The mechanism(s) of protein folding. What is meant by mechanism. Experimental approaches

Similar documents
Rapid Kinetics with IR Protein folding examples

Protein Folding Problem I400: Introduction to Bioinformatics

Biochem Fall Sample Exam I Protein Structure. Vasopressin: CYFQNCPRG Oxytocin: CYIQNCPLG

and electron tunneling through proteins. Small-scale motions such as side-chain protein can take microseconds to seconds, depending on the protein.

Chem 344 slides for Kinetics Methods extras!

CHAPTER 5. Investigations of the C-terminal domain on the refolding of OmpA tryptophan

Introduction to Proteins

UV Fluorescence Polarization as a Means to Investigate Protein Conformational and Mass Change

Protein Folding and Misfolding

Acceleration of protein folding by four orders of magnitude through a single amino acid substitution

Revealing a Concealed Intermediate that Forms after the Rate-limiting Step of Refolding of the SH3 Domain of PI3 Kinase

Proline peptide isomerization and protein folding

Proteins and folding

STRUCTURE, DYNAMICS AND INTERACTIONS OF PROTEINS BY NMR SPECTROSCOPY

Obtaining information about specific interatomic distances

Regulatory Consideration for the Characterization of HOS in Biotechnology Products

Chapter 1 -- Life. Chapter 2 -- Atoms, Molecules and Bonds. Chapter 3 -- Water

Zool 3200: Cell Biology Exam 3 3/6/15

Protein Structure/Function Relationships

Supplementary Materials for

Supplementary Materials for

Physical Methods in Models of Cataract Disease. O. P. Srivastava Department of Vision Science University of Alabama at Birmingham

Solution Structure of the DNA-binding Domain of GAL4 from Saccharomyces cerevisiae

Not The Real Exam Just for Fun! Chemistry 391 Fall 2018

Structure formation and association of biomolecules. Prof. Dr. Martin Zacharias Lehrstuhl für Molekulardynamik (T38) Technische Universität München

The Green Fluorescent Protein. w.chem.uwec.edu/chem412_s99/ppt/green.ppt

Protein Structure. Protein Structure Tertiary & Quaternary

Conformational properties of enzymes

Protein Folding BIBC 100

Fluorescense. Aromatic molecules often fluoresce (but DNA bases don't) Excitation ~ absorbance (Differences due to: ν h ' Fluorescence

Protein Folding in vivo. Biochemistry 530 David Baker

Comparative Modeling Part 1. Jaroslaw Pillardy Computational Biology Service Unit Cornell Theory Center

Structural Bioinformatics (C3210) Conformational Analysis Protein Folding Protein Structure Prediction

Structural Transitions in the Protein L Denatured State Ensemble

Sequence Determinants of a Conformational Switch in a Protein

SUPPLEMENTAL INFORMATION. Center Hamburg-Eppendorf, Center for Molecular Neurobiology, ZMNH, Hamburg, Germany

Protein Structure Databases, cont. 11/09/05

Biochemistry 111. Carl Parker x A Braun


Biophysical characterization of proteinprotein

Protocol S1: Supporting Information

All Rights Reserved. U.S. Patents 6,471,520B1; 5,498,190; 5,916, North Market Street, Suite CC130A, Milwaukee, WI 53202

Supplementary Information. Single-molecule analysis reveals multi-state folding of a guanine. riboswitch

SUPPLEMENTARY INFORMATION. Reengineering Protein Interfaces Yields Copper-Inducible Ferritin Cage Assembly

Zetasizer ZS Helix (DLS/Raman) For Characterization of Pharmaceuticals and Biopharmaceuticals

BC 367, Exam 2 November 13, Part I. Multiple Choice (3 pts each)- Please circle the single best answer.

Proteins the primary biological macromolecules of living organisms

Supplementary Note 1. Enzymatic properties of the purified Syn BVR

Effect of Hydrogen Ion Concentration and Buffer Composition on Ligand Binding Characteristics and Polymerization of Cow s Milk Folate Binding Protein

Protein folding studies to date are mainly focused on small,

Programme Good morning and summary of last week Levels of Protein Structure - I Levels of Protein Structure - II

A photoprotection strategy for microsecond-resolution single-molecule fluorescence spectroscopy

LED Light Sources for Stopped- Flow Spectroscopy

BIRKBECK COLLEGE (University of London)

Research supervisors Thermal Fluctuation Spectroscopy

Nucleic Acids, Proteins, and Enzymes

Solutions to Problem Set 1

AMINO ACIDS, POLYPEPTIDES AND PROTEINS

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1

nanodsf 2bind: Your service provider for biophysical characterization of proteins Precisely revealing protein folding and stability

SUPPLEMENTARY MATERIAL

Fundamentals of Protein Structure

STUDY OF THE DENATURATION OF HUMAN SERUM ALBUMIN BY SODIUM DODECYL SULFATE USING THE INTRINSIC FLUORESCENCE OF ALBUMIN

Fundamentals of Biochemistry

Molecular Biology (1)

Challenges to measuring intracellular Ca 2+ Calmodulin: nature s Ca 2+ sensor

Giri Narasimhan. CAP 5510: Introduction to Bioinformatics. ECS 254; Phone: x3748

AdvanceBio HIC: a Hydrophobic HPLC Column for Monoclonal Antibody (mab) Variant Analysis

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

Rapid matrix-assisted refolding of histidine-tagged proteins

Protein-Protein Interactions I


The study of protein secondary structure and stability at equilibrium ABSTRACT

Cryoconcentration effects during freeze/thaw processing of bulk protein, and possible consequences of frozen storage on protein aggregation

2 Liquid chromatography of biomolecules

STRUCTURAL BIOLOGY. α/β structures Closed barrels Open twisted sheets Horseshoe folds

Kinetics Review. Tonight at 7 PM Phys 204 We will do two problems on the board (additional ones than in the problem sets)

Enzymes. Most known enzymes are large globular proteins.

Current Status and Future Prospects p. 46 Acknowledgements p. 46 References p. 46 Hammerhead Ribozyme Crystal Structures and Catalysis

MOLEBIO LAB #3: Electrophoretic Separation of Proteins

Ch Biophysical Chemistry

Conformational changes in IgE contribute to its. uniquely slow dissociation rate from receptor FcεRI

Dina Al-Tamimi. Faisal Nimri. Ma amoun Ahram. 1 P a g e

BIOCHEMISTRY REVIEW. Overview of Biomolecules. Chapter 10 Nucleic Acids

Introduction to Protein Purification

Unit 6: Biomolecules

Biochemistry Proteins

Bi 8 Lecture 7. Ellen Rothenberg 26 January Reading: Ch. 3, pp ; panel 3-1

Introduction to Bioinformatics Online Course: IBT

Introduction and Techniques

Basic concepts of molecular biology

6-Foot Mini Toober Activity

Masayoshi Honda, Jeehae Park, Robert A. Pugh, Taekjip Ha, and Maria Spies

FLIM Fluorescence Lifetime IMaging

Kinetics with IR for Protein folding. or other dynamic processes

Protein analysis. Dr. Mamoun Ahram Summer semester, Resources This lecture Campbell and Farrell s Biochemistry, Chapters 5

Bioinformatics. ONE Introduction to Biology. Sami Khuri Department of Computer Science San José State University Biology/CS 123A Fall 2012

Chemically modified nanopores as tools to detect single DNA and protein molecules. Overview

Molecular Biology (1)

Nanobiotechnology. Place: IOP 1 st Meeting Room Time: 9:30-12:00. Reference: Review Papers. Grade: 50% midterm, 50% final.

Transcription:

The mechanism(s) of protein folding What is meant by mechanism Computational approaches Experimental approaches

Questions: What events occur and in what time sequence when a protein folds Is there a specified sequence of events or are there parallel pathways In either case what is the nature of intermediates How much structure is there in the unfolded state and does it define a mechanism.

To answer those questions, we would like to have a specific marker, both for the backbone and the side chain for each amino acid as the protein folds from the unfolded state Backbone: Hydrogen/deuterium exchange, far UV CD Side chains: Fluorine labeled amino acids Unfolded state:fluorescence and other methods

Side chain measurements Proteins containing fluorine labeled amino acids have been used for many years to examine ligand-receptor interactions, the role of specific amino acids in protein function, structure mobility. We have used fluorine labeled amino acids to examine the mechanism(s) of protein folding and unfolding using 19 F-NMR

Advantages of using 19 F NMR The fluorine nucleus is only slightly larger than the hydrogen nucleus. Large structural perturbations would not be expected NMR spectra are simple and rate constants can be determined by stopped flow methods or line broadening Fluorine is exquisitely sensitive to the microenvironment There is a large chemical shift range High molecular weight proteins can be examined A number of 19 F-labeled amino acids are available A fluorine cryoprobe is available

Disadvantages of using 19 F NMR The fluorine nucleus has a strong dipole moment that could affect the structure or stability There is no good theory for relating the chemical shift to structural changes, especially for aromatic amino acids Assignments must be made using site-directed mutagenesis (except for phenylalanine) The fastest time measurement for refolding using stopped flow NMR is about 1 second

What stabilization of side chains means We define stabilization as the appearance of NMR peaks with the the same chemical shifts as in the native protein Meaning that the side chain senses the same stable microenvironment as in the native protein It is not the same as burial of the side chain It is not necessarily the same as side chain packing

Side chain stabilization Scenario 1 Stabilization might occur in nucleating regions assuming that there are cluster forming regions that serve as nucleation centers (i.e., hydrophobic clusters)

Side chain stabilization Scenario 2 Stabilization occurs during an initial collapse assuming there is an initial collapse to, for example, a molten globule.

Side chain stabilization Scenario 3 Stabilization occurs with formation of regions of secondary structure As secondary structure (i.e., helices, β-strands) form the side chains become stabilized. If these structures form sequentially, would expect non-cooperative behavior. The same behavior might be expected for multiple pathways of folding.

Side chain stabilization Scenario 4 Stabilization occurs at the last step of folding or close to the last step. Would expect stabilization to be highly cooperative. Might also expect early destabilization on unfolding

The E. coli dihydrofolate reductase MWt 18,000 5 tryptophan, 6 phenylalanine residues 4 phases on refolding as measured by fluorescence

Trp74 Trp47 Trp133 Trp30 Trp22

F on refolding DHFR in the presence of substrate No ligand

Your protein here Stop syringe What s needed: Fluorine labeled protein Reversible folding/unfolding system Protein concentrations of about 100 µm (final) Reasonably slow folding >30 sec What s available Fluorine cryoprobe NMR Stopped flow apparatus

Refolding into buffer containing NADP QuickTime and a Photo - JPEG decompressor are needed to see this picture. Major CD change done (apo) Signal averaging 41 injections with a final protein conc n of 0.61 mm after dilution of 5.5 M urea to 2.75 M. Hoeltzli and Frieden, (1998) Biochemistry 37, 387-398

Phenylalanines

19 F-phenylalanine spectra of E. coli DHFR F153 F103 F140 F31 F125 F137 6 M urea F125 F137 F140 0 M F103F103 F125 F125 F153 F153 F153 F31 F31

Residues colored red are stabilized first

DHFR Conclusions Major changes in 2 structure occur early during folding Native peaks appear (side chains stabilize) slowly and cooperatively although in two phases No stable misfolded intermediate structures On unfolding, native peaks disappear early but denatured peaks appear slowly

Other DHFR conclusions related to enzymatic activity A growing literature on Dynamics - and Role of distant residues - in the native protein

PapD MWt 25,000 Two domains, each with 1 tryptophan 6 phenylalanines A chaperone for the formation of type P pili

168 88 114 205 86 11 p-fluoro phenylalanine

Assignments of p-f-phe resonances Expansion of the genetic code 168 114 88 205 86 11 Fully labeled 11 86 205 88 114 168

PapD p- 19 F-Phe chemical shifts as a function of urea concentration 88 D 168 D {11,86,114 D} 205 D 205 I 168 I [urea] 6.6 5.1 4.6 4.2 3.9 3.5 3 2.9 2.5 2 1 0 11 86 205 88 114 168

Refolding of PapD 19 F-Phe-labeled 4.5M to 2.25M urea jump 114N 5500s 170s 11 86 205 205 88 11,86,114 168 168 N N N I N/U U I N

PapD Conclusions The C-terminal domain forms early as an intermediate. Folding of the N-terminal region is slow probably due to trans-cis proline isomerization. The domains fold separately but interact to give the final native structure. On unfolding, native peaks disappear early

The Intestinal Fatty Acid Binding Protein 15 KDa protein, 10 antiparallel β sheets, 131 amino acids, no proline or cysteine Two tryptophans (W6 and W82), Helical region moves to allow ligand binding Trp82 is responsible for most of the fluorescence change on unfolding/refolding

0.0 M 2.0 M 3.5 M 4.0 M 5.0 M 6.0 M

1.2 1 0.8 0.6 0.4 0.2 1.2 1 0.8 0.6 0.4 0.2 0 1.2 1 0.8 0.6 0.4 0.2 0 N 11 A 32 T 83 N 98 1 3 4 5 6 Urea Conc (M) K29 L30 K50 R56 0 1 2 3 4 5 6 7 Urea Conc (M) G 22 G 65 T 116 E 120 I 127 1 3 4 5 6 Urea Conc (M) 0 Peak Intensities (normalized) Peak Intensities (normalized) Peak Intensities (normalized)

-X- is H/D exchange of Phe68 - -is loss of HSQC intensity - - is loss of Phe68 intensity -o- is loss of fluorescence

Unfolding with urea loss of backbone hydrogen bonds destabilization of the backbone loss of hydrophobic clusters Refolding formation of hydrophobic clusters stabilization of the backbone hydrogen bond stabilization

Murine adenosine deaminase, a 40 Kd protein

Assignment of 6-19 F-Trp Resonances 117 272 264 161

Urea-induced unfolding of mada: ~ 2.5hr time course 100 µm protein unfolding in 8 M urea 20 mm Tris-HCl, 2 mm DTT, ph 7.4, 20 C

Slow Refolding Kinetics of holo mada Urea jump from 7 to 0.7 M Final ADA conc. 140 µm 117 272 264 161 272I

ADA Conclusions On unfolding, native peaks disappear slowly, probably because tightly bound Zn dissociates slowly On refolding, there are intermediates. Refolding is very slow possibly because the protein is trapped in a misfolded form. Proper binding of Zn could be a problem.

Some general comments There are very few ways to measure the kinetics of Stabilization of specific side chains 19 F-NMR can be used to measure the kinetics of side chain stabilization as well as packing and the appearance or loss of denatured peaks during folding or unfolding 19 F-NMR can identify the nature of intermediates

For those proteins studied here: There is rapid loss of some intensity of denatured peaks presumably forming a collapsed state. In this state the side chains are not in a stable microenvironment. Scenarios1 and 2 are not applicable Side chains are not stabilized concurrent with secondary structure formation. Scenario 3 is not applicable Side chain stabilization occurs at the last stages of folding and shows a high degree of cooperativity (scenario 4). This is where the cooperativity of folding/unfolding is found

Caveats Very little information about the early steps So far, have only used aromatic amino acids Is it just proline isomerization

Is it just proline isomerization Very possible, but so what. Most proteins contain proline Even non-proline containing proteins (i.e., IFABP) can fold slowly How does ~10% cis-proline (in the denatured protein) control overall stability on conversion to trans form Intermediate forms are also seen at equilibrium so it is not just a kinetic effect Does not appear to be important in unfolding

Is it just proline isomerization (continued) Slow folding will allow time-dependent distance measurements 19 F-proline shows different chemical shifts for the cis and trans forms Other mechanisms for slow folding: ADA folding appears too slow for proline isomerization (incorporation of Zn?) Would not be asking this question if not for ability to measure the kinetics of side chain stabilization. May help define role for proline isomerases.

Barstar Mol Wt 10,000 Two prolines: one cis, one trans in the native state Two phenylalanines Three tryptophans

Barstar Pro 27 trans Pro 48 cis (1BTA, Fersht 1994)

3s-F-Pro Barstar NMR 0, 3, 7M Urea (20 C) Cis Trans P27? pro48 pro27 P48?

An approach to fast steps in folding Probing protein dynamics using fluorescence methods

Time scales of protein motions -in order of fast to slow time regimes Side chain rotation Backbone flexing Loop or domain movements Time scales in protein folding Motions in the unfolded state Collapse to intermediates Secondary/tertiary structure formation Proline isomerization Side chain stabilization

FCS is one of the many different modes of high-resolution spatial and temporal analysis. In contrast to other fluorescence techniques, the parameter of primary interest is the spontaneous intensity fluctuations caused by the minute deviations of the small system from thermal equilibrium. In general, all physical parameters that give rise to fluctuations in the fluorescence signal are accessible by FCS. It is, for example, rather straightforward to determine diffusion coefficients or characteristic rate constants of inter- or intramolecular reactions of fluorescently labeled biomolecules at nanomolar concentrations. Magde, Elson and Webb (1972) Phys Rev Lett. 29, 705-708 Announcement Elson and Magde (1974) Biopolymers 13, 1-28 Theory Magde, Elson and Webb (1974) Biopolymers 13, 29-61 Experimental application

Diffusion kinetics + Chemical kinetics Fluorescence-diffusion + chemistry Fluorescence-diffusion only

Advantages of FRET-FCS over single molecule experiments No need to attach a tether to the protein No need to attach the molecule to a solid surface Faster time regimes (µsec vs. sec) Nanomolar concentrations Disadvantages Still have to label the protein with fluoroprobes and there has to be a fluorescence change associated with any isomerization event. Any isomerization event has to be faster than the the diffusion time.

There are no cysteine residues in native intestinal fatty acid binding protein D59C E107C

One cysteine labeled Unfolded IFABP τ D = 225 µsec

Both cysteine residues labeled Unfolded IFABP τ D = 225 µsec τ R = 1.6 µsec

Questions/Issues How fast can a protein fold. What is the role of diffusionloop formation/hairpin formation- is it dependent on the side chains predicted speed limits-for a generic protein = N/100 µs Is the dynamic motion observed on or off pathway If off, could slow folding If on, can we deduce a folding mechanism Can we tell? Is the key to solving the protein folding problem an accurate description of the unfolded state?

A teaser Proteins and peptides that give rise to neurodegenerative Diseases: Aβ polyglutamine (huntingtin) α-synuclein are all intrinsically unfolded in the monomer under native conditions But in polymeric fibrils they are β-sheets. So at some point they must fold. But when and how.

The Intestinal Fatty Acid Binding Protein 15 KDa protein, 10 antiparallel β sheets, 131 amino acids, no proline or cysteine Two tryptophans (W6 and W82), Helical region moves to allow ligand binding Trp82 is responsible for most of the fluorescence change on unfolding/refolding