Traditional and engineering ceramics

Size: px
Start display at page:

Download "Traditional and engineering ceramics"

Transcription

1 Traditional and engineering ceramics Traditional ceramics Clay Silica Feldspar + + Al2O3.2SiO2. 2H2O Structural clay products : bricks, sewer pipe, roofing tile EX: Triaxial bodies: Whiteware, porcelain, chinaware, sanitary ware. SiO 2 K 2 Na OAl. 2 2 OAl. O.6SiO O.6SiO 2 Reactions of a triaxial body

2 Traditional and engineering ceramics Traditional ceramics Triaxial whiteware chemical composition

3 Traditional and engineering ceramics Traditional ceramics

4 Traditional and engineering ceramics Traditional ceramics quartz Mullite needles High silica glass Electron micrograph of an electrical insulator porcelain (etched 10 s, 0 o C, 40% HF, silica replica)

5 Traditional and engineering ceramics Slip casting process Pottery Master and plaster moulds Slip casting Fire Colour paint Dry Fresh cast

6 Traditional and engineering ceramics Slip casting process Sanitaryware Hemihydrate plaster produced from gymsum CaSO o 150 C 1. 2H O CaSO H O H 2 O Slip preparation in ball mill Slip casting in plaster moulds and demoulding

7 Traditional and engineering ceramics Engineering ceramics Contain more of pure compounds of oxides, carbides, nitrides. Ex: Al 2 O 3, Si 3 N 4, SiC, ZrO 2, refractory oxides Mechanical properties of engineering ceramics

8 Traditional and engineering ceramics Engineering ceramics Alumina Refractory tubing High purity crucibles for high temp High quality electrical applications (low dielectric loss and high resistivity) Spark plug insulator Microstructure of sintered, powdered aluminium oxide doped with magnesium oxide Alumina tubes

9 Traditional and engineering ceramics Engineering ceramics Silicon nitride (Si 3 N 4 ) N 2 flow Dissociate at T > 1800 o C. Cannot be directly sintered reaction bonding. Silicon powder nitriding Microporous Si 3 N 4 High strength nonporous Si 3 N 4 Hot pressing with 1-5%MgO Silicon nitride for engineering applications

10 Traditional and engineering ceramics Engineering ceramics Silicon carbide (SiC) Hard refractory carbide. Form skin of SiO 2 at high temp. Resistance to oxidation at high temp. Can be sintered 2100 o C with 0.5-1%B. Fibrous reinforcement in ceramicmatrix composite material. SiC fibre reinforced Titanium matrix

11 Traditional and engineering ceramics Engineering ceramics Zirconia (ZrO 2 ) o C Polymorphic: tetragonal monoclinic. Volume expansion Zirconia Heat treatment Cubic structure Mixed with CaO, MgO and Y 2 O 3 Partially stabilized zirconia (PSZ).

12 Mechanical properties of ceramics Brittle High strength (varying from MPa) Better compressive strength than tensile (5-10 times) Level of strength (MPa) Materials > polycrystalline long ceramic fibres (Al 2 O 3, SiC): 1-2 GPa, single crystal short ceramic fibres (Al 2 O 3, SiC whiskers): 5-20 GPa, Hot Pressed structural ceramics such as silicon nitride, silicon carbide, alumina; sintered tetragonal zirconia and sialon; cemented carbides <50 sintered pure alumina and SiC; tempered glass impure and/or porous alumina; mullite; high-alumina porcelains; reaction bonded silicon nitride and carbide; glass ceramics porcelains; steatite, cordierite; magnesia, polished glasses; refractory; porous ceramics; glasses

13 Mechanical properties of ceramics Deformation mechanisms Lack of plasticity due to ionic and covalent bonding (directional). Stressing of covalent crystal separation of electron-pair bonds without subsequent reformation brittle Deforming of ionic single crystal (MgO or NaCl) shows considering amount of plastic deformation under compressive force. However ionic polycrystals are brittle due to crack formation at grain boundaries. NaCl structure showing slip on the (110) plane [110] direction or AA and on the (100) plane [010] direction BB

14 Mechanical properties of ceramics Factors affecting strength of ceramics Depending on amount of defects giving stress concentration Surface cracks Porosity Inclusions Excessive grain sizes Fabrication Should control chemical composition microstructure surface condition temperature environment Note: No plastic deformation during crack propagation from defects very brittle.

15 Mechanical properties of ceramics Toughness of ceramics Low toughness due to covalent-ionic bonding. Using hot pressing, reaction bonding to improve toughness. Fibre-reinforced ceramic matrix composites. Fracture toughness of ceramics

16 Mechanical properties of ceramics Chapter 1 Toughness of ceramics Example A reaction-bonded silicon nitride has a strength of 300 MPa and a fracture toughness of 3.6 MPa.m 1/2, What is the largest-size internal crack that this material can support without fracturing? Given Y = 1 K a a IC = Yσ 2 KIC = 2 πσ f f = πa ( 3.6MPa. m) π = ( 300MPa) m 2 2 = 45.8µ m Therefore the largest internal crack 2a = 91.6 µm

17 Mechanical properties of ceramics Chapter 1 Transformation toughening of Partially Stabilized Zirconia (PSZ) Sintering at 1800 o C+rapid cooling to RT+ reheating at 1400 o C to give fine precipitates Zirconia + (CaO, MgO or Y 2 O 3 ) PSZ (metal stable) Volume expansion Tetragonal monoclinic under stressing

18 Mechanical properties of ceramics Chapter 1 Fatigue failure of ceramics Fatigue failure in ceramics is rare due to lack of plastic deformation during cyclic loading. Fatigue cracking of polycrystalline alumina under cyclic loading

19 Mechanical properties of ceramics Chapter 1 Abrasive property of ceramics Hard and brittle Used as cutting, grinding and polishing tools. Aluminium oxide Silicon carbide Titanium nitride Tungsten carbide Boron nitride Ceramic cutting tools Ceramic grinding wheels

20 Thermal properties of ceramics Low thermal conductivity due to ionic-covalent bonding insulator. Also used as refractories in metal, chemical and glass industries. Thermal conductivity of ceramic materials

21 Thermal properties of ceramics Ceramic refractory materials A mixture of ceramic compounds Low-high temperature strength Low bulk density ( g.cm -3 ) Porosity insulating img.alibaba.com Acidic refractory Mainly based on SiO 2 and Al 2 O 3 Basic refractory Mainly based on magnesia (MgO), lime (CaO) and Cr 2 O 3 Refractory bricks (60% Al 2 O 3 ) for hot blast furnace

22 Thermal properties of ceramics

23 Thermal properties of ceramics Acidic refractory Basic refractory Silica refractory has high refractoriness, high mechanical strength and rigidity at high temperature. Fireclays (fine plastic clays + flint + coarse clay or grog) High alumina refractories contains 50-99% alumina, giving higher fusion temperature (more expensive than fireclay). Basic refractory consists of mixtures of MgO, CaO and Cr 2 O 3. High bulk density High melting point Good resistance to chemical attack (basic slag, oxides) Ex 92-95% MgO used for lining in basic-oxygen steelmaking process

24 Thermal properties of ceramics Ceramic tile insulation for the space shuttle orbiter About 24,000 ceramic tiles (70%) of silica-fibre compound are used for insulating external surface of space shuttle.

25 Thermal properties of ceramics Ceramic tile insulation for the space shuttle orbiter media.nasaexplores.com High temperature reusable surface (HTRS) made from 90% silica fibres and 10% empty space. Density = g.cm -3 Temp ~ 1260 o C Borosilicate coating upload.wikimedia.org Microstructure of LI900 high-temperature reusable surface insulation (HTRS)

26 Glass Definition of glass An inorganic and noncrystalline material which maintains its amorphous microstructure below its glass transition temperature. Properties of glass Blown glass Transparency Hardness and strength Corrosion/chemical resistance Vacuumtight enclosure Insulator Tinted or heat-absorbed glass

27 Glass Glass transition temperature (T g ) Unlike solidified metal, a glass liquid does not crystallize but follow an AD path. Temp (decrease) Viscous Plastic Glassy The faster cooling rate, the higher values of T g. Solidification of crystalline and amorphous materials showing a change in specific volume

28 Glass Structure of glass Glass forming oxide - SiO 2 Si-O tetrahedron Ideal crystalline silica (crystobalite) Simple silica glass with no-long range order

29 Glass Structure of glass Glass modifying oxides - Na 2 O, K 2 O, CaO, MgO Oxygen from Na 2 O breaks up silica network, leaving oxygen atoms with an unshared electron. Na + or K + ions fits into interstices of network. Network modified glass (soda-lime glass)

30 Glass Structure of glass Intermediate oxides in glass - Al 2 O 3, Pb 2 O 3 Oxides such as Al 2 O 3 or Pb 2 O 3 cannot form glass network but join into an existing network. Aluminosilicate glass provides higher temperature than common glass.

31 Glass Glass composition Silica glass No radiation damage Soda-lime glass Reduced T m ~ 730 o C Borosilicate glass (Pyrex glass) Low thermal expansion Lead glass Shielding from high energy radiation

32 Glass Viscous deformation of glasses Glass remains its viscous (supercooled) liquid above T g. Temp > T g Viscosity η =η o e +Q RT η = viscosity of the glass η o = pre-exponential constant Q = molar activation energy for viscous flow R = gas constant T = absolute temperature

33 Glass Viscosity reference points Working point Viscosity = 10 4 poise (10 3 Pa.s) fabrication Softening point Viscosity = 10 8 poise glass flows at an appreciate rate under its own weight (and surface tension). Annealing point Viscosity = poise relieving internal stresses Strain point Viscosity = poise glass is rigid with slow rate of stress relaxation. Note: glass are usually melt at temp relating to viscosity = 10 2 poise

34 Glass Example A 96 % silica glass has a viscosity of P at its annealing point of 940 o C and a viscosity of 10 8 P at its softening point of 1470 o C. Calculate the activation energy in kj/mol for the viscous flow of this glass in this temperature range. T anneal = = 1213 K, η ap =10 13 P T softening = = 1743 K, η ap =10 8 P η η ap sp η 13 Q = exp = = 10 8 R Tap Tsp 10 5 =η o e+q RT Q 10 5 = exp Q= 382kJ/ mol K K

35 Glass Fabrications of glass Forming sheet and plate glass Float glass process molten glass ribbon moves on the top of molten tin in a reducing atmosphere. Remove glass sheet when the glass surface is hard enough then pass to annealing furnace called lehr to remove residual stresses. Blowing, pressing and casting of glass For deep, hallow shapes like bottles, jars, light bulbs envelops. Blowing air to force molten glass into moulds. Pressing a plunger into a mold containing molten glass. Casting into open moulds.

36 Glass Float glass process

37 Glass a) Reheat, b) final blow stage of a glass blowing machine process

38 Glass Pyrex glass Borosilicate glass Low thermal expansion Inert to almost all materials with the exception of hydrofluoric acid, hot phosphoric acid and hot alkalies. Approximate composition SiO 2 Na 2 O 81% 4.0% K 2 O 0.5 B 2 O % Al 2 O 3 2.0%

39 Glass Tempered glass The surface cools first (by rapid air cooling) and contract while the interior is warm, developing compressive on the surface and tensile in the middle. a) After surface has cooled from high temperature near glass-softening temperature. b) after centre has cooled.

40 Glass Tempered glass Tempering effect increases the strength (4 x stronger than annealed glass. Has higher impact resistance than annealed glass. Ex: Auto side window, safety glass for doors. Distribution of residual stresses across the sections of glass thermally tempered and chemically strengthend

41 Glass Laminated glass Plastic interlayer (PVB-poly vinyle butyral) is sandwiched with floated/annealed glass. Safety glass: Breaking like a spider web. Laminated glass Spider web breaking pattern

42 Glass Laminated glass

43 Glass Chemical strengthened glass Used in supersonic aircraft glazing, ophthalmic lenses. Submerging sodium aluminosilicate glass in a bath containing a potassium salt at T~ o C for 6-10 h. Replacing Na ions with larger K ions on the glass surface. Producing thin compressive stresses at the surface and tensile stresses in the centre. Distribution of residual stresses across the section of glass thermally tempered and chemically strengthened.

Haseeb Ullah Khan Jatoi Department of Chemical Engineering UET Lahore

Haseeb Ullah Khan Jatoi Department of Chemical Engineering UET Lahore Haseeb Ullah Khan Jatoi Department of Chemical Engineering UET Lahore Greek word Keramikos which means Burnt Stuff indicating that desired properties of these materials are normally achieved through a

More information

Comparison metals v p ceramics Metals Ceramics

Comparison metals v p ceramics Metals Ceramics Ceramics Ceramics A wide-ranging group of materials whose ingredients are clays, sand and feldspar. Clays Contain some of the following: Silicon & Aluminium as silicates Potassium compounds Magnesium compounds

More information

Ceramics ( 세라믹 ) Associate Professor Su-Jin Kim. School of Mechanical Engineering Gyeongsang National University. Ceramic Material Science

Ceramics ( 세라믹 ) Associate Professor Su-Jin Kim. School of Mechanical Engineering Gyeongsang National University. Ceramic Material Science s ( 세라믹 ) Associate Professor Su-Jin Kim School of Mechanical Engineering Gyeongsang National University OCW Ionic crystal structures https://youtu.be/a3cphn_ogvq?list=pl8eaogbez9xiwgbmcihctmo4bxsb4v8hm

More information

Ceramics are inorganic, non-metallic. Ceramics. Ceramics exhibit ionic, covalent bonding or a combination of the two (like in Al 2 O 3 )

Ceramics are inorganic, non-metallic. Ceramics. Ceramics exhibit ionic, covalent bonding or a combination of the two (like in Al 2 O 3 ) What are Ceramics? CERAMIC MATERIALS Ceramics are inorganic, non-metallic and crystalline materials that are typically produced using clays and other minerals from the earth or chemically processed powders

More information

MSE 351 Engineering Ceramics I

MSE 351 Engineering Ceramics I Kwame Nkrumah University of Science & Technology, Kumasi, Ghana MSE 351 Engineering Ceramics I Ing. Anthony Andrews (PhD) Department of Materials Engineering Faculty of Mechanical and Chemical Engineering

More information

Lecture Outline. Mechanical Properties of Ceramics. Mechanical properties of ceramics. Mechanical properties of ceramics

Lecture Outline. Mechanical Properties of Ceramics. Mechanical properties of ceramics. Mechanical properties of ceramics Mechanical properties of ceramics Lecture Outline Mechanical properties of ceramics Applications of ceramics abrication of Glasses Glass properties Processing of Ceramics Dr. M. Medraj Mech. Eng. Dept.

More information

CHAPTER 12: mechanical properties of ceramics

CHAPTER 12: mechanical properties of ceramics CHAPTER 12: mechanical properties of ceramics ISSUES TO ADDRESS... Mechanical Properties: What special provisions/tests are made for ceramic materials? Chapter 12-1 COORDINATION # AND IONIC RADII Coordination

More information

Chapter 13: Applications and Processing of Ceramics

Chapter 13: Applications and Processing of Ceramics Chapter 13: Applications and Processing of Ceramics ISSUES TO ADDRESS... General categories of ceramics What are common applications of ceramics? How are ceramic materials processed? Chapter 13-1 Classification

More information

MSE 351 Engineering Ceramics I

MSE 351 Engineering Ceramics I Kwame Nkrumah University of Science & Technology, Kumasi, Ghana Ceramic Processing Oxide for ceramics have high melting points. MSE 351 Engineering Ceramics I Ing. Anthony Andrews (PhD) Department of Materials

More information

Processing of Ceramic Materials

Processing of Ceramic Materials MME 131: Introduction to Metallurgy and Materials Lecture 25 Processing of Ceramic Materials AKMB Rashid Professor, MME Dept BUET, Dhaka Today s Topics Glass Forming Processes Ceramics Forming Processes

More information

Methods of manufacture

Methods of manufacture 1 Methods of manufacture For Ceramics (see (b)) Crush raw materials Shape the crushed raw materials (various means) Dry & fire Apply finishing operations, as needed; to achieve required dimensional tolerances

More information

CERAMICS Part 1: Structure and Properties. MSE 206-Materials Characterization I Lecture-7

CERAMICS Part 1: Structure and Properties. MSE 206-Materials Characterization I Lecture-7 CERAMICS Part 1: Structure and Properties MSE 206-Materials Characterization I Lecture-7 Classification of Materials Ceramics Ceramics comes from Greek word keramikos, means burnt stuff Compounds between

More information

COMPOSITE MATERIALS. Asst. Prof. Dr. Ayşe KALEMTAŞ

COMPOSITE MATERIALS. Asst. Prof. Dr. Ayşe KALEMTAŞ COMPOSITE MATERIALS Office Hours: Tuesday, 16:30-17:30 akalemtas@mu.edu.tr, akalemtas@gmail.com Phone: +90 252 211 19 17 Metallurgical and Materials Engineering Department ISSUES TO ADDRESS Ceramic Materials

More information

Ceramic and glass technology

Ceramic and glass technology 29 Glass Properties Glass is an inorganic, nonmetallic material which cools to a rigid solid without crystallization. Glassy, or noncrystalline, materials do not solidify in the same sense as do those

More information

Ceramic Processing. Engineering Materials. 7/15/2009 Ceramic Processing/S.Rattanachan 1

Ceramic Processing. Engineering Materials. 7/15/2009 Ceramic Processing/S.Rattanachan 1 Ceramic Processing Engineering Materials 7/15/2009 Ceramic Processing/S.Rattanachan 1 Ceramic Processing Ceramic powders/raw materials + Additives Mixing Forming Firing Densification Sintering Vitrification

More information

Dr. M. Medraj Mech. Eng. Dept. - Concordia University Mech 421/6511 lecture 13/2

Dr. M. Medraj Mech. Eng. Dept. - Concordia University Mech 421/6511 lecture 13/2 Outline Introduction: Ceramic materials Carbon based materials Applications of ceramics Ceramic Processing Mechanical properties of Ceramics Dr. M. Medraj Mech. Eng. Dept. - Concordia University Mech 421/6511

More information

Lecture 08 Fracture Toughness and Toughening Mechanisms Ref: Richerson, Modern Ceramic Engineering, Ch17, Marcel Dekker, 1992

Lecture 08 Fracture Toughness and Toughening Mechanisms Ref: Richerson, Modern Ceramic Engineering, Ch17, Marcel Dekker, 1992 MME 467 Ceramics for Advanced Applications Lecture 08 Fracture Toughness and Toughening Mechanisms Ref: Richerson, Modern Ceramic Engineering, Ch17, Marcel Dekker, 1992 Prof. A. K. M. Bazlur Rashid Department

More information

MSE 352 Engineering Ceramics II

MSE 352 Engineering Ceramics II Kwame Nkrumah University of Science & Technology, Kumasi, Ghana MSE 352 Engineering Ceramics II 3 Credit Hours Ing. Anthony Andrews (PhD) Department of Materials Engineering Faculty of Mechanical and Chemical

More information

Fuels, Furnaces & Refractories

Fuels, Furnaces & Refractories Fuels, Furnaces & Refractories 3. Refractories Dr. Eng. Yazan Al-Zain Department of Industrial Engineering University of Jordan 1 Classification of Refractories There is no general definition of a refractory.

More information

ENGR 151 Materials of Engineering LECTURE 19

ENGR 151 Materials of Engineering LECTURE 19 ENGR 151 Materials of Engineering LECTURE 19 CHAPTER 13: APPLICATIONS AND PROCESSING OF CERAMICS TOPICS TO ADDRESS... How do we classify ceramics? What are some applications of ceramics? How is processing

More information

Lecture 5. Chapter 7. Range of Mechanical Properties for Polymers. The University of New Mexico. The University of New Mexico TABLE 7.

Lecture 5. Chapter 7. Range of Mechanical Properties for Polymers. The University of New Mexico. The University of New Mexico TABLE 7. Lecture 5 Chapter 7 Range of Mechanical Properties for Polymers TABLE 7.1 Material UTS (MPa) E (GPa) ABS 28 55 1.4 2.8 ABS, reinforced 100 7.5 Acetal 55 70 1.4 3.5 Acetal, reinforced 135 10 Acrylic 40

More information

Lecture 07 Deformation Behaviour and Strength of Ceramic Materials Ref: Kingery, Introduction to Ceramics, Ch14, John Wiley & Sons, 1991

Lecture 07 Deformation Behaviour and Strength of Ceramic Materials Ref: Kingery, Introduction to Ceramics, Ch14, John Wiley & Sons, 1991 MME 467 Ceramics for Advanced Applications Lecture 07 Deformation Behaviour and Strength of Ceramic Materials Ref: Kingery, Introduction to Ceramics, Ch14, John Wiley & Sons, 1991 Prof. A. K. M. Bazlur

More information

REFRACTORIES. Definition Classification Properties Manufacture of refractory bricks Properties and applications of Refractory bricks

REFRACTORIES. Definition Classification Properties Manufacture of refractory bricks Properties and applications of Refractory bricks Topics REFRACTORIES Definition Classification Properties Manufacture of refractory bricks Properties and applications of Refractory bricks Definition Substances which can with stand high temperature without

More information

CERAMICS. (related only to traditional ceramics): Materials made of clays and hardened by fire

CERAMICS. (related only to traditional ceramics): Materials made of clays and hardened by fire CERAMICS Original definition: (related only to traditional ceramics): Materials made of clays and hardened by fire Actual definition: Inorganic non-metallic heterogeneous materials with structure composed

More information

CERAMIC MATERIALS I. Asst. Prof. Dr. Ayşe KALEMTAŞ

CERAMIC MATERIALS I. Asst. Prof. Dr. Ayşe KALEMTAŞ CERAMIC MATERIALS I akalemtas@mu.edu.tr, akalemtas@gmail.com, Phone: 211 19 17 Metallurgical and Materials Engineering Department Traditional Ceramics Clay products Main Components Clay Feldspar Silica

More information

Ceramic - Chemical Resistance Acids - concentrated Acids - dilute Alkalis Halogens Metals

Ceramic - Chemical Resistance Acids - concentrated Acids - dilute Alkalis Halogens Metals Ceramic - Chemical Resistance Acids - concentrated Acids - dilute Alkalis Halogens Metals Fair Good Poor-Fair - Good 62/SiO2 24/B2O3 14 Fair Good Poor-Fair - - 70/SiO2 28/B2O3 2 Good Good Good Good Good

More information

CERAMIC MATERIALS I. Asst. Prof. Dr. Ayşe KALEMTAŞ. Office Hours: Thursday, 09:30-10:30 am.

CERAMIC MATERIALS I. Asst. Prof. Dr. Ayşe KALEMTAŞ. Office Hours: Thursday, 09:30-10:30 am. CERAMIC MATERIALS I Office Hours: Thursday, 09:30-10:30 am. akalemtas@mu.edu.tr, akalemtas@gmail.com, Phone: 211 19 17 Metallurgical and Materials Engineering Department CLASSIFICATION OF CERAMICS Ceramic

More information

Introduction to Composites

Introduction to Composites Section 1 Introduction to Composites By definition, composite materials are formed from two or more materials that have quite different properties. The resultant material has a heterogeneous microstructure

More information

Materials Science and Engineering: An Introduction

Materials Science and Engineering: An Introduction Materials Science and Engineering: An Introduction Callister, William D. ISBN-13: 9780470419977 Table of Contents List of Symbols. 1 Introduction. 1.1 Historical Perspective. 1.2 Materials Science and

More information

Superconductors Processing and Equipment. Text Reference: Manufacturing Engineering and Technology, Kalpakjian & Schmid, 6/e, 2010 Chapter 18

Superconductors Processing and Equipment. Text Reference: Manufacturing Engineering and Technology, Kalpakjian & Schmid, 6/e, 2010 Chapter 18 Ceramics, Glasses, Superconductors Processing and Equipment Text Reference: Manufacturing Engineering and Technology, g g g gy, Kalpakjian & Schmid, 6/e, 2010 Chapter 18 FIGURE 18.1 (a) Examples of typical

More information

Ceramic - Chemical Resistance Acids - concentrated Acids - dilute Alkalis Halogens Metals

Ceramic - Chemical Resistance Acids - concentrated Acids - dilute Alkalis Halogens Metals Ceramic - Chemical Resistance Acids - concentrated Acids - dilute Alkalis Halogens Metals Fair Good Poor-Fair - Good 62/SiO2 24/B2O3 14 Fair Good Poor-Fair - - 70/SiO2 28/B2O3 2 Good Good Good Good Good

More information

Properties of Ceramic Materials

Properties of Ceramic Materials 1-5 Superplasticity: There are two basic types of superplasticity, termed transformation and structural superplasticity respectively. (A third type of superplasticity, termed temperature-cycling superplasticity,

More information

MSE 352 Engineering Ceramics II

MSE 352 Engineering Ceramics II Kwame Nkrumah University of Science & Technology, Kumasi, Ghana MSE 352 Engineering Ceramics II Ing. Anthony Andrews (PhD) Department of Materials Engineering Faculty of Mechanical and Chemical Engineering

More information

FRIALIT -DEGUSSIT Oxide Ceramics. Materials, Applications and Properties

FRIALIT -DEGUSSIT Oxide Ceramics. Materials, Applications and Properties - Oxide Ceramics Materials, Applications and Properties Team and Application Areas 02 03 Materials and Typical Applications 04 05 Material Properties 06 07 Team and Application Areas - Oxide Ceramics

More information

FIXED PROSTHODONTICS Page 1 Lecture: "Dental Porcelains" REVIEW OF CERAMICS AND PORCELAINS: A. Review of Definitions and Terminology:

FIXED PROSTHODONTICS Page 1 Lecture: Dental Porcelains REVIEW OF CERAMICS AND PORCELAINS: A. Review of Definitions and Terminology: FIXED PROSTHODONTICS Page 1 Lecture: "Dental Porcelains" REVIEW OF CERAMICS AND PORCELAINS: A. Review of Definitions and Terminology: 1. Ceramic = Any compound involving metallic and non-metallic elements.

More information

true grit minerals CUMI lative range of EMD PRODUCT CATALOG 100 years US $ 3 billion 29 companies +30,000 people MURUGAPPA GROUP

true grit minerals CUMI lative range of EMD PRODUCT CATALOG 100 years US $ 3 billion 29 companies +30,000 people MURUGAPPA GROUP MURUGAPPA GROUP 100 years US $ 3 billion 29 companies +30,000 people EMD ELECTRO MINERALS DIVISION CUMI lative range of true grit minerals PRODUCT CATALOG FUSED PRODUCTS MACRO REGULAR BROWN FUSED ALUMINA

More information

Amorphous Materials Exam II 180 min Exam

Amorphous Materials Exam II 180 min Exam MIT3_071F14_ExamISolutio Name: Amorphous Materials Exam II 180 min Exam Problem 1 (30 Points) Problem 2 (24 Points) Problem 3 (28 Points) Problem 4 (28 Points) Total (110 Points) 1 Problem 1 Please briefly

More information

EGN 3365 Review on Metals, Ceramics, & Polymers, and Composites by Zhe Cheng

EGN 3365 Review on Metals, Ceramics, & Polymers, and Composites by Zhe Cheng EGN 3365 Review on Metals, Ceramics, & Polymers, and Composites 2017 by Zhe Cheng Expectations on Chapter 11 Chapter 11 Understand metals are generally categorized as ferrous alloys and non-ferrous alloys

More information

Advanced Ceramics for Strategic Applications Prof. H. S. Maiti Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Advanced Ceramics for Strategic Applications Prof. H. S. Maiti Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Advanced Ceramics for Strategic Applications Prof. H. S. Maiti Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 1 Introduction (Refer Slide Time: 00:43) Welcome

More information

ZYBF. High Temperature Yttria Stabilized Zirconia Fibers. Advanced Fibrous Ceramics

ZYBF. High Temperature Yttria Stabilized Zirconia Fibers. Advanced Fibrous Ceramics Advanced Fibrous Ceramics ZYBF High Temperature Yttria Stabilized Zirconia Fibers The Unrivaled Industry Leader of ZrO 2 Insulation Three Product Types ZYBF-1 (7.5 pcf) ZYBF-2 (21 pcf) ZYBF-5 (16 pcf)

More information

Material for a pressure vessel Short term thermal insulation Energy efficient kilns

Material for a pressure vessel Short term thermal insulation Energy efficient kilns More Case Studies in Materials Selection Material for a pressure vessel Short term thermal insulation Energy efficient kilns More info: Materials Selection in Mechanical Design, Chapters 5 and 6 ME 474-674

More information

5.2 Relationships between microstructure and mechanical properties

5.2 Relationships between microstructure and mechanical properties 5.2 Relationships between microstructure and mechanical properties In this section mechanical properties of the LPSSiC materials are discussed, with the view to ultimately relate properties to the microstructure

More information

Engineering Materials

Engineering Materials Engineering Materials Lecture 2 MEL120: Manufacturing Practices 1 Selection of Material A particular material is selected is on the basis of following considerations 1. Properties of material 1. Properties

More information

FRIALIT -DEGUSSIT Oxide Ceramics. Materials, Applications and Properties

FRIALIT -DEGUSSIT Oxide Ceramics. Materials, Applications and Properties -DEGUSSIT Oxide Ceramics Materials, Applications and Properties Team and Application Areas 02 03 Materials and Typical Applications 04 05 Material Properties 06 07 Team and Application Areas -DEGUSSIT

More information

Metals are generally ductile because the structure consists of close-packed layers of

Metals are generally ductile because the structure consists of close-packed layers of Chapter 10 Why are metals ductile and ceramics brittle? Metals are generally ductile because the structure consists of close-packed layers of atoms that allow for low energy dislocation movement. Slip

More information

Very high purity silicon required for making semiconductors is obtained by reduction of highly purified SiCl 4

Very high purity silicon required for making semiconductors is obtained by reduction of highly purified SiCl 4 1 Silicon and its compounds Silicon, being a second member of group 14, has a much larger size and lower electronegativity than hat of carbon As a result silicon does not form double bond with itself or

More information

Ceramics, Glasses, and Glass-Ceramics

Ceramics, Glasses, and Glass-Ceramics Ceramics, Glasses, and Glass-Ceramics Ceramics, Glasses, and Glass-Ceramics include a broad range of inorganic/nonmetallic compositions. Eyeglasses Diagnostic instruments Thermometers Tissue culture flasks

More information

ENGINEERING COUNCIL CERTIFICATE LEVEL ENGINEERING MATERIALS C102 TUTORIAL 2 THE STRUCTURE OF MATERIALS

ENGINEERING COUNCIL CERTIFICATE LEVEL ENGINEERING MATERIALS C102 TUTORIAL 2 THE STRUCTURE OF MATERIALS ENGINEERING COUNCIL CERTIFICATE LEVEL ENGINEERING MATERIALS C102 TUTORIAL 2 THE STRUCTURE OF MATERIALS OUTCOMES On successful completion of the unit the candidate will be able to: 1. Recognise the structures

More information

Index. Automotive engines, silicon nitride products development, 83-94

Index. Automotive engines, silicon nitride products development, 83-94 Index Advanced composite ceramics, properties and applications, 109-22 Aircraft engine bearings, shaft speed limits, 46-8 Alumina cast sintered, applications, 72-5 comparative erosive wear performance,

More information

Classification of Ceramics

Classification of Ceramics Classification of Ceramics 2 Y. Imanaka et al. (eds.), The Ceramic Society of Japan, Advanced Ceramic Technologies & Products, DOI 10.1007/978-4-431-54108-0_2, Springer Japan 2012 5 Monolithic Ceramics

More information

Mat E 272 Lectures 22-23: Introduction to Ceramic Materials

Mat E 272 Lectures 22-23: Introduction to Ceramic Materials Mat E 272 Lectures 22-23: Introduction to Ceramic Materials November 26 & 28, 2001 Introduction: The primary emphasis of this class has previously been on the structure and properties of pure metals and

More information

Jānis Grabis. Plasma chemical synthesis of multicomponent nanopowders, their characteristics, and processing

Jānis Grabis. Plasma chemical synthesis of multicomponent nanopowders, their characteristics, and processing Jānis Grabis Plasma chemical synthesis of multicomponent nanopowders, their characteristics, and processing Outline Introduction nanoparticles, their preparation methods Experimental synthesis of multicomponent

More information

Effect of Materials Design on Properties of Porcelain Insulators

Effect of Materials Design on Properties of Porcelain Insulators Effect of Materials Design on Properties of Porcelain Insulators Substitution of alumina for silica improved the mechanical properties of high-voltage porcelain insulators but did not have a significant

More information

HIGH TEMPERATURE CERAMIC & GRAPHITE ADHESIVES

HIGH TEMPERATURE CERAMIC & GRAPHITE ADHESIVES HIGH TEMPERATURE & GRAPHITE S Technical Bulletin A2 Ceramabond 835-M bonds halogen lamp. Ceramabond 503 coats heater used to 1700 ºC. Ceramabond 685-N bonds infrared heater. Graphi-Bond 551-RN bonds graphite

More information

PY2N20 Material Properties and Phase Diagrams

PY2N20 Material Properties and Phase Diagrams PY2N20 Material Properties and Phase Diagrams Lecture 11 P. Stamenov, PhD School of Physics, TCD PY2N20-11 Silicates Combine SiO 4 4- tetrahedra by having them share corners, edges, or faces Mg 2 SiO 4

More information

CERAMIC MATERIALS I. Asst. Prof. Dr. Ayşe KALEMTAŞ

CERAMIC MATERIALS I. Asst. Prof. Dr. Ayşe KALEMTAŞ CERAMIC MATERIALS I akalemtas@mu.edu.tr, akalemtas@gmail.com, Phone: 211 19 17 Metallurgical and Materials Engineering Department Application Base Classification Advanced Ceramics Ceramic Materials Traditional

More information

Selection of Engineering Materials

Selection of Engineering Materials Selection of Engineering IM 515E Dr Yehia M. Youssef 1 Textbook: Budinski, K.G. and Budinski, M.K., Engineering : Properties and selection, 8 th ed., Prentice Hall, 2005. Other References: 1) Ashby, M.,

More information

Multiple choices (3 points each): 1. Shown on the right is A. an ethylene mer B. an ethylene monomer C. a vinyl monomer D.

Multiple choices (3 points each): 1. Shown on the right is A. an ethylene mer B. an ethylene monomer C. a vinyl monomer D. Materials Science and Engineering Department MSE 200, Exam #4 ID number First letter of your last name: Name: No notes, books, or information stored in calculator memories may be used. Cheating will be

More information

NPTEL COURSE ADVANCED CERAMICS FOR STRATEGIC APPLICATIONS QUESTIONS AND ANSWERS

NPTEL COURSE ADVANCED CERAMICS FOR STRATEGIC APPLICATIONS QUESTIONS AND ANSWERS NPTEL COURSE ADVANCED CERAMICS FOR STRATEGIC APPLICATIONS QUESTIONS AND ANSWERS Q1: What do you understand by Ceramics? Ans: Ceramics are a group of chemical compounds, either simple (consisting of only

More information

Mould fluxes for steelmaking - composition design and characterisation of properties. Research Institute, Stockholm

Mould fluxes for steelmaking - composition design and characterisation of properties. Research Institute, Stockholm Mould fluxes for steelmaking - composition design and characterisation of properties Carl-Åke Däcker KIMAB, Corrosion and Metals Research Institute, Stockholm The main functions for mould powder - and

More information

MSE 102 MATERIALS SCIENCE AND ENGINEERING ORIENTATION

MSE 102 MATERIALS SCIENCE AND ENGINEERING ORIENTATION MSE 102 MATERIALS SCIENCE AND ENGINEERING ORIENTATION Ceramics and Glasses Materials Science and Engineering Çankaya University Previous Lecture Processing single crystal polycrystal: low porosity polycrystal:

More information

Happy exam! And may the odds be ever in your favor.

Happy exam! And may the odds be ever in your favor. Name: Amorphous Materials Exam I 90 min Exam Problem 1 (25 Points) Problem 2 (25 Points) Problem 3 (25 Points) Problem 4 (25 Points) Total (100 Points) Happy exam! And may the odds be ever in your favor.

More information

MSE 351 Engineering Ceramics I

MSE 351 Engineering Ceramics I Kwame Nkrumah University of Science & Technology, Kumasi, Ghana MSE 351 Engineering Ceramics I Ing. Anthony Andrews (PhD) Department of Materials Engineering Faculty of Mechanical and Chemical Engineering

More information

Optical and Photonic Glasses. Lecture 4. Glass Composition and Preparations. Professor Rui Almeida

Optical and Photonic Glasses. Lecture 4. Glass Composition and Preparations. Professor Rui Almeida Optical and Photonic Glasses : Glass Composition and Preparations Professor Rui Almeida International Materials Institute For New Functionality in Glass Lehigh University For a given, selected value of

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad -500 043 MECHANICAL ENGINEERING TUTORIAL QUESTION BANK Course Name METALLURGY AND MATERIAL SCIENCE Course Code AME005 Class III Semester

More information

Environmental Degradation of Micro- & Nano-Composites

Environmental Degradation of Micro- & Nano-Composites Environmental Degradation of Micro- & Nano-Composites Dr. Muhammad Shahid Dept of Mechanical Engineering, College of EME, NUST mshahid@ceme.edu.pk www.ceme.edu.pk Corrosion Deterioration of materials (generally

More information

ZYZ. High Temperature Yttria Stabilized Zirconia Insulation. Advanced Fibrous Ceramics

ZYZ. High Temperature Yttria Stabilized Zirconia Insulation. Advanced Fibrous Ceramics Advanced Fibrous Ceramics ZYZ High Temperature Yttria Stabilized Zirconia Insulation The Unrivaled Industry Leader of ZrO 2 Insulation Two Product Types ZYZ-3 (30 Pounds per Cubic Foot) ZYZ-6 (60 Pounds

More information

1E5 Advanced design of glass structures. Martina Eliášová

1E5 Advanced design of glass structures. Martina Eliášová 1E5 Advanced design of glass structures Martina Eliášová List of lessons 1) History, chemical, production 2) Glass as a material for load bearing structures 3) Design of laminated plates 4) Design of glass

More information

Turn off all electronic devices

Turn off all electronic devices Knives and Steel 1 Knives and Steel Observations about Knives and Steel Knives and Steel 2 Some knives can t keep their cutting edges Some knives bend while others break Making good knives involves heat

More information

Chapter 1 - Introduction

Chapter 1 - Introduction Chapter 1 - Introduction What is materials science? Why should we know about it? Materials drive our society Stone Age Bronze Age Iron Age Now? Silicon Age? Polymer Age? Chapter 1-1 Chapter 1-2 Hardness

More information

atoms g/mol

atoms g/mol CHAPTER 2 ATOMIC STRUCTURE 2 6(a) Aluminum foil used for storing food weighs about 0.05 g/cm². How many atoms of aluminum are contained in this sample of foil? In a one square centimeter sample: number

More information

White Fused Alumina. Specifications: Best Coarse Coarse Normal part Mixed part 100%pass these mesh NO. Grain size. Fine part.

White Fused Alumina. Specifications: Best Coarse Coarse Normal part Mixed part 100%pass these mesh NO. Grain size. Fine part. 28 Charlton Street, Mt. Warrigal. NSW. 2528. Australia. Phone: 0242 956915 Mobile: 0450 695691 e mail: john.pulbrook@bigpond.com Skype: johnpulbrook1 ABN 17 949 415 002 Our products include White Fused

More information

Non-crystalline tetrahedral lattice of SiO 4. molecules with shared vertices (abstraction glass structure is far less regular)

Non-crystalline tetrahedral lattice of SiO 4. molecules with shared vertices (abstraction glass structure is far less regular) G L A S S O R I G I N S & P R I M A R Y T R A N S F O R M A T I O N S O Si Standard Industrial Glass: Silicon Dioxide (SiO 2 ): 70-75% Soda (Na 2 O): 12-16% Lime (CaO): 10-15% O Silicon Dioxide (most common

More information

Earth s Crust. Atoms build Molecules build Minerals build. Rocks build. Lecture 3 - Mineralogy.

Earth s Crust. Atoms build Molecules build Minerals build. Rocks build. Lecture 3 - Mineralogy. Lecture 3 - Mineralogy http://www.soest.hawaii.edu/coasts/gg101/index.html Atoms build Molecules build Minerals build Rocks build Earth s Crust Common minerals that we mine and use. Mineral Name What It

More information

Phase change processes for material property manipulation BY PROF.A.CHANDRASHEKHAR

Phase change processes for material property manipulation BY PROF.A.CHANDRASHEKHAR Phase change processes for material property manipulation BY PROF.A.CHANDRASHEKHAR Introduction The phase of a material is defined as a chemically and structurally homogeneous state of material. Any material

More information

Cutting Tool Materials and Cutting Fluids. Dr. Mohammad Abuhaiba

Cutting Tool Materials and Cutting Fluids. Dr. Mohammad Abuhaiba Cutting Tool Materials and Cutting Fluids HomeWork #2 22.37 obtain data on the thermal properties of various commonly used cutting fluids. Identify those which are basically effective coolants and those

More information

The generic requirements from blast furnace refractories are summarised below:

The generic requirements from blast furnace refractories are summarised below: BLAST FURNACE In the blast furnace iron ore is melted and reduced by coke and limestone. The materials are charged from the furnace top to form layers. Hot blast blown from furnace bottom burns coke and

More information

1-Materials Science & Materials Engineering

1-Materials Science & Materials Engineering 1-Materials Science & Materials Engineering 1-1-Structure & Properties Relationship (Materials Science or Materials Engineering) Processing Structure Properties Performance Sub Atomic Atomic Sub Atomic

More information

MSE 3143 Ceramic Materials

MSE 3143 Ceramic Materials MSE 3143 Ceramic Materials Mechanical Properties of Ceramics Assoc.Prof. Dr. Emre YALAMAÇ Res.Asst. B.Şölen AKDEMİR 2017-2018 Fall 1 OUTLINE Elasticity & Strength Stress & Strain Behaviour Of Materials

More information

Chemistry 145 Exam number 4 name 11/19/98 # Faraday s constant is 96,500 c/mole of electrons.

Chemistry 145 Exam number 4 name 11/19/98 # Faraday s constant is 96,500 c/mole of electrons. Chemistry 145 Exam number 4 name 11/19/98 # Faraday s constant is 96,500 c/mole of electrons. A.(16) An electrochemical cell is prepared with a strip of manganese metal dipping in to a 1.0 M MnSO 4 solution

More information

COOPERATIVE PATENT CLASSIFICATION

COOPERATIVE PATENT CLASSIFICATION CPC C COOPERATIVE PATENT CLASSIFICATION CHEMISTRY; METALLURGY (S omitted) METALLURGY C22 METALLURGY (of iron C21); FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS (production of

More information

Strengthening of Titanium Silicon Carbide by Grain Orientation Control and Silicon Carbide Whisker Dispersion

Strengthening of Titanium Silicon Carbide by Grain Orientation Control and Silicon Carbide Whisker Dispersion Materials Transactions, Vol. 48, No. 9 (27) pp. 2427 to 2431 #27 The Japan Institute of Metals Strengthening of Titanium Silicon Carbide by Grain Orientation Control and Silicon Carbide Whisker Dispersion

More information

بسم هللا الرحمن الرحیم. Materials Science. Chapter 3 Structures of Metals & Ceramics

بسم هللا الرحمن الرحیم. Materials Science. Chapter 3 Structures of Metals & Ceramics بسم هللا الرحمن الرحیم Materials Science Chapter 3 Structures of Metals & Ceramics 1 ISSUES TO ADDRESS... How do atoms assemble into solid structures? How does the density of a material depend on its structure?

More information

CHAPTER INTRODUCTION

CHAPTER INTRODUCTION 1 CHAPTER-1 1.0 INTRODUCTION Contents 1.0 Introduction 1 1.1 Aluminium alloys 2 1.2 Aluminium alloy classification 2 1.2.1 Aluminium alloys (Wrought) 3 1.2.2 Heat treatable alloys (Wrought). 3 1.2.3 Aluminum

More information

Current Refractory Technology and Practices in the Steel Industry

Current Refractory Technology and Practices in the Steel Industry Current Refractory Technology and Practices in the Steel Industry April 26, 2017 Rakesh K. Dhaka 2016 Steel Production in Numbers United States 4 th largest producer of steel in the world Source: World

More information

Composite Materials. Metal matrix composites

Composite Materials. Metal matrix composites Composite Materials Metal matrix composites Introduction The properties that make MMCs attractive are high strength and stiffness, good wear resistance, high service temperature, tailorable coefficient

More information

أت ارش. Dr. Abdel-Wahab El-Morsy Faculty of Engineering - Rabigh

أت ارش. Dr. Abdel-Wahab El-Morsy Faculty of Engineering - Rabigh Basic Workshop 1 أت ارش There are thousands of materials available for use in engineering applications. Most materials fall into one of three classes that are based on the atomic bonding forces of a particular

More information

Thermal Expansion of Al Matrix Composites Reinforced with TiN Nanoparticles

Thermal Expansion of Al Matrix Composites Reinforced with TiN Nanoparticles Thermal Expansion of Al Matrix Composites Reinforced with TiN Nanoparticles A. Chennakesava Reddy Professor, Department of Mechanical Engineering, JNTUH College of Engineering, Hyderabad Abstract: The

More information

Al2O3-MgO system: magnesia and spinel Magnesia

Al2O3-MgO system: magnesia and spinel Magnesia Al 2 O 3 -MgO system: magnesia and spinel 1-1.2. Magnesia Magnesium oxide (MgO, magnesia) occurs naturally as the mineral periclase; a metamorphic mineral formed by the breakdown of dolomite, CaMg (CO

More information

MSE-226 Engineering Materials

MSE-226 Engineering Materials MSE-226 Engineering Materials Lecture-7 ALLOY STEELS Tool Steels TYPES of FERROUS ALLOYS FERROUS ALLOYS Plain Carbon Steels Alloy Steels Cast Irons - Low carbon Steel - Medium carbon steel - High carbon

More information

INTRODUCTION TO CERAMICS, DR KASSIM AL-JOUBORY UNIVERSITY OF TECHNOLOGY BAGHDAD -IRAQ

INTRODUCTION TO CERAMICS, DR KASSIM AL-JOUBORY UNIVERSITY OF TECHNOLOGY BAGHDAD -IRAQ INTRODUCTION TO CERAMICS, GLASS AND REFRACTORIES DR KASSIM AL-JOUBORY UNIVERSITY OF TECHNOLOGY BAGHDAD -IRAQ 10) REFRACTORIES ٢ Refractories are materials that can withstand high temperatures without softening

More information

Chemistry Department, Faculty of Science, Al-Azhar University [Girls], Nasr City, Cairo, Egypt **

Chemistry Department, Faculty of Science, Al-Azhar University [Girls], Nasr City, Cairo, Egypt ** Górnictwo i Geoinżynieria Rok 33 Zeszyt 4 2009 Marwa A.G. Elngar*, Fatma M. Mohamed**, Salwa A.H. El-Bohy*, Carmen M. Sharaby*, Mohamed El-Menshawi H. Shalabi** FACTORS AFFECTED THE PERFORMANCE OF FIRE

More information

Kerathin Paper Ropes Textiles

Kerathin Paper Ropes Textiles Kerathin Paper Ropes Textiles Edition 1999 Kerathin P Fibreplast 1000 1260 1400 1500 1600 1700 1800 HA 1) AL 2) CU 2) Max. service temperature [ C] 1050 1150 1300 1450 1550 1600 1700 1600 1100 1300 Chemical

More information

INSULATING REFRACTORIES

INSULATING REFRACTORIES INSULATING REFRACTORIES Insulating refractories are thermal barriers that keep heat and save energy. Furnaces used for melting, heat treatment, heat regeneration or for any other purpose demand maximum

More information

1-6.4 THE CRACK TIP: THE INGLIS EQUATION

1-6.4 THE CRACK TIP: THE INGLIS EQUATION 1-6.4 THE CRACK TIP: THE INGLIS EQUATION In our discussions of fracture so far we have assumed that the crack looks much like that shown in Figure 1.26a. The crack separates planes of atoms, is atomically

More information

CERAMIC MATERIALS I. Asst. Prof. Dr. Ayşe KALEMTAŞ. Office Hours: Thursday, 09:30-10:30 am.

CERAMIC MATERIALS I. Asst. Prof. Dr. Ayşe KALEMTAŞ. Office Hours: Thursday, 09:30-10:30 am. CERAMIC MATERIALS I Office Hours: Thursday, 09:30-10:30 am. akalemtas@mu.edu.tr, akalemtas@gmail.com, Phone: 211 19 17 Metallurgical and Materials Engineering Department Clay products Main Components Clay

More information

Ceramic and Related Materials

Ceramic and Related Materials Lecture Note Ceramic and Related Materials Adopted from : Zbigniew D Jastrzebski, The Nature And Properties of Engineering Materials, John Wiley & Sons, ISBN 0-471-63693-2, 1987, CHAPTER 9. Darpublic October

More information

Defining Thermal Manufacturing

Defining Thermal Manufacturing Defining Thermal Manufacturing Thermal manufacturing relies on heat-driven processes like drying, smelting, heat treating, and curing to produce materials such as metals, glass, and ceramics, as well as

More information

Chapter 3: Atomic and Ionic Arrangements. Chapter 3: Atomic and Ionic Arrangements Cengage Learning Engineering. All Rights Reserved.

Chapter 3: Atomic and Ionic Arrangements. Chapter 3: Atomic and Ionic Arrangements Cengage Learning Engineering. All Rights Reserved. Chapter 3: Atomic and Ionic Arrangements 3-1 Learning Objectives 1. 2. 3. 4. 5. 6. 7. 8. Short-range order versus long-range order Amorphous materials Lattice, basis, unit cells, and crystal structures

More information