Supporting Information. Table of Contents

Similar documents
Electronic Supplementary Information

Supplemental Data. mir156-regulated SPL Transcription. Factors Define an Endogenous Flowering. Pathway in Arabidopsis thaliana

Supplement 1: Sequences of Capture Probes. Capture probes were /5AmMC6/CTG TAG GTG CGG GTG GAC GTA GTC

Figure S1. Characterization of the irx9l-1 mutant. (A) Diagram of the Arabidopsis IRX9L gene drawn based on information from TAIR (the Arabidopsis

Supplementary Information. Construction of Lasso Peptide Fusion Proteins

Add 5µl of 3N NaOH to DNA sample (final concentration 0.3N NaOH).

II 0.95 DM2 (RPP1) DM3 (At3g61540) b

Supplementary Materials for

Table S1. Bacterial strains (Related to Results and Experimental Procedures)

strain devoid of the aox1 gene [1]. Thus, the identification of AOX1 in the intracellular

Search for and Analysis of Single Nucleotide Polymorphisms (SNPs) in Rice (Oryza sativa, Oryza rufipogon) and Establishment of SNP Markers

SAY IT WITH DNA: Protein Synthesis Activity by Larry Flammer

Lecture 11: Gene Prediction

Supplemental Information. Target-Mediated Protection of Endogenous. MicroRNAs in C. elegans. Inventory of Supplementary Information

G+C content. 1 Introduction. 2 Chromosomes Topology & Counts. 3 Genome size. 4 Replichores and gene orientation. 5 Chirochores.

Supplementary Material and Methods

Codon Bias with PRISM. 2IM24/25, Fall 2007

Supplemental Data. Distinct Pathways for snorna and mrna Termination

Genomics and Gene Recognition Genes and Blue Genes

Engineering Escherichia coli for production of functionalized terpenoids using plant P450s

Supplementary Information

Chapter 13 Chromatin Structure and its Effects on Transcription

Supporting Information. Trifluoroacetophenone-Linked Nucleotides and DNA for Studying of DNA-protein Interactions by 19 F NMR Spectroscopy

Wet Lab Tutorial: Genelet Circuits

A high efficient electrochemiluminescence resonance energy. transfer system in one nanostructure: its application for

Lezione 10. Bioinformatica. Mauro Ceccanti e Alberto Paoluzzi

PILRα Is a Herpes Simplex Virus-1 Entry Coreceptor That Associates with Glycoprotein B

Amplified Analysis of DNA by the Autonomous Assembly of Polymers Consisting of DNAzyme Wires

Engineering D66N mutant using quick change site directed mutagenesis. Harkewal Singh 09/01/2010

PROTEIN SYNTHESIS Study Guide

DNA extraction. ITS amplication and sequencing. ACT, CAL, COI, TEF or TUB2 required for species level. ITS identifies to species level

MOLECULAR CLONING AND SEQUENCING OF FISH MPR 46

Supporting Information

Supplemental Data. Lin28 Mediates the Terminal Uridylation. of let-7 Precursor MicroRNA. Molecular Cell, Volume 32

Sequence Design for DNA Computing

High-throughput cloning and expression in recalcitrant bacteria

Interpretation of sequence results

Codon bias and gene expression of mitochondrial ND2 gene in chordates

2.5. Equipment and materials supplied by user Template preparation by cloning into plexsy_invitro-2 vector 4. 6.

Supplemental Data. Short Article. Transcriptional Regulation of Adipogenesis by KLF4. Kıvanç Birsoy, Zhu Chen, and Jeffrey Friedman

Meixia Li, Chao Cai, Juan Chen, Changwei Cheng, Guofu Cheng, Xueying Hu and Cuiping Liu

The HLA system. The Application of NGS to HLA Typing. Challenges in Data Interpretation

Phenotypic response conferred by the Lr22a leaf rust resistance gene against ten Swiss P. triticina isolates.

Electronic Supplementary Information

Nucleic Acids Research

SUPPLEMENTARY INFORMATION. doi: /nature08559

Cloning and characterization of a cdna encoding phytoene synthase (PSY) in tea

Supplemental Data. Sheerin et al. (2015). Plant Cell /tpc h FR lifetime (ns)

Int J Clin Exp Med 2014;7(9): /ISSN: /IJCEM Jin Ah Ryuk *, Young Seon Kim *, Hye Won Lee, Byoung Seob Ko

INTRODUCTION TO THE MOLECULAR GENETICS OF THE COLOR MUTATIONS IN ROCK POCKET MICE

Best practices for Variant Calling with Pacific Biosciences data

Supplemental Data. Polymorphic Members of the lag Gene. Family Mediate Kin Discrimination. in Dictyostelium. Current Biology, Volume 19

2.1 Calculate basic statistics

Supplementary Appendix

Universal Split Spinach Aptamer (USSA) for Nucleic Acid Analysis and DNA Computation

Electronic Supplementary Information Sensitive detection of polynucleotide kinase using rolling circle amplification-induced chemiluminescence

Candidate region (0.74 Mb) ATC TCT GGG ACT CAT GAG CAG GAG GCT AGC ATC TCT GGG ACT CAT TAG CAG GAG GCT AGC

Protocol T45 Community Reference Laboratory for GM Food and Feed

Supporting Online Material for

CHAPTER II MATERIALS AND METHODS. Cell Culture and Plasmids. Cos-7 cells were maintained in Dulbecco s modified Eagle medium (DMEM,

PLEASE SCROLL DOWN FOR ARTICLE

Molecular cloning of four novel murine ribonuclease genes: unusual expansion within the Ribonuclease A gene family

Supplementary information. USE1 is a bispecific conjugating enzyme for ubiquitin and FAT10. which FAT10ylates itself in cis

Supplementary Information. A chloroplast envelope bound PHD transcription factor mediates. chloroplast signals to the nucleus

Mutations in the Human ATP-Binding Cassette Transporters ABCG5 and ABCG8 in Sitosterolemia

Application of DNA machine in amplified DNA detection

Programmable RNA microstructures for coordinated delivery of sirnas

Antigenic Variation of Ehrlichia chaffeensis Resulting from Differential Expression of the 28-Kilodalton Protein Gene Family

Thr Gly Tyr. Gly Lys Asn

Microarrays and Stem Cells

Cloning and Expression of a Haloacid Dehalogenase Enzyme. By: Skyler Van Senior Research Advisor: Dr. Anne Roberts

Rapid detection of a Dengue virus RNA sequence with single molecule sensitivity using tandem toehold-mediated displacement reactions

ATTEMPT TO IDENTIFY NOVEL IFT MUTANT THROUGH PCR SEQUENCING AND ANALYSIS OF CHLAMYDOMONAS REINHARDTII FLAGELLAR MUTANTS

Primary structure of an extracellular matrix proteoglycan core protein deduced from cloned cdna

In-Fusion Advantage PCR Cloning Kit

Figure S1. Purity of primary cultures of renal proximal tubular epithelial culture ascertained by cytokeratin staining.

Research Note. Evaluation of PCR-based approach for serotype determination of Streptococcus pneumoniae

DRACULA2 is a dynamic nucleoporin with a role in regulating the shade. Marçal Gallemí, Anahit Galstyan, Sandi Paulišić, Christiane Then, Almudena

Genomic basis of mucopolysaccharidosis type IIID (MIM ) revealed by sequencing of GNS encoding N-acetylglucosamine-6-sulfatase

NEBNext Multiplex Oligos for Illumina (Index Primers Set 2)

The Detection of Superior PO Cattle (Ongole Cattle Descendant) Based on The Growth Hormone Gene Sequence

A Conserved -Helix Essential for a Type VI Secretion-Like System of Francisella tularensis

Event-specific Method for the Quantification of Soybean Line A Using Real-time PCR. Protocol

QUANTIFICATION OF MURINE CYTOKINE mrnas USING REAL TIME QUANTITATIVE REVERSE TRANSCRIPTASE PCR

Porto, and ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal 2

Cloning and Characterization of DULP, a Novel Ubiquitin-Like Molecule from Human Dendritic Cells

TRANSPOSON INSERTION SITE VERIFICATION

Ustilago maydis contains variable

Human Merkel Cell Polyomavirus Small T Antigen Is an Oncoprotein

Construction of an Autonomously Concatenated Hybridization Chain Reaction for Signal Amplification and Intracellular Imaging

This information is current as of February 23, 2013.

SUPPLEMENTAL MATERIAL

Shoshan, David H. MacLennan, and Donald S. Wood, which appeared in the August 1981 issue ofproc. NatL Acad. Sci. USA

EVOLUTION DER SUBSTRATERKENNUNGSDOMÄNEN VON AAA PROTEINEN EVOLUTION OF SUBSTRATE RECOGNITION DOMAINS OF THE AAA PROTEINS DISSERTATION

Ribozymes and sirna Protocols

Characterization of the Azinomycin B Biosynthetic. Gene Cluster Revealing a Different Iterative Type I

Characterization and Derivation of the Gene Coding for Mitochondrial Carbamyl Phosphate Synthetase I of Rat*

Diabetologia 9 Springer-Verlag 1992

Macroarray Detection of Plant RNA Viruses Using Randomly Primed and Amplified Complementary DNAs from Infected Plants

GENETICS and the DNA code NOTES

Transcription:

Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2015 Supporting Information Spatial Regulation of a Common Precursor from Two Distinct Genes Generates Metabolite Diversity Chun-Jun Guo, Wei-Wen Sun, Kenneth S Bruno, Berl R. Oakley, Nancy P. Keller, and Clay C. C. Wang Correspondence should be addressed to C.C.C.W. (clayw@usc.edu). Table of Contents Supplemental Methods Spectral Data of compounds Table S1. Primers used in this study Table S2. A. terreus strains used in this study Table S3. NMR data for compound 1 Table S4. NMR data for compound 5 S2 S2 S3 S6 S7 S8 Figure S1. The schematic design of molecular genetic experiments performed in this study: (A) heterologous expression of A. terreus NRPS-like genes in A. nidulans; (B) direct repeat experiments; (C) gene replacement and gfp replacement experiments. S9 Figure S2. Relative quantification analysis of gene expression levels in the A.terreus wild type-hyphae, wild type-conidia, and CW6058.1 (apvaδ, atmela::apva) -conidia. S11 Figure S3. HPLC profiles of extracts of wild type and the apvaδ, atmela::apva strain as detected by UV at 370nm. S12 Figure S4. The gene apva (red arrow) is inserted in a highly conserved region among Aspergillus species that contains genes putatively encoding life-essential proteins. S12 Figure S5. Homology analysis of the NRPS-like homologs in Aspergillus species. Figure S6. Proposed biosynthetic pathway for butyrolactones and aspulvinones. Figure S7. UV-Vis and ESIMS spectra of compounds 1, 5. Figure S8. Diagnostic PCR strategies. Figure S9-S10. NMR spectra of compounds 1 and 5. Supplemental references S13 S15 S16 S17 S19-S20 S21 S1

Supplemental methods Isolation of secondary metabolites The gradient system was MeCN (solvent B) and 5% MeCN/H2O (solvent A) both containing 0.05% TFA. Compound 1 was identified in both the secondary metabolites profiles of the alca_apva and alca_atmela mutant strains. The gradient condition for semi-preparative HPLC analysis of the crude of the alca_atmela strain was 0-2 min 100%-70% A, 2-5 min 70% A, 15-17 min 70%-0% A, 17-19 min 0%-100% A, 19-21 min 100% A. Compounds 1 (76.17 mg/l of medium) was eluted at 13.1 min. Real-Time qrt-pcr analysis of the expression of genes atmela, apva, abpb, and btya. The A. terreus wild type and the mutant strain CW6058.1 (apvaδ, atmelap-apva) were cultivated on LCMM agar at 30 C for 72 hours for extracting mrna from spores. The A. terreus wild type was cultured in LCMM broth (1M spores/ml of medium) at 37 C, 180rpm, for 60 hours for hyphal mrna extraction. The β-tubulin gene atbena (ATEG_00287.1) was used as a control and quantification standard. Total mrna was extracted by using the Qiagen RNeasy Plant Mini Kit. The total mrna was digested by Recombinant DNase I (ambion by life technologies) to remove DNA contamination. The cdna library was made from the same amount of mrna by using TaqMan reverse transcription reagents (T04141) and the oligo DT primer. The expression of every gene was analyzed with the ABI 7900HT Fast Real-Time PCR system by following the KAPA SYBR FAST qpcr kit (KK4601) protocol. The experiments were performed in triplicate and the results are shown in Figure S2. Spectral data of Compounds NMR spectra were collected on a Varian Mercury Plus 400 spectrometer. The spectral data of compounds 2, 3 and 4 have been reported before. Aspulvinone E (1).Yellowish amorphous solid; For UV-Vis and ESIMS spectra, see Figure S6; For NMR spectra, see Table S3. The NMR data were in good agreement with the published data. Butyrolactone II (5). Colorless amorphous solid; For UV-Vis and ESIMS spectra, see Figure S6; For NMR spectra, see Table S4. S2

Table S1. Primers used in this study primer Sequence (5 3 ) Primers used in the heterologous expression experiments ATEG2004.1HEF CCA ATC CTA TCA CCT CGC CTC AAA ATG ACT TTG AAC AAC CTA CA ATEG2004.1HER CGA AGA GGG TGA AGA GCA TTG CGC TTG ACT TTC AAT AGA CG ATEG3563.1HEF CCA ATC CTA TCA CCT CGC CTC AAA ATG CAA CCA AGC CTT ATT CC ATEG3563.1HER CGA AGA GGG TGA AGA GCA TTG TTC CTC GAG AGT TTG AGA A Primer used in the prenyltransferase deletion experiments ATEG_00702.1F1 GTT ATG TTG GCC TCG AGA TG ATEG_00702.1F2 GGC CAT TTT GTA ATG CTG TC ATEG_00702.1R3 CGA AGA GGG TGA AGA GCA TTG AAG GTC TCA TCG GAG AGG AT ATEG_00702.1F4 CAT CAG TGC CTC CTC TCA GAC AGC ATA ATG ACC ATC CGC TTG ATEG_00702.1R5 ATG AAG GTC GCT CGT GTT AC ATEG_00702.1R6 TTC TTC CAT TCC TCA CCA TC ATEG_00821.1F1 GTA AAG GCC AAT GAA GAT GG ATEG_00821.1F2 TAG TCC GAA TCC TCC CAT AG ATEG_00821.1R3 CGA AGA GGG TGA AGA GCA TTG GAG GAC AAA TAG CCA GAT CG ATEG_00821.1F4 CAT CAG TGC CTC CTC TCA GAC AGT TTA CCG GGT ATT CCA TCT G ATEG_00821.1R5 ATC TGT TGA AGC GGC ATA GT ATEG_00821.1R6 AAA CGC CAG TAC GAA TCT GT ATEG_01730.1F1 ATT CTG CAT TTG GTC CTA CG ATEG_01730.1F2 TCT CCA AGT AAG GAG CCA GA ATEG_01730.1R3 CGA AGA GGG TGA AGA GCA TTG GGA AGA AAC GAT TCT GAT GC ATEG_01730.1F4 CAT CAG TGC CTC CTC TCA GAC AGA GTG CTC CTT CAT CAC GTC T ATEG_01730.1R5 GGA CAT CGA TTG TCT CAA CC ATEG_01730.1R6 CTT TGT GTA CCA AGG CCA AG ATEG_02823.1F1 GGG TTG GCA TCA AAC TCA ATEG_02823.1F2 GGG ATG TCA TTC CAC AGT TC ATEG_02823.1R3 CGA AGA GGG TGA AGA GCA TTG CGT ATG ACC TGG AGG TGA AG ATEG_02823.1F4 CAT CAG TGC CTC CTC TCA GAC AGA GAG ACC CCC ATT TCA ATT C ATEG_02823.1R5 GTC ATT GAT CCG TGC AAA G ATEG_02823.1R6 TGA ATC GTT GCA GTA GTT CG ATEG_03092.1F1 AGA AGT TGC CAT CGA AGT TG ATEG_03092.1F2 GGG TTT TTG TAC TTG GTG CT ATEG_03092.1R3 CGA AGA GGG TGA AGA GCA TTG GGT GGT AGT CGG TGA TAA GC ATEG_03092.1F4 CAT CAG TGC CTC CTC TCA GAC AGA TCA GGT TCT GCA GTT ACG G ATEG_03092.1R5 ATT CGG CCG TGT TCT CAT AC ATEG_03092.1R6 TCC AAC TCC TAC CTT CAT CG ATEG_04218.1F1 GCC CTA CTC TGA TCC TGA CA ATEG_04218.1F2 CAT GGC CAA AGA CAA AAG AC ATEG_04218.1R3 CGA AGA GGG TGA AGA GCA TTG TAT GCT TGA TGG CAG GAT G ATEG_04218.1F4 CAT CAG TGC CTC CTC TCA GAC AGG AGC AGT AGG TTT GCA GGA C ATEG_04218.1R5 GTC GGG TTC TGA GGG TTA CT ATEG_04218.1R6 ATG ATG ATT CCG TGC TGA C ATEG_04999.1F1 TCA GTG TGG ATG CAG GAT AG ATEG_04999.1F2 GGT TGC TTC CAT TAT GTC GT ATEG_04999.1R3 CGA AGA GGG TGA AGA GCA TTG GAG TCG ATG GGA TGT CAA GT ATEG_04999.1F4 CAT CAG TGC CTC CTC TCA GAC AGT GAC TCT TGT ACT GGG TTT CC ATEG_04999.1R5 CAC ATC TCC AAC AAC CAT CA S3

ATEG_04999.1R6 ATC TCG CTC ACA TCT CCA AC ATEG_06111.1F1 GCT TCC ATG TCG AAC TGT G ATEG_06111.1F2 CGA GTA CAT CTG TTG GTA GGC ATEG_06111.1R3 CGA AGA GGG TGA AGA GCA TTG GAG GAG GTA CTG CTG GAA AA ATEG_06111.1F4 CAT CAG TGC CTC CTC TCA GAC AGG TGT TAT ACT GGA GCC ACT GC ATEG_06111.1R5 CAG GGC TAA TGC GTT ATT GT ATEG_06111.1R6 GAC AGA CTC GAT GGA TGG TT ATEG_06825.1F1 ATT CAG CCT CTC ATT GAA GC ATEG_06825.1F2 GTA TCA CGA GAC CCA AAA CC ATEG_06825.1R3 CGA AGA GGG TGA AGA GCA TTG TAG AAT GCA TGT TCG TCG AG ATEG_06825.1F4 CAT CAG TGC CTC CTC TCA GAC AGC ATA GAG CGC TGC AAA TGT A ATEG_06825.1R5 TGC TAC TGA CGA AAG TGG TC ATEG_06825.1R6 ATC CGC GAC TAT GCT ACT GA ATEG_08428.1F1 AAT TCA CCG AGA CAA CAT CC ATEG_08428.1F2 GTT GGG TGT ATC AGG GAA GA ATEG_08428.1R3 CGA AGA GGG TGA AGA GCA TTG ATG CTG TGT AAC ACG GAT TG ATEG_08428.1F4 CAT CAG TGC CTC CTC TCA GAC AGC CAA GAG CTC AGT CGT TCA ATEG_08428.1R5 ATC GCA GAG CTT CAG TCA TT ATEG_08428.1R6 GTA TCC AAT CGC AGA GCT TC ATEG_09980.1F1 CTG AAA AAT GAG CGG AGA AG ATEG_09980.1F2 GGC AAA TCT GCC TGT TAG AC ATEG_09980.1R3 CGA AGA GGG TGA AGA GCA TTG TGG TCG AAT ATG GGA CTA GC ATEG_09980.1F4 CAT CAG TGC CTC CTC TCA GAC AGG GTA TGG GTT GCC AGA TAG A ATEG_09980.1R5 GGC GAG CTG TAC TTC ATC A ATEG_09980.1R6 AGA GTC GTC GCT GTA GGT GT ATEG_10306.1F1 CTC GTG CAG GTT TAA CGA AC ATEG_10306.1F2 CGT TAA TGT TCC TTG GGT GA ATEG_10306.1R3 CGA AGA GGG TGA AGA GCA TTG GTG GAA GGG GAA ATG GTT AT ATEG_10306.1F4 CAT CAG TGC CTC CTC TCA GAC AGA AGA TGA ATC GTG GCA GTG T ATEG_10306.1R5 AGG GCT TAC AAT GGA TGC TA ATEG_10306.1R6 TGG CCA ATG TAG GTA GAA GC Primer used in the direct repeat (DR) disruption experiments ATEG2004.1DR_F1 ATT ATG TAG CAG CAC GCA AG ATEG2004.1DR_F2 GGT ATG GAT CGT TTC GTG TT ATEG2004.1DR_R3 GAC AAA TTC CCG AGA AAC AGG CTG ATC ATG AAG ATG CTT G ATEG2004.1DR_F4 CTG TTT CTC GGG AAT TTG TC ATEG2004.1DR_R5 CGA AGA GGG TGA AGA GCA TTG TTA CTG CTG TCG ACT TCG TG ATEG2004.1DR_R6 GTG ATT GTC GGC CAG AAT AG ATEG3564.1DR_F1 CCA TGG AGA AGA AGA CCA AG ATEG3564.1DR_F2 GTT AAC AAG CAC CAT TCT ACC C ATEG3564.1DR_R3 TAC TCT TTG TGG TTT ACC GGT CAC GCA GTG AAG TCA TCA T ATEG3564.1DR_F4 CCG GTA AAC CAC AAA GAG TA ATEG3564.1DR_R5 CGA AGA GGG TGA AGA GCA TTG TGA GAC TGA AGA CGC TGA AG ATEG3564.1DR_F6 CAT CAG TGC CTC CTC TCA GAC AGA GTT CCC GGT AAA CCA CAA ATEG3564.1DR_R7 GAT AGT GAA CAC AGC GAG GA ATEG3564.1DR_R8 GGC TGA AGA GGA TAG TGA ACA ATEG3563.1DR_F1 CGT CGC TCA AAT GAC TTA GA ATEG3563.1DR_F2 AGA GTC TTC TCC GTG GTC TG ATEG3563.1DR_R3 ATT ACC ACC CGT AGA GTC GAA CCC TGT ACA TCC TGG AAA A ATEG3563.1DR_F4 TCG ACT CTA CGG GTG GTA AT S4

ATEG3563.1DR_R5 CGA AGA GGG TGA AGA GCA TTG ATC TGT GCT GTG CCA TGA TA ATEG3563.1DR_R6 GAG ACT CGT CTC TCG AGC TT AfpyrG_DR_F1 CGG CGG CTT CTA TTT TAG AA AfpyrG_DR_R2 GGA AGA GAG GTT CAC ACC (M2 primer(1)) AfpyrG_DR_R3 CAG TGC CTC CTC TCA GAC AG AfpyrG_DR_F4 TGA TAC AGG TCT CGG TCC (M3 primer(1)) Primers used in the gene swap experiments ATEG3563.1_SWA_F1 ATEG3563.1DR_F1 ATEG3563.1_SWA_F2 ATEG3563.1DR_F2 ATEG3563.1_SWA_R3 TGT AGG TTG TTC AAA GTC ATG GTG TGA TGA AGA AAT CCC C ATEG3563.1_SWA_F4 CAT CAG TGC CTC CTC TCA GAC AGT CGA CTC TAC GGG TGG TAA T ATEG3563.1_SWA_R5 CTC GAG CTT ATC TTC CCT GT ATEG3563.1_SWA_R6 GAG ACT CGT CTC TCG AGC TT Primers used in the green fluorescent (GFP) experiments ATEG3563_GFP_F1 GGG GAT TTC TTC ATC ACA CCA TGA GTA AAG GAG AAG AAC T ATEG2004_GFP_F1 CCC TTA TTG CAA CTC GGA CCA AAA ATG AGT AAA GGA GAA G GFP_R2 CGA AGA GGG TGA AGA GCA TTG TTT GAG GCG ACC GGT TTA TTT G Primers used in the real-time qrt-pcr ATEG0287_RT_F CTT CTC CGT CGT TCC CTC TC ATEG0287_RT_R GAG GGG TTG GAG AGC TTG AG ATEG3563_RT_F CAT CTG GGT TTT GCG GAT GC ATEG3563_RT_R TGC GGC TGT TTG GAT TTG AC ATEG2004_RT_F GAT CAT GCT GAT GAC GCA CA ATEG2004_RT_R GGT CAA CGA TAT ACT GGG CGA ATEG1730_RT_F ACC GAA TCC TCA CGC ATC AA ATEG1730_RT_R ACA ATA TGG GCT GGA CAC GG ATEG2815_RT_F CAG CAC GGT AAG GAC GAA GT ATEG2815_RT_R TTC TGG ATT GCT CTG GGC TG Primer used in the diagnostic PCR AfpyrG_R CGG GAG CAG CGT AGA TGC C S5

Table S2. Fungal strains used in this study Fungal strain or transformants Gene mutation(s) Genotype Aspergillus terreus NIH2624 - wild-type LO4389 (A. nidulans) None pyrg89; pyroa4; nkua::argb; ribob2; stca-w CW6050.1, CW6050.2, CW6050.3 CW6052.1, CW6052.2, CW6052.3 stcjδ, alca(p)-apva stcjδ, alca(p)- atmela pyrg89; pyroa4; nkua::argb; ribob2; stca-w wa::alca(p)-apva-afpyrg pyrg89; pyroa4; nkua::argb; ribob2; stca-w wa::alca(p)-atmela-afpyrg CW6054.1, CW6054.2, CW6054.3 abpbδ kusa:: hph; pyrg-, abpbδ CW6055.1, CW6055.2, CW6055.3 apvaδ kusa:: hph; pyrg-, apvaδ CW6056.1, CW6056.2, CW6056.3 apvaδ, atmelbδ kusa:: hph; pyrg-, apvaδ, atmelbδ CW6057.1, CW6057.2, CW6057.3 CW6058.1, CW6058.2, CW6058.3 apvaδ, atmelbδ, atmelaδ apvaδ, atmelap-apva kusa:: hph; pyrg-, apvaδ, atmelbδ, atmelaδ kusa:: hph; pyrg-, apvaδ, atmelap-apva-afpyrg CW6059.1, CW6059.2, CW6059.3 atmelap-gfp kusa:: hph; pyrg-, atmelap-gfp-afpyrg CW6060.1, CW6060.2, CW6060.3 apvap-gfp kusa:: hph; pyrg-, apvap-gfp-afpyrg S6

Table S3. 1 H and 13 C NMR data for compound 1 (400 MHz and 100 MHz in DMSO-d6) (2) Position δ H (J in Hz) δ C 1 168.5, C 2 1001., C 3 162.1, C 4 140.4, C 5 6.64, s 107.8, CH 6 124.2, C 7 7.61, d (7.6) 132.2, CH 8 6.88, d (8.0) 116.2, CH 9 158.5, C 10 6.88, d (8.0) 116.2, CH 11 7.61, d (7.6) 132.2, CH 12 121.0, C 13 7.81, d (8.0) 128.8, CH 14 6.86, d (8.8) 115.4, CH 15 156.7, C 16 6.86, d (8.8) 115.4, CH 17 7.81, d (8.0) 128.8, CH S7

Table S4. NMR data for compound 5 (400 and 100 MHz in DMSO-d6) Position δh (J in Hz) δc 1 158.0, C 2 6.88, d (6.8) 115.9, CH 3 7.52, d (7.2) 128.8, CH 4 121.0, C 5 7.52, d (7.2) 128.8, CH 6 6.88, d (6.8) 115.9, CH 7 127.5, C 8 138.1, C 9 168.0, C 10 84.7, C 11 169.8, C 12 3.40, d (3.2) 38.0, CH2 13 123.2 C 14 6.58, d (6.8) 131.2, CH 15 6.51, d (6.8) 114.7, CH 16 156.3, C 17 6.51, d (6.8) 114.7, CH 18 6.58, d (6.8) 131.2, CH 11-OCH3 3.74, s 53.6, CH3 S8

A 5 -ya (wa) alca NRPS-like gene AfpyrG 3 -ya (wa) fusion PCR 5 -ya (wa)-alca NRPS-like gene AfpyrG-3 -ya (wa) 5 -ya (wa) ya (wa) 3 -ya (wa) 5 -ya (wa) alca NRPS-like gene AfpyrG 3 -ya (wa) B 5 -flanking DR 5 -AfpyrG 3 -AfpyrG DR 3 -flanking fusion PCR 5 -flanking-dr-afpyrg AfpyrG-DR-3 -flanking 5 -flanking target gene 3 -flanking 5 -apva DR AfpyrG DR 3 -apva 5-FOA selection DR 3 -apva AfpyrG 5 -apva DR 5 -apva DR 3 -apva S9

C (i) 5 -atmela atmelap apva AfpyrG 3 -atmela transforming fragment 5 -atmela atmelap atmela 3 -atmela chromosomal locus (ii) 5 -atmela atmelap gfp AfpyrG 3 -atmela transforming fragment 5 -atmela atmelap atmela 3 -atmela chromosomal locus 5 -apva apvap gfp AfpyrG 3 -apva transforming fragment 5 -apva apvap apva 3 -apva chromosomal locus Figure S1. The schematic design of molecular genetic experiments in this study. (A) Heterologous expression of A. terreus NRPS-like genes in A. nidulans. The target strain is transformed with a fragment containing the NRPS-like gene and the A. fumigatus pyrg gene (AfpyrG) flanked by two 1 kb sequences. (B) Direct repeat (DR) deletion experiments. The target strain is transformed with two fragments: one contains the 5 -flanking sequence, the DR strand, and a partial sequence of AfpyrG; the other fragment contains a partial sequence of AfpyrG, the DR strand, and the 3 -flanking sequence. In the next round of selection, homologous recombination of the DR strand generates an auxotrophic mutant that can be used in the next transformation. (C) i. the gene atmela is replaced by apva under the control of the atmela promoter; ii. the coding regions of both atmela and apva are replaced by gfp under the control of their own promoters. S10

(A) atbena kb 0.5 0.1 M gdna cdna cdna cdna - 230bp - 165bp 1 2 3 4 (B) 1.0 0.8 0.6 0.4 0.2 0.0 relative expression (fold) 1.2 atmelaδ atmela::apva atmela apva atmela apva (C) 1.0 0.8 0.6 0.4 0.2 0.0 relative expression (fold) 1.2 atmela apva abpb btya Figure S2. Relative quantification analysis of gene expression levels in the A.terreus wild type-hyphae, wild type-conidia, and CW6058.1 (apvaδ, atmela::apva) -conidia. (A) The size of Real-Time PCR product of the β-tubulin gene atbena from cdna was analyzed using the genomic DNA as control. The mrnas were extracted from wild type-hyphae (A, lane 2), wild type-conidia (A, lane 3), and CW6058.1-conidia (A, lane 4). (B) The relative expression level of atmela and apva in wild type-conidia and CW6058.1-conidia. (C) The relative expression level of atmela, apva, abpb, and btya in wild type-hyphae. Minor expression of atmela can still be identified due to the conidiation (although suppressed in liquid culture) and melanin production of the wild type strain in LCMM liquid broth. The gene expression levels are normalized to atbena in the corresponding cdna sample. Relative expression levels were calculated using the 2 ΔΔCt method. S11

WT * 2 apvaδ, atmela::apva 15 20 25 30 35 40 45 Time (min) Figure S3. HPLC profiles of extracts of wild type and the apvaδ, atmela::apva strain as detected by UV at 370nm. The * compound is same as shown in Figure 4. A. terreus NIH2624 (ATEG_0XXXX) 2009 2008 2007 2006 2005 2004 2003 2002 A. nidulans FGSC A4 AN0044 AN0043 AN0042 AN0040 AN0039 AN0038 A. oryzae RIB40 (AO090120000XXX) 386 387 388 390 391 392 393 A. flavus NRRL 3557 (AFL2G_08XXX) 390 391 392 393 394 395 396 A. niger CBS 513.88 (An14g06XXX) 600 590 580 570 560 550 540 A. aculeatus ATCC16872 (Aacu16872_XXXXXX) 025887 026236 026244 A. clavatus NRRL 1 (ACLA_01XXXX) 5650 5660 5670 5680 5690 5700 N. fischeri NRRL 181 (NFIA_07XXXX) 4610 4600 4590 4580 4570 4560 4550 A. fumigatus A1163 (AFUB_060XXX) 260 270 280 290 300 310 320 DNA excision repair protein RAD5 Squalene/phytoene synthase CorA family metal ion transporter E3 ubiquitin-protein ligase DNA polymerase gamma YvcK-like protein, carbon metabolism Serine/threonine-protein kinase Tel1 1Kb Figure S4. The gene apva (red arrow) is inserted in a highly conserved region among Aspergillus species that contains genes putatively encoding life-essential proteins. S12

S13

Figure S5. (A) Homology analysis of 59 NRPS-like homologs obtained from the Broad Institute Aspergillus Comparative Database. Phylogenetic analyses of the protein sequences of all the NRPS-like genes identified in Aspergillus species. A Maximum Likelihood phylogenetic tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the tree. The numbers on the branches means the percentage of times this topology was reached in a bootstrap test of 1000 replicates. The characterized genes are shown in bold. Genes start with ACLA are from the genome sequence of A.clavatus ( AFLA, A. flavus; Afu, A. fumigatus; AN, A. nidulans. An, A. niger; ATEG, A. terreus;) The percentage lower than 75% is removed. (B). The enlarged part of Clade I of the phylogenetic tree including all the characterzied NRPS-like genes. These genes encode proteins with A-T-TE domain architecture and usually the aryl acids are the subsrate of their A domains. (C) The conserved nucleotide region identified within the two genes atmela and apva. S14

Figure S6. Proposed biosynthetic pathway for butyrolactones and aspulvinones. S15

Figure S7. UV-Vis and ESIMS spectra of compounds 1, 5. The UV-Vis and ESIMS spectra of compounds 2, 3, and 4 have been shown in the previous paper.(3) S16

WT CW6054.1 CW6054.2 CW6054.3 WT CW6059.1 CW6059.2 CW6059.3 WT CW6059.1 CW6059.2 CW6059.3 Figure S8. Diagnostic PCR strategies. (A) i. F1 5 -flank F1 Inserted DNA fragment: 3 -flank (1) alca + NRPS-like gene + AfpyrG (2) AfpyrG (3) ATEG_02004.1 + AfpyrG (4) gfp + AfpyrG R R6 5 -flank Target gene 3 -flank R6 ii. abpbδ F1 + R6: WT = 3310 bp; KO = 3991 bp F1 + R6 iii. atmelap-gfp-afpyrg F1 + R6: WT = 4918 bp; KO = 4753 bp; F1 + AfpyrG_R: WT no band; KO = 3288 bp F1 + R6 F1 + AfpyrG_ R 10000 8000 6000 5000 4000 3000 2500 2000 1500 1000 750 500 250 (A) Diagnostic PCR for NRPS-like genes heterologous expression (1), PT gene deletions (2), gene swap experiment (3), and gfp replacement experiment (4) (number corresponds to the fragment that is inserted in each experiment). In one strategy, DNA from transformants is amplified with two primers, F1 from the chromosomal region just outside of the 5 flank of the transforming DNA fragment and R6 from just outside of the 3 flank. If the target gene is different in size from the inserted fragment, the PCR fragment amplified from a correct transformant will be different in size from the fragment amplified if the target gene is intact, as shown in the case of abpbδ (A ii). In some instances the target gene and the AfpyrG cassette will be of comparable size and a second strategy is applied. In the second strategy, F1 or R6 are used with internal primers specific to the AfpyrG cassette. For example, if the target gene has been replaced by the AfpyrG gene, F1 and AfpyrGR will amplify a fragment of a predictable size. If the target gene has not been replaced, the AfpyrGR primer will not anneal and there will be no specific amplification, as shown in the case of mutant strain atmelap-gfp-afpyrg (A iii). S17

(B) i. F1 5 -flank DR 3 -flank R6 F1 5 -flank Target gene 3 -flank R6 ii. apva DRΔ F1 + R6: WT = 3850 bp; DR KO = 1975 bp 1 2 3 4 5 6 7 8 9 10 11 (B) Diagnostic PCR for direct repeat experiment For direct repeat (DR) experiment, the diagnostic PCR experiments were performed after the AfpyrG marker has been cut off via homologous recombination of the DR sequences since the PCR experiments using F1 and R6 cannot be performed when there are two copies of DR sequence integrated in the genome (C). An example of diagnostic PCR for DR mutant strains is shown in B ii. Lane 1 shows PCR amplification from the wild type strain. Lanes 5-10 show PCR amplification from the apva DR deletion mutants when the AfpryG marker has been excised. S18

OH OH HO O O aspulvinone E a. 1 H NMR spectrum of compound 1 OH OH HO O O aspulvinone E b. 13 C NMR spectrum of compound 1 Figure S9. 1 H NMR and 13 C spectra of compound 1. S19

HO H 3 COOC O OH HO O butyrolactone II a. 1 H NMR spectrum of compound 5 HO H 3 COOC O OH HO O butyrolactone II b. 13 C NMR spectrum of compound 5 Figure S10. 1 H NMR and 13 C spectra of compound 5. S20

Supplemental References 1.Nielsen JB, Nielsen ML, & Mortensen UH (2008) Transient disruption of non-homologous end-joining facilitates targeted genome manipulations in the filamentous fungus Aspergillus nidulans. Fungal Genet Biol 45(3):165-170. 2.Gao H, et al. (2013) Aspulvinones from a mangrove rhizosphere soil-derived fungus Aspergillus terreus Gwq-48 with anti-influenza A viral (H1N1) activitybioorg Med Chem Lett 23(6):1776-1778. 3.Guo CJ, et al. (2013) Application of an efficient gene targeting system linking secondary metabolites to their biosynthetic genes in Aspergillus terreus. Org Lett 15(14):3562-3565. S21