Predicting Solid Solubility Limit in High-Entropy Alloys using the Molecular Orbital Approach

Size: px
Start display at page:

Download "Predicting Solid Solubility Limit in High-Entropy Alloys using the Molecular Orbital Approach"

Transcription

1 Predicting Solid Solubility Limit in High-Entropy Alloys using the Molecular Orbital Approach Sheng Guo Department of Industrial and Materials Science Chalmers University of Technology, Gothenburg, Sweden 12 July 2017, Bordeaux, France

2 Outline High entropy alloys solid solutions Hume Rothery rules Phase selection in HEAs: parametric approaches The molecular orbital approach (Md) Using Md to predict solid solubility limit in HEAs Conclusions

3 what we talk about when we talk about high entropy alloys (Miracle et al., Entropy, 2014) It is more convenient to define HEAs by the magnitude of configuration entropy in the high temperature (ideal or regular solution) state: Smix > 1.5R

4 why high entropy? high entropy stabilizes the formation of solid solution phases G mix = H mix T S mix single phase solid solution co existence of two solid solution phases

5 why bother? high entropy alloys open up vast unexplored compositional space (Murty, Yeh and Ranganathon, High Entropy Alloys, Elsevier, 2014) in the middle

6 binary solid solution and Hume Rothery rules an alloy is a mixture of metals, or a mixture of metals and other elements (C, Si, etc.). an alloy may be a solid solution of alloying elements (a single phase), or a mixture of multiple phases. a solid solution is a solid state solution of one or more solutes in a solvent. Such a mixture is considered a solution, rather than a compound, when the crystal structure of the solvent remains unchanged by addition of the solutes, and when the mixture remains in a single homogeneous phase. (substitutional) solid solutions, in accordance with the Hume Rothery rules, may form if the solute and solvent have: o similar atomic radii (< 15%) o same crystal structure o similar electronegativities (< 0.4) o similar valency William Hume Rothery

7 breaking of H R limit? (MG to SS) (Zeng et al., PNAS, 2009) (random fcc Ce Al solid solution) ( Ce3Al to SS) (From Ce3Al) Intermetallic compounds solid solution XRD patterns of Ce3Al at high pressure Atomic structure models of Ce Al alloy

8 opposite side of H R rules melt spinning volume 80*85 mm (1990) Inoue s three empirical rules to prepare BMGs (>1 mm): at least 3 alloying elements; large mismatching atomic sizes of constituent elements large negative heat of mixing among major alloying elements Pd 42.5 Cu 30 Ni 7.5 P 20 BMG 3.4 Kg! (Nishiyama, Intermetallics, 2012)

9 high entropy effect: stabilization of solid solutions or amorphous phase? (Nature, 1993) S R c ln c N mix i i i 1 when N elements are mixing in equiatomic ratio (c 1 =c 2 = =c N ), the mixing entropy reaches the maximum: S Rln N mix Based on the confusion principle, we can easily understand that random solid solutions tend to be stablized in HEAs. but, why not form a glassy (amorphous) phase then?

10 high entropy metallic glasses do exist (Ma et al., Mater Trans, 2002) (1.5mm) (Takeuchi et al., Intermetallics, 2011) (Gao et al., J Non-Crys. Solids, 2011)

11 intermetallic compounds can certainly form in equiatomic multi component alloys For example: XRD patterns of the CoCrCuFeNiTi x samples (x = 0, 0.5, 0.8, and 1) (Wang et al., Intermetallics, 2007) (Yang et al., Mater Chem Phys, 2007) So, can we predict the phase selection (solid solution, amorphous phase and intermetallic compound) in equiatomic multi component alloys?

12 2 parameter map for phase selection in HEAs atomic size difference n 2 ci(1 ri / r), r i 1 mixing enthalpy m i x n H i 1, i j 4 H ij n ciri ij AB m ix i 1 c c i j (Guo et al., Intermetallics, 2013) Solid solution phases form when is small, and H mix is either slightly positive or insignificantly negative; Amorphous phases form when is large, and H mix is noticeably negative; In the intermediate conditions (in terms of and H mix ), intermetallic compounds compete with both amorphous phases & solid solution phases. (Guo et al., Prog Nat Sci: Mater Int, 2011; Guo et al., Intermetallics, 2013)

13 here is the issue: can solid solutions be predicted more accurately, without being bothered by the formation of intermetallic compounds? Finding solid solubility limit. (Morinaga et al., Phil Mag A, 1985) (Guo et al., Intermetallics, 2013) here is the motivation: other parameters? even better, one parameter? an Md parameter, correlating well with electronegativity and atomic size

14 Md, d orbital energy level of alloying transition metals Md originates from the d orbitals of the alloying transition metal (so including both the alloying effect and the type of the secondary phase) when a transition element is added into Ni 3 Al, new energy levels due to the d orbitals of additive elements, appear above E f each value of Md is the average of e g and t 2g levels Md can be obtained by DV X cluster (molecular orbital) calculation (Morinaga et al., J Phys Soc JPN, 1984) crystal structure of Ni3Al and the cluster (MNi12Al6) used in the calculation energy level structure of pure and alloyed Ni3Al with 3d transition metals

15 Md, d orbital energy level of alloying transition metals Md for an alloy is defined by the compositional average Bo, measure for strength of covalent bonding (Morinaga et al., Phil Mag A, 1985) M Md for M in fcc Ni Md for M in bcc Cr (Matsumoto et al., J Phys Cond Mater, 1996)

16 using Md to predict solid solubility when Md increases beyond a certain value, the phase instability will occur and a secondary phase appears in terminal solid solutions in other words, a critical Md determines the solubility limit of the terminal solid solution, and it depends on the type of the secondary phase (Morinaga et al., Phil Mag A, 1985) /( + ) phase boundary in Ni Co Cr (left) and /( + ) phase boundary in Co Ni Mo (right) alloys

17 can Md work for HEAs, mainly containing TM elements? (Sheikh et al., J Appl Phys, 2015) assume as the condition of solid solutioning in fcc CoCrFeNi solute elements fcc CoCrFeNi solvent (Wang et al., Entropy, 2013) phase formation in fcc solid solutions forming HEAs containing 3d elements only

18 improvement of Hmix map using one parameter, Md (Sheikh et al., J Appl Phys, 2015) Md=0.97 this overlapping is the concern solid solution strengthening precipitation strengthening phase formation in fcc solid solutions forming HEAs containing 3d elements only (Sheikh et al., J Appl Phys, 2015)

19 the case for bcc solid solutions the choice of base elements (bcc Fe or Cr here) is only a matter of the threshold Md assume as the condition of solid solutioning in bcc AlCoCrFeNi (Sheikh et al., J Appl Phys, 2015)

20 Md for fcc solid solutions forming HEAs containing 4d elements? phase boundary in CoCrFeNiM x (M=Zr, Nb, Mo; Ti, Mn, Cu) HEAs (Sheikh et al., J Appl Phys, 2017)

21 Conclusions a single parameter, Md, the average d orbital energy level, previously used to describe solid solubility in transition metal based terminal solid solutions, was applied to predict solubility limit in HEAs Md can reasonably describe the solubility in fcc solid solution forming HEAs containing 3d elements only, and also in bcc solution forming HEAs Md can possibly also describe the solubility in fcc solid solution forming HEAs containing 4d elements, at least for CoCrFeNiM x (M=Zr, Nb, Mo) alloys Bo not touched upon yet (Kuroda et al., MSEA, 1998)

22 Thanks for your attention! Sheng Guo Industrial and Materials Science Department Chalmers University of Technology Gothenburg, Sweden E mail: sheng.guo@chalmers.se

Solid Solutioning in CoCrFeNiMx (M= 4d transition metals) High-Entropy Alloys

Solid Solutioning in CoCrFeNiMx (M= 4d transition metals) High-Entropy Alloys Solid Solutioning in CoCrFeNiMx (M= 4d transition metals) High-Entropy Alloys Sheng Guo Department of Industrial and Materials Science Chalmers University of Technology, Gothenburg, Sweden 21 September

More information

Eutectic High Entropy Alloys (EHEAs)

Eutectic High Entropy Alloys (EHEAs) Eutectic High Entropy Alloys (EHEAs) Sheng Guo Materials and Manufacturing Technology Department Chalmers University of Technology, Gothenburg, Sweden E mail: sheng.guo@chalmers.se C MAC Days 2014, Zagreb

More information

metallic glasses (amorphous alloys)

metallic glasses (amorphous alloys) A brief introduction to metallic glasses (amorphous alloys) Sheng Guo Assistant Professor Materials and Manufacturing Technology Department E-mail: sheng.guo@chalmers.se Outline What are metallic glasses

More information

Exploration of High-Entropy Alloys for Turbine Applications

Exploration of High-Entropy Alloys for Turbine Applications Exploration of High-Entropy Alloys for Turbine Applications Acknowledgment: "This material is based upon work supported by the Department of Energy under Award Number(s) DE-SC0013220. SBIR Program PHASE

More information

Formation and Soft Magnetic Properties of Co Fe Si B Nb Bulk Glassy Alloys

Formation and Soft Magnetic Properties of Co Fe Si B Nb Bulk Glassy Alloys Materials Transactions, Vol. 43, No. 5 (2002) pp. 1230 to 1234 c 2002 The Japan Institute of Metals EXPRESS REGULAR ARTICLE Formation and Soft Magnetic Properties of Co Fe Si B Nb Bulk Glassy Alloys Akihisa

More information

The Alloyed Pleasure: Bulk Metallic Glasses (BMGs) & High Entropy Alloys (HEAs) Sheng GUO

The Alloyed Pleasure: Bulk Metallic Glasses (BMGs) & High Entropy Alloys (HEAs) Sheng GUO The Alloyed Pleasure: Bulk Metallic Glasses (BMGs) & High Entropy Alloys (HEAs) Sheng GUO Materials and Manufacturing Technology Department Chalmers University of Technology November, 2013 Alloyed Pleasures:

More information

Effects of silicon and chromium additions on glass forming ability and microhardness of Co-based bulk metallic glasses

Effects of silicon and chromium additions on glass forming ability and microhardness of Co-based bulk metallic glasses Indian Journal of Engineering & Materials Sciences Vol. 21, February 2014, pp. 111-115 Effects of silicon and chromium additions on glass forming ability and microhardness of Co-based bulk metallic glasses

More information

3.40 Sketch within a cubic unit cell the following planes: (a) (01 1 ) (b) (112 ) (c) (102 ) (d) (13 1) Solution

3.40 Sketch within a cubic unit cell the following planes: (a) (01 1 ) (b) (112 ) (c) (102 ) (d) (13 1) Solution 3.40 Sketch within a cubic unit cell the following planes: (a) (01 1 ) (b) (11 ) (c) (10 ) (d) (13 1) The planes called for are plotted in the cubic unit cells shown below. 3.41 Determine the Miller indices

More information

Defect in crystals. Primer in Materials Science Spring

Defect in crystals. Primer in Materials Science Spring Defect in crystals Primer in Materials Science Spring 2017 11.05.2017 1 Introduction The arrangement of the atoms in all materials contains imperfections which have profound effect on the behavior of the

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION This file contains Supplementary information to the manuscript titled Accelerated Exploration of Multi-Principal Element Alloys with Solid Solution Phases, by O.N. Senkov, J.

More information

Evaluation of glass forming ability of alloys

Evaluation of glass forming ability of alloys Vol. 2 No. 1, Feb. 2005 CHINA FOUNDRY Evaluation of glass forming ability of alloys *Anhui CAI, Ye PAN, Guoxiong SUN ( Department of Materials Science and Engineering, Southeast University, Nanjing 210096,

More information

Homework #4 PROBLEM SOLUTIONS

Homework #4 PROBLEM SOLUTIONS Homework #4 PROBLEM SOLUTIONS 4.2 Determination of the number of vacancies per cubic meter in gold at 900 C (1173 K) requires the utilization of Equations (4.1) and (4.2) as follows: N V N exp Q V kt N

More information

Introduction to the phase diagram Uses and limitations of phase diagrams Classification of phase diagrams Construction of phase diagrams

Introduction to the phase diagram Uses and limitations of phase diagrams Classification of phase diagrams Construction of phase diagrams Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Concept of alloying Classification of alloys Introduction to the phase diagram Uses and limitations of phase diagrams Classification of phase diagrams

More information

Iron-based bulk metallic glasses

Iron-based bulk metallic glasses International Materials Reviews ISSN: 0950-6608 (Print) 1743-2804 (Online) Journal homepage: http://www.tandfonline.com/loi/yimr20 Iron-based bulk metallic glasses C Suryanarayana & A Inoue To cite this

More information

the Phase Diagrams Today s Topics

the Phase Diagrams Today s Topics MME 291: Lecture 03 Introduction to the Phase Diagrams Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Today s Topics Concept of alloying Classification of alloys Introduction to the phase diagram

More information

Centimeter-scale-diameter Co-based bulk metallic glasses with fracture strength exceeding 5000 MPa

Centimeter-scale-diameter Co-based bulk metallic glasses with fracture strength exceeding 5000 MPa Article SPECIAL ISSUE Bulk Metallic Glasses December 011 Vol.56 No.36: 3973977 doi: 10.1007/s11434-011-4765-8 Centimeter-scale-diameter Co-based bulk metallic glasses with fracture strength exceeding 5000

More information

The Stabilities of phase

The Stabilities of phase The Stabilities of phase What is a phase? A phase is a form of matter that is uniform throughout in chemical composition and physical state Example Fig 1. White phosphorus Fig 2.Black phosphorus Fig 3.

More information

atoms = 1.66 x g/amu

atoms = 1.66 x g/amu CHAPTER 2 Q1- How many grams are there in a one amu of a material? A1- In order to determine the number of grams in one amu of material, appropriate manipulation of the amu/atom, g/mol, and atom/mol relationships

More information

Phase Diagrams, Solid Solutions, Phase Strengthening, Phase Transformations

Phase Diagrams, Solid Solutions, Phase Strengthening, Phase Transformations Phase Diagrams, Solid Solutions, Phase Strengthening, Phase Transformations Components and Phases Components: The elements or compounds that are mixed initially (Al and Cu). Phases: A phase is a homogenous,

More information

Alloys GENERAL CONSIDERATIONS 621 SUBSTITUTIONAL SOLID SOLUTIONS HUME-ROTHERY RULES 624

Alloys GENERAL CONSIDERATIONS 621 SUBSTITUTIONAL SOLID SOLUTIONS HUME-ROTHERY RULES 624 ch22.qxd 9/22/4 5:29 PM Page 619 22 Alloys GENERAL CONSIDERATIONS 621 SUBSTITUTIONAL SOLID SOLUTIONS HUME-ROTHERY RULES 624 ORDER-DISORDER TRANSFORMATION 627 Elementary theory of order 629 PHASE DIAGRAMS

More information

NEW PHACOMP AND ITS APPLICATIONS TO ALLOY DESIGN. M. Morinaga, N. Yukawa, H. Adachi and H. Ezaki

NEW PHACOMP AND ITS APPLICATIONS TO ALLOY DESIGN. M. Morinaga, N. Yukawa, H. Adachi and H. Ezaki NEW PHACOMP AND ITS APPLICATIONS TO ALLOY DESIGN M. Morinaga, N. Yukawa, H. Adachi and H. Ezaki Toyohashi University of Technology, Toyohashi, Aichi 440 JAPAN. * Hyogo University of Teacher Education,

More information

Chapter 2 Metallic Glasses

Chapter 2 Metallic Glasses Chapter 2 Metallic Glasses Metallic glasses, which exhibit many fascinating properties, have been developed during the past half century. The atomic structure has been basically understood by using a dense

More information

Chapter 10: Phase Diagrams

Chapter 10: Phase Diagrams hapter 10: Phase Diagrams Show figures 10-1 and 10-3, and discuss the difference between a component and a phase. A component is a distinct chemical entity, such as u, Ni, NiO or MgO. A phase is a chemically

More information

Dept.of BME Materials Science Dr.Jenan S.Kashan 1st semester 2nd level. Imperfections in Solids

Dept.of BME Materials Science Dr.Jenan S.Kashan 1st semester 2nd level. Imperfections in Solids Why are defects important? Imperfections in Solids Defects have a profound impact on the various properties of materials: Production of advanced semiconductor devices require not only a rather perfect

More information

Designing and understanding novel highentropy alloys towards superior properties

Designing and understanding novel highentropy alloys towards superior properties Designing and understanding novel highentropy alloys towards superior properties Zhiming Li zhiming.li@mpie.de 2018-01-19 Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf Aalto MPIE 2 Max-Planck-Institut

More information

Two Components System

Two Components System Two Components System Three independent variables: T, P, compositions In general, constant pressure (fixed parameter). P+F=C+1 Simple Eutectic System The binary eutectic phase diagram explains the chemical

More information

High-Entropy Alloys. Breakthrough Materials for Aero Engine Applications? By Daniel Svensson, Gothenburg, 13/2 2015

High-Entropy Alloys. Breakthrough Materials for Aero Engine Applications? By Daniel Svensson, Gothenburg, 13/2 2015 High-Entropy Alloys Breakthrough Materials for Aero Engine Applications? By Daniel Svensson, Gothenburg, 13/2 2015 Presentation Outline 1. 2. 3. 4. 5. 6. Introduction High-Entropy Alloys Aero Engine Materials

More information

Soft Magnetic Properties of Nanocystalline Fe Si B Nb Cu Rod Alloys Obtained by Crystallization of Cast Amorphous Phase

Soft Magnetic Properties of Nanocystalline Fe Si B Nb Cu Rod Alloys Obtained by Crystallization of Cast Amorphous Phase Materials Transactions, Vol. 43, No. 9 (2002) pp. 2337 to 2341 c 2002 The Japan Institute of Metals EXPRESS REGULAR ARTICLE Soft Magnetic Properties of Nanocystalline Fe Si B Nb Cu Rod Alloys Obtained

More information

Keywords. Aluminium-based amorphous alloys; melt spinning; crystallization behaviour; microhardness.

Keywords. Aluminium-based amorphous alloys; melt spinning; crystallization behaviour; microhardness. PRAMANA c Indian Academy of Sciences Vol. 65, No. 4 journal of October 2005 physics pp. 745 751 Effect of rare-earth elements on nanophase evolution, crystallization behaviour and mechanical properties

More information

Traditionally materials have been divided into three major groups: Metals, Ceramics and Polymers. In addition Composites and biomaterials.

Traditionally materials have been divided into three major groups: Metals, Ceramics and Polymers. In addition Composites and biomaterials. Tilley, Understanding solids : Traditionally materials have been divided into three major groups: Metals, Ceramics and Polymers. In addition Composites and biomaterials. Q: What characterize a material?

More information

Hartree-Fock-SlaterMethod for Materials Science

Hartree-Fock-SlaterMethod for Materials Science H. Adachi T. Mukoyama J. Kawai (Eds.) Hartree-Fock-SlaterMethod for Materials Science The DV-Xa Method for Design and Characterization of Materials With 132 Figures and 33 Tables 4u Sprin ger Contents

More information

Chapter 11: Phase Diagrams

Chapter 11: Phase Diagrams Chapter 11: Phase Diagrams ISSUES TO ADDRESS... When we combine two elements... what is the resulting equilibrium state? In particular, if we specify... -- the composition (e.g., wt% Cu - wt% Ni), and

More information

Lecture 7: Solid State Reactions Phase Diagrams and Mixing

Lecture 7: Solid State Reactions Phase Diagrams and Mixing Lecture 7: Solid State Reactions Phase Diagrams and Mixing Prof Ken Durose, Univ of Liverpool Text book for this lecture: Callister Materials Science and Engineering Learning objectives 1.Solid state reactions

More information

Alloying Solid Solution Strengthening of Fe-Ga Alloys: A first-principles Study

Alloying Solid Solution Strengthening of Fe-Ga Alloys: A first-principles Study Alloying Solid Solution Strengthening of Fe-Ga Alloys: A first-principles Study Kuiying Chen a & Leon M Cheng b a Structure and Materials Performance Laboratory, Institute for Aerospace Research, National

More information

Physical Metallurgy of High-Entropy Alloys

Physical Metallurgy of High-Entropy Alloys JOM, Vol. 67, No. 10, 2015 DOI: 10.1007/s11837-015-1583-5 2015 The Minerals, Metals & Materials Society Physical Metallurgy of High-Entropy Alloys JIEN-WEI YEH 1,2 1. Department of Materials Science and

More information

CHAPTER 9: PHASE DIAGRAMS

CHAPTER 9: PHASE DIAGRAMS CHAPTER 9: PHASE DIAGRAMS ISSUES TO ADDRESS... When we combine two elements... what equilibrium state do we get? In particular, if we specify... --a composition (e.g., wt%cu - wt%ni), and --a temperature

More information

Chapter 9 Phase Diagrams. Dr. Feras Fraige

Chapter 9 Phase Diagrams. Dr. Feras Fraige Chapter 9 Phase Diagrams Dr. Feras Fraige Chapter Outline Definitions and basic concepts Phases and microstructure Binary isomorphous systems (complete solid solubility) Binary eutectic systems (limited

More information

but T m (Sn0.62Pb0.38) = 183 C, so this is a common soldering alloy.

but T m (Sn0.62Pb0.38) = 183 C, so this is a common soldering alloy. T m (Sn) = 232 C, T m (Pb) = 327 C but T m (Sn0.62Pb0.38) = 183 C, so this is a common soldering alloy. T m (Au) = 1064 C, T m (Si) = 2550 C but T m (Au0.97Si0.03) = 363 C, so thin layer of gold is used

More information

Impurities in Solids. Crystal Electro- Element R% Structure negativity Valence

Impurities in Solids. Crystal Electro- Element R% Structure negativity Valence 4-4 Impurities in Solids 4.4 In this problem we are asked to cite which of the elements listed form with Ni the three possible solid solution types. For complete substitutional solubility the following

More information

Metals I. Anne Mertens

Metals I. Anne Mertens "MECA0139-1: Techniques "MECA0462-2 additives : et Materials 3D printing", Selection", ULg, 19/09/2017 25/10/2016 Metals I Anne Mertens Introduction Outline Metallic materials Materials Selection: case

More information

Equilibrium phase diagram of metallic alloy

Equilibrium phase diagram of metallic alloy Equilibrium phase diagram of metallic alloy Motivation New structure, concentration (mixing level) (at what temperature? for how long? ) Phase Diagrams - Introduction. Many materials systems can exist

More information

Chapter 4: Imperfections (Defects) in Solids

Chapter 4: Imperfections (Defects) in Solids Chapter 4: Imperfections (Defects) in Solids ISSUES TO ADDRESS... What types of defects exist in solids? How do defects affect material properties? Can the number and type of defects be varied and controlled?

More information

The Science and Engineering of Materials, 4 th ed Donald R. Askeland Pradeep P. Phulé. Chapter 8 Solid Solutions and Phase Equilibrium

The Science and Engineering of Materials, 4 th ed Donald R. Askeland Pradeep P. Phulé. Chapter 8 Solid Solutions and Phase Equilibrium The Science and Engineering of Materials, 4 th ed Donald R. Askeland Pradeep P. Phulé Chapter 8 Solid Solutions and Phase Equilibrium Objectives of Chapter 8 The goal of this chapter is to describe the

More information

PHASE DIAGRAMS. IE-114 Materials Science and General Chemistry Lecture-10

PHASE DIAGRAMS. IE-114 Materials Science and General Chemistry Lecture-10 PHASE DIAGRAMS IE-114 Materials Science and General Chemistry Lecture-10 Importance of Phase Diagrams There is a strong correlation between microstructure and mechanical properties. Phase diagrams provides

More information

On the origin of multi-component bulk metallic glasses: Atomic size mismatches and de-mixing

On the origin of multi-component bulk metallic glasses: Atomic size mismatches and de-mixing On the origin of multi-component bulk metallic glasses: Atomic size mismatches and de-mixing Kai Zhang,, 2 Bradley Dice, 3, 2 Yanhui Liu,, 2 Jan Schroers,, 2 Mark D. Shattuck, 4,, 2, 5, 6 and Corey S.

More information

Phase Diagrams of Pure Substances Predicts the stable phase as a function of P total and T. Example: water can exist in solid, liquid and vapor

Phase Diagrams of Pure Substances Predicts the stable phase as a function of P total and T. Example: water can exist in solid, liquid and vapor PHASE DIAGRAMS Phase a chemically and structurally homogenous region of a material. Region of uniform physical and chemical characteristics. Phase boundaries separate two distinct phases. A single phase

More information

Materials Engineering. Phase transformation Phase diagrams

Materials Engineering. Phase transformation Phase diagrams Materials Engineering Phase transformation Phase diagrams Phase Transformation Why is it important for us? o Temperature, chemical composition and pressure can change the properties of materials o Understanding

More information

High-Entropy Alloys: A Critical Review

High-Entropy Alloys: A Critical Review This article was downloaded by: [85.74.134.131] On: 20 January 2015, At: 09:00 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer

More information

Q. S. Zhang 1, W. Zhang 1; *, X. M. Wang 1, Y. Yokoyama 1, K. Yubuta 1 and A. Inoue 2

Q. S. Zhang 1, W. Zhang 1; *, X. M. Wang 1, Y. Yokoyama 1, K. Yubuta 1 and A. Inoue 2 Materials Transactions, Vol. 49, No. 9 (2008) pp. 2141 to 2146 #2008 The Japan Institute of Metals EXPRESS REGULAR ARTICLE Structure, Thermal Stability and Mechanical Properties of Zr 65 Al 7:5 Ni 10 Cu

More information

Chapter 11: Phase Diagrams. Phase Equilibria: Solubility Limit

Chapter 11: Phase Diagrams. Phase Equilibria: Solubility Limit Temperature ( C) Water ugar 217/1/4 Chapter 11: Phase Diagrams IUE TO ADDRE... When we combine two elements... what is the resulting equilibrium state? In particular, if we specify... -- the composition

More information

Local structure and site substitution in Al 86 Ni 6 Co 2 Y 4.5 La 1.5 bulk amorphous alloy

Local structure and site substitution in Al 86 Ni 6 Co 2 Y 4.5 La 1.5 bulk amorphous alloy Local structure and site substitution in Al 86 Ni 6 Co 2 Y 4.5 La 1.5 bulk amorphous alloy Y. Liu 1, G. Schumacher 1, I. Zizak 1, A. Erko 1, J. Banhart 1,2 1 Helmholtz-Zentrum Berlin für Materialien und

More information

Free Electron Model What kind of interactions hold metal atoms together? How does this explain high electrical and thermal conductivity?

Free Electron Model What kind of interactions hold metal atoms together? How does this explain high electrical and thermal conductivity? Electrical Good conductors of heat & electricity Create semiconductors Oxides are basic ionic solids Aqueous cations (positive charge, Lewis acids) Reactivity increases downwards in family Free Electron

More information

Searching for Next Single-Phase High-Entropy Alloy Compositions

Searching for Next Single-Phase High-Entropy Alloy Compositions Entropy 2013, 15, 4504-4519; doi:10.3390/e15104504 Article OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Searching for Next Single-Phase High-Entropy Alloy Compositions Michael C. Gao

More information

COMPUTED PHASE EQUILIBRIA IN IRON-BASE TERNARY ALLOYS

COMPUTED PHASE EQUILIBRIA IN IRON-BASE TERNARY ALLOYS COMPUTED PHASE EQUILIBRIA IN IRON-BASE TERNARY ALLOYS by K.C. HARI KUMAR APPLIED MECHANICS DEPARTMENT Thesis submitted in fulfilment of the requirements of the Degree of DOCTOR OF PHILOSOPHY be vt, to

More information

Packing of atoms in solids

Packing of atoms in solids MME131: Lecture 6 Packing of atoms in solids A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka Today s topics Atomic arrangements in solids Points, directions and planes in unit cell References:

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 3,900 116,000 120M Open access books available International authors and editors Downloads Our

More information

Free Electron Model What kind of interactions hold metal atoms together? How does this explain high electrical and thermal conductivity?

Free Electron Model What kind of interactions hold metal atoms together? How does this explain high electrical and thermal conductivity? Electrical Good conductors of heat & electricity Create semiconductors Oxides are basic ionic solids Aqueous cations (positive charge, Lewis acids) Reactivity increases downwards in family Mechanical Lustrous

More information

Fabrication of Mg-based bulk metallic glasses by pressure die casting method

Fabrication of Mg-based bulk metallic glasses by pressure die casting method Indian Journal of Engineering & Materials Sciences Vol. 21, June 2014, pp. 259-264 Fabrication of Mg-based bulk metallic glasses by pressure die casting method A Borowski*, A Guwer, A Gawlas-Mucha, R Babilas

More information

Alloys and Solid Solutions

Alloys and Solid Solutions Alloys and Solid Solutions Chemistry 123 Spring 2008 Dr. Woodward Solutions Solid Solution 14 Carat Gold Liquid Solution Vodka Gaseous Solution Air Solution = A homogeneous mixture 1 Alloys An alloy is

More information

Designing martensitic steels: structure & properties Enrique Galindo-Nava and Pedro Rivera

Designing martensitic steels: structure & properties Enrique Galindo-Nava and Pedro Rivera Designing martensitic steels: structure & properties Enrique Galindo-Nava and Pedro Rivera Feng Qian, Mark Rainforth (Sheffield); Wenwen Song (Aachen) 1 Outline Aim: Understand the factors controlling

More information

Imperfections, Defects and Diffusion

Imperfections, Defects and Diffusion Imperfections, Defects and Diffusion Lattice Defects Week5 Material Sciences and Engineering MatE271 1 Goals for the Unit I. Recognize various imperfections in crystals (Chapter 4) - Point imperfections

More information

Chapter 1. Institute of Technology in 1960 [1]. The first metallic glass system, Au 75 Si 25, was found

Chapter 1. Institute of Technology in 1960 [1]. The first metallic glass system, Au 75 Si 25, was found Chapter 1 Introduction The first metallic glass was reported by Klement and Duwez at the California Institute of Technology in 1960 [1]. The first metallic glass system, Au 75 Si 25, was found during an

More information

On the origin of multi-component bulk metallic glasses: Atomic size mismatches and de-mixing

On the origin of multi-component bulk metallic glasses: Atomic size mismatches and de-mixing On the origin of multi-component bulk metallic glasses: Atomic size mismatches and de-mixing Kai Zhang, Bradley Dice, Yanhui Liu, Jan Schroers, Mark D. Shattuck, and Corey S. O Hern Citation: The Journal

More information

INGE Engineering Materials. Chapter 3 (cont.)

INGE Engineering Materials. Chapter 3 (cont.) Some techniques used: Chapter 3 (cont.) This section will address the question how do we determine the crystal structure of a solid sample? Electron microscopy (by direct and indirect observations) Scanning

More information

Point coordinates. x z

Point coordinates. x z Point coordinates c z 111 a 000 b y x z 2c b y Point coordinates z y Algorithm 1. Vector repositioned (if necessary) to pass through origin. 2. Read off projections in terms of unit cell dimensions a,

More information

Slide 1. Slide 2. Slide 3. Chapter 10: Solid Solutions and Phase Equilibrium. Learning Objectives. Introduction

Slide 1. Slide 2. Slide 3. Chapter 10: Solid Solutions and Phase Equilibrium. Learning Objectives. Introduction Slide 1 Chapter 10: Solid Solutions and Phase Equilibrium 10-1 Slide 2 Learning Objectives 1. Phases and the phase diagram 2. Solubility and solid solutions 3. Conditions for unlimited solid solubility

More information

HIGH ENTROPY ALLOYS AND CORROSION RESISTANCE A BIRD S EYE VIEW

HIGH ENTROPY ALLOYS AND CORROSION RESISTANCE A BIRD S EYE VIEW HIGH ENTROPY ALLOYS AND CORROSION RESISTANCE A BIRD S EYE VIEW S. John Mary [a], R. Nagalakshmi [b]*, Susai Rajendran [c] and R. Epshipha [d] Keywords: High entropy alloys; corrosion resistance; micro

More information

Electronic origin of melting T P curves of alkali metals with negative slope and minimum

Electronic origin of melting T P curves of alkali metals with negative slope and minimum Electronic origin of melting T P curves of alkali metals with negative slope and minimum Degtyareva V.F. Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka, Russia degtyar@issp.ac.ru

More information

Point coordinates. Point coordinates for unit cell center are. Point coordinates for unit cell corner are 111

Point coordinates. Point coordinates for unit cell center are. Point coordinates for unit cell corner are 111 Point coordinates c z 111 Point coordinates for unit cell center are a/2, b/2, c/2 ½ ½ ½ Point coordinates for unit cell corner are 111 x a z 000 b 2c y Translation: integer multiple of lattice constants

More information

Phase diagrams (cont.) and the Fe-C system

Phase diagrams (cont.) and the Fe-C system Phase diagrams (cont.) and the Fe-C system Solidification: Pro-eutectic vs Eutectic Pro-eutectic solidification Ideal liquid, uniform distribution Solid Pb(Sn) () nucleates Solubility limit leads to Sn

More information

Twin-Roll Strip Casting of Iron-Base Amorphous Alloys

Twin-Roll Strip Casting of Iron-Base Amorphous Alloys Materials Transactions, Vol. 48, No. 7 (2007) pp. 1584 to 1588 Special Issue on Bulk Metallic Glasses Selected Papers from the Fifth International Conference on Bulk Metallic Glasses (BMGV) #2007 The Japan

More information

Chapter 2. Ans: e (<100nm size materials are called nanomaterials)

Chapter 2. Ans: e (<100nm size materials are called nanomaterials) Chapter 2 1. Materials science and engineering include (s) the study of: (a) metals (b) polymers (c) ceramics (d) composites (e) nanomaterials (f) all of the above Ans: f 2. Which one of the following

More information

Development of novel Zr-based MG for thermo-plastic forming

Development of novel Zr-based MG for thermo-plastic forming Development of novel Zr-based MG for thermo-plastic forming 구조재료심화연구 (Current Status of Structural Materials) March 20th, 2016 Kyung-jun Kim 1. Introduction: Thermoplastic forming of metallic glass 2.

More information

Cu-Ag phase diagram Brazil s map

Cu-Ag phase diagram Brazil s map Phase Diagrams [9] Cu-Ag phase diagram Brazil s map 1> Some important definitions Component - chemically recognizable species (Fe and C in carbon steel, H2O and NaCl in salted water). A binary alloy contains

More information

Recent Progress in Bulk Glassy Alloys

Recent Progress in Bulk Glassy Alloys Materials Transactions, Vol. 43, No. 8 (2002) pp. 1892 to 1906 Special Issue on Bulk Amorphous, Nano-Crystalline and Nano-Quasicrystalline Alloys IV c 2002 The Japan Institute of Metals OVERVIEW Recent

More information

Early stage development of precipitation strengthened CCAs in the AlCrFeNiTi system for high temperature structural applications

Early stage development of precipitation strengthened CCAs in the AlCrFeNiTi system for high temperature structural applications Early stage development of precipitation strengthened CCAs in the AlCrFeNiTi system for high temperature structural applications 15.02.2018 and Christian Liebscher In Collaboration With: Dr. Konda G. Pradeep

More information

AMORPHISATION PROCESS DURING MECHANICAL ALLOYING OF Al-Fe-Ti POWDERS AND CRYSTALLISATION OF THE MILLING PRODUCTS

AMORPHISATION PROCESS DURING MECHANICAL ALLOYING OF Al-Fe-Ti POWDERS AND CRYSTALLISATION OF THE MILLING PRODUCTS Amorphisation Rev.Adv.Mater.Sci. process 18(2008) during 393-397 mechanical alloying of Al-Fe-Ti powders and crystallisation of... 393 AMORPHISATION PROCESS DURING MECHANICAL ALLOYING OF Al-Fe-Ti POWDERS

More information

Fabrication and investigation of intermetallic compound-glassy phase composites having tensile ductility

Fabrication and investigation of intermetallic compound-glassy phase composites having tensile ductility Fabrication and investigation of intermetallic compound-glassy phase composites having tensile ductility The purpose The purpose of the proposed study was to produce in-situ ductile crystalline intermetallic

More information

TOPIC 2. STRUCTURE OF MATERIALS III

TOPIC 2. STRUCTURE OF MATERIALS III Universidad Carlos III de Madrid www.uc3m.es MATERIALS SCIENCE AND ENGINEERING TOPIC 2. STRUCTURE OF MATERIALS III Topic 2.3: Crystalline defects. Solid solutions. 1 PERFECT AND IMPERFECT CRYSTALS Perfect

More information

Imperfections: Good or Bad? Structural imperfections (defects) Compositional imperfections (impurities)

Imperfections: Good or Bad? Structural imperfections (defects) Compositional imperfections (impurities) Imperfections: Good or Bad? Structural imperfections (defects) Compositional imperfections (impurities) 1 Structural Imperfections A perfect crystal has the lowest internal energy E Above absolute zero

More information

Fe-B-Si-Nb Bulk Metallic Glasses with High Strength above 4000 MPa and Distinct Plastic Elongation

Fe-B-Si-Nb Bulk Metallic Glasses with High Strength above 4000 MPa and Distinct Plastic Elongation Materials Transactions, Vol. 45, No. 4 (2004) pp. 1214 to 1218 Special Issue on Bulk Amorphous, Nano-Crystalline and Nano-Quasicrystalline Alloys-V #2004 The Japan Institute of Metals Fe-B-Si-Nb Bulk Metallic

More information

AlCrCuFeNiMn HIGH ENTROPY ALLOY OBTAINED BY POWDER METALLURGY ROUTE

AlCrCuFeNiMn HIGH ENTROPY ALLOY OBTAINED BY POWDER METALLURGY ROUTE U.P.B. Sci. Bull., Series B, Vol. 77, Iss. 4, 2015 ISSN 1454-2331 AlCrCuFeNiMn HIGH ENTROPY ALLOY OBTAINED BY POWDER METALLURGY ROUTE Mihaiţă Adrian MATARA 1, Ioana CSAKI 2, Gabriela POPESCU 3, Cristian

More information

The FCC to BCC transition and atomic ordering in the Al x CoCrFeNi high entropy alloy. Abstract

The FCC to BCC transition and atomic ordering in the Al x CoCrFeNi high entropy alloy. Abstract The FCC to BCC transition and atomic ordering in the Al x CoCrFeNi high entropy alloy D.M. King, 1 S.C. Middleburgh, 2 L. Edwards, 2 G.R. Lumpkin, 2 and M. Cortie 1 1 Department of Nanomaterials, University

More information

CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS

CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS Vacancies and Self-Interstitials 5.1 Calculate the fraction of atom sites that are vacant for copper at its melting temperature of 1084 C (1357 K). Assume

More information

Density and Glass Forming Ability in Amorphous Atomic Alloys: the Role of the. Particle Softness. Ian Douglass, Toby Hudson and Peter Harrowell

Density and Glass Forming Ability in Amorphous Atomic Alloys: the Role of the. Particle Softness. Ian Douglass, Toby Hudson and Peter Harrowell 1 Density and Glass Forming Ability in Amorphous Atomic Alloys: the Role of the Particle Softness Ian Douglass, Toby Hudson and Peter Harrowell School of Chemistry, University of Sydney Abstract A key

More information

A critical review of high entropy alloys (HEAs) and related concepts

A critical review of high entropy alloys (HEAs) and related concepts Engineering Conferences International ECI Digital Archives Beyond Nickel-Based Superalloys II Proceedings 7-20-2016 A critical review of high entropy alloys (HEAs) and related concepts D.B. Miracle AF

More information

arxiv: v1 [cond-mat.mtrl-sci] 25 May 2015

arxiv: v1 [cond-mat.mtrl-sci] 25 May 2015 On the origin of multi-component bulk metallic glasses: Atomic size mismatches and de-mixing arxiv:55.677v [cond-mat.mtrl-sci] 25 May 25 Kai Zhang,,2 Bradley Dice, 3,2 Yanhui Liu,,2 Jan Schroers,,2 Mark

More information

Atomic Simulation of Vitrification Transformation in Mg-Cu Thin Film

Atomic Simulation of Vitrification Transformation in Mg-Cu Thin Film Copyright American Scientific Publishers All rights reserved Printed in the United States of America Journal of Computational and Theoretical Nanoscience Vol. 5, 1 5, Atomic Simulation of Vitrification

More information

Calculated Effect of Alloy Additions on the Saturation Magnetization of Fe 0.80 B 0.20

Calculated Effect of Alloy Additions on the Saturation Magnetization of Fe 0.80 B 0.20 Mat. Res. Soc. Symp. Proc. Vol. 754 2003 Materials Research Society CC6.12.1 Calculated Effect of Alloy Additions on the Saturation Magnetization of Fe 0.80 B 0.20 D. M. C. Nicholson 1,YangWang 2, and

More information

Materials Science. Imperfections in Solids CHAPTER 5: IMPERFECTIONS IN SOLIDS. Types of Imperfections

Materials Science. Imperfections in Solids CHAPTER 5: IMPERFECTIONS IN SOLIDS. Types of Imperfections In the Name of God Materials Science CHAPTER 5: IMPERFECTIONS IN SOLIDS ISSUES TO ADDRESS... What are the solidification mechanisms? What types of defects arise in solids? Can the number and type of defects

More information

Molecular dynamic simulation of glass formation in binary liquid metal: Cu Ag using EAM

Molecular dynamic simulation of glass formation in binary liquid metal: Cu Ag using EAM Intermetallics 12 (2004) 1191 1195 www.elsevier.com/locate/intermet Molecular dynamic simulation of glass formation in binary liquid metal: Cu Ag using EAM L. Qi, H.F. Zhang*, Z.Q. Hu Shenyang National

More information

12/10/09. Chapter 4: Imperfections in Solids. Imperfections in Solids. Polycrystalline Materials ISSUES TO ADDRESS...

12/10/09. Chapter 4: Imperfections in Solids. Imperfections in Solids. Polycrystalline Materials ISSUES TO ADDRESS... Chapter 4: ISSUES TO ADDRESS... What are the solidification mechanisms? What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect material

More information

The internal structure of a material plays an important part on its mechanical properties.!

The internal structure of a material plays an important part on its mechanical properties.! Phase Diagrams The internal structure of a material plays an important part on its mechanical properties.! There is a strong correlation between micro structure and mechanical properties. Definitions Component!

More information

A new Ti Zr Hf Cu Ni Si Sn bulk amorphous alloy with high glass-forming ability

A new Ti Zr Hf Cu Ni Si Sn bulk amorphous alloy with high glass-forming ability Journal of Alloys and Compounds 427 (2007) 171 175 A new Ti Zr Hf Cu Ni Si Sn bulk amorphous alloy with high glass-forming ability Y.J. Huang a, J. Shen a,, J.F. Sun a, X.B. Yu b, a School of Materials

More information

Vacancy and interstitial type defects in Fe, W and other bcc metals

Vacancy and interstitial type defects in Fe, W and other bcc metals Vacancy and interstitial type defects in Fe, W and other bcc metals Lisa VENTELON, Chu Chun FU, Mihai-Cosmin MARINICA, François WILLAIME Physical Metallurgy Laboratory (SRMP) Department of Materials for

More information

CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS ev /atom = exp. kt ( =

CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS ev /atom = exp. kt ( = CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS Vacancies and Self-Interstitials 5.1 Calculate the fraction of atom sites that are vacant for copper at its melting temperature of 1084 C (1357 K). Assume

More information

Department of Mechanical Engineering University of Saskatchewan. ME324.3 Engineering Materials FINAL EXAMINATION (CLOSED BOOK)

Department of Mechanical Engineering University of Saskatchewan. ME324.3 Engineering Materials FINAL EXAMINATION (CLOSED BOOK) Department of Mechanical Engineering University of Saskatchewan ME32.3 Engineering Materials FINAL EXAMINATION (CLOSED BOOK) Instructor: I. N. A. Oguocha Date: 17 December, 200. Time: 3 Hours Reading Time:

More information

ASTM Conference, May , Hilton Head Island, SC

ASTM Conference, May , Hilton Head Island, SC ASTM Conference, May 17 2016, Hilton Head Island, SC Understanding Irradiation Growth through Atomistic Simulations: Defect Diffusion and Clustering in Alpha-Zirconium and the Influence of Alloying Elements

More information

Material Properties and Phase Diagrams

Material Properties and Phase Diagrams PY2M20 Material Properties and Phase Diagrams ecture 5 P. Stamenov, PhD School of Physics, TCD PY2M20-5 Phase Diagrams - Introduction How much can be done with pure elemental compounds? How many combinations

More information

Bulk Metallic Glasses

Bulk Metallic Glasses 2018 Spring Advanced Physical Metallurgy Bulk Metallic Glasses 03.28.2018 Eun Soo Park Office: 33 313 Telephone: 880 7221 Email: espark@snu.ac.kr Office hours: by appointment 1 * Development strategy of

More information