ENGR 151 Materials of Engineering LECTURE 19

Size: px
Start display at page:

Download "ENGR 151 Materials of Engineering LECTURE 19"

Transcription

1 ENGR 151 Materials of Engineering LECTURE 19

2 CHAPTER 13: APPLICATIONS AND PROCESSING OF CERAMICS TOPICS TO ADDRESS... How do we classify ceramics? What are some applications of ceramics? How is processing of ceramics different than for metals? 2

3 CLASSIFICATION OF CERAMICS 3

4 CLASSIFICATION OF CERAMICS Ceramic Materials Glasses Clay products Refractories Abrasives Cements Advanced ceramics -optical - composite reinforce - containers/ household -whiteware - structural -bricks for high T (furnaces) -sandpaper - cutting - polishing Adapted from Fig and discussion in Section , Callister & Rethwisch 9e. -composites - structural -engine rotors valves bearings -sensors 4

5 CERAMICS APPLICATION: DIE BLANKS Die blanks: -- Need wear resistant properties! Die surface: -- 4 μm polycrystalline diamond particles that are sintered onto a cemented tungsten carbide substrate. -- polycrystalline diamond gives uniform hardness in all directions to reduce wear. A o die die A d tensile force Adapted from Fig. 11.9(d), Callister & Rethwisch 9e. Courtesy Martin Deakins, GE Superabrasives, Worthington, OH. Used with permission. 5

6 CERAMICS APPLICATION: CUTTING TOOLS Tools: -- for grinding glass, tungsten, carbide, ceramics -- for cutting Si wafers -- for oil drilling Materials: -- manufactured single crystal or polycrystalline diamonds in a metal or resin matrix. -- polycrystalline diamonds resharpen by microfracturing along cleavage planes. oil drill bits blades Single crystal diamonds polycrystalline diamonds in a resin matrix. Photos courtesy Martin Deakins, GE Superabrasives, Worthington, OH. Used with permission. 6

7 CERAMICS APPLICATION: SENSORS Example: ZrO 2 as an oxygen sensor Principle: Increase diffusion rate of oxygen to produce rapid response of sensor signal to change in oxygen concentration Approach: Add Ca impurity to ZrO2: -- increases O 2- vacancies -- increases O 2- diffusion rate Operation: -- voltage difference produced when O 2- ions diffuse from the external surface through the sensor to the reference gas surface. -- magnitude of voltage difference partial pressure of oxygen at the external surface Ca 2+ gas with an unknown, higher oxygen content A substituting Ca 2+ ion removes a Zr 4+ ion and an O 2- ion. + sensor O 2- diffusion voltage difference produced! - reference gas at fixed oxygen content 7

8 GLASSES

9 GLASS-CERAMICS Transformation from amorphous state to crystalline state via a process called crystallization. Fine-grained polycrystalline material glassceramic. Grain formation is via a phase transformation. Properties: High mechanical strength Low coefficients of thermal expansion Relatively high temperature capabilities Good dielectric properties (electrical insulators) Good biological properties Can be made optically transparent E.g. Pyroceram, CorningWare, Cercor, Vision

10 REFRACTORIES Materials that withstand high temperatures without melting or decomposing (chemically, for example). Unreactive and inert when exposed to severe environments. Ability to provide thermal insulation. Applications: Furnace linings for metal refining Glass manufacturing Metallurgical heat treatment Power generation 10

11 REFRACTORIES 11

12 REFRACTORIES Materials to be used at high temperatures (e.g., in high temperature furnaces). Consider the Silica (SiO 2 ) - Alumina (Al 2 O 3 ) system. Silica refractories - silica rich - small additions of alumina depress melting temperature (phase diagram) and must be minimized: 2200 T(ºC) 2000 Liquid (L) 3Al 2 O 3-2SiO 2 mullite alumina + L 1800 crystobalite + L mullite + L mullite + crystobalite alumina + mullite Composition (wt% alumina) Fig , Callister & Rethwisch 9e. [Adapted from F. J. Klug, S. Prochazka, and R. H. Doremus, Alumina Silica Phase Diagram in the Mullite Region, J. Am. Ceram. Soc., 70[10], 758 (1987). Reprinted by permission of the American Ceramic Society.] 12

13 REFRACTORIES ABRASIVES AND CEMENTS Abrasives: Used to wear, grind or cut away softer material. E.g.: Diamond (natural and synthetic) expensive Silicon carbide, tungsten carbide (WC), aluminum oxide (corundum), silica sand Cements: when mixed with water, form a paste that eventually sets and hardens. E.g. Portland cement 13

14 ADVANCED CERAMICS: MATERIALS FOR AUTOMOBILE ENGINES Advantages: Operate at high temperatures high efficiencies Low frictional losses Operate without a cooling system Lower weights than current engines Disadvantages: Ceramic materials are brittle Difficult to remove internal voids (that weaken structures) Ceramic parts are difficult to form and machine Potential candidate materials: Si 3 N 4, SiC, & ZrO 2 Possible engine parts: engine block & piston coatings 14

15 ADVANCED CERAMICS: MATERIALS FOR CERAMIC ARMOR Components: -- Outer facing plates -- Backing sheet Properties/Materials: -- Facing plates -- hard and brittle fracture high-velocity projectile Al 2 O 3, B 4 C, SiC, TiB 2 -- Backing sheets -- soft and ductile deform and absorb remaining energy aluminum, synthetic fiber laminates 15

16 ADVANCED CERAMICS: MEMS Microelectromechanical Systems Miniaturized smart systems highly integrated Fabrication techniques similar to integrated circuits 16

17 NANOCARBONS Fullerenes spherical cluster of 60 carbon atoms, C 60 Like a soccer ball Carbon nanotubes sheet of graphite rolled into a tube Ends capped with fullerene hemispheres Fig , Callister & Rethwisch 8e. Fig. 13.7, Callister & Rethwisch 9e. 17

18 NANOCARBONS (CONT.) Graphene single-atomic-layer of graphite composed of hexagonally sp 2 bonded carbon atoms Fig. 13.9, Callister & Rethwisch 9e. 18

19 NANOCARBONS (CONT.) Applications: Medicine, textiles, alloys, springs, coatings and films, radar absorption material, electronics 19

20 CERAMIC FABRICATION METHODS 20

21 CERAMIC FABRICATION METHODS (I) GLASS FORMING Blowing of Glass Bottles: Parison mold Suspended parison Gob PARTICULATE FORMING Pressing operation Compressed air CEMENTATION Pressing: plates, cheap glasses -- glass formed by application of pressure -- mold is steel with graphite lining Fiber drawing: Finishing mold Fig , Callister & Rethwisch 9e. (Adapted from C.J. Phillips, Glass: The Miracle Maker. Reproduced by permission of Pittman Publishing Ltd., London.) wind up 21

22 SHEET GLASS FORMING Sheet forming continuous casting sheets are formed by floating the molten glass on a pool of molten tin Fig , Callister & Rethwisch 9e. (Courtesy of Pilkington Group Limited.) 22

23 GLASS STRUCTURE Basic Unit: 4- Si0 4 tetrahedron Si 4+ O 2 - Glass is noncrystalline (amorphous) Fused silica is SiO 2 to which no impurities have been added Other common glasses contain impurity ions such as Na +, Ca 2+, Al 3+, and B 3+ Quartz is crystalline SiO2: Na + Si 4+ O 2 - (soda glass) Adapted from Fig , Callister & Rethwisch 9e. 23

24 GLASS PROPERTIES Specific volume (1/ρ) vs Temperature (T ): Specific volume Supercooled Liquid Liquid (disordered) Crystalline materials: -- crystallize at melting temp, T m -- have abrupt change in spec. vol. at T m Glass (amorphous solid) Crystalline (i.e., ordered) T g T m Adapted from Fig , Callister & Rethwisch 9e. solid T Glasses: -- do not crystallize -- change in slope in spec. vol. curve at glass transition temperature, T g -- transparent - no grain boundaries to scatter light 24

25 GLASS PROPERTIES: VISCOSITY Viscosity, η: -- relates shear stress (τ) and velocity gradient (dv/dy): τ τ glass dy dv dv dy velocity gradient η has units of (Pa-s) 25

26 Viscosity [Pa-s] LOG GLASS VISCOSITY VS. TEMPERATURE Viscosity decreases with T soda-lime glass: 70% SiO 2 balance Na 2 O (soda) & CaO (lime) borosilicate (Pyrex): 13% B 2 O 3, 3.5% Na 2 O, 2.5% Al 2 O 3 Vycor: 96% SiO 2, 4% B 2 O 3 fused silica: > 99.5 wt% SiO strain point annealing point T melt T(ºC) Working range: glass-forming carried out Fig , Callister & Rethwisch 9e. (From E.B. Shand, Engineering Glass, Modern Materials, Vol. 6, Academic Press, New York, 1968, p. 262.) 26

27 HEAT TREATING GLASS Annealing: -- removes internal stresses caused by uneven cooling (thermal stresses due to poor thermal conductivity). Tempering: -- puts surface of glass part into compression -- suppresses growth of cracks from surface scratches. -- sequence: before cooling hot initial cooling cooler hot cooler -- Result: surface crack growth is suppressed. at room temp. compression tension compression 27

28 CERAMIC FABRICATION METHODS (IIA) GLASS FORMING Hydroplastic forming: Mill (grind) and screen constituents: desired particle size Mix with water Extrude this mass (e.g., into a brick) force A o PARTICULATE FORMING ram container billet container die holder extrusion die A d CEMENTATION Fig (c), Callister & Rethwisch 9e. Dry and fire the formed piece E.g. Brick, tiles, pipes, ceramic blocks 28

29 CERAMIC FABRICATION METHODS (IIA) GLASS FORMING Slip casting: Mill (grind) and screen constituents: desired particle size Mix with water and other constituents to form slip Slip casting operation pour slip into mold absorb water into mold green ceramic solid component PARTICULATE FORMING pour slip into mold drain mold hollow component CEMENTATION green ceramic Fig , Callister & Rethwisch 9e. (From W.D. Kingery, Introduction to Ceramics, Copyright 1960 by John Wiley & Sons, New York. Reprinted by permission of John Wiley & Sons, Inc.) Dry and fire the cast piece 29

30 TYPICAL PORCELAIN COMPOSITION (50%) 1. Clay (25%) 2. Filler e.g. quartz (finely ground) (25%) 3. Fluxing agent (Feldspar) -- aluminosilicates plus K +, Na +, Ca + -- upon firing - forms low-melting-temp. glass 30

31 HYDROPLASTICITY OF CLAY Clay is inexpensive When water is added to clay -- water molecules fit in between layered sheets -- reduces degree of van der Waals bonding -- when external forces applied clay particles free to move past one another becomes hydroplastic Structure of Kaolinite Clay: Fig , Callister & Rethwisch 9e. [Adapted from W.E. Hauth, "Crystal Chemistry of Ceramics", American Ceramic Society Bulletin, Vol. 30 (4), 1951, p. 140.] charge neutral Shear charge neutral weak van der Waals bonding Si 4+ Al 3+ - OH O 2- Shear 31

32 micrograph of porcelain DRYING AND FIRING Drying: as water is removed - interparticle spacings decrease shrinkage. wet body partially dry completely dry Fig , Callister & Rethwisch 9e. (From W.D. Kingery, Introduction to Ceramics, Copyright 1960 by John Wiley & Sons, New York. Reprinted by permission of John Wiley & Sons, Inc.) Drying too fast causes sample to warp or crack due to non-uniform shrinkage Firing: -- heat treatment between C -- vitrification: liquid glass forms from clay and flux flows between SiO2 particles. (Flux 70 μm lowers melting temperature). Fig , Callister & Rethwisch 9e. (Courtesy H.G. Brinkies, Swinburne University of Technology, Hawthorn Campus, Hawthorn, Victoria, Australia.) Si0 2 particle (quartz) glass formed around the particle 32

33 CERAMIC FABRICATION METHODS (IIB) GLASS FORMING PARTICULATE FORMING CEMENTATION Powder Pressing: used for both clay and non-clay compositions. Powder (plus binder) compacted by pressure in a mold -- Uniaxial compression - compacted in single direction -- Isostatic (hydrostatic) compression - pressure applied by fluid - powder in rubber envelope -- Hot pressing - pressure + heat 33

34 SINTERING Sintering occurs during firing of a piece that has been powder pressed -- powder particles coalesce and reduction of pore size Aluminum oxide powder: -- sintered at 1700 C for 6 minutes. Fig , Callister & Rethwisch 9e. Fig , Callister & Rethwisch 9e. (From W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics, 2nd edition, p Copyright 1976 by John Wiley & Sons, New York. Reprinted by permission of John Wiley & Sons, Inc.) 15 μm 34

35 TAPE CASTING Thin sheets of green ceramic cast as flexible tape Used for integrated circuits and capacitors Slip = suspended ceramic particles + organic liquid (contains binders, plasticizers) Fig , Callister & Rethwisch 9e. 35

36 CERAMIC FABRICATION METHODS (III) GLASS FORMING PARTICULATE FORMING CEMENTATION Hardening of a paste paste formed by mixing cement material with water Formation of rigid structures having varied and complex shapes Hardening process hydration (complex chemical reactions involving water and cement particles) Portland cement production of: -- mix clay and lime-bearing minerals -- calcine (heat to 1400 C) -- grind into fine powder 36

37 SUMMARY Categories of ceramics: -- glasses -- clay products -- refractories -- cements -- advanced ceramics Ceramic Fabrication techniques: -- glass forming (pressing, blowing, fiber drawing). -- particulate forming (hydroplastic forming, slip casting, powder pressing, tape casting) -- cementation Heat treating procedures -- glasses annealing, tempering -- particulate formed pieces drying, firing (sintering) 37

Chapter 13: Applications and Processing of Ceramics

Chapter 13: Applications and Processing of Ceramics Chapter 13: Applications and Processing of Ceramics ISSUES TO ADDRESS... General categories of ceramics What are common applications of ceramics? How are ceramic materials processed? Chapter 13-1 Classification

More information

Lecture Outline. Mechanical Properties of Ceramics. Mechanical properties of ceramics. Mechanical properties of ceramics

Lecture Outline. Mechanical Properties of Ceramics. Mechanical properties of ceramics. Mechanical properties of ceramics Mechanical properties of ceramics Lecture Outline Mechanical properties of ceramics Applications of ceramics abrication of Glasses Glass properties Processing of Ceramics Dr. M. Medraj Mech. Eng. Dept.

More information

CHAPTER. Fabrication and Processing of Engineering Materials. Chapter 17 -

CHAPTER. Fabrication and Processing of Engineering Materials. Chapter 17 - CHAPTER 17 Fabrication and Processing of Engineering Materials Chapter 17-1 Chapter 17: Fabrication and Processing of Engineering Materials ISSUES TO ADDRESS... What are some of the common fabrication

More information

MSE 351 Engineering Ceramics I

MSE 351 Engineering Ceramics I Kwame Nkrumah University of Science & Technology, Kumasi, Ghana Ceramic Processing Oxide for ceramics have high melting points. MSE 351 Engineering Ceramics I Ing. Anthony Andrews (PhD) Department of Materials

More information

Processing of Ceramic Materials

Processing of Ceramic Materials MME 131: Introduction to Metallurgy and Materials Lecture 25 Processing of Ceramic Materials AKMB Rashid Professor, MME Dept BUET, Dhaka Today s Topics Glass Forming Processes Ceramics Forming Processes

More information

CHAPTER 12: mechanical properties of ceramics

CHAPTER 12: mechanical properties of ceramics CHAPTER 12: mechanical properties of ceramics ISSUES TO ADDRESS... Mechanical Properties: What special provisions/tests are made for ceramic materials? Chapter 12-1 COORDINATION # AND IONIC RADII Coordination

More information

Comparison metals v p ceramics Metals Ceramics

Comparison metals v p ceramics Metals Ceramics Ceramics Ceramics A wide-ranging group of materials whose ingredients are clays, sand and feldspar. Clays Contain some of the following: Silicon & Aluminium as silicates Potassium compounds Magnesium compounds

More information

Ceramics ( 세라믹 ) Associate Professor Su-Jin Kim. School of Mechanical Engineering Gyeongsang National University. Ceramic Material Science

Ceramics ( 세라믹 ) Associate Professor Su-Jin Kim. School of Mechanical Engineering Gyeongsang National University. Ceramic Material Science s ( 세라믹 ) Associate Professor Su-Jin Kim School of Mechanical Engineering Gyeongsang National University OCW Ionic crystal structures https://youtu.be/a3cphn_ogvq?list=pl8eaogbez9xiwgbmcihctmo4bxsb4v8hm

More information

Haseeb Ullah Khan Jatoi Department of Chemical Engineering UET Lahore

Haseeb Ullah Khan Jatoi Department of Chemical Engineering UET Lahore Haseeb Ullah Khan Jatoi Department of Chemical Engineering UET Lahore Greek word Keramikos which means Burnt Stuff indicating that desired properties of these materials are normally achieved through a

More information

Ceramic Processing. Engineering Materials. 7/15/2009 Ceramic Processing/S.Rattanachan 1

Ceramic Processing. Engineering Materials. 7/15/2009 Ceramic Processing/S.Rattanachan 1 Ceramic Processing Engineering Materials 7/15/2009 Ceramic Processing/S.Rattanachan 1 Ceramic Processing Ceramic powders/raw materials + Additives Mixing Forming Firing Densification Sintering Vitrification

More information

MSE 352 Engineering Ceramics II

MSE 352 Engineering Ceramics II Kwame Nkrumah University of Science & Technology, Kumasi, Ghana MSE 352 Engineering Ceramics II 3 Credit Hours Ing. Anthony Andrews (PhD) Department of Materials Engineering Faculty of Mechanical and Chemical

More information

Dr. M. Medraj Mech. Eng. Dept. - Concordia University Mech 421/6511 lecture 13/2

Dr. M. Medraj Mech. Eng. Dept. - Concordia University Mech 421/6511 lecture 13/2 Outline Introduction: Ceramic materials Carbon based materials Applications of ceramics Ceramic Processing Mechanical properties of Ceramics Dr. M. Medraj Mech. Eng. Dept. - Concordia University Mech 421/6511

More information

CERAMICS Part 1: Structure and Properties. MSE 206-Materials Characterization I Lecture-7

CERAMICS Part 1: Structure and Properties. MSE 206-Materials Characterization I Lecture-7 CERAMICS Part 1: Structure and Properties MSE 206-Materials Characterization I Lecture-7 Classification of Materials Ceramics Ceramics comes from Greek word keramikos, means burnt stuff Compounds between

More information

CERAMIC MATERIALS I. Asst. Prof. Dr. Ayşe KALEMTAŞ. Office Hours: Thursday, 09:30-10:30 am.

CERAMIC MATERIALS I. Asst. Prof. Dr. Ayşe KALEMTAŞ. Office Hours: Thursday, 09:30-10:30 am. CERAMIC MATERIALS I Office Hours: Thursday, 09:30-10:30 am. akalemtas@mu.edu.tr, akalemtas@gmail.com, Phone: 211 19 17 Metallurgical and Materials Engineering Department CLASSIFICATION OF CERAMICS Ceramic

More information

CERAMIC MATERIALS I. Asst. Prof. Dr. Ayşe KALEMTAŞ

CERAMIC MATERIALS I. Asst. Prof. Dr. Ayşe KALEMTAŞ CERAMIC MATERIALS I akalemtas@mu.edu.tr, akalemtas@gmail.com, Phone: 211 19 17 Metallurgical and Materials Engineering Department Traditional Ceramics Clay products Main Components Clay Feldspar Silica

More information

Superconductors Processing and Equipment. Text Reference: Manufacturing Engineering and Technology, Kalpakjian & Schmid, 6/e, 2010 Chapter 18

Superconductors Processing and Equipment. Text Reference: Manufacturing Engineering and Technology, Kalpakjian & Schmid, 6/e, 2010 Chapter 18 Ceramics, Glasses, Superconductors Processing and Equipment Text Reference: Manufacturing Engineering and Technology, g g g gy, Kalpakjian & Schmid, 6/e, 2010 Chapter 18 FIGURE 18.1 (a) Examples of typical

More information

PY2N20 Material Properties and Phase Diagrams

PY2N20 Material Properties and Phase Diagrams PY2N20 Material Properties and Phase Diagrams Lecture 11 P. Stamenov, PhD School of Physics, TCD PY2N20-11 Silicates Combine SiO 4 4- tetrahedra by having them share corners, edges, or faces Mg 2 SiO 4

More information

EGN 3365 Review on Metals, Ceramics, & Polymers, and Composites by Zhe Cheng

EGN 3365 Review on Metals, Ceramics, & Polymers, and Composites by Zhe Cheng EGN 3365 Review on Metals, Ceramics, & Polymers, and Composites 2017 by Zhe Cheng Expectations on Chapter 11 Chapter 11 Understand metals are generally categorized as ferrous alloys and non-ferrous alloys

More information

Traditional and engineering ceramics

Traditional and engineering ceramics Traditional and engineering ceramics Traditional ceramics Clay Silica Feldspar + + Al2O3.2SiO2. 2H2O Structural clay products : bricks, sewer pipe, roofing tile EX: Triaxial bodies: Whiteware, porcelain,

More information

Methods of manufacture

Methods of manufacture 1 Methods of manufacture For Ceramics (see (b)) Crush raw materials Shape the crushed raw materials (various means) Dry & fire Apply finishing operations, as needed; to achieve required dimensional tolerances

More information

1 - Introduction and Overview of Manufacturing

1 - Introduction and Overview of Manufacturing 1 - Introduction and Overview of Manufacturing Manufacturing Processes - 2, IE-352 Ahmed M El-Sherbeeny, PhD Spring-2015 1 Chapter 1 INTRODUCTION AND OVERVIEW OF MANUFACTURING 1. What is Manufacturing?

More information

Materials Science and Engineering: An Introduction

Materials Science and Engineering: An Introduction Materials Science and Engineering: An Introduction Callister, William D. ISBN-13: 9780470419977 Table of Contents List of Symbols. 1 Introduction. 1.1 Historical Perspective. 1.2 Materials Science and

More information

MSE 102 MATERIALS SCIENCE AND ENGINEERING ORIENTATION

MSE 102 MATERIALS SCIENCE AND ENGINEERING ORIENTATION MSE 102 MATERIALS SCIENCE AND ENGINEERING ORIENTATION Ceramics and Glasses Materials Science and Engineering Çankaya University Previous Lecture Processing single crystal polycrystal: low porosity polycrystal:

More information

Chapter 11: Applications and Processing of Metal Alloys

Chapter 11: Applications and Processing of Metal Alloys Chapter 11: Applications and Processing of Metal Alloys ISSUES TO ADDRESS... What are some of the common fabrication techniques for metals? What heat treatment procedures are used to improve the mechanical

More information

INTRODUCTION AND OVERVIEW OF MANUFACTURING. Manufacturing is Important. Manufacturing - Technologically Important

INTRODUCTION AND OVERVIEW OF MANUFACTURING. Manufacturing is Important. Manufacturing - Technologically Important INTRODUCTION AND OVERVIEW OF MANUFACTURING 1. What is Manufacturing? 2. Materials in Manufacturing 3. Manufacturing Processes 4. Production Systems 5. Organization of the Book Manufacturing is Important

More information

MSE 351 Engineering Ceramics I

MSE 351 Engineering Ceramics I Kwame Nkrumah University of Science & Technology, Kumasi, Ghana MSE 351 Engineering Ceramics I Ing. Anthony Andrews (PhD) Department of Materials Engineering Faculty of Mechanical and Chemical Engineering

More information

Ceramic and glass technology

Ceramic and glass technology 29 Glass Properties Glass is an inorganic, nonmetallic material which cools to a rigid solid without crystallization. Glassy, or noncrystalline, materials do not solidify in the same sense as do those

More information

Ceramics are inorganic, non-metallic. Ceramics. Ceramics exhibit ionic, covalent bonding or a combination of the two (like in Al 2 O 3 )

Ceramics are inorganic, non-metallic. Ceramics. Ceramics exhibit ionic, covalent bonding or a combination of the two (like in Al 2 O 3 ) What are Ceramics? CERAMIC MATERIALS Ceramics are inorganic, non-metallic and crystalline materials that are typically produced using clays and other minerals from the earth or chemically processed powders

More information

Introduction to Engineering Materials ENGR2000 Chapter 19: Thermal Properties. Dr. Coates

Introduction to Engineering Materials ENGR2000 Chapter 19: Thermal Properties. Dr. Coates Introduction to Engineering Materials ENGR2000 Chapter 19: Thermal Properties Dr. Coates Chapter 19: Thermal Properties ISSUES TO ADDRESS... How do materials respond to the application of heat? How do

More information

COMPOSITE MATERIALS. Asst. Prof. Dr. Ayşe KALEMTAŞ

COMPOSITE MATERIALS. Asst. Prof. Dr. Ayşe KALEMTAŞ COMPOSITE MATERIALS Office Hours: Tuesday, 16:30-17:30 akalemtas@mu.edu.tr, akalemtas@gmail.com Phone: +90 252 211 19 17 Metallurgical and Materials Engineering Department ISSUES TO ADDRESS Ceramic Materials

More information

Engineering Materials

Engineering Materials Engineering Materials Lecture 2 MEL120: Manufacturing Practices 1 Selection of Material A particular material is selected is on the basis of following considerations 1. Properties of material 1. Properties

More information

Composite Materials. Metal matrix composites

Composite Materials. Metal matrix composites Composite Materials Metal matrix composites Introduction The properties that make MMCs attractive are high strength and stiffness, good wear resistance, high service temperature, tailorable coefficient

More information

Non-crystalline tetrahedral lattice of SiO 4. molecules with shared vertices (abstraction glass structure is far less regular)

Non-crystalline tetrahedral lattice of SiO 4. molecules with shared vertices (abstraction glass structure is far less regular) G L A S S O R I G I N S & P R I M A R Y T R A N S F O R M A T I O N S O Si Standard Industrial Glass: Silicon Dioxide (SiO 2 ): 70-75% Soda (Na 2 O): 12-16% Lime (CaO): 10-15% O Silicon Dioxide (most common

More information

Lecture 5. Chapter 7. Range of Mechanical Properties for Polymers. The University of New Mexico. The University of New Mexico TABLE 7.

Lecture 5. Chapter 7. Range of Mechanical Properties for Polymers. The University of New Mexico. The University of New Mexico TABLE 7. Lecture 5 Chapter 7 Range of Mechanical Properties for Polymers TABLE 7.1 Material UTS (MPa) E (GPa) ABS 28 55 1.4 2.8 ABS, reinforced 100 7.5 Acetal 55 70 1.4 3.5 Acetal, reinforced 135 10 Acrylic 40

More information

Ceramic and glass technology

Ceramic and glass technology 1 Row materials preperation Plastic Raw materials preperation Solid raw materials preperation Aging wet milling mastication Mixing seving Grain size reduction Milling Crushing Very fine milling Fine milling

More information

Extrusion of complex shapes

Extrusion of complex shapes Extrusion of complex shapes 1 Hot extrusion Hot extrusion is the process of forcing a heated billet to flow through a shaped die opening It is used to produce long, strait metal products of constant cross

More information

1. 3 Extrusion molding

1. 3 Extrusion molding 1. 3 Extrusion molding 9 Extrusion is a widely used technique, both in the field of traditional and technical ceramics. This method allows the continuous manufacture of products with a constant cross-

More information

Dr. M. Medraj Mech. Eng. Dept. - Concordia University Mech 421/6511 lecture 12/2

Dr. M. Medraj Mech. Eng. Dept. - Concordia University Mech 421/6511 lecture 12/2 POWDER METALLURGY Characterization of Engineering Powders Production of Metallic Powders Conventional Pressing and Sintering Alternative Pressing and Sintering Techniques Materials and Products for PM

More information

BMM3643 Manufacturing Processes Powder Metallurgy Process

BMM3643 Manufacturing Processes Powder Metallurgy Process BMM3643 Manufacturing Processes Powder Metallurgy Process by Dr Mas Ayu Bt Hassan Faculty of Mechanical Engineering masszee@ump.edu.my Chapter Synopsis This chapter will expose students to the sequence

More information

Chapter 13: Properties and Applications of Metals

Chapter 13: Properties and Applications of Metals Chapter 13: Properties and Applications of Metals ISSUES TO ADDRESS... How are metal alloys classified and what are their common applications? What are the microstructure and general characteristics of

More information

CHAPTER 17 FABRICATION AND PROCESSING OF ENGINEERING MATERIALS PROBLEM SOLUTIONS

CHAPTER 17 FABRICATION AND PROCESSING OF ENGINEERING MATERIALS PROBLEM SOLUTIONS CHAPTER 17 FABRICATION AND PROCESSING OF ENGINEERING MATERIALS PROBLEM SOLUTIONS Forming Operations 17.1 Cite advantages and disadvantages of hot working and cold working. The advantages of cold working

More information

Chapter 15-2: Processing of Polymers

Chapter 15-2: Processing of Polymers Chapter 15-2: Processing of Polymers ISSUES TO ADDRESS... Other issues in polymers What are the primary polymer processing methods? Chapter 15-1 Polymer Synthesis Reactions There are two types of polymerization

More information

CHAPTER INTRODUCTION

CHAPTER INTRODUCTION 1 CHAPTER-1 1.0 INTRODUCTION Contents 1.0 Introduction 1 1.1 Aluminium alloys 2 1.2 Aluminium alloy classification 2 1.2.1 Aluminium alloys (Wrought) 3 1.2.2 Heat treatable alloys (Wrought). 3 1.2.3 Aluminum

More information

Manufacturing Processes 1 (MDP 114)

Manufacturing Processes 1 (MDP 114) Manufacturing Processes 1 (MDP 114) First Year, Mechanical Engineering Dept., Faculty of Engineering, Fayoum University Dr. Ahmed Salah Abou Taleb 1 Cutting-Tool Materials and Cutting Fluids 2 Fracture

More information

Effect of Materials Design on Properties of Porcelain Insulators

Effect of Materials Design on Properties of Porcelain Insulators Effect of Materials Design on Properties of Porcelain Insulators Substitution of alumina for silica improved the mechanical properties of high-voltage porcelain insulators but did not have a significant

More information

Chapter 1 - Introduction

Chapter 1 - Introduction Chapter 1 - Introduction What is materials science? Why should we know about it? Materials drive our society Stone Age Bronze Age Iron Age Now? Silicon Age? Polymer Age? Chapter 1-1 Chapter 1-2 Hardness

More information

The University of Jordan School of Engineering Chemical Engineering Department

The University of Jordan School of Engineering Chemical Engineering Department The University of Jordan School of Engineering Chemical Engineering Department 0905351 Engineering Materials Science Second Semester 2016/2017 Course Catalog 3 Credit hours.all engineering structures and

More information

INTRODUCTION. What is Manufacturing? Materials in Manufacturing Manufacturing Processes Production Systems Organization of the Book

INTRODUCTION. What is Manufacturing? Materials in Manufacturing Manufacturing Processes Production Systems Organization of the Book INTRODUCTION What is Manufacturing? Materials in Manufacturing Manufacturing Processes Production Systems Organization of the Book Manufacturing is Important! Technologically Economically Historically

More information

Chapter 6: Mechanical Properties

Chapter 6: Mechanical Properties Chapter 6: Mechanical Properties ISSUES TO ADDRESS... Stress and strain: What are they and why are they used instead of load and deformation? Elastic behavior: When loads are small, how much deformation

More information

Issues to address. Why Mechanical Test?? Mechanical Properties. Why mechanical properties?

Issues to address. Why Mechanical Test?? Mechanical Properties. Why mechanical properties? Mechanical Properties Why mechanical properties? Folsom Dam Gate Failure, July 1995 Need to design materials that can withstand applied load e.g. materials used in building bridges that can hold up automobiles,

More information

MSE-226 Engineering Materials

MSE-226 Engineering Materials MSE-226 Engineering Materials Lecture-7 ALLOY STEELS Tool Steels TYPES of FERROUS ALLOYS FERROUS ALLOYS Plain Carbon Steels Alloy Steels Cast Irons - Low carbon Steel - Medium carbon steel - High carbon

More information

AERO 214. Introduction to Aerospace Mechanics of Materials. Lecture 2

AERO 214. Introduction to Aerospace Mechanics of Materials. Lecture 2 AERO 214 Introduction to Aerospace Mechanics of Materials Lecture 2 Materials for Aerospace Structures Aluminum Titanium Composites: Ceramic Fiber-Reinforced Polymer Matrix Composites High Temperature

More information

1-Materials Science & Materials Engineering

1-Materials Science & Materials Engineering 1-Materials Science & Materials Engineering 1-1-Structure & Properties Relationship (Materials Science or Materials Engineering) Processing Structure Properties Performance Sub Atomic Atomic Sub Atomic

More information

Chapter 5: Atom and Ion Movements in Materials

Chapter 5: Atom and Ion Movements in Materials Slide 1 Chapter 5: Atom and Ion Movements in Materials 5-1 Slide 2 Learning Objectives 1. Applications of diffusion 2. Stability of atoms and ions 3. Mechanisms for diffusion 4. Activation energy for diffusion

More information

Chapter 19: Thermal Properties

Chapter 19: Thermal Properties Chapter 19: Thermal Properties One type of thermostat a device that is used to regulate temperature utilizes the phenomenon of thermal expansion. The heart of this thermostat is a bimetallic strip strips

More information

Fracture. Brittle vs. Ductile Fracture Ductile materials more plastic deformation and energy absorption (toughness) before fracture.

Fracture. Brittle vs. Ductile Fracture Ductile materials more plastic deformation and energy absorption (toughness) before fracture. 1- Fracture Fracture: Separation of a body into pieces due to stress, at temperatures below the melting point. Steps in fracture: 1-Crack formation 2-Crack propagation There are two modes of fracture depending

More information

Jānis Grabis. Plasma chemical synthesis of multicomponent nanopowders, their characteristics, and processing

Jānis Grabis. Plasma chemical synthesis of multicomponent nanopowders, their characteristics, and processing Jānis Grabis Plasma chemical synthesis of multicomponent nanopowders, their characteristics, and processing Outline Introduction nanoparticles, their preparation methods Experimental synthesis of multicomponent

More information

Structure-Property Correlation [1] Structure-processing-properties-performance relation

Structure-Property Correlation [1] Structure-processing-properties-performance relation MME 297: Lecture 04 Structure-Property Correlation [1] Structure-processing-properties-performance relation Dr. A. K. M. Bazlur Rashid Professor, Department of MME BUET, Dhaka Topics to discuss today...

More information

MECHANICAL PROPERTIES OF MATERIALS. Manufacturing materials, IE251 Dr M. Eissa

MECHANICAL PROPERTIES OF MATERIALS. Manufacturing materials, IE251 Dr M. Eissa MECHANICAL PROPERTIES OF MATERIALS, IE251 Dr M. Eissa MECHANICAL PROPERTIES OF MATERIALS 1. Bending Test (Slide 3) 2. Shear Test (Slide 8) 3. Hardness (Slide 14) 4. Effect of Temperature on Properties

More information

MSE 352 Engineering Ceramics II

MSE 352 Engineering Ceramics II Kwame Nkrumah University of Science & Technology, Kumasi, Ghana MSE 352 Engineering Ceramics II Ing. Anthony Andrews (PhD) Department of Materials Engineering Faculty of Mechanical and Chemical Engineering

More information

ME 206: Materials Science

ME 206: Materials Science ME 206: Materials Science Course Objective... Introduce fundamental concepts in Materials Science You will learn about: material structure how structure dictates properties how processing can change structure

More information

MECHANICAL PROPERTIES OF MATERIALS

MECHANICAL PROPERTIES OF MATERIALS MECHANICAL PROPERTIES OF MATERIALS Stress-Strain Relationships Hardness Effect of Temperature on Properties Fluid Properties Viscoelastic Behavior of Polymers Mechanical Properties in Design and Manufacturing

More information

Chapter 15 Extrusion and Drawing of Metals

Chapter 15 Extrusion and Drawing of Metals Introduction Chapter 15 Extrusion and Drawing of Metals Alexandra Schönning, Ph.D. Mechanical Engineering University of North Florida Figures by Manufacturing Engineering and Technology Kalpakijan and

More information

أت ارش. Dr. Abdel-Wahab El-Morsy Faculty of Engineering - Rabigh

أت ارش. Dr. Abdel-Wahab El-Morsy Faculty of Engineering - Rabigh Basic Workshop 1 أت ارش There are thousands of materials available for use in engineering applications. Most materials fall into one of three classes that are based on the atomic bonding forces of a particular

More information

Laboratory Experiences in Glasses and Traditional Ceramics

Laboratory Experiences in Glasses and Traditional Ceramics Laboratory Experiences in Glasses and Traditional Ceramics William G. Fahrenholtz, Carol A. Click, and Richard K. Brow Department of Ceramic Engineering University of Missouri-Rolla Abstract In the Ceramic

More information

Review of Manufacturing Processes

Review of Manufacturing Processes Review of Manufacturing Processes ME 682 Dr. Han P. Bao Mechanical Engineering, ODU ME 682 Module 3 1 Engineering Materials The four major categories: Metal Plastics Ceramics Composites 1- Metals: Cast:

More information

Chapter 6: Mechanical Properties

Chapter 6: Mechanical Properties Chapter 6: Mechanical Properties ISSUES TO ADDRESS... Stress and strain: What are they and why are they used instead of load and deformation? Elastic behavior: When loads are small, how much deformation

More information

Chapter 6: Mechanical Properties

Chapter 6: Mechanical Properties Chapter 6: Mechanical Properties ISSUES TO ADDRESS... Stress and strain: What are they and why are they used instead of load and deformation? Elastic behavior: When loads are small, how much deformation

More information

true grit minerals CUMI lative range of EMD PRODUCT CATALOG 100 years US $ 3 billion 29 companies +30,000 people MURUGAPPA GROUP

true grit minerals CUMI lative range of EMD PRODUCT CATALOG 100 years US $ 3 billion 29 companies +30,000 people MURUGAPPA GROUP MURUGAPPA GROUP 100 years US $ 3 billion 29 companies +30,000 people EMD ELECTRO MINERALS DIVISION CUMI lative range of true grit minerals PRODUCT CATALOG FUSED PRODUCTS MACRO REGULAR BROWN FUSED ALUMINA

More information

Metal Matrix Composite (MMC)

Metal Matrix Composite (MMC) Matrix Metal Matrix Composite (MMC) The matrix is the monolithic material into which the reinforcement is embedded, and is completely continuous. This means thatt there is apath throughh the matrix ti

More information

Chapter Outline: Failure

Chapter Outline: Failure Chapter Outline: Failure How do Materials Break? Ductile vs. brittle fracture Principles of fracture mechanics Stress concentration Impact fracture testing Fatigue (cyclic stresses) Cyclic stresses, the

More information

1A - For your final finish!

1A - For your final finish! Finishing and Lapping films with diamond and aluminum oxide on polyester foil. 1A - For your final finish! www.1a-abrasives.com 1A-ABRASIVES COMPANY-PROFILE 3 We satisfy! Superfinishing with polyester

More information

Lecture 9 - Manufacturing in Engineering

Lecture 9 - Manufacturing in Engineering Introduction Dr. Carolyn Skurla Speaking Slide 2 Process Selection Choice depends on: The material from which the component is to be made. The size, shape, and dimension tolerances for the component. The

More information

Chapter 8: Mechanical Properties of Metals. Elastic Deformation

Chapter 8: Mechanical Properties of Metals. Elastic Deformation Chapter 8: Mechanical Properties of Metals ISSUES TO ADDRESS... Stress and strain: What are they and why are they used instead of load and deformation? Elastic behavior: When loads are small, how much

More information

Advanced Ceramics for Strategic Applications Prof. H. S. Maiti Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Advanced Ceramics for Strategic Applications Prof. H. S. Maiti Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Advanced Ceramics for Strategic Applications Prof. H. S. Maiti Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 1 Introduction (Refer Slide Time: 00:43) Welcome

More information

Chemistry Department, Faculty of Science, Al-Azhar University [Girls], Nasr City, Cairo, Egypt **

Chemistry Department, Faculty of Science, Al-Azhar University [Girls], Nasr City, Cairo, Egypt ** Górnictwo i Geoinżynieria Rok 33 Zeszyt 4 2009 Marwa A.G. Elngar*, Fatma M. Mohamed**, Salwa A.H. El-Bohy*, Carmen M. Sharaby*, Mohamed El-Menshawi H. Shalabi** FACTORS AFFECTED THE PERFORMANCE OF FIRE

More information

Selection of Engineering Materials

Selection of Engineering Materials Selection of Engineering IM 515E Dr Yehia M. Youssef 1 Textbook: Budinski, K.G. and Budinski, M.K., Engineering : Properties and selection, 8 th ed., Prentice Hall, 2005. Other References: 1) Ashby, M.,

More information

Chapter 15: Characteristics, Applications & Processing of Polymers

Chapter 15: Characteristics, Applications & Processing of Polymers Chapter 15: Characteristics, Applications & Processing of Polymers Study: 15.1-15.14 Read: 15.15-15.24 What are the tensile properties of polymers and how are they affected by basic microstructural features?

More information

بسم الله الرحمن الرحیم. Materials Science. Chapter 7 Mechanical Properties

بسم الله الرحمن الرحیم. Materials Science. Chapter 7 Mechanical Properties بسم الله الرحمن الرحیم Materials Science Chapter 7 Mechanical Properties 1 Mechanical Properties Can be characterized using some quantities: 1. Strength, resistance of materials to (elastic+plastic) deformation;

More information

Chapter 18: Powder Metallurgy

Chapter 18: Powder Metallurgy Chapter 18: Powder Metallurgy ผ ช วยศาสตราจารย เร อโท ดร. สมญา ภ นะยา Reference: DeGarmo s Materials and Processes in Manufacturing 18.1 Introduction Powder metallurgy is the name given to the process

More information

Lecture No. (7) Rubber Fillers

Lecture No. (7) Rubber Fillers Lecture No. (7) Rubber Fillers Introduction of Rubber Fillers Rubbers in general are seldom used in their only form because of they are too weak to fulfill practical requirements for many applications

More information

Materials of Engineering ENGR 151 CORROSION ELECTRICAL PROPERTIES

Materials of Engineering ENGR 151 CORROSION ELECTRICAL PROPERTIES Materials of Engineering ENGR 151 CORROSION ELECTRICAL PROPERTIES more anodic (active) more cathodic (inert) GALVANIC SERIES Ranking of the reactivity of metals/alloys in seawater Platinum Gold Graphite

More information

FIXED PROSTHODONTICS Page 1 Lecture: "Dental Porcelains" REVIEW OF CERAMICS AND PORCELAINS: A. Review of Definitions and Terminology:

FIXED PROSTHODONTICS Page 1 Lecture: Dental Porcelains REVIEW OF CERAMICS AND PORCELAINS: A. Review of Definitions and Terminology: FIXED PROSTHODONTICS Page 1 Lecture: "Dental Porcelains" REVIEW OF CERAMICS AND PORCELAINS: A. Review of Definitions and Terminology: 1. Ceramic = Any compound involving metallic and non-metallic elements.

More information

Physical Properties of Materials

Physical Properties of Materials Physical Properties of Materials Manufacturing Materials, IE251 Dr M. Saleh King Saud University Manufacturing materials --- IE251 lect-7, Slide 1 PHYSICAL PROPERTIES OF MATERIALS 1. Volumetric and Melting

More information

Introduction to Material Science

Introduction to Material Science Introduction to Material Science Materials are very important in the development of human civilization. Historians have identified civilization by the name of most used material. Thus, we have: Stone Age,

More information

Comparison of Experimental and Theoretical CTE of Al/h-BN Metal Matrix Composites

Comparison of Experimental and Theoretical CTE of Al/h-BN Metal Matrix Composites International Journal of Material Sciences and Technology. ISSN 2249-3077 Volume 6, Number 1 (2016), pp. 13-20 Research India Publications http://www.ripublication.com Comparison of Experimental and Theoretical

More information

Ceramics, Glasses, and Glass-Ceramics

Ceramics, Glasses, and Glass-Ceramics Ceramics, Glasses, and Glass-Ceramics Ceramics, Glasses, and Glass-Ceramics include a broad range of inorganic/nonmetallic compositions. Eyeglasses Diagnostic instruments Thermometers Tissue culture flasks

More information

Dr. M. Sayuti, ST.,M.Sc JURUSAN TEKNIK INDUSTRI FAKULTAS TEKNIK UNIVERSITAS MALIKUSSALEH

Dr. M. Sayuti, ST.,M.Sc JURUSAN TEKNIK INDUSTRI FAKULTAS TEKNIK UNIVERSITAS MALIKUSSALEH POWDER METALLURGY Dr. M. Sayuti, ST.,M.Sc JURUSAN TEKNIK INDUSTRI FAKULTAS TEKNIK UNIVERSITAS MALIKUSSALEH 1- INTRODUCTION Powder metallurgy is the name given to the process by which fine powdered materials

More information

Materials Engineering PTT 110

Materials Engineering PTT 110 By: Pn. Nurul Ain Harmiza Abdullah Materials Engineering PTT 110 SEMESTER 1 (2013/2014) PowerPoint Lecture Slides for Foundations of Materials Science and Engineering Fifth Edition William F. Smith Javad

More information

Engineering Materials. Materials. Metals. Material Properties. Solidification of Molten Metal. Grain Structure. Page 1

Engineering Materials. Materials. Metals. Material Properties. Solidification of Molten Metal. Grain Structure. Page 1 Materials Engineering Materials R. Jerz 1 1/21/2006 R. Jerz 2 1/21/2006 Material Properties Metals R. Jerz 3 1/21/2006 R. Jerz 4 1/21/2006 Solidification of Molten Metal Grain Structure Figure 1.11 Schematic

More information

Cutting Tool Materials and Cutting Fluids. Dr. Mohammad Abuhaiba

Cutting Tool Materials and Cutting Fluids. Dr. Mohammad Abuhaiba Cutting Tool Materials and Cutting Fluids HomeWork #2 22.37 obtain data on the thermal properties of various commonly used cutting fluids. Identify those which are basically effective coolants and those

More information

INTRODUCTION TO CERAMICS, DR KASSIM AL-JOUBORY UNIVERSITY OF TECHNOLOGY BAGHDAD -IRAQ

INTRODUCTION TO CERAMICS, DR KASSIM AL-JOUBORY UNIVERSITY OF TECHNOLOGY BAGHDAD -IRAQ INTRODUCTION TO CERAMICS, GLASS AND REFRACTORIES DR KASSIM AL-JOUBORY UNIVERSITY OF TECHNOLOGY BAGHDAD -IRAQ 10) REFRACTORIES ٢ Refractories are materials that can withstand high temperatures without softening

More information

Chapter 8. Deformation and Strengthening Mechanisms

Chapter 8. Deformation and Strengthening Mechanisms Chapter 8 Deformation and Strengthening Mechanisms Chapter 8 Deformation Deformation and Strengthening Issues to Address... Why are dislocations observed primarily in metals and alloys? How are strength

More information

Engineering Materials & Minerals

Engineering Materials & Minerals Course Book Engineering Materials & Minerals Lecturer: Dr.Payman Suhbat Ahmed E-mail: payman.suhbat@koyauniversity.org Coordinator: Nawzat Rashad Ismail E-mail: nawzat.rashad@koyauniversity.org 2 nd Stage

More information

Ultra-met. carbide metalworking technologies (800) (866)

Ultra-met. carbide metalworking technologies (800) (866) CEMENTED CARBIDE GRAIN STRUCTURES January 2006 720 North Main Street P.O. Box 313 Urbana, OH 43078 800.543.9952 866.543.9952 937.653.7133 Fax: 937.653.4754 CEMENTED CARBIDE GRAIN STRUCTURES January 2006

More information

CUTTING TOOL TECHNOLOGY

CUTTING TOOL TECHNOLOGY CUTTING TOOL TECHNOLOGY Tool Life Tool Materials Tool Geometry Cutting Fluids Cutting Tool Technology Two principal aspects: 1. Tool material 2. Tool geometry Three Modes of Tool Failure Fracture failure

More information

MSE 3143 Ceramic Materials

MSE 3143 Ceramic Materials MSE 3143 Ceramic Materials Mechanical Properties of Ceramics Assoc.Prof. Dr. Emre YALAMAÇ Res.Asst. B.Şölen AKDEMİR 2017-2018 Fall 1 OUTLINE Elasticity & Strength Stress & Strain Behaviour Of Materials

More information

Chapter 7: Dislocations and strengthening mechanisms. Strengthening by grain size reduction

Chapter 7: Dislocations and strengthening mechanisms. Strengthening by grain size reduction Chapter 7: Dislocations and strengthening mechanisms Mechanisms of strengthening in metals Strengthening by grain size reduction Solid-solution strengthening Strain hardening Recovery, recrystallization,

More information

2

2 1 2 3 4 5 6 7 Direct -Straightforward steady forward force by hydraulic ram Indirect -Has the advantage that there is no friction between billet and chamber (no movement) -Note dummy block at face of ram

More information

Water Droplet Impingement Erosion (WDIE) Water Droplet Impingement Erosion (WDIE) Solid Particle Erosion. Outline

Water Droplet Impingement Erosion (WDIE) Water Droplet Impingement Erosion (WDIE) Solid Particle Erosion. Outline Water Droplet Impingement Erosion (WDIE) Incoming air temperature Outline Mass flow rate Introduction Example Output power Energy Demand Temperature Turbine efficiency 1 F 0.3-0.5% Turbine inlet cooling

More information