting Information. Solution-Processed 2D PbS Nanoplates with Residual Cu 2 S. Exhibiting Low Resistivity and High Infrared Responsivity Supporting Information Solution-Processed 2D PbS Nanoplates with Residual Cu 2 S Exhibiting Low Resistivity and High Infrared Responsivity Wen-Ya Wu, Sabyasachi Chakrabortty, Asim Guchhait, Gloria Yan

More information

Fluorescence quenching of dyes covalently attached to single-walled. carbon nanotubes

Fluorescence quenching of dyes covalently attached to single-walled. carbon nanotubes Fluorescence quenching of dyes covalently attached to single-walled carbon nanotubes Cheuk Fai Chiu a, b, Nikolay Dementev a and Eric Borguet a * a Department of Chemistry, Temple University, Philadelphia,

More information

1. Photonic crystal band-edge lasers

1. Photonic crystal band-edge lasers TIGP Nanoscience A Part 1: Photonic Crystals 1. Photonic crystal band-edge lasers 2. Photonic crystal defect lasers 3. Electrically-pumped photonic crystal lasers 1. Photonic crystal band-edge lasers Min-Hsiung

More information

SUPPLEMENTARY INFORMATION. Supplementary Figures 1-8

SUPPLEMENTARY INFORMATION. Supplementary Figures 1-8 SUPPLEMENTARY INFORMATION Supplementary Figures 1-8 Supplementary Figure 1. TFAM residues contacting the DNA minor groove (A) TFAM contacts on nonspecific DNA. Leu58, Ile81, Asn163, Pro178, and Leu182

More information

Simple fabrication of highly ordered AAO nanotubes

Simple fabrication of highly ordered AAO nanotubes Journal of Optoelectronic and Biomedical Materials Volume 1, Issue 1, March 2009, p. 79-84 Simple fabrication of highly ordered AAO nanotubes N. Taşaltin a, S. Öztürk a, H. Yüzer b, Z. Z. Öztürk a,b* a

More information

Photoionization of Individual CdSe/CdS Core/Shell Nanocrystals on Silicon with 2-nm Oxide Depends on Surface Band Bending

Photoionization of Individual CdSe/CdS Core/Shell Nanocrystals on Silicon with 2-nm Oxide Depends on Surface Band Bending Photoionization of Individual CdSe/CdS Core/Shell Nanocrystals on Silicon with 2-nm Oxide Depends on Surface Band Bending NANO LETTERS 2003 Vol. 3, No. 4 497-501 Oksana Cherniavskaya, Liwei Chen,, Mohammad

More information

Introduction. (b) (a)

Introduction. (b) (a) Introduction Whispering Gallery modes (WGMs) in dielectric micro-cavities are resonant electromagnetic modes that are of considerable current interest because of their extremely high Q values leading to

More information