Inscription of first-order sapphire Bragg gratings using 400 nm femtosecond laser radiation

Size: px
Start display at page:

Download "Inscription of first-order sapphire Bragg gratings using 400 nm femtosecond laser radiation"

Transcription

1 Inscription of first-order sapphire Bragg gratings using 400 nm femtosecond laser radiation Tino Elsmann, 1,* Tobias Habisreuther, 1 Albrecht Graf, 1 Manfred Rothhardt, 1 and Hartmut Bartelt 1,2 1 Institute of Photonic Technology, Albert-Einstein-Str. 9, Jena, Germany 2 Abbe Center of Photonics, Friedrich Schiller University, Max Wien Platz 1, Jena, Germany * tino.elsmann@ipht-jena.de Abstract: The paper describes the implementation of fiber Bragg gratings inscribed by femtosecond laser pulses with a wavelength of 400 nm. The use of a Talbot interferometer for the inscription process makes multiplexing practicable. We demonstrate the functionality of a threegrating multiplexing sensor and the temperature stability up to 1200 C for a single first-order Bragg grating Optical Society of America OCIS codes: ( ) Fiber Bragg gratings; ( ) Fiber optics sensors; ( ) Bragg reflectors. References and links 1. S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm, Opt. Lett. 33(16), (2008). 2. E. Lindner, C. Chojetzki, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, Thermal regeneration of fiber Bragg gratings in photosensitive fibers, Opt. Express 17(15), (2009). 3. Y. Li, M. Yang, D. N. Wang, J. Lu, T. Sun, and K. T. V. Grattan, Fiber Bragg gratings with enhanced thermal stability by residual stress relaxation, Opt. Express 17(22), (2009). 4. D. Grobnic, S. Mihailov, C. Smelser, and H. Ding, Sapphire Fiber Bragg Grating Sensor Made Using Femtosecond Laser Radiation for Ultrahigh Temperature Applications, IEEE Photon. Technol. Lett. 16(11), (2004). 5. M. Busch, W. Ecke, I. Latka, D. Fischer, R. Willsch, and H. Bartelt, Inscription and characterization of Bragg gratings in single-crystal sapphire optical fibres for high-temperature sensor applications, Meas. Sci. Technol. 20(11), (2009). 6. T. Elsmann, E. Lindner, M. Becker, W. Ecke, M. Rothhardt, and H. Bartelt, Erzeugung von Faser-Bragg- Gittern (FBGs) in Saphirfasern für die Hochtemperatursensorik, in DGaO-proceeding, A28, (2011). 7. S. J. Mihailov, D. Grobnic, and C. W. Smelser, High-temperature multiparameter sensor based on sapphire fiber Bragg gratings, Opt. Lett. 35(16), (2010). 8. J. Wang, E. M. Lally, B. Dong, J. Gong, and A. Wang, Fabrication of a miniaturized thin-film temperature sensor on a sapphire fiber tip, IEEE Sens. J. 11(12), (2011). 9. A. Othonos, Fiber Bragg gratings, Rev. Sci. Instrum. 68(12), (1997). 10. B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, Point-by-point fabrication of micro-bragg gratings in photosensitive fibre using single excimer pulse refractive index modification techniques, Electron. Lett. 29(18), (1993). 11. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, Bragg gratings fabricated in monomode photosensitive optical fiber by UVexposure through a phase mask, Appl. Phys. Lett. 62(10), 1035 (1993). 12. M. Becker, J. Bergmann, S. Brückner, M. Franke, E. Lindner, M. W. Rothhardt, and H. Bartelt, Fiber Bragg grating inscription combining DUV sub-picosecond laser pulses and two-beam interferometry, Opt. Express 16(23), (2008). 13. V. Phomsakha, R. S. F. Chang, and N. Djeu, Novel implementation of laser heated pedestal growth for the rapid drawing of sapphire fibers, Rev. Sci. Instrum. 65(12), (1994). 14. R. K. Nubling and J. A. Harrington, Optical properties of single-crystal sapphire fibers, Appl. Opt. 36(24), (1997) W. J. Tropf, M. E. Thomas, and T. J. Harris, Handbook of Optics (McGraw-Hill, 1995), Vol. 2, Chap Introduction Fiber Bragg gratings (FBGs) are sensor elements often used in harsh environments such as extreme temperatures, strong electromagnetic fields or chemically aggressive conditions, (C) 2013 OSA 25 February 2013 / Vol. 21, No. 4 / OPTICS EXPRESS 4591

2 because they are not influenced by electromagnetic radiation, have limited cross talk from many environmental influences and are very flexible. Due to their small size, they can easily be embedded in compound materials. Typical applications are temperature and strain sensing. There are limitations, however, for the use of such gratings in silica fibers for temperatures beyond 300 C or 1000 C. Fiber gratings based on color center effects bleach out at temperatures higher than 200 C 300 C. With additional heat treatment known as thermal regeneration it is possible to stabilize the gratings and, thus, expand the temperature range up to 1000 C [1,2] or, for short-term measurements, even up to 1200 C [3] near the glass transition point of fused silica. The softening of the silica glass then defines the ultimate temperature for which such sensors can be applied. There is, however, great interest to use such sensors for even higher temperatures, e.g. for temperature sensing and material monitoring in gas turbines or melting furnaces. Fibers made of single crystalline sapphire are a good option to overcome the temperature limit of fused silica, because the material melting point is at temperatures beyond 2040 C [4 6]. Single Bragg gratings in sapphire fibers have been reported for sensing applications up to 1745 C [4 7]. Thin film temperature sensors on a sapphire fiber tip have also been described [8]. Femtosecond (fs)-laser pulses were used for inscription of the FBGs, since they provide high peak intensities and multi-photon processes to provide a permanent change of the refractive index. FBGs are formed by a spatial periodic change of the refractive index achieved by special illumination techniques [9]. The most common techniques are point-by-point fabrication [10] and phase mask exposure [11]. For the point-by-point method, the inscription laser is focused into the fiber to change the refractive index locally and then the grating is built up by scanning the fiber. The phase mask technique uses the interference pattern directly located behind a phase mask, which is designed so that the interference pattern forms the whole grating structure. Another technique uses a phase mask as a beam-splitting element. The spatially separated beams are then superimposed to form an interference pattern with great geometrical flexibility. Such an interferometer of the Talbot type is used in our experiments [12]. Although the potential applicability of FBGs in sapphire fibers for high temperature sensing has been experimentally shown, the realization of the gratings still suffers from limitations. Until now, only the phase mask method has been applied successfully for the inscription of fiber Bragg gratings in sapphire fibers. The use of an interferometric inscription concept could simplify considerably the implementation of wavelength-multiplexed arrays of gratings. A second limitation in the inscription process is the wavelength used. From the simplified Bragg condition (Eq. (1)) for perpendicular incidence m λ Bragg = 2 n eff Λ grating (1) the Bragg wavelength λ Bragg depends on the effective refractive index n eff of the reflected mode, the order of diffraction m and the period of the phase grating Λ grating. Because sapphire has a very high refractive index of about 1.74, the grating period for a first-order grating with a λ Bragg of 1550 nm in the standard C-band has to be in the order of 440 nm. This is much smaller than the current inscription wavelength of 800 nm. To overcome this physical limitation, gratings of higher order [4 7] were inscribed e.g. for a doubled reflection wavelength (3100 nm) but used in second diffraction order for 1550 nm. In this case the reflection efficiency might be reduced especially in case of non-perfect grating structures. In the following we describe the implementation of multiplexed fiber Bragg gratings inscribed by an interferometric setup. We show that, by use of the second harmonic wave from a Titanium:Sapphire laser, we can inscribe fiber Bragg gratings also in first-order. This method is then easily applied to realize multiplexed arrays of gratings. (C) 2013 OSA 25 February 2013 / Vol. 21, No. 4 / OPTICS EXPRESS 4592

3 2. Inscription and characterization of the Bragg gratings For the inscription of FBGs we used a femtosecond laser system. This system provides pulses with a wavelength of 800 nm, a pulse duration of 135 fs and an averaged power of 3 W with a repetition rate of 1 khz. These pulses pass a nonlinear crystal to generate the second harmonic of the pump wave. The transformed pulses with a wavelength of 400 nm have an averaged power of 1 W. Femtosecond laser pulses were used for inscription of the FBGs, since they provide high peak intensities and multi-photon processes for a permanent change of the refractive index. We also tested the third harmonic with a resulting wavelength of 266 nm, but there was no power regime found that enabled a permanent change of the sapphires' refractive index without destroying the fiber. The averaged power for inscription with the second harmonic was reduced from the maximum of 1 W to 550 mw, and an external dynamic iris diaphragm was used to reduce the mean repetition rate in order to avoid a material ablation of the fiber due to local heating. We did not observe any erasing effect of the gratings due to the heating of the fiber during the inscription process itself [12]. The iris diaphragm was opened for 0.01 s with 0.5 Hz, so that on average a number of 20 pulses per second reached the fiber. Due to the shorter inscription wavelength, the averaged laser power was nearly halved, and a destruction of the fiber became less likely compared to an inscription wavelength of 800 nm. The FBG was fabricated using the interference pattern of a Talbot interferometer (see Fig. 1) [12]. Inside the interferometer the beam is divided by a phase mask. This phase mask has a period of 888 nm and was optimized for an inscription wavelength of λ inscription = 400 nm to suppress the zero order (which was additionally blocked). The two diffracted beams were reflected by the mirrors and then interfered under the angle ϑ. The fiber was placed exactly perpendicular to the interference pattern in the field of superposition. Additionally, a cylindrical lens (focal length of 221 mm) was used in front of the interferometer to increase the local intensity at the place of the fiber. Since the sapphire fibers were used as air-clad fibers with a large core diameter of 100 µm, the cylindrical lens was moved to scan through the full diameter with a velocity of 0.1 µm/s. Because of the very short pulses in the fsregime, all beam paths have to be aligned with a tolerance of less than 50 microns. Fig. 1. Talbot interferometer (schematic). For multiplexing of gratings the mirrors were turned symmetrically. This leads to a change in the angle ϑ. Considering the Bragg condition with respect to the interferometric inscription, the design wavelength can be calculated from the following Eq. (2): ( ) λbragg = n eff λinscription /sin ϑ. (2) Commercial single crystalline sapphire fibers (MicroMaterials Inc.) fabricated by laserheated pedestal growth to lengths up to one meter were used [13,14]. Attenuation data for Sapphire fibers vary from 0.5 to 4 db/m at 1550 nm, dependent on fiber diameter, (C) 2013 OSA 25 February 2013 / Vol. 21, No. 4 / OPTICS EXPRESS 4593

4 preparation, or annealing procedures [13, 14]. Sapphire fibers guide the light in a large multimode core with an index difference of 0.74 relative to air. Because of this fact, several hundred modes can propagate through the fiber, which results in a very broad reflection spectrum of the FBG of about more than 8 nm. To always measure the same form of the spectrum, the light of a superluminescent diode (SLD) was mode-mixed in a 50 µm graded index fiber and coupled via a commercial APC connector to the sapphire fiber (see Fig. 2). To suppress strong back reflection from the coupling, the sapphire fiber end was polished to an angle of 8 to match the APC fused silica fiber. We expected some losses especially for the coupling from 100µm sapphire to the 50µm supply fiber, but this setup achieved a well measurable signal output. The reflected light coming from the grating was then analyzed in a commercial Ibsen Photonics interrogator [15]. With this setup a spectral range from 1510 nm up to 1596 nm could be evaluated. 3. Experimental results Fig. 2. Spectral characterization setup (schematic). At first a fiber with a single grating was evaluated. Figure 3 shows the reflection spectrum at 100 C. A strong signal background is observed, belonging to the reflected light at the fiber end having the spectrum of the light source itself. Fig. 3. Characterization of a single FBG. Spectral response of the grating (black crosses) with a strong background signal (orange line), and the corrected reflection signal from the grating (green points), fit of a Gaussian function (blue line) and an asymmetric peak function (red dash-dotted line) to the corrected grating signal. (C) 2013 OSA 25 February 2013 / Vol. 21, No. 4 / OPTICS EXPRESS 4594

5 The real reflection peak was discernible as an offset coming from the grating. The background was subtracted to obtain the reflection spectrum of the grating itself. As the sapphire fiber is a multimode fiber, the reflected modes result in a wider peak compared to single mode fiber. The Bragg wavelength λ Bragg was derived as the center of a fitted Gaussian function. For the Bragg grating of Fig. 3, a reflection wavelength of λ Bragg = ( ± 0.072) nm was found to have a full width at half maximum (FWHM) of 9.44 nm. This would correspond to a numerical aperture of NA = 0.18 in accordance with observations in other experiments [5]. The reflectivity could not be estimated, because it was not possible to measure a reference intensity due to the connection losses of the sapphire fiber. However, the reflectivity is high enough for sensor applications, so that all of the inscribed gratings could be used in the heating experiments. The length of the grating itself is limited by the diameter of the inscription laser beam, which was 8 mm for a 1/e limit. Due to the multimodal reflection characteristic of the FBGs, an asymmetric Gaussian-like function [5] would describe the reflection spectrum better (red dash-dotted line in Fig. 3) than a Gaussian function. We heated up a grating to various temperatures between room temperature and 1200 C, stabilizing the temperature for at least 5 min before the spectra were measured. It turned out that the form of the grating spectrum is unaffected by a change of temperature. Therefore the temperature dependency of the Bragg wavelength showed almost the same parameters for the fitting using the Gaussian function, (25.7 ± 0.2) pm/k, and the asymmetric Gaussian function, (25.9 ± 0.2) pm/k. Since the resulting temperature dependencies were almost identical, we therefore used the Gaussian function for further experiments to evaluate the spectra, because of the simpler calculation procedure. The spectra of different gratings inscribed with the same parameters are reproducible with high accuracy. However, the amplitude and therefore the reflectivity strength may vary. This could be explained by the shape of the fiber itself, because single crystalline sapphire has a rounded hexagonal cross section. The orientation of the fiber was not adjusted in the experimental setup. For high temperature investigations, fibers were also heated up to 1200 C. The Fig. 4 shows the temperature dependency of the Bragg wavelength. The reflected intensity was constant during the whole heating process. This demonstrates that, with 400 nm fs-pulses, the material modifications induced in sapphire cause the gratings to be stable also at temperatures beyond 1000 C and that way to be applicable for measurements in high temperature regimes. The average temperature sensitivity for the fiber of Fig. 4 was (27.2 ± 0.4) pm/k. In Fig. 4, a slight deviation from a linear slope can be observed. The slope, and therefore the sensitivity, slightly increases monotonously with increasing temperature. Over the whole temperature range of 1200 K variation of +/ 2.9 pm/k can be found for the local slope of a linear fit. This behavior is already known and especially reported for sapphire fibers in reference [5]. To demonstrate the possibility of multiplexing and, hence, the main advantage of using a Talbot interferometer, three gratings with different wavelengths were inscribed one after another separated by ca. 1 cm. The wavelengths (1527 nm, 1549 nm and 1574 nm) were chosen in such a way that the three gratings had no spectral overlap during the subsequently heating in the furnace from 100 C up to 1000 C in 50 K steps. Figure 5 shows the grating signals at 100 C and 400 C. Due to the wavelength-dependent intensity of the SLD, the grating spectra were normalized to the SLD spectrum. The Bragg wavelength was determined by the center of the fitted Gaussian peak. The result is shown in Fig. 6. (C) 2013 OSA 25 February 2013 / Vol. 21, No. 4 / OPTICS EXPRESS 4595

6 Fig. 4. Temperature dependency of the Bragg wavelength for different peak identifications (crosses) and the fitted temperature sensitivity. Fig. 5. Spectra of an array with three gratings measured at 100 C (black line) and 400 C (red line). All three gratings showed a mostly linear dependency between temperature and Bragg wavelength with a slope of (28.7+/ 0.9) pm/k. The temperature dependence of the fiber Bragg wavelength is λ Bragg / T = λ Bragg (α Λ + α T ) with α Λ being the thermo-optic coefficient, which is α Λ = 12.6x10 6 /K [16] for 633 nm, and α T being the thermal expansion coefficient with α T = 7.15x10 6 /K [16]. The temperature dependence calculated from these numbers is 30.1 pm/k, so that there is a good agreement between the theoretical and the experimental value. For the fibers with the single grating we had observed a dependence of 25.7 ± 0.2) pm/k and of (27.2 ± 0.4) pm/k, using the same experimental setup under identical conditions. The differences may be related to structural changes from one fiber to the other. An imperfect crystallization process or crystal defects are possible reasons for these variations. Also for higher order gratings inscribed with 800 nm the temperature dependency varied between 25 pm/k and [4] and 28 pm/k [7] or even more [5] depending on the environmental temperature. (C) 2013 OSA 25 February 2013 / Vol. 21, No. 4 / OPTICS EXPRESS 4596

7 Fig. 6. Temperature dependency of multiplexed gratings. The initial Bragg wavelengths were 1527 nm (black boxes), 1549 nm (red circles) and 1574 nm (blue triangles). The grating with the highest reflection wavelength was only observable up to 500 C, because of the maximally possible evaluable wavelength determined by the light source and interrogator used. In general, the wide wavelength shift in case of extreme temperature variations results in some limitation for the number of possible multiplexed gratings within a certain spectral range. Within a temperature range of 1000 C, the Bragg wavelength shifts by nearly 30 nm. If the spectral separations of the gratings are about 10 nm (no cross talk between two different gratings), three gratings could be used within a spectral range of about 100 nm. The multiplexing capacity could be increased in case of a more restricted temperature measurement range. Further optimization concerning the number of multiplexed sensors would be possible by selective generation of only the fundamental fiber mode [7] or by a sapphire fiber structure with a smaller number of allowed propagating modes. 4. Conclusion We have demonstrated the applicability of femtosecond pulses with a wavelength of 400 nm to inscribe first-order FBGs in sapphire fibers. An external, additional, dynamic iris diaphragm was used to avoid heating up or destroying the fiber during the inscription process. Single gratings as well as three multiplexed gratings were fabricated using the Talbot interferometer. The gratings showed a nearly linear wavelength dependency of the maximum of reflection. Sapphire fibers are stable up to temperatures of 2000 C. The high temperature stability of the reported gratings has been experimentally tested for temperatures up to 1200 C. Acknowledgments Funding by the German Federal Ministry of Economics and Technology under contract 13INE036, and the Thuringian Ministry of Education, Science and Culture (EFRE program) is gratefully acknowledged. (C) 2013 OSA 25 February 2013 / Vol. 21, No. 4 / OPTICS EXPRESS 4597

First-order sapphire fiber Bragg gratings for high temperature sensing

First-order sapphire fiber Bragg gratings for high temperature sensing First-order sapphire fiber Bragg gratings for high temperature sensing Tino Elsmann, Tobias Habisreuther, Albrecht Graf, Manfred Rothhardt, Markus A. Schmidt, Hartmut Bartelt, Leibniz-Institut für Photonische

More information

High-Temperature Strain Sensing Using Sapphire Fibers With Inscribed First-Order Bragg Gratings

High-Temperature Strain Sensing Using Sapphire Fibers With Inscribed First-Order Bragg Gratings High-Temperature Strain Sensing Using Sapphire Fibers With Inscribed First-Order Bragg Gratings Volume 8, Number 3, June 2016 T. Habisreuther T. Elsmann A. Graf M. A. Schmidt DOI: 10.1109/JPHOT.2016.2555580

More information

Micro-Structured Fiber Interferometer as Sensitive Temperature Sensor

Micro-Structured Fiber Interferometer as Sensitive Temperature Sensor Photonic Sensors (2013) Vol. 3, No. 3: 208 213 DOI: 10.1007/s13320-013-0116-5 Regular Photonic Sensors Micro-Structured Fiber Interferometer as Sensitive Temperature Sensor F. C. FAVERO *, M. BECKER, R.

More information

Review of Femtosecond Laser Fabricated Fiber Bragg Gratings for High Temperature Sensing

Review of Femtosecond Laser Fabricated Fiber Bragg Gratings for High Temperature Sensing (2013) Vol. 3, No. 2: 97 101 DOI: 10.1007/s13320-012-0060-9 Review Review of Femtosecond Laser Fabricated Fiber Bragg Gratings for High Temperature Sensing C. R. LIAO and D. N. WANG Department of Electrical

More information

High-Efficiency Ultraviolet Inscription of Bragg Gratings in Microfibers

High-Efficiency Ultraviolet Inscription of Bragg Gratings in Microfibers High-Efficiency Ultraviolet Inscription of Bragg Gratings in Microfibers Volume 4, Number 1, February 2012 Yang Ran Long Jin Yan-Nan Tan Li-Peng Sun Jie Li Bai-Ou Guan DOI: 10.1109/JPHOT.2011.2182187 1943-0655/$31.00

More information

Fs- Using Ultrafast Lasers to Add New Functionality to Glass

Fs- Using Ultrafast Lasers to Add New Functionality to Glass An IMI Video Reproduction of Invited Lectures from the 17th University Glass Conference Fs- Using Ultrafast Lasers to Add New Functionality to Glass Denise M. Krol University of California, Davis 17th

More information

Negative-index gratings formed by femtosecond laser overexposure and thermal regeneration

Negative-index gratings formed by femtosecond laser overexposure and thermal regeneration www.nature.com/scientificreports OPEN recei e : 1 Octo er 201 accepte : 0 arc 2016 Pu is e : 16 arc 2016 Negative-index gratings formed by femtosecond laser overexposure and thermal regeneration Jun He

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Measuring subwavelength spatial coherence with plasmonic interferometry Drew Morrill, Dongfang Li, and Domenico Pacifici School of Engineering, Brown University, Providence, RI 02912, United States List

More information

Characterisation of Fe-Ni amorphous thin films for possible magnetostrictive sensor applications

Characterisation of Fe-Ni amorphous thin films for possible magnetostrictive sensor applications Characterisation of Fe-Ni amorphous thin films for possible magnetostrictive sensor applications Contents 9.1 Introduction 9.2 Experiment 9.3 Results and Discussions 9.4 Conclusion 9.1 Introduction Magnetostrictive

More information

Femtosecond micromachining in polymers

Femtosecond micromachining in polymers Femtosecond micromachining in polymers Prof. Dr Cleber R. Mendonca Daniel S. Corrêa Prakriti Tayalia Dr. Tobias Voss Dr. Tommaso Baldacchini Prof. Dr. Eric Mazur fs-micromachining focus laser beam inside

More information

Thermal response of Bragg gratings in PMMA microstructured optical fibers

Thermal response of Bragg gratings in PMMA microstructured optical fibers Thermal response of Bragg gratings in PMMA microstructured optical fibers Karen E Carroll 1*, Chi Zhang 1, David J. Webb 1, Kyriacos Kalli 2, Alexander Argyros 3, Maryanne C. J. Large 3 1 Photonics Research

More information

Superstructure Fiber Bragg Grating based Sensors

Superstructure Fiber Bragg Grating based Sensors ABHIYANTRIKI based Sensors An International Journal of Engineering & Technology (A Peer Reviewed & Indexed Journal) Vol. 3, No. 5 (May, 2016) http://www.aijet.in/ eissn: 2394-627X Ashima Sindhu Mohanty*

More information

Introducing Jie Huang. Presentation to the Academy of Electrical and Computer Engineering, April 21, 2016

Introducing Jie Huang. Presentation to the Academy of Electrical and Computer Engineering, April 21, 2016 Introducing Jie Huang Presentation to the Academy of Electrical and Computer Engineering, April 21, 2016 Professional Background BS, Optical Engineering, Tianjin University, China, 2009 MS, ECE, Missouri

More information

Humidity Sensor Based on a Photonic Crystal Fiber Interferometer

Humidity Sensor Based on a Photonic Crystal Fiber Interferometer Dublin Institute of Technology ARROW@DIT Articles School of Electrical and Electronic Engineering 2010-01-01 Humidity Sensor Based on a Photonic Crystal Fiber Interferometer Jinesh Mathew Dublin Institute

More information

Highly Sensitive Pressure Measurement based on Multimode Fiber Tip Fabry-Perot Cavity

Highly Sensitive Pressure Measurement based on Multimode Fiber Tip Fabry-Perot Cavity Highly Sensitive Pressure Measurement based on Multimode Fiber Tip Fabry-Perot Cavity Wei Ping Chen* and Dongning Wang College of Optical and Electronic Technology, China Jiliang University, Hangzhou,

More information

Fabrication of Micro and Nano Structures in Glass using Ultrafast Lasers

Fabrication of Micro and Nano Structures in Glass using Ultrafast Lasers Fabrication of Micro and Nano Structures in Glass using Ultrafast Lasers Denise M. Krol University of California, Davis IMI Glass Workshop Washington DC April 15-17, 2007 Femtosecond laser modification

More information

Micro- and Nano-Technology... for Optics

Micro- and Nano-Technology... for Optics Micro- and Nano-Technology...... for Optics 3.2 Lithography U.D. Zeitner Fraunhofer Institut für Angewandte Optik und Feinmechanik Jena Electron Beam Column electron gun beam on/of control magnetic deflection

More information

PATTERNING OF OXIDE THIN FILMS BY UV-LASER ABLATION

PATTERNING OF OXIDE THIN FILMS BY UV-LASER ABLATION Journal of Optoelectronics and Advanced Materials Vol. 7, No. 3, June 2005, p. 1191-1195 Invited lecture PATTERNING OF OXIDE THIN FILMS BY UV-LASER ABLATION J. Ihlemann * Laser-Laboratorium Göttingen e.v.,

More information

Experimental Research on Multi-Wavelength FBG Fabrication Based on Multiple Exposure

Experimental Research on Multi-Wavelength FBG Fabrication Based on Multiple Exposure PHOTONIC SENSORS / Vol. 5, No. 3, 2015: 273 277 Experimental Research on Multi-Wavelength FBG Fabrication Based on Multiple Exposure Jingsheng LV 1*, Xiaolei ZHANG 1, Haifeng QI 1, Jian Guo 1, Gangding

More information

Fiber Bragg grating sensor based on external cavity laser

Fiber Bragg grating sensor based on external cavity laser Dolores Calzadilla, V.M.; Pustakhod, D.; Leijtens, X.J.M.; Smit, M.K. Published in: Proceedings of the 20th Annual Symposium of the IEEE Photonics Benelux Chapter, 26-27 November 2015, Brussels, Belgium

More information

Seminar: Structural characterization of photonic crystals based on synthetic and natural opals. Olga Kavtreva. July 19, 2005

Seminar: Structural characterization of photonic crystals based on synthetic and natural opals. Olga Kavtreva. July 19, 2005 Seminar: Structural characterization of photonic crystals based on synthetic and natural opals Olga Kavtreva July 19, 2005 Abstract Novel class of dielectric structures with a refractive index which exhibits

More information

DETECTION OF LASER ULTRASONIC SURFACE DISPLACEMENT BY WIDE APERTURE FIBER OPTIC AMPLIFIER M.L. Rizzi and F. Corbani CESI, Milano, Italy

DETECTION OF LASER ULTRASONIC SURFACE DISPLACEMENT BY WIDE APERTURE FIBER OPTIC AMPLIFIER M.L. Rizzi and F. Corbani CESI, Milano, Italy DETECTION OF LASER ULTRASONIC SURFACE DISPLACEMENT BY WIDE APERTURE FIBER OPTIC AMPLIFIER M.L. Rizzi and F. Corbani CESI, Milano, Italy Abstract: In the frame of the European Project INCA, CESI is in charge

More information

Fabrication of micro/nano structures in glass by lasers

Fabrication of micro/nano structures in glass by lasers Lehigh University Lehigh Preserve International Workshop on Scientific Challenges for Glass Research Glass Conferences and Workshops Spring 4-1-2007 Fabrication of micro/nano structures in glass by lasers

More information

Selective laser melting of copper using ultrashort laser pulses

Selective laser melting of copper using ultrashort laser pulses Lasers in Manufacturing Conference 2017 Selective laser melting of copper using ultrashort laser pulses Lisa Kaden a,*, Gabor Matthäus a, Tobias Ullsperger a, Andreas Tünnermann a,b, Stefan Nolte a,b a

More information

Intrinsic Fabry-Perot Interferometeric Sensor Based on Microfiber Created by Chemical Etching

Intrinsic Fabry-Perot Interferometeric Sensor Based on Microfiber Created by Chemical Etching Sensors 2014, 14, 16808-16815; doi:10.3390/s140916808 Article OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Intrinsic Fabry-Perot Interferometeric Sensor Based on Microfiber Created by

More information

2.1 µm CW Raman Laser in GeO 2 Fiber

2.1 µm CW Raman Laser in GeO 2 Fiber 2.1 µm CW Raman Laser in GeO 2 Fiber B. A. Cumberland, S. V. Popov and J. R. Taylor Femtosecond Optics Group, Imperial College London, SW7 2AZ, United Kingdom O. I. Medvedkov, S. A. Vasiliev, E. M. Dianov

More information

SELECTION OF OPTICAL COMPONENTS FOR COMMON LASER TYPES

SELECTION OF OPTICAL COMPONENTS FOR COMMON LASER TYPES FEMTOSECOND LASER OPTICS SELECTED SPECIAL COMPONENTS METALLIC COATINGS FOR LASER AND ASTRONOMICAL APPLICATIONS 41 SELECTION OF OPTICAL COMPONENTS FOR COMMON LASER TYPES INTRODUCTION PRECISION OPTICS OPTICAL

More information

Fiber Bragg Gratings. Research, Design, Fabrication, and Volume Production. All capabilities within one company

Fiber Bragg Gratings. Research, Design, Fabrication, and Volume Production. All capabilities within one company Your Optical Fiber Solutions Partner Fiber Bragg Gratings Research, Design, Fabrication, and Volume Production OFS Fiber and Cable Division All capabilities within one company OFS Specialty Photonics Division

More information

Miniaturized fiber taper reflective interferometer for high temperature measurement

Miniaturized fiber taper reflective interferometer for high temperature measurement Miniaturized fiber taper reflective interferometer for high temperature measurement Jun-long Kou, Jing Feng, Liang Ye, Fei Xu,* and Yan-qing Lu College of Engineering and Applied Sciences and National

More information

Modification of Glass by FS Laser for Optical/Memory Applications

Modification of Glass by FS Laser for Optical/Memory Applications Modification of Glass by FS Laser for Optical/Memory Applications Kazuyuki Hirao and Kiyotaka Miura Department of Material Chemistry Kyoto University International Workshop on Scientific Challenges of

More information

Optical Fiber Gratings Written in Microstructured Optical Fibers

Optical Fiber Gratings Written in Microstructured Optical Fibers Optical Fiber Gratings Written in Microstructured Optical Fibers Yiping Wang Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen

More information

Single-polarization ultra-large-mode-area Ybdoped photonic crystal fiber

Single-polarization ultra-large-mode-area Ybdoped photonic crystal fiber Single-polarization ultra-large-mode-area Ybdoped photonic crystal fiber O. Schmidt, J. Rothhardt, T. Eidam, F. Röser, J. Limpert, A. Tünnermann Friedrich-Schiller University, Institute of Applied Physics,

More information

Low-cost, deterministic quasi-periodic photonic structures for light trapping in thin film silicon solar cells

Low-cost, deterministic quasi-periodic photonic structures for light trapping in thin film silicon solar cells Low-cost, deterministic quasi-periodic photonic structures for light trapping in thin film silicon solar cells The MIT Faculty has made this article openly available. Please share how this access benefits

More information

Mechanical reliability of fiber Bragg gratings for strain or temperature sensor

Mechanical reliability of fiber Bragg gratings for strain or temperature sensor Mechanical reliability of fiber Bragg gratings for strain or temperature sensor Hyuk-Jin Yoon, Sang-Oh Park, Chun-Gon Kim Smart Structures & Composites Laboratory, KAIST, Korea ABSTRACT Several factors

More information

Strain and Temperature Sensors Using Multimode Optical Fiber Bragg Gratings and Correlation Signal Processing

Strain and Temperature Sensors Using Multimode Optical Fiber Bragg Gratings and Correlation Signal Processing 622 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 51, NO. 4, AUGUST 2002 Strain and Temperature Sensors Using Multimode Optical Fiber Bragg Gratings and Correlation Signal Processing Jirapong

More information

Fiber Bragg Grating Strain Sensors for Marine Engineering

Fiber Bragg Grating Strain Sensors for Marine Engineering (2013) Vol. 3, No. 3: 267 271 DOI: 10.1007/s13320-013-0123-6 Regular Fiber Bragg Grating Strain Sensors for Marine Engineering Tingting WANG 1, Zilin YUAN 1*, Yuan GONG 1, Yu WU 1, Yunjiang RAO 1, Lili

More information

D-shaped fiber grating refractive index sensor induced by an ultrashort pulse laser

D-shaped fiber grating refractive index sensor induced by an ultrashort pulse laser Research Article Vol. 55, No. 7 / March 1 2016 / Applied Optics 1525 D-shaped fiber grating refractive index sensor induced by an ultrashort pulse laser CHANGRUI LIAO, 1, QIAO WANG, 1, LEI XU, 2 SHEN LIU,

More information

Nano-Patterning by Diffraction Mask-Projection Laser Ablation

Nano-Patterning by Diffraction Mask-Projection Laser Ablation Nano-Patterning by Diffraction Mask-Projection Laser Ablation Marisa MÄDER, Klaus ZIMMER, Rico BÖHME, Thomas HÖCHE, Jürgen W. GERLACH and Bernd RAUSCHENBACH Leibniz Institute of Surface Modification, Permoserstrasse

More information

Thermal Behavior of Metal Embedded Fiber Bragg Grating Sensor

Thermal Behavior of Metal Embedded Fiber Bragg Grating Sensor Thermal Behavior of Metal Embedded Fiber Bragg Grating Sensor Xiao Chun Li 1, Fritz Prinz 1, and John Seim 2 1. Rapid Prototyping Laboratory, Building 530 Room 226, Stanford University, Stanford, CA94305

More information

Long-term stability decay of standard and regenerated Bragg gratings tailored for high temperature operation

Long-term stability decay of standard and regenerated Bragg gratings tailored for high temperature operation 719 Long-term stability decay of standard and regenerated Bragg gratings tailored for high temperature operation F. K. Coradin 1,2, V. de Oliveira 1, M. Muller 1, H. J. Kalinowski 1, J. L. Fabris 1 1 Universidade

More information

11.3 Polishing with Laser Radiation

11.3 Polishing with Laser Radiation 196 E. Willenborg 11.3 Polishing with Laser Radiation Edgar Willenborg The surface roughness of a part or product strongly influences its properties and functions. Among these can be counted abrasion and

More information

Efficient multi-mode to single-mode conversion in a 61 port Photonic Lantern

Efficient multi-mode to single-mode conversion in a 61 port Photonic Lantern Efficient multi-mode to single-mode conversion in a 61 port Photonic Lantern D. Noordegraaf* a,b, P. M. W. Skovgaard a, M. D. Maack a, J. Bland-Hawthorn c,d, R. Haynes d,e, and J. Lægsgaard b a NKT Photonics

More information

CHARACTERIZATION OF FIBER BRAGG GRATINGS WRITTEN IN LARGE MODE AREA FIBERS

CHARACTERIZATION OF FIBER BRAGG GRATINGS WRITTEN IN LARGE MODE AREA FIBERS U.P.B. Sci. Bull., Series A, Vol. 73, Iss. 4, 2011 ISSN 1223-7027 CHARACTERIZATION OF FIBER BRAGG GRATINGS WRITTEN IN LARGE MODE AREA FIBERS Ioana R. IVASCU 1, Regina GUMENYUK 2, Samuli KIVISTÖ 3, Oleg

More information

Femtosecond Laser-induced Crystallization of Amorphous Indium Tin Oxide Film on Glass Substrate for Patterning Applications

Femtosecond Laser-induced Crystallization of Amorphous Indium Tin Oxide Film on Glass Substrate for Patterning Applications Femtosecond Laser-induced Crystallization of Amorphous Indium Tin Oxide Film on Glass Substrate for Patterning Applications Chung-Wei Cheng* 1, Yi-Ju Lee*, Wei-Chih Shen* 1, Jenq-Shyong Chen* and Chin-Wei

More information

Micro Patterning of Crystalline Structures on a-ito Films on Plastic Substrates Using Femtosecond Laser

Micro Patterning of Crystalline Structures on a-ito Films on Plastic Substrates Using Femtosecond Laser Technical Communication JLMN-Journal of Laser Micro/Nanoengineering Vol. 4, No. 3, 2009 Micro Patterning of Crystalline Structures on a-ito Films on Plastic Substrates Using Femtosecond Laser Chung-Wei

More information

micromachines ISSN X

micromachines ISSN X Micromachines 2012, 3, 55-61; doi:10.3390/mi3010055 Article OPEN ACCESS micromachines ISSN 2072-666X www.mdpi.com/journal/micromachines Surface Plasmon Excitation and Localization by Metal-Coated Axicon

More information

Country (UPV/EHU), Alda. Urquijo s/n, E Bilbao, Spain. P.O. Box , Orlando, Florida , USA

Country (UPV/EHU), Alda. Urquijo s/n, E Bilbao, Spain. P.O. Box , Orlando, Florida , USA More info about this article: http://www.ndt.net/?id=20107 Assessment of a multi-core optical fibre interferometer for strain sensing in aerospace structures Oskar ARRIZABALAGA, 1,* Joel VILLATORO, 1,2

More information

Experiment 2b X-Ray Diffraction* Optical Diffraction Experiments

Experiment 2b X-Ray Diffraction* Optical Diffraction Experiments * Experiment 2b X-Ray Diffraction* Adapted from Teaching General Chemistry: A Materials Science Companion by A. B. Ellis et al.: ACS, Washington, DC (1993). Introduction Inorganic chemists, physicists,

More information

Highly-sensitive gas pressure sensor using twincore fiber based in-line Mach-Zehnder interferometer

Highly-sensitive gas pressure sensor using twincore fiber based in-line Mach-Zehnder interferometer Highly-sensitive gas pressure sensor using twincore fiber based in-line Mach-Zehnder interferometer Zhengyong Li, 1 Changrui Liao, 1 Yiping Wang, 1,* Lei Xu, 2 Dongning Wang, 3 Xiaopeng Dong, 4 Shen Liu,

More information

Deep-etched fused silica grating as a (de)multiplexer for DWDM application at the wavelength of 1.55µm

Deep-etched fused silica grating as a (de)multiplexer for DWDM application at the wavelength of 1.55µm Deep-etched fused silica grating as a (de)multiplexer for DWDM application at the wavelength of 1.55µm Yanyan Zhang*, Changhe Zhou, Huayi Ru, Shunquan Wang Shanghai Institute of Optics and Fine Mechanics,

More information

Thin Film Micro-Optics

Thin Film Micro-Optics Thin Film Micro-Optics New Frontiers of Spatio-Temporal Beam Shaping Ruediger Grunwald Max Born Institut for Nonlinear Optics and Short Pulse Spectroscopy Berlin, Germany ELSEVIER Amsterdam Boston Heidelberg

More information

Photonics made in jena. Micro-Assembly and

Photonics made in jena. Micro-Assembly and Photonics made in jena Fraunhofer Institute for Applied Optics and Precision Engineering Micro-Assembly and System Integration 2 www.iof.fraunhofer.com Solutions with Light Expertise in Optical System

More information

7-2E. Photonic crystals

7-2E. Photonic crystals 7-2E. Photonic crystals Purdue Univ, Prof. Shalaev, http://cobweb.ecn.purdue.edu/~shalaev/ Univ Central Florida, CREOL, Prof Kik, http://sharepoint.optics.ucf.edu/kik/ose6938i/handouts/forms/allitems.aspx

More information

International Journal of Scientific & Engineering Research, Volume 6, Issue 2, February-2015 ISSN PHOTONIC CRYSTAL FIBER- AN OVERVIEW

International Journal of Scientific & Engineering Research, Volume 6, Issue 2, February-2015 ISSN PHOTONIC CRYSTAL FIBER- AN OVERVIEW 45 PHOTONIC CRYSTAL FIBER- AN OVERVIEW Neha Mahnot1, Shikha Maheshwary2, Rekha Mehra3 1, 2, 3 Govt. Engg. College, Ajmer 2 shikhasm1992@gmail.com 1 neha29mahnot@gmail.com Abstract- This review paper gives

More information

Miniature fibre optic probe for minimally invasive photoacoustic sensing

Miniature fibre optic probe for minimally invasive photoacoustic sensing Miniature fibre optic probe for minimally invasive photoacoustic sensing Sunish J. Mathews*, Edward Z. Zhang, Adrien E. Desjardins and Paul C. Beard Department of Medical Physics and Biomedical Engineering,

More information

Nicolas Baudin travel grant - Internship in France proposal form

Nicolas Baudin travel grant - Internship in France proposal form Nicolas Baudin travel grant - Internship in France proposal form * = mandatory fields SECTION 1 : Hosting institution in France Hosting institution in France* Name* University Paris Sud Univeristy Paris

More information

Assembling Ordered Nanorod Superstructures and Their Application as Microcavity Lasers

Assembling Ordered Nanorod Superstructures and Their Application as Microcavity Lasers Supporting Information Assembling Ordered Nanorod Superstructures and Their Application as Microcavity Lasers Pai Liu 1, Shalini Singh 1, Yina Guo 2, Jian-Jun Wang 1, Hongxing Xu 3, Christophe Silien 4,

More information

2006 Society of Photo Optical Instrumentation Engineers (SPIE)

2006 Society of Photo Optical Instrumentation Engineers (SPIE) S. Yliniemi, J. Albert, A. Laronche, Q. Wang, and S. Honkanen, Silver film ionexchanged Er doped waveguide lasers and photowritten waveguide gratings in phosphate glass, in Integrated Optics, Silicon Photonics,

More information

Interface quality and thermal stability of laser-deposited metal MgO multilayers

Interface quality and thermal stability of laser-deposited metal MgO multilayers Interface quality and thermal stability of laser-deposited metal MgO multilayers Christian Fuhse, Hans-Ulrich Krebs, Satish Vitta, and Göran A. Johansson Metal MgO multilayers metal of Fe, Ni 80 Nb 20,

More information

Interferometric optical biosensor. Xingwei Wang

Interferometric optical biosensor. Xingwei Wang Interferometric optical biosensor Xingwei Wang 1 Light Transverse electromagnetic wave Reflection Refraction Diffraction Interference 2 Fabry-Perot interferometer 3 Interferometer Two waves that coincide

More information

High Pressure Chemical Vapor Deposition to make Multimaterial Optical Fibers

High Pressure Chemical Vapor Deposition to make Multimaterial Optical Fibers High Pressure Chemical Vapor Deposition to make Multimaterial Optical Fibers Subhasis Chaudhuri *1 1, 2, 3, John V. Badding 1 Department of Chemistry, Pennsylvania State University, University Park, PA

More information

CANUNDA. Application note. Version 06/10/2015

CANUNDA. Application note. Version 06/10/2015 CANUNDA Application note Version 06/10/2015 2 TABLE OF CONTENTS INTRODUCTION LASER BEAM SHAPING SOLUTIONS APPLICATIONS Sheet cutting improved speed Hardened welding Pre-joining surface ablation Slow cooling

More information

Challenges and Future Directions of Laser Fuse Processing in Memory Repair

Challenges and Future Directions of Laser Fuse Processing in Memory Repair Challenges and Future Directions of Laser Fuse Processing in Memory Repair Bo Gu, * T. Coughlin, B. Maxwell, J. Griffiths, J. Lee, J. Cordingley, S. Johnson, E. Karagiannis, J. Ehrmann GSI Lumonics, Inc.

More information

Modeling Of A Diffraction Grating Coupled Waveguide Based Biosensor For Microfluidic Applications Yixuan Wu* 1, Mark L. Adams 1 1

Modeling Of A Diffraction Grating Coupled Waveguide Based Biosensor For Microfluidic Applications Yixuan Wu* 1, Mark L. Adams 1 1 Modeling Of A Diffraction Grating Coupled Waveguide Based Biosensor For Microfluidic Applications Yixuan Wu* 1, Mark L. Adams 1 1 Auburn University *yzw0040@auburn.edu Abstract: A diffraction grating coupled

More information

Bragg diffraction using a 100ps 17.5 kev x-ray backlighter and the Bragg Diffraction Imager

Bragg diffraction using a 100ps 17.5 kev x-ray backlighter and the Bragg Diffraction Imager LLNL-CONF-436071 Bragg diffraction using a 100ps 17.5 kev x-ray backlighter and the Bragg Diffraction Imager B. R. Maddox, H. Park, J. Hawreliak, A. Comley, A. Elsholz, R. Van Maren, B. A. Remington, J.

More information

Solutions with Light. Energy and environment, Information and communication, Healthcare and medical technology, Safety and mobility.

Solutions with Light. Energy and environment, Information and communication, Healthcare and medical technology, Safety and mobility. Fraunhofer Institute for Applied Optics and Precision Engineering Solutions with Light EXPERTISE in Optical system technology 2 Solutions with Light The Fraunhofer IOF conducts application oriented research

More information

Ultrasensitive Temperature Sensor Based on a Fiber Fabry Pérot Interferometer Created in a Mercury-Filled Silica Tube

Ultrasensitive Temperature Sensor Based on a Fiber Fabry Pérot Interferometer Created in a Mercury-Filled Silica Tube Ultrasensitive Temperature Sensor Based on a Fiber Fabry Pérot Interferometer Created in a Mercury-Filled Silica Tube Volume 7, Number 6, December 2015 Kaiming Yang Jun He Ying Wang Shen Liu Changrui Liao

More information

Evolution of Optical Fiber Temperature during Fiber Bragg Grating Fabrication Using KrF Excimer Laser

Evolution of Optical Fiber Temperature during Fiber Bragg Grating Fabrication Using KrF Excimer Laser Japanese Journal of Applied Physics Vol. 43, No., 24, pp. 47 5 #24 The Japan Society of Applied Physics Evolution of Optical Fiber Temperature during Fiber Bragg Grating Fabrication Using KrF Excimer Laser

More information

Nanoscale changes with low temperature annealing inside composite optical fibres

Nanoscale changes with low temperature annealing inside composite optical fibres Nanoscale changes with low temperature annealing inside composite optical fibres Wen Liu, 1,2 John Canning, 1,* Kevin Cook, 1 and Cicero Martelli 3 1 interdisciplinary Photonics Laboratories (ipl), School

More information

Time-resolved diffraction profiles and structural dynamics of Ni film under short laser pulse irradiation

Time-resolved diffraction profiles and structural dynamics of Ni film under short laser pulse irradiation IOP Publishing Journal of Physics: Conference Series 59 (2007) 11 15 doi:10.1088/1742-6596/59/1/003 Eighth International Conference on Laser Ablation Time-resolved diffraction profiles and structural dynamics

More information

Qswitched lasers are gaining more interest because of their ability for various applications in remote sensing, environmental monitoring, micro

Qswitched lasers are gaining more interest because of their ability for various applications in remote sensing, environmental monitoring, micro 90 Qswitched lasers are gaining more interest because of their ability for various applications in remote sensing, environmental monitoring, micro machining, nonlinear frequency generation, laserinduced

More information

Biophotonics. Light Matter Interactions & Lasers. NPTEL Biophotonics 1

Biophotonics. Light Matter Interactions & Lasers. NPTEL Biophotonics 1 Biophotonics Light Matter Interactions & Lasers NPTEL Biophotonics 1 Overview In this lecture you will learn, Light matter interactions: absorption, emission, stimulated emission Lasers and some laser

More information

Nanoscale Plasmonic Interferometers for Multi-Spectral, High-Throughput Biochemical Sensing

Nanoscale Plasmonic Interferometers for Multi-Spectral, High-Throughput Biochemical Sensing Supporting Online Information for Nanoscale Plasmonic Interferometers for Multi-Spectral, High-Throughput Biochemical Sensing Jing Feng (a), Vince S. Siu (a), Alec Roelke, Vihang Mehta, Steve Y. Rhieu,

More information

(One) latest development(s)

(One) latest development(s) 1 (One) latest development(s) in photonic crystal fibres Philip Russell MAX PLANCK INSTITUTE for the science of light & Department of Physics Friedrich-Alexander-Universität Erlangen-Nuremberg FAU Alfried

More information

Deep-etched high-density fused-silica transmission gratings with high efficiency at a wavelength of 1550 nm

Deep-etched high-density fused-silica transmission gratings with high efficiency at a wavelength of 1550 nm Deep-etched high-density fused-silica transmission gratings with high efficiency at a wavelength of 1550 nm Shunquan Wang, Changhe Zhou, Yanyan Zhang, and Huayi Ru We describe the design, fabrication,

More information

Trench Structure Improvement of Thermo-Optic Waveguides

Trench Structure Improvement of Thermo-Optic Waveguides International Journal of Applied Science and Engineering 2007. 5, 1: 1-5 Trench Structure Improvement of Thermo-Optic Waveguides Fang-Lin Chao * Chaoyang University of Technology, Wufong, Taichung County

More information

EXAMPLES OF INDUSTRIAL APPLICATIONS

EXAMPLES OF INDUSTRIAL APPLICATIONS 14 EXAMPLES OF INDUSTRIAL APPLICATIONS STEEL FOIL Μ-DRILLING No melting Micron diameter Filters Functional surfaces DIAMOND CUTTING Low carbonization No HAZ Low material loss Diamond sheet cutting Chip

More information

EXAMPLES OF INDUSTRIAL APPLICATIONS

EXAMPLES OF INDUSTRIAL APPLICATIONS 14 EXAMPLES OF INDUSTRIAL APPLICATIONS STEEL FOIL Μ-DRILLING No melting Micron diameter Filters Functional surfaces DIAMOND CUTTING Low carbonization No HAZ Low material loss Diamond sheet cutting Chip

More information

Low-Cost Fiber-Tip Fabry-Perot Interferometer and Its Application for Transverse Load Sensing

Low-Cost Fiber-Tip Fabry-Perot Interferometer and Its Application for Transverse Load Sensing Progress In Electromagnetics Research Letters, Vol. 48, 103 108, 2014 Low-Cost Fiber-Tip Fabry-Perot Interferometer and Its Application for Transverse Load Sensing Xiaogang Jiang and Daru Chen * Abstract

More information

Received: 28 September 2017; Accepted: 20 October 2017 ; Published: 26 October 2017

Received: 28 September 2017; Accepted: 20 October 2017 ; Published: 26 October 2017 sensors Article Waveguide Bragg Gratings in Ormocer s for Temperature Sensing Maiko Girschikofsky 1, *, Manuel Rosenberger 1, Michael Förthner 2, Mathias Rommel 3 ID, Lothar Frey 2,3 and Ralf Hellmann

More information

Ultrafast laser microwelding for transparent and heterogeneous materials

Ultrafast laser microwelding for transparent and heterogeneous materials SPIE Commercial and Biomedical Applications of Ultrafast Lasers VIII, Conference 6881, 20-23 January 2008 San Jose Convention Center, San Jose, CA Ultrafast laser microwelding for transparent and heterogeneous

More information

Title: Localized surface plasmon resonance of metal nanodot and nanowire arrays studied by far-field and near-field optical microscopy

Title: Localized surface plasmon resonance of metal nanodot and nanowire arrays studied by far-field and near-field optical microscopy Contract Number: AOARD-06-4074 Principal Investigator: Heh-Nan Lin Address: Department of Materials Science and Engineering, National Tsing Hua University, 101, Sec. 2, Kuang Fu Rd., Hsinchu 30013, Taiwan

More information

Femtosecond Laser Materials Processing. B. C. Stuart P. S. Banks M. D. Perry

Femtosecond Laser Materials Processing. B. C. Stuart P. S. Banks M. D. Perry UCRL-JC-126901 Rev 2 PREPRINT Femtosecond Laser Materials Processing B. C. Stuart P. S. Banks M. D. Perry This paper was prepared for submittal to the Manufacturing '98 Chicago, IL September 9-16, 1998

More information

QUASI-SIMULTANEOUS LASER WELDING OF PLASTICS COMPARISON OF DIODE LASER WELDING AND FIBER LASER WELDING

QUASI-SIMULTANEOUS LASER WELDING OF PLASTICS COMPARISON OF DIODE LASER WELDING AND FIBER LASER WELDING QUASI-SIMULTANEOUS LASER WELDING OF PLASTICS COMPARISON OF DIODE LASER WELDING AND FIBER LASER WELDING S. Ruotsalainen 1, P. Laakso 1 1 Lappeenranta University of Technology, Lappeenranta, Finland 2 VTT

More information

Proceedings of Meetings on Acoustics

Proceedings of Meetings on Acoustics Proceedings of Meetings on Acoustics Volume 19, 2013 http://acousticalsociety.org/ ICA 2013 Montreal Montreal, Canada 2-7 June 2013 Underwater Acoustics Session 3aUWa: Acoustic Sensing Via Fiber Optics

More information

High Power Operation of Cryogenic Yb:YAG. K. F. Wall, B. Pati, and P. F. Moulton Photonics West 2007 San Jose, CA January 23, 2007

High Power Operation of Cryogenic Yb:YAG. K. F. Wall, B. Pati, and P. F. Moulton Photonics West 2007 San Jose, CA January 23, 2007 High Power Operation of Cryogenic Yb:YAG K. F. Wall, B. Pati, and P. F. Moulton Photonics West 2007 San Jose, CA January 23, 2007 Outline Early work on cryogenic lasers MPS laser technology Recent program

More information

Table 1. Chemical and Structural Properties. About 1095 C g/cm 3 1.2W/m/K( c); 1.6W/m/K(//c)

Table 1. Chemical and Structural Properties. About 1095 C g/cm 3 1.2W/m/K( c); 1.6W/m/K(//c) CASTECH R NLO Crystals Beta-Barium Borate (β-bab 2 O 4 or BBO) Introduction Beta-Barium Borate (β-bab 2 O 4 or BBO), discovered and developed by FIRSM, CAS (Fujian Institute of Research on the Structure

More information

Heat-fraction-limited CW Yb:YAG cryogenic solid-state laser with 100% photon slope efficiency

Heat-fraction-limited CW Yb:YAG cryogenic solid-state laser with 100% photon slope efficiency Heat-fraction-limited CW Yb:YAG cryogenic solid-state laser with 100% photon slope efficiency David C. Brown*, Thomas M. Bruno, and Joseph M. Singley Snake Creek Lasers, LLC, Hallstead, PA, 18822, USA

More information

Design Optimization of Structural Parameters for Highly Sensitive Photonic Crystal Label-Free Biosensors

Design Optimization of Structural Parameters for Highly Sensitive Photonic Crystal Label-Free Biosensors Sensors 2013, 13, 3232-3241; doi:10.3390/s130303232 Article OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Design Optimization of Structural Parameters for Highly Sensitive Photonic Crystal

More information

High peak power Erbium-Ytterbium MOPFA for coherent Lidar anemometry

High peak power Erbium-Ytterbium MOPFA for coherent Lidar anemometry High peak power Erbium-Ytterbium MOPFA for coherent Lidar anemometry G. Canat, L. Lombard, A. Dolfi-Bouteyre, C. Planchat, A. Durecu, M. Valla ONERA, France S. Jetschke, S. Unger, J. Kirchhof, IPHT Jena,

More information

Summary and scope for future study

Summary and scope for future study Summary and scope for future study Abstract This chapter concludes the thesis by summarizing the results and presenting suggestions on further work based on this research. This research work focused on

More information

Fabrication of the Crystalline ITO Pattern by Picosecond Laser with a Diffractive Optical Element

Fabrication of the Crystalline ITO Pattern by Picosecond Laser with a Diffractive Optical Element Fabrication of the Crystalline ITO Pattern by Picosecond Laser with a Diffractive Optical Element C.W. Chien and C.W. Cheng* ITRI South Campus, Industrial Technology Research Institute, No. 8, Gongyan

More information

NONTRADITIONAL MANUFACTURING PROCESSES

NONTRADITIONAL MANUFACTURING PROCESSES NONTRADITIONAL MANUFACTURING PROCESSES Lasers & Laser Beam Machining Basic NTM Process Groups: * Thermal NTM Processes - Laser Beam Machining (LBM) - Electron Beam Machining (EBM) - Plasma Arc Machining

More information

Short Length High Gain ASE Fiber Laser at 1.54µm by High Co-doped Erbium and Ytterbium Phosphate Laser Glasses

Short Length High Gain ASE Fiber Laser at 1.54µm by High Co-doped Erbium and Ytterbium Phosphate Laser Glasses Short Length High Gain ASE Fiber Laser at 1.54µm by High Co-doped Erbium and Ytterbium Phosphate Laser Glasses Ruikun Wu, John D. Myers, TaoLue Chen, Michael J. Myers, Christopher R. Hardy, John K. Driver

More information

Single crystal X-ray diffraction. Zsolt Kovács

Single crystal X-ray diffraction. Zsolt Kovács Single crystal X-ray diffraction Zsolt Kovács based on the Hungarian version of the Laue lab description which was written by Levente Balogh, Jenő Gubicza and Lehel Zsoldos INTRODUCTION X-ray diffraction

More information

Production and analysis of optical gratings and nanostructures created by laser based methods

Production and analysis of optical gratings and nanostructures created by laser based methods Summary of the Ph.D. thesis Production and analysis of optical gratings and nanostructures created by laser based methods Kiss Bálint Supervisor: Dr. Vass Csaba Research fellow Doctoral School in Physics

More information

2-D Array Wavelength Demultiplexing by Hybrid Waveguide and Free-Space Optics

2-D Array Wavelength Demultiplexing by Hybrid Waveguide and Free-Space Optics 2-D Array Wavelength Demultiplexing by Hybrid Waveguide and Free-Space Optics Trevor K. Chan, Maxim Abashin and Joseph E. Ford UCSD Jacobs School of Engineering Photonics Systems Integration Lab: PSI-Lab

More information

ABSTRACT 1. INTRODUCTION

ABSTRACT 1. INTRODUCTION 3 kw single stage all-fiber Yb-doped single-mode fiber laser for highly reflective and highly thermal conductive materials processing S. Ikoma, H. K. Nguyen, M. Kashiwagi, K. Uchiyama, K. Shima, and D.

More information

Laser Processing and Characterisation of 3D Diamond Detectors

Laser Processing and Characterisation of 3D Diamond Detectors Laser Processing and Characterisation of 3D Diamond Detectors ADAMAS GSI meeting 3rd Dec 2015 Steven Murphy University of Manchester 3D Diamond Group / RD42 Outline Laser setup for fabricating graphitic

More information

Automation for the manufacturing of fiber Bragg grating arrays enables new applications

Automation for the manufacturing of fiber Bragg grating arrays enables new applications Invited Paper Automation for the manufacturing of fiber Bragg grating arrays enables new applications P. Lefebvre, A. Vincelette, C. Beaulieu, P. Ficocelli * LxSix Photonics Inc., 52 McCaffrey, Montreal,

More information