Hydrometallurgy Applications

Similar documents
ENGINEERING BULLETIN Supergel SGA550OH

Advanced nanoparticle polymeric milling media technology for improving the properties of industrial materials

APPLICATION GUIDE Nuclear Grade Ion Exchange Resins for Power Generation

STORAGE, TRANSPORTATION AND PRECONDITIONING

A-300, A-300E Strong Base Type II Anion Exchange Resin

Protein A Resins. Modern, Advanced High-Flow, Highly Cross-Linked Agarose Resins For Improved Process Economics.

Clean-iX Metals Recovery

Modified Zincex Process by Técnicas Reunidas

Technical Data. Typical Chemical & Physical Characteristics

Industrial Solutions

EXTRACTIVE METALLURGY

THE USE OF SELECTIVE ION EXCHANGE FOR THE RECOVERY OF BASE METALS FROM EFFLUENT STREAMS

OUTOTEC ROASTING SOLUTIONS

CNBr Pre-Activated Resins

APPLICATION GUIDE Purolite resins for potable and groundwater treatment

NHS Pre-Activated Resins

Metals Recovery and recycling in zinc industry

IN MINING & MINERAL PROCESSING

THE CESL PROCESS: SUCCESSFUL REFINING OF A COMPLEX COPPER SULPHIDE CONCENTRATE

AMBERLITE IRN160 H/OH Ion Exchange Resin

It pays to talk to a specialist

Enhancing Market Transparency and Cooperation Between Countries Trading Minerals and Metals

Kirill Ukhanov, GE Water & Process Technologies, Russia, describes how advanced membrane technology is helping a Russian refinery to meet stringent

) > Lead > Copper > Zinc > Nickel > Cadmium > Cobalt >> Calcium > Magnesium > Strontium > Barium >>> Sodium.

Locked Cycle Leaching Test and Yellowcake Precipitation

Recovery of Valuable Metals from Mining Wastewater: Case Studies. Andrew G. Hall VP, Sales & Marketing

HEAP LEACHING TECHNOLOGY Moving the frontier for treatment

MILAF: INTEGRAL MANAGEMENT OF ARSENICAL SLUDGE, TREATMENT AND RECOVERY OF BY-PRODUCTS OF ACID WATERS FROM SMELTER PLANTS

Lenntech Tel Fax

By-products recovery via integrated copper operations at Rio Tinto Kennecott. EU Commission - Brussels 12 th Nov 2015

Global Polyacrylamide (PAM) Market Study ( )

#Disrupt Mining: Integrated Extraction and Recovery System for Complex. Ores and Wastes"

columnsi o n P a c C S 1 6 C a t i o n - E x c h a n g e C o l u m n

FLASH ROASTING OF SULPHIDE CONCENTRATES AND LEACH RESIDUES USING A TORBED* REACTOR

Sustainability in Action: Recovery of Zinc from EAF Dust in the Steel Industry

Arsenic: The Argument for Hydrometallurgical Processing and Stabilization at the Mine Site

0UltraClean. Ion Exchange Resins for Ultra-pure Water in the Electronics and Semiconductor Industry

International Journal of Engineering Research & Science (IJOER) ISSN: [ ] [Vol-2, Issue-8, August- 2016]

Outotec Hydrometallurgical Nickel Plants and Processes

It is especially suitable for use in:


Company Introduction. Management Team & Experience. Company

Perspectives on European Copper Smelting and Refining. Lisbon, 26th April

ZINC RECOVERY FROM WASTES USING SPENT ACID FROM SCRAPPED LEAD ACID BATTERIES

RIP PILOT PLANT FOR THE RECOVERY OF COPPER AND COBALT FROM TAILINGS. V Yahorava and M H. Kotze Mintek ABSTRACT 1. INTRODUCTION

NEW WAYS. since FOR METALS RECOVERY 1984

Waste Treatment and Utilization in Heavy Metal Metallurgy

Global Ethyl Benzene Market Study ( )

The recovery of copper from a pregnant sulphuric acid bioleach solution with developmental resin Dow XUS43605

Alternative Models for the Calculation of CAPEX and OPEX for a Hydrometallurgical Plant

GENERAL PRINCIPLES AND PROCE ISOLATION ISOL ELEMENTS

not to be republished NCERT GENERAL PRINCIPLES AND PROCE ISOLATION ISOL ELEMENTS Unit I. Multiple Choice Questions (Type-I)

Specialists in Solvent Extraction

WATER AND CARBONATE BALANCES IN AN ALKALINE URANIUM EXTRACTION CIRCUIT

COPPER PRECIPITATION AND CYANIDE RECOVERY PILOT TESTING FOR THE NEWMONT YANACOCHA PROJECT

containing waste water out of PCB production» removal of iron (II), nickel and zinc from 5 % gluconate containing metal working liquid

The Albion Process at the GPM Gold Project The success of a technology

A cobalt solvent extraction investigation in Africa s Copper Belt

CHAPTER-7 DEMAND, SUPPLY AND PRICE TRENDS OF METALS

Exploration, mining and metals production & Boliden Kokkola Justin Salminen

INTMET Clustering Conference Fostering Innovation in the Iberian Pyrite Belt

CONTROL OF COPPER ELECTROLYTE IMPURITIES USING SHORT BED ION EXCHANGE ABSTRACT

[ Care and Use Manual ] Waters AccellPlus QMA and CM Bulk Media. I. calculating bulk media needs. II. packed column use. IIi.

RECOMMENDED SCOPE OF ACCREDITATION (For Testing Laboratories) * Test Method / Standard against which tests are performed

NEXT GENERATION DOWEX MARATHON ION EXCHANGE RESINS FOR INDUSTRIAL WATER TREATMENT. Small change, big impact.

General Principle of Isolation of Elements (NCERT)

Dynamic Modeling for Design of Ion Exchange Systems. Khosrow Nikkhah

FOSSIL POWER PLANT WATER TREATMENT. Generating optimal performance, powered by Dow.

Global Butadiene Market Study ( )

Global Citric Acid Market Study ( )

At Home in North America

ACID SEPARATION FOR IMPURITY CONTROL AND ACID RECYCLE USING SHORT BED ION EXCHANGE

DERAKANE Based Solutions for Metal Processing Industries Communications

Johnson Matthey plc - Advanced Ion Exchange (AIX) Closing the Value Loop. Dr Pasi Kauppinen

Global Ethylene Vinyl Acetate(EVA) Market Study ( )

Two-stage precipitation process of iron and arsenic from acid leaching solutions

XXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX

Company Introduction. Management Team & Experience. Company

Lenntech. Dow Liquid Separations. DOWEX Ion Exchange Resins. The Advantages of Uniform Particle Sized Ion Exchange Resins.

Lewatit TP 272 is designed primarily for the following application: » Cobalt electrolyte purification (Cobalt extraction from Nickel solution)

Versatic 10 Acid/NICKSYN Synergistic System versus D2EPHA- Cyanex 272 for the Recovery of Cobalt from Typical DRC/Zambian Copper-Cobalt Leach Liquors

GENERAL PRINCIPLES AND PROCESSES OF ISOLATION OF ELEMENTS

IMPC 2016: XXVIII International Mineral Processing Congress Proceedings - ISBN:

Secondary zinc as part of the supply chain and the rise of EAF dust recycling

C-100H Strong Acid Cation Exchange Resin in Hydrogen Form (For use in water demineralization)

Millistak+ Pod carbon depth filter media system

ACUMER ACUMER 4450 ACUMER 4800

Sprint analysis of lubricating oils using the Thermo Scientific icap 7600 ICP-OES

Epoxy Pre-Activated Resins

CERTIFICATE OF ANALYSIS REVISED REPORT

Recover Acid and Valuable Byproducts while Controlling Impurities

HIGH INTENSITY GAS INJECTION FOR EFFICIENT OXIDATION

Concluding the Review. Precious Metals Markets, Prices and Interest

Solvent Extraction versus Nano-Filtration for Upgrading Uranium and Recovery of Acid from an Ion Exchange Eluate

METAL RECOVERY WITH CH COLLECTOR SOLUTION

APPLICATION GUIDE Pharmaceutical and Biotechnology

Global Hydrogen Fluoride Market Study ( )

Oakdene Hollins. Study of By-Products of Copper, Lead, Zinc and Nickel. Peter Willis, Senior Economist. 2 nd October 2013

Optimization of circuits for pressure leaching of sulphide ores and concentrates

Virtual Curtain Limited

Transcription:

Hydrometallurgy Applications Puromet and Purogold resins for metals removal, recovery and sequestration The uses and advantages of ion exchange resins for sorption and recovery of target metals.

This Application guide presents information for using ion exchange technology for the primary recovery of metal or the removal of impurities to increase the value and purity of the final product. Metals can be extracted from ores using several methods including chemical solutions (hydrometallurgy), heat (pyrometallurgy) or mechanical means. Hydrometallurgy is the process of extracting metals from ores by dissolving the ore containing the metal of interest into an aqueous phase and recovering the metal from the resulting pregnant liquor. This process often provides the most cost-effective and environmentally friendly technique for extracting and concentrating different metals. Often, various hydrometallurgical processes are used in the same flowsheet, such as combining ion exchange and solvent extraction for the recovery and purification of uranium. Hydrometallurgical processes can also be combined with non-hydrometallurgical extractive metallurgy processes.

Applications of ion exchange Ion exchange technology is used for the primary recovery of metal(s) of interest or the removal of specific impurities in order to increase the value and purity of the final product. A wide variety of process streams benefit from the application of ion exchange resins, as shown in Table 1. Table 1 Applications of ion exchange in hydrometallurgy ORIGIN OF STREAM TO BE TREATED Ore, after heap or agitated leach Volatile compounds captured in off-gases from smelters and roasters Slags and calcines from roasting and smelting operations Electrolyte Tailings treatment Acid mine drainage ION EXCHANGE APPLICATION Primary recovery of metal(s) of interest, e.g. gold, uranium Recovery of rhenium from off-gases produced by roasting of molybdenite and smelting of copper concentrates Recovery of various metal(s) of interest, after leaching Removal of copper and zinc impurities from cobalt and nickel advance electrolytes to ensure higher metal purity Recovery of copper, cobalt, gold, etc. from historical mine tailings, as well as current arisings Treatment of process water to enable recycling or safe disposal Ion exchange resins Ion exchange resins are synthetic polymer materials carrying chemically or physically bound functional groups that are capable of exchanging or capturing specific ions. Once ions are captured or exchanged, many have the important ability to reverse this functionality. The following simple expression can be used to describe the principle of ion exchange: R-Me1 + Me2 R-Me2 + Me1 The character R denotes the polymer matrix of a resin with a functional group fixed on it that is capable of ionic or coordinate bonding with a mobile ion Me1. While Me1 is an ion that is initially bound to the functional group of R, Me2 is an ion that is present in the solution. As a result of the ion exchange reaction, the Me2 ion replaces the Me1 ion on the resin.

Ion exchange resins (IX resins) are usually produced in the form of spherical beads. The typical bead size ranges from 300 1,300 microns. The degree of particle size uniformity and the average particle diameter can vary widely. Resins with a particle size of < 200 µm or > 2000 µm are produced for special applications. Copolymers of styrene or derivatives of acrylic or methacrylic acid, with a crosslinking agent mostly divinylbenzene serve as the polymer base. Due to crosslinking, the copolymer has a high temperature tolerance and does not dissolve in conventional aqueous media (acidic and alkaline) or organic solvents. Ion exchange resins have distinct selectivities for different metal cations or anions, depending on the functional group. This characteristic of a resin can be used to selectively remove a specific metal from a background containing high concentrations of other (unwanted) metals. Examples of selectivity ranges for different types of ion exchange resins: Carboxylic resins: Cu 2 + > Pb 2+ > Zn 2+ > Cd 2+ > Ni 2+ > Ca 2+ Phosphonic resins: Cu 2+ > Zn 2+ > Cd 2+ > Mn 2+ > Co 2+ > Ni 2+ > Ca 2+ Aminophosphonic resins (at acidic ph): H + > Fe 3+ > Pb 2+ > Cu 2+ > Zn 2+, Al 3+ > Mg 2+ Ca 2+ Cd 2+ > Ni 2+ Co 2+ > Na + Iminodiacetic resins: Cr 3+ > In 3+ > Fe 3+ > Al 3+ > Hg 2+ > UO 2+ > Cu 2+ > Pb 2+ > Ni 2+ > Cd 2+ > Zn 2+ > Co 2+ > Fe 2+ > Mn 2+ > Ca 2+ > Mg 2+ Strong acid resins: Fe 3+ > Ca 2+ > Fe 2+ > Cu 2+ > Mg 2+ > K + > NH 4 + > H + Strong base resins: SO 4 2- > CO 3 2- > NO 3 - > Cl - > HCO 3 - > F - > OH - Bis-picolylamine resins: Cu 2+ > Ni 2+ > Fe 3+ > Zn 2+ > Co 2+ > Cd 2+ > Fe 2+ > Mn 2+

All the characteristics of IX resins are interdependent and the choice of resin is often a trade-off between the different technical parameters of the resin. Parameters that are controlled during the manufacturing of ion exchange resins: Functionality Determines the selectivity of the resin for certain metals over others. Ion exchange capacity A high capacity is desirable to reduce the size of the plant and subsequently the cost of capital investment and elution reagents. Mechanical stability The ability of the resin to withstand breakage from abrasion and pressure. Grading Smaller beads are used in fixed bed operations that benefit from the improved kinetics of smaller beads. Resin-in-pulp (RIP) operations require larger beads to allow for ease of separation of the resin and pulp. Osmotic stability The ability to endure sudden changes in solution concentration and temperature.

Ion exchange contactor design Ion-exchange contactors perform two key functions: They provide conditions that favor efficient mass transfer between the process solution and the ion exchange resin. They ensure the efficient mechanical separation of the ion exchange resin from the solution or pulp. Ion exchange contactor designs are quite diverse, varying as a function of the properties of the medium being treated, the resin used and capital expense optimization considerations. The selection of a suitable ion-exchange contactor design is a function of the suspended solid content in the pregnant flow, as summarized in Table 2. Table 2 Choice of IX contactor based on solids content of feed SOLIDS CONTENT ION EXCHANGE CONTACTOR Clear liquid, <1 ppm solids Liquid with low solids content, <1000 ppm solids Pulp, 10 50% solids Fixed bed column Fluidized bed column Resin-in-pulp (RIP), air agitated Pachuca or mechanically agitated vessel In a fixed bed operation, any solids present in the pregnant leach solution (PLS) will collect on the top of the resin bed (in the case of down-flow operation). Over time, this may form a dense layer that will lead to an increase in pressure drop across the resin bed and consequently to an increase in the mechanical load on the resin and excessive consumption of energy to pump the solution. Therefore, efficient clarification of the liquor prior to the ion exchange unit operation is critical. It is also customary to provide for periodic backwashing of the resin, either in the same or in a separate vessel. In the case of fluidized bed operation, the upward flow of solution ensures expansion of the resin bed, typically 100 150%. In this instance, the resin does not retain the suspended solids, and the solids are able to move freely past the resin beads with the solution. Fluidized bed reactors have larger cross-sectional surface areas than fixed bed reactors to allow for reasonable volumetric throughputs. Vessels consisting of vertical stages are also much taller to allow for expansion of the resin bed. When processing large flows, it makes sense to use continuous or semi-continuous processes. Resin contactor designs treating clarified or partially clarified liquors vary widely and can include moving resin beds with a 2-column set-up (lead-lag), a 3-column system (merry-go-round), and systems using multiple columns in sequence with special valves that manage distribution of the different liquors to the various columns.

Pulps form during the leaching of mineral raw materials, which consists of two-phase systems made up of the pregnant solution and fine mineral particles. Solid-liquid separation requires high capital and operating expenses, especially in the case of ores with high clay content. The use of ion exchange resins make it possible to avoid this expense since sorption on resins is accomplished directly from the pulps. A resin may be added to a pulp after leaching, called resin-in-pulp, or leaching and sorption may happen simultaneously. This is referred to as resin-in-leach (RIL). An added advantage of the RIL process is that the sorption of a valuable component from a pulp s liquid phase reduces the concentration of the component being sorbed in the pulp, thereby shifting the chemical equilibrium. This makes it possible to increase the degree of a given component s recovery from the mineral particles by several percentage points. The density and viscosity of a pulp is dependent on the pulp particle size as well as the nature of the minerals being processed. For example, some pulps have very high clay content resulting in poor filterability, even at relatively low solids content. In such cases, RIP or RIL offers an economical solution. RIP operations consist of a series of stirred tanks where the resin and pulp move counter-currently. Resin beads are used in RIP/RIL operations. To ensure efficient separation of resin and pulp via mechanical screening, resin that is several hundred microns larger than the maximum mineral particle size should be used. Table 3 indicates a typical size ratio for RIP operations. Table 3 Size ratio for resin separation in Resin in Pulp operations Resin < 1% finer than 700 µm; < 5% finer than 800 µm Mineral particles in a pulp Maximum 250 µm; 75% finer than 200 µm Mechanical screen effective opening (orifice, slit) size 600 µm Additionally, an optimum resin bead size distribution should be selected. Table 4 Optimum resin bead size distribution RESIN GRADING AVERAGE BEAD DIAMETER µm BEAD SIZE IN FRACTION µm SYSTEM Puropack 600 700 Fixed and fluidized beds Puropack (Macroporous or acrylic) 650 850 Fixed and fluidized beds Resin in pulp (RIP) 850 800 1,300 (5% max. < 800) Resin in pulp

Principles of project-specific resin volume estimation In order to make an initial estimate of ion exchange plant size, it is necessary to calculate the resin volume that is sufficient to reach the performance target. This is calculated from the mass balance equation for the target metal: Mass balance: C PLS F PLS = C R F R IX resin flow rate: F R = (C PLS F PLS )/C R C PLS F PLS C R F R Metal concentration in PLS, kg/m 3 (PLS) Flow rate of PLS, m 3 (PLS)/h Operating metal capacity of the resin, kg/m 3 (R) Flow rate of the resin, m 3 (R)/h

Total Resin Inventory (m 3 ): V R = F R (T 1 k + T 2 + T 3 ) Metal Flow In Metal Flow Out Where: Resin Flow Out PLS Pregnant Leach Solution R Resin T 1 Residence time at sorption provided that: Concentration of the metal in the tails is reduced to the target limits (i.e., < 5 ppm for most uranium projects) Resin metal capacity reaches maximum Resin Flow In A resin safety volume should be provided for the sorption stage; for this volume, the T 1 parameter should be multiplied by a k factor with a value of 1.1 1.5 (the process designer selects the actual value). T 2 T 3 Residence time for desorption Residence time in auxiliary operations Reduce CAPEX by minimizing F R and T In order to minimize F R, a resin must have a maximum capacity In order to minimize T 1, a resin must have the best ion exchange kinetics In order to minimize T 2, a resin must have efficient desorption; e.g., complete and rapid To minimize T 3, the desorption and regeneration processes must be simple to avoid or minimize additional processing steps

Selecting the optimum resin There are a number of important considerations in choosing the correct resin: The target metal If the metal is valuable, effective recovery will be critical. For impurities, the most efficient targeted removal of the metal is an important factor. The matrix Acidic (sulfate, chloride, etc.) or alkaline (cyanide, sodium carbonate, etc.). The solution ph Performance of resins is affected by the solution ph. Recovery from pulp (RIP) or clear solution Resin in Solution (RIS) This determines the contactor type required, as well as the physical properties of the resin (e.g. size and physical strength). Presence of competing ions It is important to choose a resin with a high selectivity for the metal of interest. The solution temperature While increased temperatures generally benefit most reactions, IX resins are temperature sensitive. For hydrometallurgical applications, a maximum operating temperature of 60 C is usually recommended. Integration with other unit operations As an example, the choice of elution reagent is often dictated by requirements / limitations of downstream processes. Process flexibility Consider if it is possible to change the ph of the solution to benefit the IX unit operation while having minimal impact on the rest of the circuit. Environmental limitations As an example, the choice of elution / regeneration reagents is influenced by disposal regulations.

Table 5 Suggested Purolite resins for hydrometallurgical applications TARGET METAL DETAIL PUROLITE RESIN(S) Antimony Bismuth Copper, nickel, cobalt, zinc Copper & zinc impurity removal Gold Gold Gold Iron Mercury Various liquors and waste waters Various liquors and waste waters Acidic liquors or pulps Cobalt and nickel electrolyte Cyanide liquors and pulps Thiosulfate leach Acidic liquors or pulps Electrolyte purification Various liquors and waste waters Puromet MTS9500 Puromet MTS9570 Puromet MTS9500 Puromet MTS9570 Puromet MTS9300 Puromet MTS9301 Puromet MTS9600 Puromet MTS9500 Purogold MTA1930 Purogold MTA9920 Purogold MTA5011 Purogold MTA5013 Puromet MTS9140 Puromet MTS9200 Puromet MTS9240 Puromet MTS9500 Puromet MTS9570 Puromet MTS9140 Puromet MTS9200 Puromet MTS9240 Molybdenum Acidic liquors or pulps Puromet MTA1011 Nickel Precious metals Acidic liquors or pulps Acidic liquors or pulps Puromet MTS9300 Puromet MTS9301 Puromet MTS9600 Puromet MTS9100 Puromet MTS9200 Puromet MTS9240 Puromet MTS9850 Rare earth elements Acidic liquors or pulps Selection of cation exchange resins Rhenium Uranium Uranium Acidic liquors or pulps Acidic liquors or pulps Alkaline liquors or pulps Puromet MTA1701 Puromet MTA1721 Puromet MTA8000 Puromet MTA4601PF Puromet MTA5012 Puromet MTA5081 Puromet MTA6001 Puromet MTA6002PF Puromet MTA6601 Puromet MTA8000 Puromet MTA5081

Americas 150 Monument Road Bala Cynwyd, PA 19004 T +1 800.343.1500 T +1 610.668.9090 F +1 484.384.2751 Americas@purolite.com Europe Llantrisant Business Park Llantrisant Wales, UK CF72 8LF T +44 1443 229334 F +44 1443 227073 Europe@purolite.com Asia Pacific Room 707, C Section Huanglong Century Plaza No.3 Hangda Road Hangzhou, Zhejiang, China 310007 T +86 571 876 31382 F +86 571 876 31385 AsiaPacific@purolite.com Algeria Australia Bahrain Brazil Canada China Czech Republic France Germany India Indonesia Israel Italy Japan Jordan Kazakhstan Korea Malaysia Mexico Morocco Poland Romania Russia Singapore Slovak Republic South Africa Spain Taiwan Tunisia Turkey UK Ukraine USA Uzbekistan Purolite the leading manufacturer of quality ion exchange, catalyst, adsorbent and specialty high-performance resins is the only company that focuses 100% of its resources on the development and production of resin technology. We re ready to solve your process challenges. For further information on Purolite products and services, visit www.purolite.com or contact your nearest Technical Sales Office. 2017 Purolite All rights reserved P-000108-200PP-11/17-R2-EN-PCO