The new force in machining.

Similar documents
DHC. Differential Helix Cutter

INCH. Revised. ADKT 1505R8T-FF a Combination of and

Contents. Turning. Boring. Milling. Adaptors and clamping units. General

Applications. Plunging - Z Axis Milling* 3D / Copy Milling* Facing. Slotting / Shoulder Milling. Spiral / Circular. Ramping

All TyCarb HF tools can easily be converted from High Feed to 90 Degree Square Shoulder Simply switch insert styles from

MFH Micro. Micro Dia. Cutter for High Feed Machining. Low Resistance and Durable Against Chatter for Highly Efficient Machining

Expansion of the HELIDO 690 LINE with Tools Carrying 10 mm Edged Inserts

Small but Powerful Positive Insert with Dovetail Design

TOOLMAKER SOLUTIONS Custom-Made Inserts Blanks

NPA. New Small Diameter Fast Feed Tools Carrying Inserts with Four Cutting Edges. New Product Announcement INCH MARCH 2018.

UTTING TOOLS. Stellram Cutting Tools NEW HIGH FEED 7793VX012 DOUBLE SIDED INSERT MILLING CUTTER SYSTEM

The best of both worlds

SQUARE 6 SQUARE SHOULDER MILLING GETS EVEN SMALLER

SUMMARY TECHNICAL INSTRUCTIONS. Technical Information. Geometries and feed rates. Cutting data. Carbide grades for grooving and parting off

MaxiMill HFC 'Feed matters', rapid milling

4 Flute All Purpose. duramill.com. for steels, stainless steels and high-temp alloys. roughing, slotting, pocketing & ramping applications

4JER 4JER. For superalloy machining. High efficiency and stable machining for heat resistant alloys such as Inconel.

MaxiMill HFC 'Feed matters', rapid milling

MaxiMill HFC 'Feed matters', rapid milling

High-Performance Solid Carbide End Mills Hard Materials

Jongen Werkzeugtechnik. Working depth. Drilling by JONGEN. 3 x D. BP 04 to 12

5315VA Series. Long Edge Milling Cutter

Kennametal Inc Technology Way Latrobe, PA USA. Tel: (United States and Canada)

milling products For Power Generation and Aerospace Applications

MFH-RAPT R. High Feed Milling Cutter. High Feed with Less Vibration. Higher Productivity MEGACOAT NANO

Product Expansion! ARNO FTA-milling system. Class leading technology - New. Face milling tool for cost reduction!

4JER 4JER. For Superalloy Machining. High Efficiency and Stable Machining for Heat Resistant Alloys such as Inconel.

PRIMARY GRADES TURNING TURNING / INSERTS / INTRODUCTION TO CARBIDE INSERTS

Jongen Werkzeugtechnik GmbH

RD-SAF Face milling and profiling cutter with positive round inserts

MAXIMILL MILLING SYSTEM ENGINEERED SIMPLICITY. 8 Cutting Edges. More milling. More parts. More profits.

October /10. Improved, New Grades and Chip Breakers for Machining Heat Resistant Super Alloys

Excellent stability und. ARNO SHORT-Cut -SIS. w w w. a r n o. d e. Introducing SHORT-Cut -SIS for internal groove turning. The new SHORT-Cut holder

Efficient Machining Solutions in Titanium Alloys. David J Wills

Jongen UNI-MILL VHC milling cutter

High Performance Catalog

5230VS Series. Chevron Long Edge Milling Cutter (Porcupine)

TOOLS NEWS B055E Update. Multi-functional Indexable Cutter APX3000/4000. A new generation of high performance cutters.

A New Positive Multi Corners Milling Line

Technical information / Clamping system Wedge clamping This classic positive insert clamping system allows the use of all models presenting this geome

SGS: Experts in Mold & Die.

Sandvik Hyperion Metal Cutting. Gear Cutting Applications

WINTER / SPRING. Special Offers for Turning, Milling, and Drilling Products. VALID THROUGH June 30 th, CA5-SERIES Turning Inserts 9

Countersink Section 2018 Master Catalog

TAKE IT ON WITH TITANOX

WINTER / SPRING. Special Offers for Turning, Milling, and Drilling Products. VALID THROUGH June 30 th, CA5-SERIES Turning Inserts 9

MaxiMill the 90 shoulder and slot milling system

The machining age is over. It s time to Tiger.

SQUARE T4-08 & T4-12

TOOLMAKER SOLUTIONS Rotary Tool Blanks

2007 CATALOG. HIGH PERFORMANCE HSS-E PM Carbide Cut & Form Taps Thread Types UNC UNF M MF Standard Sizes 2-56 to 1 1 /2-6 M1.4 x 0.30 to M36 x 1.

_ WALTER XTRA TEC INSERT DRILL Tool innovations in drilling

END MILLS ROUGHING DRILLING RAMPING SLOTTING FINISHING. Now with corner radius!

TOOL NEWS B055A Update. Multi-functional Indexable Cutter APX3000/4000. Holder Expansion. A new generation of high performance cutters.

/ 2019 full product line

New XEVT Line for Excellence in Aluminum Machining

Application Products. High Performance Taps Thread Mills Carbide & PM End Mills

INSERT GRADES CUTTING MATERIALS: HARDMETALS. COATED HARDMETALS (ISO group HC) UNCOATED HARDMETALS (ISO group HW) Uncoated Turning Cermet Grades:

Mirus Square End Mills for Ultra-High Efficiency Roughing and Semi-Finishing FEATURES

Milling tools made by JONGEN! C10 FP 124. Face Milling

Заказ инструмента: 8 (343) UTTING TOOLS. Stellram Cutting Tools HIGH PERFORMANCE MILLING SOLUTIONS

Konda Industry Co., Ltd

Cost reduction through Performance. SHARK-CUT + SHARK-CUT Rebore. Introducing Shark-Cut Rebore Tools and Inserts for boring

DOUBLE OCTOMILL ECONOMICAL FACE MILLING FAMILY FOR LARGE AND SMALL MACHINES

Innovative high-feed cutters offer incredible productivity!

PERFORMANCE! PRODUCTIVITY! ECONOMY!

RF 100 Speed GUHRING - YOUR WORLD-WIDE PARTNER. High-performance roughing even at deep cutting depths. Smooth operation and high metal removal rate

2018 New Product Announcement

для размещения заказа - VG-Cut Deep Grooving, Threading and Parting Off METRIC

Ferritic/martensitic cast steel. Stainless steel Austenitic

MILLING End milling cutters with fixed cutting edges. Cx45

Price/1. Price/1. Price/1. 1/ 8 3/ 8 1 1/ 2 1/ 8 10g -4580K / 4 3/ 4 2 1/ 2 1/ 4 30g -4660K / / 2 3/ 8 60g -4740K 291.

UTTING TOOLS. Stellram Cutting Tools. 7713VR Round Insert Milling Cutter with Indexation. Inch.

The Art and Science of Milling Titanium.

High Feed Milling Cutters Very smooth cutting geometry 4-edged indexable inserts Ideal for machinability groups M and S and high alloyed tool steels

Introduction. Inserts. Tools. Technical information. Contents D18 D20 D30

Thread Turning Technical Section

Tooling for Composites and Aerospace Materials. Diamond coated, carbide and PCD tools Routers, drills, and end mills Full special design capabilities

Insert: LNMX Maximum Depth of Cut:.300"

MFK. High Efficiency Multi-Edge Cutter for Cast Iron. Double-Sided Insert with Free Cutting Geometry to Resist Chatter

Contents E2. R a. Introduction. ProfileMaster. EcoCut. Index. Productivity. System overview E42 E3-E4. Designation system E43.

Maximize productivity in Superalloy machining!

Chip Thinning Operating Parameters

New Large Diameter Drilling Solution with a Quick Change Tip and Indexable Inserts

TECHNICAL INFORMATION

Description Series Page. Turning. Grades for holemaking 256 IN1030, IN2505, IN6505. Replaceable tip drill shanks 258

Carbide Modular Shrink System

Highly Efficient Cutter with a 66 Cutting Edge Angle

NEW HIGH FEED MILLING CUTTER. No. 143 E / version 2 HIGH FEED MILLING CUTTER 15G1F/5G_F

NEW EXTENDED PROGRAM AND INTERNAL COOLING

Profile Milling Program Tools

WJX. Series. Improved Sharpness and Stability to Achieve High Efficiency Machining TOOL NEWS. Double-sided Insert Type High Feed Radius Milling Cutter

Drilling Speeds and Feeds

NEW HIGH FEED MILLING CUTTER HIGH FEED MILLING CUTTER 15G1F/5G_F

Countersinks. Smooth cutting, perfect chamfering - Counterbores - Cross Hole - Single Flute - Three Flute

Cutting Tools for Steels. Featuring coolant-fed premium cobalt taps

Nexus Cutting Tools. Accurate. Simplify. Nexus ShrinkMILL and Face Mills. Innovative. Solutions that are innovative, accurate, and simple.

Threading Tools. Cutting, milling and forming custom-made. Chip by Chip to the Top

Transcription:

Product handbook Milling _ SILVER, BLACK, STRONG The new force in machining.

Yesterday, it was machining. Today, it s tigering. Cutting tool materials with the Tiger tec technology brand are setting the standard in machining again and again, in terms of productivity and process stability. With the new cutting tool material, the engineers at Walter have moved another great step closer to the ideal cutting tool material. is ideal for dry and wet machining of steel and cast iron materials, and is at home in important key sectors: the automotive industry and rail vehicle manufacturing, power engineering, the aerospace industry, mechanical engineering and in mold and die making.

CONTENTS Milling 2 2 The new technology 6 Applications and examples 12 Application chart 14 Extract from the milling cutter range 16 Walter Select milling cutters 34 Technical information 34 Cutting data for milling 38 Feed rate specification 54 Application-specific data 68 Description of indexable insert geometry 76 Calculation Formula 78 Problem solving

The new technology New Tiger, new benchmark: Up to 100 % increase in output Extremely stable cutting edges for high level of process reliability Extremely smooth rake face for excellent wear resistance Silver colored flank face for extremely easy wear detection during use 2

Unique throughout the world With its globally unique CVD coating technology, the cutting tool material is forging ahead into new dimensions. In day-to-day manufacturing, this means that increases in output of up to 100 % are possible in machining. Other features of : Enormous toughness and minimal formation of hairline cracks thanks to optimum residual strength Greatly reduced tribochemical wear thanks to perfect, smooth rake faces Not susceptible to thermal stress variations during wet and dry machining Completely new CVD coating technology: Combines wear resistance and toughness For steel and cast iron workpieces Optimum friction behavior -Al 2 O 3 MT-Ti(C, N) Substrate Greater resistance to flank face wear Excellent hardness to toughness ratio 3

The new technology High level of wear resistance A close-up view of the cutting edges shows it clearly: the new cutting tool material can easily handle even the most difficult machining conditions thanks to its new, revolutionary coating. Hairline cracks, such as those that occur at high cutting speeds, with interrupted cuts and difficult cutting conditions in particular, are decisively reduced with indexable inserts. In the example shown, heat treatable steel 4140 was milled twice, with the existing insert and with the new. With the indexable insert, the high level of wear resistance, the toughness and resistance to temperature reduce negative hairline crack formations and chipping, and therefore costly reductions in service life. Existing 4

Outstanding properties PRODUCT PROPERTIES: Performance increase of up to 100 % Thanks to excellent wear behavior combined with extreme toughness Excellent cutting and chip evacuation behavior Thanks to extremely smooth rake faces Resistant to deformation and oxidation wear Thanks to the new type of aluminum oxide coating Benefits for you: Low production costs Higher cutting speeds thanks to heat-resistant coating High level of process reliability High level of toughness thanks to technology Improved chip flow thanks to extremely smooth rake faces Low cutting material costs Excellent wear detection thanks to indicator coating Unused cutting edges not wasted High level of resistance to flank face wear Thanks to fine-grained, columnar, average temperature titanium carbonitride New dimension in the toughness to wear resistance ratio Thanks to the new type of coating technology 5

Applications and examples THE APPLICATION With the new technology, there is also completely new surface treatment in addition to the special coating combination. Due to the optimal residual stresses, the toughness of the wear-resistant cutting tool material increases exponentially. It is this combination of a high level of wear resistance and toughness that gives superior machining performance. Temperature resistance CVD -Al 2 O 3 Tiger tec PVD-Al 2 O 3 PVD Toughness WALTER GRADE DESIGNATION W K P 35 S Application range Primary application ISO P Walter Primary application ISO K 6

Material: steel (ISO P) Temperature resistance WKP 25 WKP 35 S WSP 45 Toughness Material: CAST IRON (ISO K) Temperature resistance WAK 15 WKK 25 WKP 25 WKP 35 S Toughness WKP 35 S Primary application: all steel materials at medium to high cutting speeds and medium to high feeds per tooth. For unfavorable conditions, e.g. wet machining, fluctuating material removal or long projection length. Primary application: spheroidal graphite cast iron or ADI materials at low to medium cutting speeds and medium to high feeds per tooth. For unfavorable conditions, e.g. wet machining, fluctuating material removal or aggressive interrupted cuts. 7

Example 1: Machine frame (shoulder milling) Workpiece material: St37 (1.0037), ISO P (BS879M39, Structural Steel) Tool: F4042 / Z6 / dia. 2.50 inch Indexable insert: ADMT160608R-F56 Cutting tool material: WKP35S Cutting data: Competitor Cutting speed v c 1300 SFM 1300 SFM Feed per tooth f z 0.0078 IPT 0.0078 IPT Feed rate v f 95 inch/min 95 inch/min DOC a p 0.060 0.120 inch 0.060 0.120 inch WOC a e 2.36 inch 2.36 inch with coolant with coolant Tool life quantity 1 inner surface 2 inner surfaces Benefits for you: High level of process stability despite unstable weld design; holes and weld seams are also milled in some areas Lower tool costs Comparison in tool life of inner surfaces [pieces] Competition + 100 % 0 0.5 1 1.5 2 2.5 8

Example 2: Guide tracks (face milling) Workpiece material: St52-2 (1.0570), ISO P (Structural Steel) Tool: F4080 / Z8 / dia. 5.00 inch Indexable insert: ODHT0605ZZN-F57 Cutting tool material: WKP35S Cutting data: Existing Cutting speed v c 775 SFM 928 SFM Feed per tooth f z 0.012 IPT 0.012 IPT Feed rate v f 62 inch/min 78 inch/min DOC a p 0.157 inch 0.157 inch WOC a e 3.94 inch 3.94 inch with coolant with coolant Tool life [ft] 60 120 Benefits for you: Reduced tool costs thanks to doubled service life Machine capacity increased thanks to 26 % higher feed rate Feed rate comparison [in/min] Existing + 26 % 0 2.00 4.00 6.00 8.00 9

Example 3: Form insert (pocket milling) Workpiece material: 40CrMnMo7 (1.2311), ISO P (P20 Steel) Tensile strength: 38 HRc Tool: F4042 / Z6 / dia. 2.50 inch Indexable insert: ADMT160608R-F56 Cutting tool material: WKP35S Cutting data: Existing Cutting speed v c 345 SFM 345 SFM Feed per tooth f z 0.012 IPT 0.012 IPT Feed rate v f 38 inch/min 38 inch/min DOC a p 0.120 inch 0.120 inch WOC a e 1.37 2.50 inch 1.37 2.50 inch with coolant with coolant Tool life [ft] 345 470 Benefits for you: A complete component can be reliably machined Lower tool costs Tool life comparison [ft] Existing + 36 % 0 164 328 492 10

Example 4: Brake caliper (circular face milling) Workpiece material: GGG50 (0.7050), ISO K (Nodular Iron) Tool: F4042R / Z7 / dia. 2.00 inch Indexable insert: ADMT10T308R-F56 Cutting tool material: WKP35S Cutting data: Competitor Cutting speed v c 524 SFM 524 SFM Feed per tooth f z 0.0085 IPT 0.0085 IPT Feed rate v f 60 inch/min 60 inch/min DOC a p 0.060 inch 0.060 inch WOC a e 1.00 inch 1.00 inch without coolant without coolant Tool life quantity [pieces] 800 1400 Benefits for you: Reduction in CPP (cost per part) Low tool costs thanks to longer tool life High level of process reliability Tool life quantity comparison [pieces] Competition + 75 % 0 400 800 1200 1600 11

Application chart Workpiece material group P M K N S H Walter grade designation Standard designation Steel Stainless steel Cast iron Non-ferrous metals Materials with difficult cutting properties Hard materials WKP 35 S HC P 35 HC K 35 WKP 25 HC P 25 HC K 25 WAK 15 HC K 15 HC S 45 WSP 45 HC P 45 HC M 45 WKK 25 HC K 25 HC = Coated carbide Primary application 12

Application range 01 10 20 30 40 05 15 25 35 45 Coating process Coating composition Indexable insert example CVD TiCN + Al 2 O 3 (+TiCN) CVD TiCN + Al 2 O 3 (+TiN) CVD TiCN + Al 2 O 3 (+TiN) PVD TiAlN + Al 2 O 3 (ZrCN) PVD TiAlN + Al 2 O 3 (ZrCN) 13

Extract from the milling cutter range Trimming: F 4238 Slot milling: F 4042R Shoulder milling: F 4042 Pocket milling: F 4042 Circular interpolation milling: F 4081 Plunging: F 4030 Slot milling: F 4253 14

Face milling: F 4033 Copy milling: F 4030 Face milling: F 4045 Shoulder milling: F 4041 15

Walter Select milling cutters Face milling Machining Lead angle κ 45 Face mill F 4033 Xtra tec Dia. range 1.50 8.00 Ordering information* F. page 166 P Steel K Cast iron Basic shape of indexable insert Indexable insert types SN. X 1205.. SN. X 1606.. Max. cut depths 0.256 + 0.354 Number of cutting edges per indexable insert 8 * G. = 2007 General Catalog North American Version E. = 2009 Catalog supplement F. = 2010 Innovation brochure 16

75 88 45 F 4047 F 4048 F 4045 Xtra tec Xtra tec Xtra tec 2.00 8.00 2.00 8.00 2.50 8.00 E. page 212 E. page 214 F. Page 1176 SN. X 1205.. SN. X 1205.. XNHF 0705.. XNHF 0906.. 0.315 0.394 0.157 0.236 8 8 14 Primary application C Additional application 17

Walter Select milling cutters Face milling Machining Lead angle κ 43 Face mill F 4080 Xtra tec Dia. range 2.00 6.00 Ordering information* F. Page 178, G. page 518 P Steel K Cast iron Basic shape of indexable insert Indexable insert types OD.. 0504.. OD.. 0605.. Max. cut depths 0.118 / 0.315 + 0.157 / 0.394 Number of cutting edges per indexable insert 8 * G. = 2007 General Catalog North American Version E. = 2009 Catalog supplement F. = 2010 Innovation brochure 18

0 15 0 21 F 2330 F 4030 Xtra tec 0.75 4.00 1.00 2.50 G. page 510 F. Page 174 CC CC CC CC P 2633. P 26379 P 23696 1.0 0.039 + 0.060 + 0.078 0.039 3 6 CC plication Primary ap C Additional application Tiger tec Silver 19

Walter Select milling cutters Face milling Machining Roughing s Finish milling s Shoulder milling Shoulder milling (finishing) Plunging Circular interpolation milling Pocket milling Lead angle κ 45 / 75 / 88 Face mill F 2010 Dia. range 3.00 12.00 Ordering information* G. page 468, 472, 476 P Steel K Cast iron Basic shape of indexable insert Indexable insert types SN. X 1205.. SN. X 1606.. Max. cut depths 0.256 + 0.315 + 0.354 + 0.394 Number of cutting edges per indexable insert 8 * G. = 2007 General Catalog North American Version E. = 2009 Catalog supplement F. = 2010 Innovation brochure 20

s s s s s s s s s s s s s s s s s 90 90 0 15 43 / 45 F 2010 3.00 12.00 3.00 12.00 3.00 12.00 3.00 12.00 74 309 G. page 484 G. page 480 G. page 464 G. page 466 G. page 486 LNGX 1307.. AD.. 1204.. AD.. 1606.. P 2633. R25 P 26379 R25 OD.. 0605.. RO. X 1605.. 0.512 0.460 + 0.590 0.078 0.157 / 0.394 0.315 4 2 3 8 6 Primary application C Additional application 21

Walter Select milling cutters Shoulder milling Machining Lead angle κ 90 Shoulder milling cutter F 4041 Xtra tec Dia. range 1.50 6.00 Ordering information* G. page 526 P Steel K Cast iron Basic shape of indexable insert Indexable insert types LNGX 1307.. Max. cut depths 0.512 Number of cutting edges per indexable insert 4 * G. = 2007 General Catalog North American Version E. = 2009 Catalog supplement F. = 2010 Innovation brochure 22

90 90 F 4042R F 4042 Xtra tec Xtra tec 0.625 2.00 0.50 6.00 E. page 220 G. page 528-535 AD. T 10T3.. AD. T 0803.. AD. T 1204.. AD. T 1606.. AD. T 1807.. 0.394 0.315 + 0.461 + 0.591 + 0.630 2 2 Primary application C Additional application 23

Walter Select milling cutters Shoulder milling Machining Lead angle κ 90 90 Shoulder milling cutter F 4038 F 4138 Xtra tec Xtra tec Dia. range 0.75 1.25 1.25 3.00 Ordering information* G. page 558 G. page 560 P Steel K Cast iron Basic shape of indexable insert Indexable insert types AD. T 0803.. AD. T 1204.. Max. cut depths 1.457 2.560 Number of cutting edges per indexable insert 2 2 * G. = 2007 General Catalog North American Version E. = 2009 Catalog supplement F. = 2010 Innovation brochure 24

90 90 F 4238 F 4338 Xtra tec Xtra tec 1.50 3.00 63 125 G. page 562 F. Page 179 AD. T 1606.. AD. T 1807.. 3.346 4.881 2 2 Primary application C Additional application 25

Walter Select milling cutters Slot milling Machining Lead angle κ 90 Slot mill F 4053 Xtra tec Dia. range 4.00 6.00 Ordering information* E. page 224 P Steel K Cast iron Basic shape of indexable insert Indexable insert types LN.X 070204.. Max. cutting width across teeth Number of cutting edges per indexable insert 0.157 2 + 2 * G. = 2007 General Catalog North American Version E. = 2009 Catalog supplement F. = 2010 Innovation brochure 26

90 90 F 4153 F 4253 Xtra tec Xtra tec 3.00 8.00 4.00 10.00 E. page 226 E. page 228 LN.. 0803.. LN.. 0804.. LN.. 1005.. LN.. 0804.. LN.. 1005.. LN.. 1206.. LN.. 1608.. 0.236 + 0.315 + 0.394 0.472 + 0.551 + 0.630 + 0.787 + 1.000 2 + 2 2 + 2 Primary application C Additional application 27

Walter Select milling cutters Copy milling Machining Copy mill F 2334 Dia. range 1.00 6.00 Ordering information* G. page 584 P Steel K Cast iron Basic shape of indexable insert Indexable insert types RO. X.. Max. cut depths 0.157 0.394 Number of cutting edges per indexable insert 4 8 * G. = 2007 General Catalog North American Version E. = 2009 Catalog supplement F. = 2010 Innovation brochure 28

Circular interpolation milling Machining Lead angle κ 45 / 90 Circular interpolation mill F 4081 Xtra tec Dia. range [mm] 36 85 Ordering information* F. Page 177 P Steel K Cast iron Basic shape of indexable insert Indexable insert types OD.. 0504.. OD.. 0605.. Max. cut depths 0.118 + 0.157 Number of cutting edges per indexable insert 2 4 Primary application C Additional application 29

Walter Select milling cutters Circular interpolation milling Machining 43 Lead angle κ F 4080 Circular interpolation mill Xtra tec Dia. range 2.00 6.00 Ordering information* G. page 518 P Steel CC K Cast iron CC Basic shape of indexable insert Indexable insert types Max. cut depths OD.. 0504.. OD.. 0605.. 0.118 / 0.315 + 0.157 / 0.394 Number of cutting edges per indexable insert * G. = 2007 General Catalog North American Version E. = 2009 Catalog supplement F. = 2010 Innovation brochure 30 2 4

0 15 0 21 F 2330 F 4030 Xtra tec 0.75 4.00 1.00 2.50 G. page 510 F. Page 174 CC CC CC CC P 2633. P 26379 P 23696 1.0 0.039 + 0.059 + 0.078 0.039 3 6 CC plication Primary ap C Additional application Tiger tec Silver 31

Walter Select milling cutters Circular interpolation milling Machining Lead angle κ Circular interpolation mill F 2334 Dia. range 1.00 6.00 Ordering information* G. page 584 P Steel CC K Cast iron CC Basic shape of indexable insert Indexable insert types Max. cut depths RO. X.. 0.157 0.394 Number of cutting edges per indexable insert * G. = 2007 General Catalog North American Version E. = 2009 Catalog supplement F. = 2010 Innovation brochure 32 2 4

90 90 F 4042R F 4042 Xtra tec Xtra tec 0.625 2.00 0.50 6.00 E. page 220 G. page 528-535 AD. T 10T3.. AD. T 0803.. AD. T 1204.. AD. T 1606.. AD. T 1807.. 0.394 0.315 + 0.461 + 0.591 + 0.630 2 2 Primary application C Additional application 33

Technical Information Cutting data for milling Material group P K Workpiece material approx. 0.15 % C annealed 125 approx. 0.45 % C annealed 190 Unalloyed steel 1 approx. 0.45 % C heat treated 250 approx. 0.75 % C annealed 270 approx. 0.75 % C heat treated 300 annealed 180 heat treated 275 Low-alloy steel 1 heat treated 300 heat treated 350 High-alloyed steel and annealed 200 high-alloyed tool steel 1 hardened and tempered 325 Stainless steel 1 ferritic / martensitic, annealed 200 martensitic, heat treated 240 Grey cast iron Grey cast iron with spheroidal graphite Malleable cast iron Brinell hardness HB pearlitic/ferritic 180 pearlitic (martensitic) 260 ferritic 160 pearlitic 250 ferritic 130 pearlitic 230 34

Roughing with surface/ shoulder milling cutters Roughing with helical cutters Roughing with side and face mills Machining group 2 1/1 1/2 WKP 35 S WKP 35 S WKP 35 S a e / D C 3 a e / D C 3 a e / D C 1/5 1/1 1/2 1/5 central 1/5 1/10 1 820 980 640 820 640 820 900 2 720 850 560 700 560 700 750 3 640 720 490 610 490 610 930 4 590 660 460 690 460 560 560 5 520 590 430 480 430 480 490 6 720 890 560 700 560 700 770 7 590 690 440 510 430 540 540 8 560 620 430 480 410 480 490 9 430 490 290 340 300 330 340 10 430 520 330 390 330 390 430 11 260 300 200 230 200 250 250 12 460 520 340 390 340 430 430 13 330 390 230 310 230 310 340 15 980 1080 520 590 520 590 620 16 560 660 390 460 390 460 490 17 660 720 460 490 460 490 520 18 460 520 360 390 360 390 430 19 690 790 490 560 490 560 590 20 490 590 430 460 430 460 490 1 and cast steel 2 The arrangement of the machining group can be found on page 760 of the 2007 General Catalog North American Version 3 a e / D C = 1/10, v C = 10 % higher than 1/5 35

Technical Information Cutting data for milling Material group P K Workpiece material approx. 0.15 % C annealed 125 approx. 0.45 % C annealed 190 Unalloyed steel 1 approx. 0.45 % C heat treated 250 approx. 0.75 % C annealed 270 approx. 0.75 % C heat treated 300 annealed 180 heat treated 275 Low-alloy steel 1 heat treated 300 heat treated 350 High-alloyed steel and annealed 200 high-alloyed tool steel 1 hardened and tempered 325 Stainless steel 1 ferritic / martensitic, annealed 200 martensitic, heat treated 240 Grey cast iron Grey cast iron with spheroidal graphite Malleable cast iron Brinell hardness HB pearlitic/ferritic 180 pearlitic (martensitic) 260 ferritic 160 pearlitic 250 ferritic 130 pearlitic 230 36

Roughing with copy milling cutters Circular interpolation milling Machining group 2 WKP 35 S WKP 35 S a e / D C 3 a e / D C 1/1 1/5 1/10 1/1 1/5 1 790 980 980 720 890 2 660 840 900 660 750 3 610 790 790 590 660 4 510 640 690 520 590 5 480 590 610 460 520 6 540 690 750 660 790 7 510 640 700 520 620 8 480 590 660 490 560 9 390 510 560 360 430 10 360 480 520 390 460 11 250 330 330 260 290 12 390 510 560 390 460 13 360 480 510 290 330 15 790 920 980 890 970 16 620 750 820 500 590 17 790 920 980 590 650 18 620 750 820 410 470 19 820 950 1020 620 710 20 660 790 850 440 530 1 and cast steel 2 The arrangement of the machining group can be found on page 760 of the 2007 General Catalog North American Version 3 a e / D C = 1/10, v C = 10 % higher than 1/5 37

Technical Information Determining the feed Cutter types F 2010 / F 2330 Face milling Feed per tooth f zo for a e = D c a p = a p max = L c D c a p max Lead angle κ 0 15 f = zo Tool dia. or dia. range 0.750 1.000 1.250 1.500 2.000 3.000 Max. depths of cut a = L p max c a p max = 0.039 a p max = 0.059 a p max = 0.078 Unalloyed steel* 0.047 0.063 0.079 P Low-alloyed steel* 0.039 0.055 0.071 High-alloyed steel and tool steel* 0.028 0.039 0.047 Stainless steel*, martensitic 0.020 0.024 0.031 Grey cast iron 0.047 0.063 0.079 K Cast iron with spheroidal graphite 0.039 0.055 0.071 Malleable cast iron 0.039 0.055 0.071 Indexable insert types P 2633. R 10 P 2633. R 14 P 2633. R 25 Correction factor Ka e For the feed per tooth dependent on the ratio cut width a e to cutter diameter D c Correction factor Ka p For the feed per tooth dependent on the depth of cut a p Correction factor K Dc f z = f zo Ka e Ka p K L a / D e c = 1/1 1/2 1.0 1.0 1.0 1/5 1.4 1.4 1.3 1/10 1.8 1.8 1.8 1/20 1/50 a p = 0.020 1.3 1.4 1.5 0.039 1.0 1.2 1.4 0.059 1.0 1.2 0.078 1.0 1<(L : D c) 2 1.4 1.4 1.4 2<(L : D c) 4 1.0 1.0 1.0 4<(L : D c) 6 0.7 0.7 0.7 * and cast steel 38

Face mill: F 2010, F 2330, F4030 F 2330 Plunging F 4030 Face milling F 4030 Plunging Xtra tec Xtra tec 0 15 0 21 0 21 f zo = f zo = f zo = 20 25 32 85 52 315 1.000 2.500 1.000 2.500 a e max = 0.275 a e max = 0.394 a e max = 0.591 a pmax = 0.039 a emax = 0.394 0.007 0.010 0.012 0.047 0.007 0.006 0.009 0.010 0.039 0.006 0.005 0.006 0.009 0.028 0.005 0.004 0.005 0.006 0.020 0.004 0.007 0.010 0.012 0.047 0.007 0.006 0.009 0.011 0.039 0.006 0.006 0.009 0.011 0.039 0.006 P 2633. P 26379 R 10 P 2633. P 26379 R 14 P 2633. P 26379 R 25 P 23696 R 14 P 23696 R 14 1.0 1.4 1.8 1.3 1.0 1.0 1.0 1.0 1.0 0.7 0.7 0.7 0.7 0.5 0.5 0.5 0.5 39

Technical Information Determining the feed Cutter types F 2010 / F 4080 Feed per tooth f zo for a e = D c a p = a p max = L c D c a p max Xtra tec Lead angle κ 43 f = zo Tool dia. or dia. range 1.250 5.000 2.000 6.000 Max. depths of cut a = L p max c 0.118 / 0.315 0.157 / 0.394 Unalloyed steel* 0.018 0.020 P Low-alloyed steel* 0.016 0.018 High-alloyed steel and tool steel* 0.012 0.014 Stainless steel,* martensitic 0.008 0.011 Grey cast iron 0.018 0.020 K Cast iron with spheroidal graphite 0.014 0.016 Malleable cast iron 0.014 0.016 Indexable insert types OD.. 0504.. OD.. 0605 Correction factor Ka e For the feed per tooth dependent on the ratio cut width a e to cutting diameter D c Correction factor Ka p For the feed per tooth dependent on the depth of cut a p f z = f zo Ka e Ka p K a / D e c = 1/1 1/2 1.0 1.0 1/5 1.1 1.1 1/10 1.2 1.2 1/20 1.3 1.3 1/50 a p = 0.040 1.0 1.0 0.080 1.0 1.0 0.120 1.0 1.0 0.160 0.6 1.0 0.240 0.6 0.6 0.320 0.6 0.6 a p max = L c 0.6 0.6 * and cast steel 40

Face mill: F 2010, F 4080, F 4081, F 4033, F 4045 F 4081 F 2010 / F 4033 F 4045 Xtra tec Xtra tec Xtra tec 45 45 45 f zo = [mm] f zo = f zo = 36 85 52 85 1.500 8.000 3.000 12.000 2.500 8.000 3.000 8.000 0.118 / 0.315 0.157 / 0.394 0.236 0.354 0.157 0.236 0.016 0.018 0.010 0.016 0.014 0.016 0.008 0.014 0.011 0.013 0.008 0.012 0.007 0.009 0.006 0.008 0.016 0.018 0.012 0.020 0.012 0.020 0.013 0.014 0.010 0.016 0.010 0.016 0.013 0.014 0.010 0.012 0.010 0.012 OD.. 0504.. with corner radius OD.. 0605.. with corner radius SN. X 120512 SN. X 120520 SN. X 1205 ANN SN. X 1606 XNHF 0705 XNHF 0906 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.1 1.1 1.1 1.1 1.2 1.2 1.2 1.2 1.2 1.2 1.3 1.3 1.3 1.3 1.3 1.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6 1.0 0.6 0.6 0.6 0.6 41

Technical Information Determining the feed Cutter types F 2010 / F 4047 F 2010 / F 4048 Feed per tooth f zo for a e = D c a p = a p max = L c D c a p max Xtra tec Xtra tec Lead angle κ 75 88 f = zo f = zo Tool dia. or dia. range 3.000 6.000 3.000 6.000 Max. depths of cut a = L p max c 0.315 0.393 Unalloyed steel* 0.009 0.008 P Low-alloyed steel* 0.007 0.007 High-alloyed steel and tool steel* 0.007 0.007 Stainless steel,* martensitic 0.006 0.005 Grey cast iron 0.010 0.009 K Cast iron with spheroidal graphite 0.009 0.008 Malleable cast iron 0.009 0.008 Indexable insert types Correction factor Ka e For the feed per tooth dependent on the ratio cut width a e to cutter diameter D c SN. X 120512 SN. X 120520 SN. X 1205 ENN SN. X 120512 SN. X 120520 SN. X 1205 ZNN a / D e c = 1/1 1/2 1.0 1.0 1/5 1.1 1.1 1/10 1.2 1.2 1/20 1.3 1.3 1/50 f z = f zo Ka e * and cast steel 42

Face and shoulder mill: F 2010, F 4047, F 4048, F 4041, F 4042, F 4042R F 2010 / F 4041 F 2010 / F 4042 / F 4042R Xtra tec Xtra tec 90 90 f = zo f = zo 1.500 6.000 0.500 2.000 0.625 1.250 1.000 12.000 1.500 12.000 2.000 6.000 0.512 0.276 0.394 0.433 0.591 0.665 0.008 0.006 0.007 0.008 0.010 0.012 0.006 0.004 0.005 0.006 0.007 0.009 0.006 0.004 0.005 0.006 0.007 0.009 0.005 0.003 0.004 0.005 0.006 0.007 0.010 0.006 0.008 0.010 0.012 0.016 0.008 0.005 0.006 0.008 0.010 0.012 0.008 0.005 0.006 0.008 0.010 0.012 LNGX 1307 AD.. 0803 AD.. 10T3 AD.. 1204 AD.. 1606 AD.. 1807 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.1 1.1 1.1 1.1 1.2 1.2 1.2 1.2 1.2 1.2 1.3 1.3 1.3 1.3 1.3 1.3 43

Technical Information Determining the feed Cutter types F 4038 Feed per tooth f zo for a e = D c a p = a p max = L c D c L c Xtra tec Lead angle κ 90 f = zo Tool dia. or dia. range 0.750 0.970 Max. depths of cut a = L p max c 0.590 1.457 Unalloyed steel* 0.006 P Low-alloyed steel* 0.004 High-alloyed steel and tool steel* 0.004 Stainless steel,* martensitic 0.003 Grey cast iron 0.006 K Cast iron with spheroidal graphite 0.005 Malleable cast iron 0.005 Indexable insert types AD.. 0803 Correction factor Ka e For the feed per tooth dependent on the ratio cut width a e to cutter diameter D c Correction factor Ka p For the feed per tooth dependent on the depth of cut a p f z = f zo Ka e Ka p K a / D e c = 1/1 1/2 1 1.0 1/5 1.1 1/10 1.2 1/20 1.3 1/50 1.5 a p = 0.240 1.0 0.360 1.0 0.480 1.0 0.5 x Dc 1.0 0.75 x Dc 0.8 1 x Dc 0.7 a p max = L c 0.5 2 * and cast steel 44

Shoulder mill: F 4038, F 4138, F 4238, F 4338 F 4138 F 4238 F 4338 Xtra tec Xtra tec Xtra tec 90 90 90 f = zo f = zo f = [mm] zo 0.970 3.000 1.000 3.000 63 125 1.300 2.559 1.142 3.346 31 124 0.008 0.010 0.25 0.006 0.008 0.20 0.006 0.007 0.18 0.005 0.005 0.12 0.010 0.011 0.28 0.008 0.009 0.22 0.008 0.009 0.22 AD.. 1204 AD.. 1606 AD.. 1807 1.0 1 1.0 1 1.0 1 1.1 1.1 1.1 1.2 1.2 1.2 1.3 1.3 1.3 1.5 1.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.8 0.8 0.8 0.7 0.7 0.7 0.5 2 0.5 2 0.5 2 1 only possible if a p < 0.5 x D 2 C only possible if a e/d C < 1/5 45

Technical Information Determining the feed Cutter types F 4053 Feed per tooth f zo for plunging central positioning Xtra tec Lead angle κ 90 f = zo Tool dia. or dia. range 4.000 6.000 Max. depths of cut a = L p max c 0.472 0.630 Unalloyed steel* 0.004 P Low-alloyed steel* 0.003 High-alloyed steel and tool steel* 0.003 Stainless steel,* martensitic 0.002 Grey cast iron 0.004 K Cast iron with spheroidal graphite 0.003 Malleable cast iron 0.003 Indexable insert types Correction factor Ka e For the feed per tooth dependent on the ratio cut width a e to cutter diameter D c LN. X0702 central 1.0 a / D = e c 1/3 1.5 1/5 1.8 1/10 2.5 1/20 3.3 1/50 5.8 f z = f zo Ka e * and cast steel 46

Side and face mills: F 4053, F 4153, F 4253 F 4153 F 4253 Xtra tec Xtra tec 90 90 f = [mm] zo f = [mm] zo 3.000 8.000 3.000 8.000 3.000 8.000 4.000 8.000 4.000 8.000 5.000 8.000 6.000 10.000 0.236 0.315 0.394 0.472 0.551 0.630 0.787 0.005 0.005 0.006 0.006 0.006 0.008 0.008 0.004 0.005 0.005 0.005 0.005 0.007 0.007 0.004 0.005 0.005 0.005 0.005 0.007 0.007 0.002 0.003 0.003 0.003 0.003 0.004 0.004 0.005 0.006 0.006 0.007 0.007 0.009 0.009 0.005 0.005 0.005 0.006 0.006 0.008 0.008 0.005 0.005 0.005 0.006 0.006 0.008 0.008 LN.. 0803 LN.. 0804 LN.. 1005 LN.. 0804 LN.. 0804 LN.. 1005 LN.. 1206 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.8 1.8 1.8 1.8 1.8 1.8 1.8 2.5 2.5 2.5 2.5 2.5 2.5 2.5 3.3 3.3 3.3 3.3 3.3 3.3 3.3 5.8 5.8 5.8 5.8 5.8 5.8 5.8 Please note: The feed per tooth f z should not exceed 0.24 inch. 47

Technical Information Determining the feed of copy mills: F 2010, F 2334 Cutter types F 2010 / F 2334 Feed per tooth f zo for a e = D c a p = a p max = L c D c L c f zo = Tool dia. or dia. range 1.000 1.250 1.250 1.500 1.500 2.500 2.500 5.000 2.500 6.000 Max. depths of cut a p max = L c 0.157 0.197 0.236 0.315 0.394 P K Unalloyed steel* 0.004 0.007 0.009 0.011 0.012 Low-alloyed steel* 0.003 0.005 0.006 0.009 0.011 High-alloyed steel and tool steel* 0.003 0.005 0.006 0.009 0.011 Stainless steel,* martensitic 0.003 0.003 0.004 0.005 0.007 Grey cast iron 0.005 0.009 0.011 0.012 0.015 Cast iron with spheroidal graphite 0.004 0.007 0.009 0.011 0.012 Malleable cast iron 0.004 0.007 0.009 0.011 0.012 Indexable insert types RO. X 0803 RO. X 10T3 RO. X 1204 RO. X 1605 RO. X 2006 Correction factor Ka e For the feed per tooth dependent on the ratio cut width a e to cutter diameter D c Correction factor Ka p For the feed per tooth dependent on the depth of cut a p f z = f zo Ka e Ka p K a / D e c = 1/1 1/2 1.0 1.0 1.2 1.2 1.2 1/5 1.2 1.2 1.4 1.4 1.4 1/10 1.5 1.5 1.6 1.6 1.6 1/20 1.8 1.8 1.8 1.8 1.8 1/50 2.0 2.0 2.0 2.0 2.0 a p = 0.039 1.4 1.5 1.6 1.8 2.0 0.079 1.1 1.2 1.3 1.4 1.5 0.157 1.0 1.0 1.1 1.2 1.5 0.197 1.0 1.0 1.1 1.2 0.236 1.0 1.1 0.315 1.1 0.394 1.0 * and cast steel 48

Circular interpolation mill: F 4081 Cutter types F 4081 Feed per tooth f zo for a e = D a a p = a p max = L c D a L c Xtra tec Lead angle κ 45 f = [mm] zo Tool dia. or dia. range [mm] 36-85 52-85 Max. depths of cut a = L p max c [mm] 3 4 Unalloyed steel* 0.40 0.45 P Low-alloyed steel* 0.36 0.40 High-alloyed steel and tool steel* 0.27 0.32 Stainless steel,* martensitic 0.18 0.22 Grey cast iron 0.40 0.45 K Cast iron with spheroidal graphite 0.32 0.36 Malleable cast iron 0.32 0.36 Indexable insert types OD.. 0504.. OD.. 0605.. Correction factor Ka e For the feed per tooth dependent on the ratio cut width a e to cutter diameter D c a / D e c = 1/1 1/2 1.0 1.0 1/5 1.1 1.1 1/10 1.2 1.2 1/20 1.3 1.3 1/50 f z = f zo Ka e * and cast steel 49

Technical Information Determining the feed Cutter types F 4080 Feed per tooth f zo for a e = D a a p = a p max = L c D a L c Xtra tec Lead angle κ 43 f = [mm] zo Tool dia. or dia. range 32-125 50-170 Max. depths of cut a = L p max c 0.118 0.157 Unalloyed steel* 0.016 0.018 P Low-alloyed steel* 0.014 0.016 High-alloyed steel and tool steel* 0.011 0.013 Stainless steel,* martensitic 0.007 0.009 Grey cast iron 0.016 0.018 K Cast iron with spheroidal graphite 0.013 0.014 Malleable cast iron 0.013 0.014 Indexable insert types OD.. 0504.. OD.. 0605.. Correction factor Ka e For the feed per tooth dependent on the ratio cut width a e to cutter diameter D c a / D e c = 1/1 1/2 1.0 1.0 1/5 1.1 1.1 1/10 1.2 1.2 1/20 1.3 1.3 1/50 f z = f zo Ka e * and cast steel 50

Circular interpolation mills: F 4080, F 2330, F 4030 F 2330 F 4030 Xtra tec 0 15 0 21 f = zo f = zo 0.750-1.000 1.250-1.500 2.000-3.000 1.000-2.500 0.039 0.059 0.079 0.039 0.039 0.055 0.071 0.055 0.035 0.049 0.063 0.051 0.024 0.035 0.039 0.039 0.018 0.020 0.028 0.020 0.035 0.049 0.063 0.051 0.035 0.049 0.063 0.051 0.039 0.055 0.071 0.055 P2633.-R10 P26379 R10 P2633.-R14 P26379 R14 P2633.-R25 P26379 R25 P23696-1.0 1.0 1.0 1.0 1.0 1.4 1.4 1.4 1.4 1.8 1.8 1.8 1.8 51

Technical Information Determining the feed Cutter types F 2334 Feed per tooth f zo for a e = D a a p = a p max = L c D a L c Lead angle κ f = zo Tool dia. or dia. range 1.000 1.250 1.250 1.500 1.500 2.500 Max. depths of cut a = L p max c 0.157 0.197 0.236 Unalloyed steel* 0.004 0.007 0.009 P Low-alloyed steel* 0.003 0.005 0.006 High-alloyed steel and tool steel* 0.003 0.005 0.006 Stainless steel,* martensitic 0.003 0.003 0.004 Grey cast iron 0.005 0.009 0.011 K Cast iron with spheroidal graphite 0.004 0.007 0.009 Malleable cast iron 0.004 0.007 0.009 Indexable insert types RO. X0803.. RO. X10T3.. RO. X1204.. Correction factor Ka e For the feed per tooth dependent on the ratio cut width a e to cutter diameter D c a / D e c = 1/1 1/2 1.0 1.0 1.0 1/5 1.1 1.1 1.1 1/10 1.2 1.2 1.2 1/20 1.3 1.3 1.3 1/50 f z = f zo Ka e * and cast steel 52

Circular interpolation mills: F 2334, F 4042 F 4042 Xtra tec 90 f = [mm] zo 2.500 5.000 2.500 6.000 0.500 2.000 0.625 2.500 1.000 12.000 1.500 12.000 2.000 6.000 0.315 0.394 0.276 0.394 0.433 0.591 0.665 0.011 0.012 0.006 0.006 0.008 0.010 0.012 0.009 0.011 0.004 0.004 0.006 0.007 0.009 0.009 0.011 0.004 0.004 0.006 0.007 0.009 0.005 0.007 0.003 0.004 0.005 0.006 0.007 0.012 0.015 0.006 0.007 0.010 0.012 0.016 0.011 0.012 0.005 0.005 0.008 0.010 0.012 0.011 0.012 0.005 0.005 0.008 0.010 0.012 RO. X1605.. RO. X2006.. AD.. T0803.. AD.. T10T3.. AD.. 1204.. AD.T1606.. AD.T1807.. 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.3 1.3 1.3 1.3 1.3 1.3 1.3 53

Technical Information Application-specific data Face milling (F 4080 only) Maximum cut depth a p OD.. 0504.. OD.. 0605.. a p1 0.118 0.157 a p2 0.315 0.394 ap1 ap2 F 4080 F 4081 f/2 f/2 f f D a D a D0 D0 D a Circular interpolation into solid material Range of diameters for milling of bore in one pass Indexable insert OD.. 050408 OD.. 060508 D 0 min D 0 max f max D 0 min D 0 max f max 1.250 1.472 2.500 0.177 1.500 2.079 3.000 0.177 2.000 3.071 4.000 0.177 2.799 4.000 0.228 2.315 3.713 4.630 0.177 2.394 3.570 4.788 0.228 2.500 4.072 5.000 0.177 3.797 5.000 0.228 2.815 4.720 5.630 0.177 2.894 4.591 5.788 0.228 3.000 5.085 6.000 0.177 4.778 6.000 0.228 3.315 5.716 6.630 0.177 3.394 5.589 6.788 0.228 4.000 7.078 8.000 0.177 6.810 8.000 0.228 4.315 7.712 8.630 0.177 4.394 7.580 8.788 0.228 5.000 9.076 10.000 0.177 8.815 10.000 0.228 5.315 9.718 10.630 0.177 5.394 9.583 10.788 0.228 6.000 10.823 12.000 0.228 6.394 11.585 12.788 0.228 54

Octagon cutters F 4080 / F 4081 E Da Inclined plunging Max. feed angle E [ ] D a OD.. 0504.. OD.. 0605.. D a OD.. 0504.. OD.. 0605.. 1.250 13.2 3.394 3.7 1.500 8 4.000 1.7 2.8 2.000 4.8 9 4.315 1.6 2.315 3.8 4.394 2.8 2.394 7.1 5.000 1.4 2 2.500 3.3 5.6 5.315 1.3 2.815 2.7 5.394 2 2.894 4.8 6.000 1.4 3.000 2.4 4.8 6.394 1.4 3.315 2.3 VERTICAL plunging Max. plunging depth Tmax OD.. 0504.. OD.. 0605.. T max 0.110 0.157 T max Da Note: Please use the F 4081 with indexable inserts with corner radii only, e.g. ODHT060508... 55

ap Technical Information Application-specific data Face milling Maximum cut depth a p P 2633. R 10 P 26379 R10 P 2633. R 14 P 26379 R14 P 2633. R 25 P 26379 R25 a p max 0.039 0.059 0.079 E D a D a P 2633. R 10 P 26379 R10 Inclined plunging Maximum feed angle E [ ] P 2633. R 14 P 26379 R14 P 2633. R 25 P 26379 R25 0.750 4.7 1.000 2.7 1.250 3.7 1.500 2.2 2.000 1.3 3.6 2.500 2.3 3.000 1.7 4.000 1.1 a p max 0.039 0.059 0.079 Plunging Maximum milling depth a e [mm] P 2633. R 10 P 26379 R10 P 2633. R 14 P 26379 R14 P 2633. R 25 P 26379 R25 a p max 0.275 0.405 0.590 a e max 56

High-performance mill F 2330 a p max 2 ap max (f) D a D0 D a Circular interpolation into solid material Range of diameters for milling of a hole in one pass P 2633. R 10 P 26379 R10* D 0 min D 0 max Indexable insert P 2633. R 14 P 26379 R14* D 0 min D 0 max P 2633. R 25 P 26379 R25* D 0 min D 0 max 0.750 0.906 1.500 1.000 1.406 2.000 1.250 1.625 2.500 1.500 2.150 3.000 2.000 3.135 4.000 2.794 3.937 2.500 3.781 4.937 3.000 4.812 5.937 *Special geometry for circular interpolation milling (see Description of geometry, page 68) R rt X kr Programming information r k Indexable insert R r rt k kr X P 2633. R 10 0.394 0.031 0.079 0.157 0.071 0.020 P 2633. R 14 0.551 0.047 0.098 0.217 0.102 0.031 P 2633. R 25 0.984 0.079 0.118 0.315 0.134 0.035 P 2632. R 25 0.984 0.016 0.098 0.335 0.094 0.039 Programming the theoretical tool radius rt results in a maximum deviation from the final contour as shown. The minimal difference (only in the corners) is corrected by the subsequent tools during the remaining machining operations. 57

Technical Information Application-specific data Face milling Maximum cut depth a p P 23696 1.0 P23696-2 a p1 0.039 0.079 ap Inclined plunging Max. feed angle E [ ] D a P 23696 1.0 P23696-2 1.000 0.413 1.250 0.315 1.500 0.236 0.406 2.000 0.138 0.268 2.500 0.098 0.177 3.000 0.118 4.000 0.079 D a E plunging Maximum milling depth a e D a P 23696 1.0 P23696-2 1.000 0.335 1.250 0.394 1.500 0.394 0.531 2.000 0.394 0.551 2.500 0.394 0.551 3.000 0.551 4.000 0.551 ae max 58

High-performance mill F 4030 a p max 2 a p max (f) D a D0 D a Circular interpolation into solid material Range of diameters for milling of bore in one pass P 23696 1.0 P23696-2 D 0 min D 0 max D 0 min D 0 max 1.000 1.331 2.000 1.250 1.713 2.500 1.500 2.205 3.000 1.898 3.000 2.000 3.189 4.000 2.819 4.000 2.500 4.173 5.000 3.819 5.000 3.000 4.819 6.000 4.000 6.819 8.000 R rt X kr Programming information r k Indexable insert R r rt k kr X P 23696 1.0 14.0 1.2 2.0 5.8 2.1 0.6 Programming the theoretical tool radius rt results in a maximum deviation from the final contour as shown. The minimal difference (only in the corners) is corrected by the subsequent tools during the remaining machining operations. 59

Technical Information Application-specific data Inclined plunging and circular interpolation milling into solid material Plunging with shoulder mill F 4042 / F 4042R AD.. 080304 a max = 8 in AD.. 10T308 a max = 10 in Mill dia. D C Plunging angle E max [ ] D 0 min D 0 max a 0 Plunging angle E max [ ] D 0 min D 0 max a 0 0.500 6.5 0.750 1.000 0.031 0.625 9.4 0.816 1.250 0.079 6.7 0.778 1.25 0.034 0.750 8.5 1.066 1.500 0.075 3.7 1.028 1.5 0.022 1.000 5.6 1.566 2.000 0.067 1.9 1.528 2 0.022 1.250 3.8 2.066 2.500 0.063 1.4 2.028 2.5 0.023 1.500 2.8 2.566 3.000 0.063 1.1 2.528 3 0.023 2.000 2.2 3.566 4.000 0.063 0.8 3.528 4 0.023 2.500 3.000 Inclined plunging and circular interpolation milling into solid material Plunging with shoulder milling cutter F 4042 AD.. 120408 a max = 11 in AD.. 160608 a max = 15 in Mill dia. D C Plunging angle E max [ ] D 0 min D 0 max a 0 Plunging angle E max [ ] D 0 min D 0 max a 0 0.500 0.625 0.750 1.000 8.5 1.448 2.000 0.126 1.250 5.7 1.948 2.500 0.087 1.500 4.0 2.448 3.000 0.083 5.8 2.292 3.000 0.114 2.000 2.5 3.448 4.000 0.075 3.9 3.292 4.000 0.102 2.500 2.0 4.448 5.000 0.075 2.7 4.292 5.000 0.091 3.000 1.6 5.448 6.000 0.075 2.3 5.292 6.000 0.091 4.000 1.6 7.292 8.000 0.091 5.000 1.3 9.292 10.000 0.091 6.000 1.0 11.292 12.000 0.091 60

Shoulder mills F 4042, F 4042R E a 1 Inclined plunging and circular interpolation milling into solid material Plunging with shoulder milling cutter F 4042 AD.. 180712 a max = 16 in a 2 a a 1 max E a 0 Mill dia. D C Plunging angle E max [ ] D 0 min D 0 max a 0 2.000 2.9 2.976 4.000 0.067 2.500 2.1 3.976 5.000 0.067 3.000 1.7 4.976 6.000 0.067 a 0 E L an 4.000 1.2 6.976 8.000 0.067 5.000 0.9 8.976 10.000 0.067 6.000 0.7 10.976 12.000 0.067 an L Explanation of letter symbols a 0 amount by which the tool is to be lifted off at the end of ramping before starting the next Ramping operation a n depth of cut a max max. depth of cut of tool E [ ] rampint angle L groove length without radius n Number of rampint operations into inclined surface Groove depth after 2 plunging operations: a 2 = 2 L tan E a 0 Groove depth after plunging: a n = n L tan E (n 1) a 0 Ramping angle: Number of inclined plunging operations: tan E = [a n + (n 1) a 0 ] (n L) n = (a n a 0 ) (L tan E max a 0 ) 61

Technical Information Application-specific data Machined hole dia. D 0 Circular face milling Max. axial feed per tool revolution ( thread pitch ) f AD.. 080304 D C 0.500 0.625 0.750 1.000 1.250 1.500 2.000 0.750 0.089 1.250 0.267 0.315 0.232 1.500 0.315 0.315 0.315 2.000 0.315 0.315 0.315 0.307 2.500 0.315 0.315 0.315 0.315 0.260 3.000 0.315 0.315 0.315 0.315 0.315 0.230 4.000 0.315 0.315 0.315 0.315 0.315 0.315 0.241 5.000 0.315 0.315 0.315 0.315 0.315 0.315 0.315 6.000 0.315 0.315 0.315 0.315 0.315 0.315 0.315 7.000 0.315 0.315 0.315 0.315 0.315 0.315 0.315 8.000 0.315 0.315 0.315 0.315 0.315 0.315 0.315 10.000 0.315 0.315 0.315 0.315 0.315 0.315 0.315 12.000 0.315 0.315 0.315 0.315 0.315 0.315 0.315 14.000 0.315 0.315 0.315 0.315 0.315 0.315 0.315 16.000 Machined hole dia. D 0 Circular face milling Max. axial feed per tool revolution ( thread pitch ) f AD.. 10T308 D C 0.500 0.625 0.750 1.000 1.250 1.500 2.000 0.750 0.046 1.250 0.231 0.102 0.026 1.500 0.323 0.152 0.052 0.019 2.000 0.390 0.254 0.104 0.058 0.030 2.500 0.390 0.356 0.156 0.096 0.060 0.022 3.000 0.390 0.390 0.208 0.134 0.090 0.044 4.000 0.390 0.390 0.313 0.211 0.151 0.088 5.000 0.390 0.390 0.390 0.288 0.211 0.132 6.000 0.390 0.390 0.390 0.365 0.271 0.175 7.000 0.390 0.390 0.390 0.390 0.332 0.219 8.000 0.390 0.390 0.390 0.390 0.390 0.263 10.000 0.390 0.390 0.390 0.390 0.390 0.351 12.000 62

Shoulder mills F 4042, F 4042R (continued) Circular INTERPOLATION MILLING f/2 Max. axial feed per tool revolution ( thread pitch ) f D0 D C f Machined hole dia. D 0 AD.. 120408 D C 0.750 1.000 1.250 1.500 2.000 2.500 3.000 0.750 1.250 0.300 1.500 0.433 0.232 2.000 0.433 0.433 0.234 2.500 0.433 0.433 0.390 0.219 3.000 0.433 0.433 0.433 0.329 4.000 0.433 0.433 0.433 0.433 0.274 5.000 0.433 0.433 0.433 0.433 0.411 0.274 6.000 0.433 0.433 0.433 0.433 0.433 0.384 0.263 7.000 0.433 0.433 0.433 0.433 0.433 0.433 0.351 8.000 0.433 0.433 0.433 0.433 0.433 0.433 0.433 10.000 0.433 0.433 0.433 0.433 0.433 0.433 0.433 12.000 0.433 0.433 0.433 0.433 0.433 0.433 0.433 14.000 0.433 0.433 0.433 0.433 0.433 0.433 0.433 16.000 Machined hole dia. D 0 Circular INTERPOLATION MILLING Max. axial feed per tool revolution ( thread pitch ) f AD.. 160608 D C AD.. 180712 D C 1.250 1.500 2.000 2.500 3.000 4.000 5.000 6.000 2.000 2.500 3.000 4.000 5.000 6.000 2.500 0.540 0.317 3.000 0.591 0.476 0.159 4.000 0.591 0.591 0.416 0.318 0.173 5.000 0.591 0.591 0.591 0.370 0.477 0.288 0.186 6.000 0.591 0.591 0.591 0.518 0.378 0.630 0.403 0.280 7.000 0.591 0.591 0.591 0.591 0.504 0.630 0.518 0.373 0.197 8.000 0.591 0.591 0.591 0.591 0.591 0.351 0.630 0.630 0.466 0.263 10.000 0.591 0.591 0.591 0.591 0.591 0.526 0.356 0.630 0.630 0.630 0.395 0.247 12.000 0.591 0.591 0.591 0.591 0.591 0.591 0.499 0.329 0.630 0.630 0.630 0.526 0.345 0.230 14.000 0.591 0.591 0.591 0.591 0.591 0.591 0.591 0.439 0.630 0.630 0.630 0.630 0.444 0.307 16.000 0.591 0.591 0.591 0.591 0.591 0.591 0.591 0.548 0.630 0.630 0.630 0.630 0.543 0.384 18.000 0.591 0.591 0.591 0.591 0.591 0.591 0.591 0.591 0.630 0.630 0.630 0.630 0.630 0.461 20.000 0.591 0.591 0.591 0.591 0.591 0.591 0.591 0.591 0.630 0.630 0.630 0.630 0.630 0.537 63

Technical Information Application-specific data apmax d Face milling Maximum cut depth a p Insert diameter d d = 0.197 d = 0.276 d = 0.313 d = 0.394 d = 0.472 d = 0.591 d = 0.630 d = 0.787 a pmax 0.098 0.138 0.157 0.197 0.236 0.295 0.315 0.394 t R a r f/2 f D a d D 0 D a Circular interpolation into solid material Range of diameters for milling of a hole in one pass Insert diameter d d = 0.313 d = 0.394 d = 0.472 0.630 d = 0.787 D 0 min D 0 max D 0 min D 0 max D 0 min D 0 max D 0 min D 0 max D 0 min D 0 max 1.000 1.408 2.000 1.250 1.908 2.500 1.774 2.500 1.500 2.274 3.000 2.128 3.000 2.000 3.274 4.000 3.128 4.000 2.500 4.128 5.000 3.895 5.000 3.620 5.000 3.000 5.128 6.000 4.895 6.000 4.620 6.000 4.000 6.895 8.000 6.620 8.000 5.000 8.895 10.000 64

Round insert cutter F 2334 t R a r f/2 f d D a D0 Circular interpolation into solid material Groove depth on the hole wall t R Axial feed rate Insert diameter d per revolution f d = 0.197 d = 0.276 d = 0.313 d = 0.394 d = 0.472 d = 0.591 d = 0.630 d =0.787 0.039 0.0020 0.0014 0.0012 0.0010 0.0008 0.0007 0.0006 0.0004 0.079 0.0082 0.0057 0.0050 0.0004 0.0031 0.0026 0.0024 0.0020 0.118 0.0197 0.0133 0.0115 0.0091 0.0075 0.0059 0.0055 0.0043 0.156 0.0211 0.0164 0.0134 0.0106 0.0098 0.0079 0.197 0.0346 0.0264 0.0213 0.0169 0.0157 0.0126 0.236 (0.0394) 0.0315 0.0248 0.0228 0.0181 0.276 (0.0563) (0.0441) 0.0343 0.0319 0.0248 0.315 (0.0602) (0.0457) (0.0421) 0.0331 a r max 0.0197 0.0197 0.0492 0.0591 0.0787 0.0906 0.1181 0.1772 65

Technical Information Application-specific data a pmax D a d E D a Inclined plunging Maximum feed angle E [ ] Indexable insert diameter d d = 0.315 d = 0.394 d = 0.472 d = 0.630 d = 0.787 1.000 8.1 1.250 5.5 7.2 1.500 5.3 7.2 2.000 3.4 4.5 2.500 3.3 3.7 5.3 3.000 2.6 2.8 3.9 4.000 1.9 2.6 5.000 1.4 6.000 1.5 apmax 0.272 0.347 0.413 0.552 0.690 Tmax d Vertical plunging Maximum plunging depth T max Indexable insert diameter d d = 0.315 d = 0.394 d = 0.472 d = 0.630 d = 0.787 T max 0.076 0.086 0.104 0.104 0.130 66

Round insert cutter F 2334 (continued) vf a pz Ez d D a 0.709 0.669 0.630 0.591 0.551 0.512 0.472 0.433 0.394 0.354 0.315 0.276 0.236 0.197 0.157 0.118 0.079 0.039 d=0.787 d=0.630 d=0.591 d=0.472 d=0.394 d=0.276/ d=0.315 d=0.197 UP MILLING OF STEEP SURFACES F 2334: Maximum plunging depth T max 0 0 15 30 45 60 70 90 67

Technical Information Description of indexable insert geometry Geometry example Remarks on application area P 26335 The easy-cutting one For good machining conditions Low cutting forces Medium feed rates Cut Main cutting edge 10 Workpiece material group P M K N S H Suitable tool families F 2010 F 2330 P 26337 The stable one For unfavorable machining conditions Maximum cutting edge stability High feed rates 0 P 26339 The universal one For medium machining conditions Universal application for most materials Cutting edge 0 Main cutting edge 10 P 26379 The special one For circular interpolation milling Universal application for most materials Trailing edge version Cutting edge 0 Main cutting edge 10 P = Steel M = Stainless steel K = Cast iron N = Non-ferrous metals S = Materials with difficult cutting properties H = Hard materials Primary application C Additional application 68

Face mills and circular interpolation mills Geometry example Remarks on application area Cut Main cutting edge Workpiece material group P M K N S H Suitable tool families P 23696-1 The universal one For medium to unfavorable machining conditions Universal application for most materials 20 F 4030 OD.. A27 The stable one For unfavorable machining conditions Maximum cutting edge stability High feed rates 0 F 2010 F 4080 F 4081 A57 The special one For medium machining conditions Predominantly for cast iron machining 0 C D57 The universal one For medium machining conditions Universal application for most materials 10 F57 The easy-cutting one For good machining conditions Low cutting forces Medium feed rates 16 G88 The sharp one For machining aluminum Low cutting forces Sharp cutting edges 20 Primary application C Additional application 69

Technical Information Description of indexable insert geometry Geometry example SN. X.. Remarks on application area D27 The special one For machining cast iron materials For sand inclusions or casting skin Maximum process reliability Cut Main cutting edge 10 Workpiece material group P M K N S H C Suitable tool families F 2010 F 4033 F 4047 F 4048 F27 The stable one For unfavorable machining conditions Maximum cutting edge stability High feed rates 16 F57 The universal one For medium machining conditions Universal application for most materials 16 F67 The easy-cutting one For good machining conditions Low cutting forces Medium feed rates 16 K88 The sharp one For machining aluminum Low cutting forces Sharp cutting edges 22 P = Steel M = Stainless steel K = Cast iron N = Non-ferrous metals S = Materials with difficult cutting properties H = Hard materials Primary application C Additional application 70

Face and shoulder mills Geometry example XNHF.. Remarks on application area D27 The stable one For unfavorable machining conditions Maximum cutting edge stability High feed rates Cut Main cutting edge 10 Workpiece material group P M K N S H C Suitable tool families F 4045 D57 The universal one For medium machining conditions Universal application 10 C D67 The easy-cutting one For good machining conditions Low cutting forces Medium feed rates 10 C L55 The universal one For medium machining conditions Universal application for most materials 20 F 2010 F 4041 LNGX.. L88 The sharp one For machining aluminum Low cutting forces Sharp cutting edges 28 Primary application C Additional application 71

Technical Information Description of indexable insert geometry shoulder mills Geometry example AD. T.. Remarks on application area D51 The quiet one Antivibration geometry For tools with longer projection lengths D56 The stable one For unfavorable machining conditions Maximum cutting edge stability High feed rates Cut Main cutting edge 10 10 Workpiece material group P M K N S H Suitable tool families F2010 F 4042 F 4042R F 4038 F 4138 F 4238 F 4338 D67 The powerful one High cutting edge stability For machining high-alloy and high-tensile steels and Ni-based alloys High level of accuracy 10 C F56 The universal one For medium machining conditions Universal application for most materials 16 G56 The easy-cutting one For good machining conditions Low cutting forces Medium feed rates 20 G77 The special one For machining titanium materials Low cutting forces High level of accuracy 20 C G88 The sharp one for machining aluminum Low cutting forces Sharp cutting edges 20 72

Copy mill Geometry example RO. X.. Remarks on application area A27 The stable one For unfavorable machining conditions Maximum cutting edge stability High feed rates Cut Main cutting edge 0 Workpiece material group P M K N S H Suitable tool families F 2010 F 2334 D57 The universal one For medium machining conditions Universal application for most materials 10 D67 The powerful one High cutting edge stability For machining high-alloy and high-tensile steels and Ni-based alloys, e.g. Inconel High level of accuracy 10 C G77 The special one For machining titanium materials Low cutting forces High level of accuracy 20 C P = Steel M = Stainless steel K = Cast iron N = Non-ferrous metals S = Materials with difficult cutting properties H = Hard materials Primary application C Additional application 73

Technical Information Description of side and face mill geometry Geometry example LN. X.. Remarks on application area D57T The stable one For unfavorable machining conditions Maximum cutting edge stability High feed rates Cut Main cutting edge 12 Workpiece material group P M K N S H Suitable tool families F 4053 F57T The universal one For medium machining conditions Universal application for most materials 18 LN. U.. B57T The stable one For unfavorable machining conditions Maximum cutting edge stability High feed rates 6 F 4153 F 4253 F57T The universal one For medium machining conditions Universal application for most materials 16 P = Steel M = Stainless steel K = Cast iron N = Non-ferrous metals S = Materials with difficult cutting properties H = Hard materials Primary application C Additional application 74

Workpiece material groups Steel k cw 1.1 * (lbs/in 2 ) m cw * Low-carbon soft steel; low tensile ferritic steel 260,950 0.1062 Low-carbon free cutting steel 178,400 0.1063 P Normal stuctural steel, low to medium content of carbon (< 0.5% C) Normal, low-alloy steel and steel casting; tempering steel; carbon steel (> 0.5% C); ferritic and martensitic stainless steel Normal tool steel; harder tempering steel; martensitic, stainless steel 247,200 0.1062 274,700 0.1062 247,200 0.1062 Tool steel featuring difficult cutting properties; hard, high-alloyed steel and steel casting; martensitic, stainless steel 274,700 0.1062 High tensile steel with difficult cutting properties; hardened steels of the groups 3 6; martensitic, stainless steel 302,150 0.1063 Cast Iron k cw 1.1 * (lbs/in 2 ) m cw * Cast iron of medium hardness, grey cast iron 192,300 0.1061 K Low-alloyed cast iron, malleable cast iron, nodular cast iron 211,500 0.1061 Cast iron alloy of medium hardness, malleable cast iron, GGG, medium cutting properties 221,100 0.1061 High-alloyed cast iron with difficult cutting properties; malleable cast iron, GGG, difficult cutting properties 230,700 0.1061 75

Technical Information Calculation formula Number of Revolutions π Feed per tooth fz = vf Z x n Cutting speed Dc x π x n vc = [ft/min] 12 Metal removal rate Q = ae x ap x vf [in 3 /min] Feed rate Power requirement ae x ap x f z x Z x n x kc [HP] 396,000 n Number of revolutions rpm D C Cutting diameter in a p Cutting depth in a e Width of cut in Z Number of teeth v c Cutting speed ft/min v f Feed rate in/min f z Feed rate per tooth in Q Metal removal rate in 3 /min P mot Power requirement HP h m Average chip thickness in h Machine efficiency (0.7 0.95) k Approach angle j s Cutter engagement angle k cw 1.1 * Specific cutting force lbs/in 2 related to a chip section of 1 in 2 * m cw k c curve rise * mcw and k cw1.1 see table on page 75 76

Chip thickness Engagement angle κ where cutter is positioned centrally or h m f z x a e D c where cutter is positioned eccentrically as an approximation for a e/d c < 30 % Specific cutting force f z φ 2 D c φ s a e φ1 h m φm Vf φ 2 = 90 φ s D c a e φ 1 y = a e D c /2 77

Technical Information Problem solving Formation of hairline cracks Flank face wear Feature In relation to the cutting edge, vertical small cracks that can result in chipping along the edge and fractures in the indexable insert. Cause Formation of hairline cracks resulting from stresses caused by changes in temperature Due to an interrupted cut (brief contact time between cutting edge and workpiece, long cooling phase) Use of coolant (thermal shock) Remedy / measure(s) Try working without coolant Use a tougher cutting material Reduce the cutting speed Feature The most frequently occurring type of wear, affecting the flank face. Cause Caused by abrasion between the flank face and workpiece During roughing, this often leads to vibrations and increased capacity requirements. During finishing, it can lead to poor surfaces Remedy / measure(s) Use a wear-resistant cutting material Reduce the cutting speed Increase the feed 78

Chips along the edge Plastic deformation Feature Chipping along the edges of small sections of the cutting material in the cutting edge. Cause Mechanical overload leads to small sections of the cutting material in the cutting edge breaking off May be a result of hairline cracks Remedy / measure(s) Select a more stable geometry (longer removal phase) Ensure a stable machining process Use a tougher cutting material Feature Cutting edge deformed in some other, undefined manner. Cause Occurs at high machining temperatures in conjunction with a high mechanical load, because of softening and yielding of the cutting tool material Leads to a sudden and sharp increase in the machining temperature and cutting force, fluctuations in dimensions and poor surfaces on the component, and sometimes fractures in the cutting edge Remedy / measure(s) Use a wear-resistant cutting material Reduce the cutting speed Reduce feed 79