MITIGATION ACTION IMPLEMENTATION NETWORK Third Asia Regional Dialogue. Energy Efficiency and Resource Planning

Similar documents
THE NEED FOR ENERGY SECTOR REFORM

Customer Demand For Renewable Energy as a Market Driver: Regulatory Barriers and Designs

Driving Energy Efficiency with Non-Energy Benefits (NEBs)

Characteristics of Effective Resource Planning

ARE ENERGY EFFICIENCY GOALS ACHIEVABLE?

A Decoupling Foundation

Rate Design: Part 2. Into the Weeds on Cost Allocation, Dynamic Pricing, Net Metering, and Alternatives

Topics in Industrial Self-Generation and Energy Efficiency

The Ducks are Coming. Smart Rate Design: An Essential Element of the Clean Power Transition

Energy Efficiency as a Long Term Investment Strategy

2009 Power Smart Plan

Virtual Power Plants: Mobilizing Demand-Side Resources to Support Renewables Goals

Evaluating Costs of Energy Efficiency Programs

Decoupling vs. Lost Revenues. Regulatory Considerations

California s Strategy for Achieving Energy Efficiency and Demand Response

1 EXECUTIVE SUMMARY. Executive Summary 1-1

Demand Response. US experiences, German challenges and market barriers

Cost-effectiveness Tests Current Practice

Infrastructure. The Regulatory Assistance Project. New Jersey Energy Strategy Academy. Richard Sedano. Vermont Maine New Mexico California

Making the Case for Energy Efficiency Policy Support: Results from the EPA / DOE Energy Efficiency Benefits Calculator

to Energy Efficiency

Solar Photovoltaic Volumetric Incentive Program 2015 Report to the Legislative Assembly

Mobilizing Electricity Companies to Implement Energy Efficiency

International practice and experience with Energy Efficiency Resource Standards (EERS)

Renewable Portfolio Standards

ENERGY EFFICIENCY AS A RESOURCE

Welcome/Introductions Updates since last meeting/review of DSM program history Energy savings Demand savings Annual spend

UNDERSTANDING YOUR UTILITY PARTNERS UTILITY ENERGY EFFICIENCY DRIVERS AND DESIGN CONSIDERATIONS

Maximizing the Value of Advanced Metering Infrastructure

Accelerating Energy Efficiency in Texas

Past reviews of utility performance incentives found that they typically fall into one of four categories:

ENERGY EFFICIENCY BOTH SCALABLE AND SUSTAINABLE MAKING THE BUSINESS OF. Energy Security Initiative. Lisa Wood Roland Risser

DSM Benefit-Cost Tests The Next Generation

Meeting China s Energy Efficiency and Environmental Goals with Efficiency Power Plants (EPPs) June 2007

Demand Response as a Power System Resource

Performance Incentive Mechanisms & Multi-Year Rate Plans

PROJECT NO TX

Preparing to Meet EPA Greenhouse Gas Rules

Energy Efficiency Jennifer Heintz June 13, 2012,

Summit on Sustainability and the Environment: Responding to Emerging Air Quality Issues

Energy Policy 2015 Annual Update

ELECTRIC COST OF SERVICE AND RATE DESIGN STUDY

SB 843 (WOLK) Community Based Renewable Energy Self Generation Program. Utility & Policy Maker Frequently Asked Questions

What s Up in Hawaii? Pacific Northwest Demand Response Project February 25, 2015

Energy Efficiency Obligations:

Jeff Schlegel Southwest Energy Efficiency Project (SWEEP)

Utility Revenue Decoupling and other Revenue Stabilization Tools

Working Together to Manage Your Company s Energy Use.

Recommendations for Reforming Energy Efficiency Cost-Effectiveness Screening in the United States

EE in EPA's Clean Power Plan (CPP): Moving from the Appetizer to a Five-Course Meal

Natural Gas Pressure on the Status Quo and Energy Efficiency

Utilities Strategic Plan Strategic Objectives

Entergy Louisiana: Analysis of Long- Term Achievable Demand Response Potential. Draft Report October 12, 2018

Time of Use Rates: A Practical Option If Done Well

Designing Successful Energy Savings Targets

California s Approach to Designing a Net Energy Metering (NEM) Tariff. Sara Kamins California Public Utilities Commission June 18, 2014

Michigan s Clean, Renewable, and Efficient Energy Act. Energy Regulatory Partnership Program Abuja, Nigeria August 3-7, 2009

CHAPTER 6 - Load Forecast & Resource Plan

Utility-Sector Energy Efficiency: Current Status, Key Challenges, and Potential Role in a Carbon Constrained World

Total Resource Cost (TRC) Test and Avoided Costs

Regulatory Tactics for Electric Peak Management

Designing Ambitious NAMAs in Buildings Energy Efficiency

Energy Efficiency & the Energy Future in ASEAN Amit Bando, Executive Director, IPEEC Bangkok, Thailand 5 June 2013

Energy Policy 2012 Annual Update

Using Demand Response to Reduce Power Supply Costs

Electricity Power System Planning

How Have Regulators and Utilities Responded to Revenue Erosion?

EE in EPA's Clean Power Plan (CPP): Moving from the Appetizer to a Five-Course Meal

8. Demand-Side Resources

EPA s Clean Power Plan (CPP): Pathways, Options, and Opportunities

Cost-benefit Analysis of the New Jersey Clean Energy Program Energy Efficiency Programs

THE REGULATORY ASSISTANCE PROJECT

Regulatory Treatment of Demand Side Management in the U.S.

Solar Program Design Study

Implementing Pennsylvania Act 129 A Rebirth of Energy Efficiency at PECO

Industrial Energy Efficiency and NACAA s Implementing EPA s Clean Power Plan: A Menu of Options

California s Approach to Designing a Feed-in Tariff. Sara Kamins California Public Utilities Commission June 19, 2014

Copyright 2017, Ontario Energy Association

March 31, Brian Hitson Integrated Demand Side Management Pacific Gas and Electric Company

Climate Finance Readiness. A framework to scale-up climate action

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// Scaling up

SENATE, No STATE OF NEW JERSEY

Cost-Effectiveness Board Learning Paper

Rate Design & Decoupling Recent Experience in Wisconsin, U.S.A.

Rate Design and Resource Planning

SCE HOPPs Overview. Stakeholder Webinar, 7/14/16

Rationale for energy saving obligations for utilities (Energy Efficiency Resource Standards) and experiences in Denmark

National Conference of State Legislatures Energy Efficiency Institute Smart Grid and Demand Side Management

Delivering on the clean energy agenda: prospects and the role for policy

Bad News and Good News

GE OIL & GAS ANNUAL MEETING 2016 Florence, Italy, 1-2 February

Measuring the Air Quality Impacts of Energy Efficiency: Module 2

CenterPoint Energy Arkansas Energy Efficiency Program Portfolio Annual Report 2016 Program Year

Engineering, Economics and Regulation of the Electric Power Sector TERM PAPERS

THE CASE FOR EXPANDING BENEFICIAL ELECTRIFICATION WITH GROUND SOURCE HEAT PUMPS

Submitted to: Pennsylvania Public Utility Commission

Cost of Service and Public Policy. Ted Kury Director of Energy Studies, PURC

Understanding Utility Revenue and Customer Tariffs Impact of DPV Deployment: Thailand Case Study

Bad News and Good News

Capturing the Emissions Reduction Benefits of Energy Efficiency

Transcription:

MITIGATION ACTION IMPLEMENTATION NETWORK Third Asia Regional Dialogue Energy Efficiency and Resource Planning Manila, Philippines, October 23, 2013 Janine Migden-Ostrander, Principal The Regulatory Assistance Project Home Office (US) 50 State Street, Suite 3 Montpelier, VT 05602 Phone: 802-223-8199 web: www.raponline.org

The Regulatory Assistance Project (RAP) We are a global, non-profit team of experts focused on the long-term economic and environmental sustainability of the power and natural gas sectors, providing assistance to government officials on a broad range of energy and environmental issues. 2

About RAP US RAP provides technical and policy support at the federal, state and regional levels, advising utility and air regulators and their staffs, legislators, governors, other officials and national organizations. We help states achieve ambitious energy efficiency and renewable energy targets and we provide tailored analysis and recommendations on topics such as ratemaking, smart grid, decoupling and clean energy resources. RAP publishes papers on emerging regulatory issues and we conduct state-by-state research that tracks policy implementation. 3

About RAP China RAP assists China s decision-makers in developing and implementing policies that promote economic development, reliability, improved air quality and public health, which in turn produce substantial and permanent reductions in the country s greenhouse gas emissions. Working with the Energy Foundation s China Sustainability Energy Program (CSEP), we provide technical and international expertise on energy efficiency, market and regulatory reform, renewable resources and environmental policy. Our network of international experts includes Lawrence Berkeley National Laboratory s China Energy Group, the Center for Resource Solutions and the Natural Resources Defense Council. 4

About RAP European Union RAP works directly with European institutions and Member States to advance energy efficiency, renewable power and other low-carbon resources while assuring economic competitiveness and robust regional energy security. RAP provides ongoing support to energy regulators and government agencies in their efforts to de-carbonise the European power grid and meet the EU s ambitious goals for greenhouse gas reduction. 5

About RAP India In India, there is growing government and private sector interest in energy efficiency and renewable energy policies as key ingredients in a low-carbon, sustainable development path. RAP, which helped train the first generation of regulatory commissioners and staff in India in the 1990 s, has provided information on international best practices in these areas and we anticipate becoming more involved in the near future. 6

About RAP Other Regions Our work in Chile, Dubai, Samoa, the Philippines, Brazil, Egypt, Kyrgyzstan, Mauritius, Ghana and other countries has helped to develop national energy guidelines and regulatory reforms, extend electric service to rural areas and provide low-income energy assistance. As a consultant to the Asian Development Bank, RAP has worked to strengthen the regulatory frameworks to help countries in the Asia-Pacific region boost energy efficiency and develop renewable energy resources. 7

POLICY DESIGN FOR ENERGY EFFICIENCY: OUTLINE The Case for Energy Efficiency Integrated Resource Planning Considerations for Energy Efficiency Programs Methods for Adoption of Energy Efficiency Utility Centric: Energy Efficiency Resource Standard Market Approach: Energy Service Companies Best Practices in Tariff and Rate Design

THE CASE FOR ENERGY EFFICIENCY

ENERGY EFFICIENCY AS PART OF THE RESOURCE PLAN ENERGY EFFICIENCY CAN PLAY AN IMPORTANT ROLE IN UTILITY PLANNING BY: Mitigating the need for new power plant construction Relieve transmission congestion Provide a least-cost alternative to system reliability Contribute to energy independence Contribute to energy security Reduce pollution and its consequences Provide local jobs that cannot be exported Reduces line losses especially important in urban areas of developing countries Reduces risks and uncertainties associated with load growth Produces better buildings better quality and comfort

Why limit ourselves to only one element of benefits? IEA 2012 11

12

Utility System Benefits These are most commonly considered by regulators. BUT: - Most undervalue emission costs; - Many exclude or undervalue T&D benefits; - Most undervalue line losses and reserves; - Most exclude or undervalue risk benefits. 13

Utility System Benefits: Emission Costs in the United States Some regulators consider only existing emission costs, not prospective emission costs for power plants. 14

Regulators seldom consider nonelectricity participant benefits; these can be very significant. Participant Benefits - Affects consumer willingness to pay; - If ignored, many cost-effective measures may be omitted from utility programs. 15

Participant Benefits: Health New Zealand Heat Smart Low-Income Retrofit Program Evaluation: 90% of benefits were health-related. Hospital Admissions for Respiratory Ailments Down 43% Days off Work Down 39% Days off School Down 23% Significant Mortality Benefits: ~18 deaths/year 16

Societal Benefits 17

Societal Benefits: Emissions Unregulated fine particulates significant; Damage costs larger than mitigation costs; Weighted average may be appropriate. Illustrative Mitigation and Damage Costs Emission Type Mitigation Cost Damage Cost Mercury lb. $33,000 $181,500 PM 2.5 ton $13,000 $60,000 CO2 ton $5 $80 18

Societal Benefits: Water Water Energy Connection is Critical Power production is the second-largest water user (after irrigation); Water treatment and pumping, and wastewater treatment are huge users of electricity; Anything that saves water OR electricity saves both water and electricity. 19

INTEGRATED RESOURCE PLANNING

INTEGRATED RESOURCE PLANNING (IRP) Integrated Resource Planning presents an opportunity for regulators, the utility and interested stakeholders to take an in-depth look at the energy demands over the next 10 to 20 years and the resources that may be available to meet that demand reliably and at the least cost. Fundamental to the success of the IRP is having good detailed analysis with credible modeling of projected growths in demand and projected costs of the various options for meeting that demand over the horizon under review. An open and transparent process that allows access for all stakeholders to this data is critical to the success of the process and goals. 21

DETERMINING RESOURCE NEEDS SUPPLY MW DEMAND TIME

INTEGRATED RESOURCE PLANNING Options for consideration in meeting forecasted energy needs include: Energy Efficiency (can be done through a resource standard as an option) Demand Response Combined Heat and Power Opportunities Renewable Energy (can be done through a portfolio/resource standard) Power plant upgrades that increase the capacity or extend the life of an existing unit Construction of new capacity natural gas, coal, nuclear, hydro, other renewables Each of these options need to be examined in terms of meeting reliability needs throughout the planning horizon and doing so in a least-cost manner. 23

Conservation is Nearly Always Cheaper than Supply 24

Utility System Benefits: Risk Benefits 25

GETTING STARTED WITH IRP Can be accomplished with just a few regulatory staffers Create Rules that set forth the information a utility needs to file and the timeline Seek consultants to assist with review and who can train staff at same time Key issue is to examine resource needs as presented and analyze least cost options

CREATING IRP RULES IRP rules should include the following: Process Overview Definition of Terms Role of Regulatory Body Historic and Forecasted Demand and Energy Evaluation of Existing Resources Development of the New IRP Stakeholder Process and Input

WITH OR WITHOUT IRP Energy Efficiency should first be analyzed on a level playing field before investing in other supply-side resources and transmission infrastructure;

CONSIDERATIONS FOR ENERGY EFFICIENCY PROGRAMS

Cost-Effectiveness Screening Important to screen potential energy efficiency measures, programs and portfolios to ensure that the benefits exceed the costs and is a good value Major issue is how to screen and what gets counted: Utility Costs and Benefits Participant Costs and Benefits Non-Participant Costs and Benefits Societal Benefits How each of these factors is considered will impact whether a program will be deemed costeffective

Energy Efficiency Screening Tests (Prepared by Synapse) Table 1. Components of the Energy Efficiency Cost-Effectiveness Tests Energy Efficiency Program Benefits: Participant Test RIM Test PAC Test TRC Test Societal Test Customer Bill Savings X --- --- --- --- Avoided Generation Costs --- X X X X Avoided Transmission and Distribution Costs --- X X X X Avoided Cost of Environmental Compliance --- X X X X Resource Benefits (e.g. oil, gas, water) X --- --- X X Non-Resource Benefits (e.g. low-income bens) X --- --- X X Avoided Environmental Externalities --- --- --- --- X Energy Efficiency Program Costs: Program Administrator Costs --- X X X X EE Measure Cost: Program Financial Incentive --- X X X X EE Measure Cost: Participant Contribution X --- --- X X Lost Revenues to the Utility --- X --- --- ---

Defining Cost Tests: 5 points of view Cost Test Acronym Key Question Answered Summary Approach Participant Cost Test PCT Will the participants benefit over the measure life? Comparison of costs and benefits of the customer installing the measure Utility/Program Administrator Cost Test Ratepayer Impact Measure UCT/PAC Will utility bills increase? Comparison of program administrator costs to supply side resource costs RIM Will utility rates increase? Comparison of administrator costs and utility bill reductions to supply side resource costs Total Resource Cost TRC Will the total costs of energy in the utility service territory decrease? Comparison of program administrator and customer costs to utility resource savings Societal Cost Test SCT Is the utility, state, or nation better off as a whole? Comparison of society s costs of energy efficiency to resource savings and noncash costs and benefits 32

Cost-effectiveness Framework Testing whether an alternative plan is lower cost is the basic building block of CE analysis Step 1 Step 2 Step 3 Evaluate the costs of EE program Evaluate the change in costs of your preferred resource plan ( avoided costs ) These are the benefits of implementing your program Compute the difference (or ratio) More formally, net present value difference of benefits and costs Net Benefits (difference) Benefit-Cost Ratio Net Benefits a (dollars) Benefit-Cost Ratio a = NPV benefits a (dollars) -NPV costs a (dollars) = NPV benefits a (dollars) NPV costs a (dollars) 33

Impact of Subsidies on Energy Efficiency Cost-Effectiveness Cost effectiveness is determined by measuring the total avoided cost, not the amount paid by the customer. Example: o Cost of electricity = $.08/kWh Customer Payment = $.05/kWh Government Subsidy = $.03/kWh o The cost of the kwh avoided is at least $.08, more if a new resource is being avoided.

Impact of Subsidies on Energy Efficiency Cost-Effectiveness An energy efficiency program will: Reduce the customer s bill. (The customer is still saving $.05/kWh which is a lot for the customer since presumably he/she could not afford to pay more). Saves the government $.03/kWh in subsidy costs that could be used for other public benefits.

MEASUREMENT AND VERIFICATION Important component to ensure that energy savings occur: Validate compliance with EERS and/or that program is working Recovery of lost revenues under LRAM Savings can be verified through: Random sampling Deemed savings

OTHER MECHANISMS FOR ACHIEVING ENERGY EFFICIENCY Building Code Standards: Pakistan, Philippines Appliance Standards: Indonesia, Pakistan, Philippines Labeling: Indonesia, Malaysia, Thailand, Philippines, Vietnam Government Building Efficiency: Philippines

SOURCES OF FUNDING In addition to customer contributions for its own energy efficiency: Utility ratepayers (embedded in rates) System Benefits Charge creates a pot of money Revolving Loan Fund Loans from Financial Institutions.

A Framework To Move Forward Identify all benefits; Quantify those that are quantifiable; Measures that pass TRC always go forward; Vendors and manufacturers have duty to justify Difficult to Quantify benefit values; Use Judgment: regulators can establish default values for Difficult to Quantify benefits; Find funding partners where cost-effectiveness depends on non-electricity benefits; Programs must ultimately be cost-effective. 39

METHODS FOR ADOPTION OF ENERGY EFFICIENCY: UTILITY CENTRIC ENERGY EFFICIENCY RESOURCE STANDARD

ENERGY EFFICIENCY RESOURCE STANDARDS (EERS) An EERS requires the utility to meet a certain percentage of its load requirements through energy efficiency programs offered to end-use customers Often, penalties are imposed on the utility for failing to meet the standard EERS can be created through legislation or by rule or order of a regulatory body

UTILITY AS ENERGY EFFICIENCY PROGRAM ADMINISTRATOR Utility has relationship with customers Utility does billing and reaches all customers Utility has data on customer usage Funding for energy efficiency can come through rates Administration by a utility creates centralized program development to better ensure a suite of options that are screened for cost-effectiveness Note: Utility can contract with third party administrator to implement energy efficiency

DEVELOPING AN ENERGY EFFICIENCY PORTFOLIO Involve a cross-section of stakeholders to ensure best programs and customer acceptance across an array of customers. Use tools such as marketing and education, audits and rebates to interest customers Calibrate programs to ensure rebate, etc. is high enough to induce customer participation but not so high as to cause unnecessary rate increases for customers funding energy efficiency. (Difficult challenge)

CONSIDERATIONS WITH UTILITY BUSINESS MODEL UTILITIES ARE IN THE BUSINESS OF SELLING KWH, NOT TELLING CUSTOMERS NOT TO USE ENERGY IN ORDER TO MAKE THE UTILITY WHOLE, THE UTILITY SEEKS TO RECOVER THE FOLLOWING COSTS: 1. Program Costs 2. Lost contributions to fixed revenues 3. Incentive Payment

Program and Administrative Costs Reasonable and prudently incurred utility costs incurred in offering energy efficiency can be recovered in the following manner: 1. Recovered in a rate case 2. Expensed through a rider 3. Amortized over a period of years and recovered through a rider 45

MECHANISMS FOR COST- RECOVERY OF LOST REVENUES FROM ENERGY EFFICIENCY LOST REVENUE ADJUSTMENT MECHANISM (LRAM) DECOUPLING

LOST REVENUE ADJUSTMENT MECHANISM LRAM requires a regulatory review and analysis of every program and document energy savings from each program to determine utility lost revenues Importance of Evaluation, Monitoring and Verification (EM&V) Reduced sales x rate = utility lost revenues

DECOUPLING Decoupling separates sales from revenues and is based on a fully vetted cost of service determination Decoupling maintains the current utility rate design of a small fixed rate plus a volumetric energy charge At the end of an agreed to period, the utility s authorized revenue requirements are measured against actual revenues Rates are reconciled through often through a rider to allow utility to recover or pay to customers the difference between revenues authorized and revenues received.

HOW DECOUPLING WORKS Periodic Decoupling Calculation From the Rate Case Target Revenues $10,000,000 Test Year Unit Sales 100,000,000 Price $ 0.10000 Post Rate Case Calculation Actual Unit Sales 99,500,000 Required Total Price $ 0.1005025 Decoupling Price Adjustment $ 0.0005025

UTILITY INCENTIVES In some countries, depending on the structure, utilities receive a return on investment for shareholders when building new power plants To encourage utilities to choose energy efficiency, incentive payments have been approved by many commissions (goal is to make it an organic part of utility business plan) Incentives allow utilities to keep some of the savings resulting from energy efficiency ( shared savings ) Incentives offer a new revenue source for distribution only companies that have limited opportunities to maximize earnings. Has the potential to provide more immediate returns 50

HOW INCENTIVE MECHANISMS WORK Many shared-savings mechanisms award utilities for results based on entire savings. Example: Utility A has target of 1% reduction in load and achieves reductions of 1.1% of load utility gets shared savings of 10-20% on the 1.1% savings. 51

Types of Incentive Mechanisms No Incentives supported by some consumer groups (residential and /or industrial) concerned about higher rates. Shared Net Benefits utility receives a share of the deemed net resource benefit for the life of the measure or some other designated period of time. 52

Types of Incentive Mechanisms Program Cost Bonus Utility receives a share of the annual portfolio s program administrative and measure incentive costs Cost Capitalization Utility receives an additional rate of return on the capitalized investment in energy efficiency 53

MARKET APPROACH: ENERGY SERVICES COMPANIES

ENERGY SERVICES COMPANIES Offer competitive alternative to utility model Are not funded by the utility but by government programs or financial institutions Still subject to Measurement and Verification of energy savings (More on this presented separately)

GETTING STARTED WITH ENERGY EFFICIENCY Determine the model that works best for your country: Regulated utility delivers Energy Efficiency ESCO model

Getting Started: Regulatory Model Requires a few staff. Seek consultant assistance to train staff and review utility portfolio Determine appropriate goals for energy efficiency (perhaps over 3 years to get started) Have utility start with universally applicable programs that can reach most customers and are cost-effective, like lighting, refrigeration and ceiling fans. Ex. CFL in Indonesia Screen programs using Total Resource Cost Test or Societal Test

Getting Started: Regulatory Model Seek stakeholder input on programs selected, focusing on most cost-effective and those that provide opportunities for participation among a wide variety of customer classes Seek a qualified auditor to randomly measure and evaluate the savings from the programs.

Getting Started: ESCO Model Meet with ESCO s to discuss their needs and to address any utility barriers to implementing energy efficiency Work with government and financial institutions to design loan mechanisms Work with ESCO s to design programs to incentivize customers, such as rebates, etc. Obtain independent auditor to measure and verify results Design program so that ESCO is compensated based on the level and duration of savings

TARIFF AND RATE DESIGN BEST PRACTICES

From Simple to Complex Residential Rate Types Flat Rate: Uniform rate per kwh for all usage Inclining Block: two or more blocks of usage, with incremental usage at a higher price. TIME OF USE (TOU): Two or more time of use periods, with higher prices during higher-cost periods TOU with Inclining Block: A TOU rate that includes a lower price for lower levels of usage. Critical Peak: A TOU price that has a much higher price for a limited number of hours that are not known until 1 day ahead. 61

The Most Common Residential Rate Design: Inclining Block Globally, the most common residential rate design was the inclining block rate. Nearly universal in the Western US, Mexico, China, India, Brazil, South Africa, and parts of Europe. Most have zero or very low service charges. Goals include: Allocation of limited low-cost resources Recognition of declining load factor as usage increases Encouragement of conservation Providing for essential needs at affordable cost Benefit to low-income consumers 62

What Does This Rate Design Say? The average cost of ice cream is $1.50/scoop, $1.125/scoop, and $.9167/scoop? Or: Buy three scoops, because the second and third are cheap. 63

China and India One-third of the world s population. Developing countries, but with near-universal service Steeply inclining blocks, with zero customer charge Zhejiang Province Rates China Daily, July 2, 2012 Annual Usage Equivalent Monthly Usage RMB/kWh $/kwh <2,760 <230 0.538 $ 0.087 2,761-4,800 230-400 0.558 $ 0.090 >4,800 >400 0.838 $ 0.136 64

Indonesia: Differentials Based on PLN is the world s largest electric utility, serving about 250 million people. Government support provided for line extensions to unserved population. Limited low-cost government-owned hydro Connected Load 65

Mexico One national utility, serving 100 million people. Multiple rate zones; slightly different rates Huge step-up above 450 kwh/month Solar water heating nearly universal in new construction. Federal Electricity Commission Zone 1C Rates at 4/25/2013 kwh Pesos USD Customer Charge None <150 kwh $0.69 $0.056 150-300 $0.80 $0.065 300-450 $1.03 $0.084 Over 450 kwh $2.74 $0.225 66

Fixed-Period Time of Use Rates California: Pro-Rated Usage California IOUs retain the inclining block rate design within their TOU (optional) rate designs; Usage is pro-rated among the tiers (if 15% of your total use is on-peak, then 15% of your use is charged on-peak) PG&E TOU Rate Rate E-6 Off-Peak Mid-Peak Peak Customer Charge $ 7.59 Baseline Usage $ 0.1007 $ 0.1753 $ 0.2872 101% - 130% $ 0.1188 $ 0.1934 $ 0.3053 131% - 200% $ 0.2798 $ 0.3543 $ 0.4662 Over 200% $ 0.3198 $ 0.3943 $ 0.5062 67

Fixed-Period TOU Rates With Inclining Block Design An alternative to pro-rating is to provide a fixed $/kwh discount (or surcharge) below (above) the baseline level. Puget Sound Energy did this for their TOU rate (discontinued in 2003). 68

Peak Load Management Without AMI Many utilities have peak interruption programs controlled by the utility. Midwest coops often REQUIRE that electric water heaters be under utility control. 69

CONCLUSION Energy Efficiency properly screened and designed correctly can be a powerful tool for managing the overall cost of electricity Energy efficiency has multiple benefits including economic development, job creation, and other societal benefits. As a least cost option, it should be considered as the first resource option It provides tools to customers to lower their usage and has a host of societal benefits. There are multiple delivery mechanism from the utility to third party administrator to ESCO Energy efficiency combined with appropriate rate designs can have an impact on keeping costs down and managing the resource portfolio. There are a lot of programs that can be implemented quickly to provide savings and achieve good results.

Related RAP Publications Energy Efficiency Policy Toolkit, http://www.raponline.org/document/download/id/114 Policies to Achieve Greater Energy Efficiency, http://www.raponline.org/document/download/id/6161 Integrating Energy and Environmental Policy, www.raponline.org/document/download/id/6352 Energy Efficiency Cost-Effectiveness Screening, www.raponline.org/document/download/id/6149 US Experience with Efficiency As a Transmission and Distribution System Resource, www.raponline.org/document/download/id/4765 Valuing the Contribution of Energy Efficiency to Avoided Marginal Line Losses and Reserves, www.raponline.org/document/download/id/4537 Incorporating Environmental Costs in Electric Rates, www.raponline.org/document/download/id/4670 Clean First: Aligning Power Sector Regulation With Environmental and Climate Goals, www.raponline.org/document/download/id/12 71

About RAP that power policies The Regulatory Assistance Project (RAP) is a global, non-profit team of experts focuses on the long-term economic and environmental sustainability of the and natural gas sectors. RAP has deep expertise in regulatory and market that: Promote economic efficiency Protect the environment Ensure system reliability Allocate system benefits fairly among all consumers Learn more about RAP at www.raponline.org jmigden@raponline.org