Novel biopolymer or biobased materials & Nanotechnology

Size: px
Start display at page:

Download "Novel biopolymer or biobased materials & Nanotechnology"

Transcription

1 Novel biopolymer or biobased materials & Nanotechnology Dr. Jeroen J.G. van Soest Ir. G. Schennink Ir. M. van den ever Biopolymer Science & Technology - BU Biobased Products (BbP) A&F BV - formerly AT BV Wageningen University & Research Centre

2 Content - Bullet points Nanocomposite or nanostructured bioplastics Nanoclay, Cellulose & Carbon Nanofibre Processing & nanotechnology material / performance enhancement Properties mechanical, electrical, optical, barrier Structural features micro- & nano-metric

3 courtesy, Biopolymer Technologies AG BIPAR: A successful material development a micro-structured material film out of dispersive blend film out of co-continuous blend

4 Products & NAN - technology Important issues to improve on for biobased materials Properties Water resistance, barrier properties Clarity, optical properties Flow, thermal stability Price/performance (economical feasible) Processing (technical feasible) Additives What can nanotechnology offer? nanocomposite nanoclay nanofibre

5 Biopolymer nanocomposites Possible nanoscale reinforcement materials Equi-axed Carbon black, silica Tubular Cellulose nanofibre Carbon nanofibre Platelet Nanoclay

6 Biopolymer nanocomposites & added value Heat stability Barrier gas, water Mechanical strength, stiffness Nanocla y Cellulos e nanofibr e Carbon nanofibr e Water-solvent sensitivity Biocompatibility Electrical anti-static ESD, EMI conductivity Transparancy & ptics Fire retardancy

7 Starch - nanocomposites Processing How? Film casting Kneading Moulding Extrusion Effect nanofiller source

8 Starch - nanocomposites Analysis How? XRD PM SEM Tensile (stress-strain) WVP Conductivity

9 Starch - clay nanocomposites Nanoclay Natural material Layered structure P.e. montmorillonite thickness 1 nm lateral dimensions nm ~1 nm 200~1000 nm 200~1000 nm

10 Starch - clay nanocomposites intercalated polymer How? layered inorganic partly exfoliated fully exfoliated Thermoplastic polymer composite based on starch containing integrated nanoscopic particle EP (2002) by Berger; Jeromin; pitz; De Vlieger; Fischer -- Applicants: BIP + TN

11 Starch - clay nanocomposites What? Barrier properties TPSmatrix watermolecule TPSmatrix watermolecule conventional composite clay particle clay platelet torturous path in nanocomposite

12 Starch - clay nanocomposites - film casting (XRD) intercalated Na-Clay 6%Clay 15%Clay Starch exfoliated angle (2theta)

13 Clay nanocomposites - film casting (tensile) E-modulus E modulus (GPa) Tensile stress (MPa) Elongation (%) % Clay Elongation & Tensile stress

14 Clay nanocomposites - film casting (WVP) Permeability (g/m.pa.s) Na+ Clay CaC3 0% 5% 10% 15% Na+ Clay / CaC3 (%)

15 Clay nanocomposites: extruded sheets (XRD) exfoliated Montmorillonite Hectorite SE7 Starch angle (2theta)

16 Clay nanocomposites: sheets (tensile) 2.6 E-modulus (GPa) Starch Hectorite Montmorrilonite Tensile stress (0.1xMPa)

17 Clay nanocomposites: sheets (WVP) Permeability Starch Hectorite Montmorrilonite 1 Montmorrilonite 2

18 Nanofiber Bundle courtesy Part 2: Carbon nanofibre composites Advantages CNF: Improvements at low weight percent nanofiller Mechanical & tribological Anti-static Electrical conductivity EMI shielding UV stability Applications: plastics (packaging, panels, medical implants) elastomers for rubbers, tyres, hoses, belts,.. anti-static & base coatings filler for adsorption cement, concrete

19 CNF : vapor grown / CVD Geometry nm µm length 100 x smaller than conventional carbon fibers larger than nanotubes (1-10 nm diameter) Elastic Properties rthotropic Longitudinal modulus up to 600 GPa Transverse properties not well known Single nanofiber, Pyrograph courtesy apsci.com

20 CNF - structure ENF-100 l 100 µm, 100 nm ENF-200 l 100 µm, 200 nm 2 µm 5 µm Courtesy, Electrovac & Gabriel-Chemie Nanocomposites 2004 Brussels

21 CNF - TPS vs. PP composites CNF - PP 1 µm 10 µm 2 µm Courtesy, Carbon Based Matrix Materials by E. Hammel, T. Schmitt, (Electrovac) Werkstoffseminar Frankreich-Österreich

22 Starch CNF composites - conductivity Vol. resistivity (hm.cm) 1E+14 1E+12 1E+10 1E+08 1E PP 200-PP 150-Starch Antistatic 1E+04 1E %CNF Courtesy, PP data from Electrovac & Gabriel-Chemie, Nanocomposites 2004 Brussels

23 Starch CNF composites - Mechanical Modulus (MPa) 300 Stress (MPa) %CNF % CNF Elongation (%) % RH 15 50% RH %CNF

24 Part 3: Cellulose Nano/Micro-Fibre composites Sources (waste) paper, pulp, potato juice, wood, hemp, flax, sisal, kenaf, ramie, straw, cocos, bran Not right morphology, color thermo-mechanical, milling, bleaching, chemistry Processing pulping, extrusion, moulding, compounding Markets automotive packaging, plastics consumer - hygiene products Extrusion Compounding Technology building, construction EP Process and apparatus for continuously manufacturing composites of polymer and cellulosic fibres & US Extruder for continuously manufacturing composites of polymer and cellulosic fibres, Snijder et al

25 Cellulose fibre composites hackling breaking scutching bast fibre bundle technical fibre µm FLAX structure elementary fibre µm meso fibre 0.5 µm micro-nano fibre flax stem 2-3 mm 4-10 nm

26 Cellulose nanofibre composites Why starch? Good adhesion starch to cellulose (micro-) fibre SEM

27 Cellulose nanofibre composites SEM

28 1st results: Cellulose nanofibre composites GPa % 8 E-MD STRAIN STRENGTH MPa STARCH PP Microflax- PP GMT(30%) Nanoflax- STARCH 0 GMT= Glass Fibre Mat Thermoplastic

29 Conclusions Possible to make nanoclay composite starch plastics structure: full exfoliation depends on clay & process mechanical properties: increased stiffness WVP: Up to 50% reduction, <6% clay needed 1st CNF starch composites made structure: homogenous blend mechanical & electrical properties?? Cellulose starch composites prepared structure: homogenous blend exceptional properties --> high E-modulus, strength, elongation

30 Colloidal Particle Technology Looking for new functionalities: no retrogradation low viscosity at high solids colloidal stability in water Shear stress (N/ m 2 ) emulsion X-linking versatile multiple emulsion encapsulation starch non-solvent cheap, easy extrusion latex, cheap, large scale Shear (1/ sec) Reference Starch additive No additive Environmentally friendly biopolymer adhesives, W , Bloembergen (Ecosynthetix), Kappen & Beelen (AT) Biopolymer nanoparticles, EP , Giezen et al (AT)

31 Carbohydrate IPN s Advantages: strength less brittle - flexibility low shrinking, sensitivity to solvents / heat less wearing improved compatibility Comparison of Networks without Starch C.L. (0.5% in water) 25 C XS 10 PAA spindle 27 IPN XS 10 PAA next spindle 21 Viscosity [mpa.s] XS 13 Semi-IPN, no Starch- C.L. spindle 21 Blend XS 10+Paselli (0.25% each) spindle Shear Rate [s-1] Transparent - lucent & strong network Resistant to carbohydrate non-solvent low shrinkage p.e. in EtH

32 Polymer nanofoam & polysaccharides Highly transparent Very light weight Good insulating Solar cell Green house Membraneseparation example of part of a cross linked structure H H H H H H H H H H H - H H H H - H H H - H H - H H - H H H H - H H - sc-c 2 drying 100 nm

33 Conclusions - verall Range of improved novel biopolymer materials sub-micron particles or colloids Interpenetrating networks (IPN) nanofoam BIPLASTICS nanoclay-biopolymer or Inorganic-organic hybrid bioplastics cellulose nanofibre composite CNF composite structural features into nanometric range improved properties still properties can be improved!!!

34 Acknowledgements BIP technologies (starch blends) Electrovac (CNF) EC Sustainpack - IP FP A&F (formerly AT) Sustainable Chemistry & Technology R. Stevens, G. Zietek (nanoclay) Y. Dziechciarek, H. Mulder (microgels) V. Blanchard, K. Ralla, R. Koelewijn, X. Samain, X. Rioche (IPN) J. Timmermans, A. Kunze, R. Koelewijn, R. Blaauw (nanofoam) J. Ritterbex (CNF) Fibre & Paper Technology M. Snijder, M. Junco (cellulose nanofiber)

Biodegradable polymers; Description, properties and advances. Sustainpack SP3 Workshop, Valencia, April 2007 G. Yilmaz

Biodegradable polymers; Description, properties and advances. Sustainpack SP3 Workshop, Valencia, April 2007 G. Yilmaz Biodegradable polymers; Description, properties and advances Sustainpack SP3 Workshop, Valencia, April 2007 G. Yilmaz Contents Definitions Biodegradation Biodegradable polymers Biodegradable plastics Technological

More information

Prof. Alcides Lopes Leäo Biocomposites on the Base of Thermoplastic Starch Filled by Wood and Kenaf Fiber

Prof. Alcides Lopes Leäo Biocomposites on the Base of Thermoplastic Starch Filled by Wood and Kenaf Fiber Prof. Alcides Lopes Leäo Biocomposites on the Base of Thermoplastic Starch Filled by Wood and Kenaf Fiber KEYWORDS: Thermoplastic starch, Mechanical & physical properties, Reinforcements The increasing

More information

Department of Polymer and Fiber Engineering

Department of Polymer and Fiber Engineering Department of Polymer and Fiber Engineering Educational programs 70 undergraduate students 25 graduate students Several post-docs 8 faculty members B.Sc., M.Sc., M.E. and Ph.D. Strong foreign exchange

More information

Maleic Anhydride Polypropylene Modified Cellulose Nanofibril Polypropylene Nanocomposites With Enhanced Impact Strength

Maleic Anhydride Polypropylene Modified Cellulose Nanofibril Polypropylene Nanocomposites With Enhanced Impact Strength Maleic Anhydride Polypropylene Modified Cellulose Nanofibril Polypropylene Nanocomposites With Enhanced Impact Strength Yucheng Peng, 1 Sergio A. Gallegos, 2 Douglas J. Gardner, 3. 4 Yousoo Han, 3. 4 Zhiyong

More information

Lecture No. (7) Rubber Fillers

Lecture No. (7) Rubber Fillers Lecture No. (7) Rubber Fillers Introduction of Rubber Fillers Rubbers in general are seldom used in their only form because of they are too weak to fulfill practical requirements for many applications

More information

MECHANICAL BEHAVIOUR OF THERMOPLASTIC (PES, PBT) CARBON NANOFIBRE COMPOSITES

MECHANICAL BEHAVIOUR OF THERMOPLASTIC (PES, PBT) CARBON NANOFIBRE COMPOSITES MECHANICAL BEHAVIOUR OF THERMOPLASTIC (PES, PBT) CARBON NANOFIBRE COMPOSITES A.Gómez [1,2], B. Ramón [1], A. Torregaray [1], J.R. Sarasua [1] [1] University of the Basque Country (EHU-UPV), Department

More information

I Jornada: Oportunidades de negocio en nanotecnología

I Jornada: Oportunidades de negocio en nanotecnología I Jornada: Oportunidades de negocio en nanotecnología NanoBioTer Maximizing polymer potential through flexible nanotechnology Contents About Us Technology Selected Data Production process and Products

More information

Wageningen UR (University & Research centre)

Wageningen UR (University & Research centre) Wageningen UR (University & Research centre) For quality of life Jan E. G. van Dam Wageningen UR mission To explore the potential of nature to improve the quality of life Three partners Wageningen University

More information

Novel Strategies for the Development of Improved Nanocellulose-based Polymer and Biopolymer Nanocomposites

Novel Strategies for the Development of Improved Nanocellulose-based Polymer and Biopolymer Nanocomposites Novel Strategies for the Development of Improved Nanocellulose-based Polymer and Biopolymer Nanocomposites Novel Materials and Nanotechnology Group IATA, CSIC (Spain) Amparo López Rubio amparo.lopez@iata.csic.es

More information

Progress on Cellulose Nanofiber-filled Thermoplastic Composites

Progress on Cellulose Nanofiber-filled Thermoplastic Composites Progress on Cellulose Nanofiber-filled Thermoplastic Composites Douglas J. Gardner, Yousoo Han, Alper Kiziltas, and Yucheng Peng University of Maine Advanced Structures and Composites Center Orono, Maine

More information

Improvement in the mechanical properties of light curing epoxy resin with micro-fibrillated cellulose

Improvement in the mechanical properties of light curing epoxy resin with micro-fibrillated cellulose Natural Filler and Fibre Composites: Development and Characterisation 95 Improvement in the mechanical properties of light curing epoxy resin with micro-fibrillated cellulose Y. Ohnishi, T. Fujii & K.

More information

Development of Biomaterials & Devices from Renewable Resources

Development of Biomaterials & Devices from Renewable Resources Development of Biomaterials & Devices from Renewable Resources Prof. Dr. Marie-Pierre Laborie Dr. ir. Pieter Samyn Institute for Forest Utilization and Works Science Werthmannstrasse 6 79085 Freiburg im

More information

Mechanical performance of bacterial cellulose nanofibre-reinforced epoxy composites

Mechanical performance of bacterial cellulose nanofibre-reinforced epoxy composites High Performance Structure and Materials VI 379 Mechanical performance of bacterial cellulose nanofibre-reinforced epoxy composites H. Takagi1, A. N. Nakagaito1 & K. Uchida2 1 2 Institute of Technology

More information

Progress on cellulose nanofiberfilled thermoplastic composites

Progress on cellulose nanofiberfilled thermoplastic composites Progress on cellulose nanofiberfilled thermoplastic composites Douglas J. Gardner, Yousoo Han, Alper Kiziltas, and Yucheng Peng Session 5: The role of nanotechnology in green materials and sustainable

More information

Mechanical and Tribological Properties of Epoxy Nanocomposites

Mechanical and Tribological Properties of Epoxy Nanocomposites Chapter 7 Mechanical and Tribological Properties of Epoxy Nanocomposites 7.1 Introduction This chapter discusses the mechanical and tribological properties of silicon dioxide (SiO 2 ) and alumina (Al 2

More information

Press-meeting: May 28, 2009

Press-meeting: May 28, 2009 Innovation insightful ideas successfully to the market Press-meeting: May 28, 2009 o Requirements on the Cellulose Fibres from the Composite Industry Prof. Laboratory of Polymer and Composite Technology

More information

Improvement in the mechanical properties of light curing epoxy resin with MFC (Micro-Fibrillated Cellulose)

Improvement in the mechanical properties of light curing epoxy resin with MFC (Micro-Fibrillated Cellulose) High Performance Structures and Materials IV 139 Improvement in the mechanical properties of light curing epoxy resin with MFC (Micro-Fibrillated Cellulose) Y. Ohnishi 1, T. Fujii 2 & K. Okubo 2 1 Graduate

More information

AMI - PolymerFoam October 9 th Dr. Chris DeArmitt - CTO

AMI - PolymerFoam October 9 th Dr. Chris DeArmitt - CTO DRAGONITE Halloysite for reinforcement and processing improvement in polymer foams AMI - PolymerFoam2012 - October 9 th Dr. Chris DeArmitt - CTO! The$statements$above$are$believed$to$be$accurate$and$reliable,$but$are$presented$without$guarantee,$warranty$or$responsibility$of$any$kind,$expressed$or$

More information

Cellulosic Nanofibre Composites

Cellulosic Nanofibre Composites Cellulosic Nanofibre Composites M.J.A. van den Oever, G. Perez Sanchez, G. Yilmaz Wageningen UR A&F bv, PO Box 17, 67 AA Wageningen, The Netherlands E-mail: martien.vandenoever@wur.nl Tel.: +31 317 4815

More information

Overview. Research area Most recent projects highlights. Dr. Elaheh Ghassemieh Mechanical Engineering Department University of Sheffield

Overview. Research area Most recent projects highlights. Dr. Elaheh Ghassemieh Mechanical Engineering Department University of Sheffield Overview Research area Most recent projects highlights Dr. Elaheh Ghassemieh Mechanical Engineering Department University of Sheffield Research areas Nonwovens Novel materials and their processes Bio-composites

More information

Fiber spinning of biopolymers containing nanowhiskers : Possibilities and challenges

Fiber spinning of biopolymers containing nanowhiskers : Possibilities and challenges Fiber spinning of biopolymers containing nanowhiskers : Possibilities and challenges Aji P. Mathew and Kristiina Oksman Wood and Bionanocomposites, Division of Materials Science Luleå University of Technology,

More information

Composite Solutions for the Automotive Industry

Composite Solutions for the Automotive Industry Composite Solutions for the Automotive Industry 2 COMPOSITE SOLUTIONS FOR THE AUTOMOTIVE INDUSTRY Reduce weight. Reduce costs. Increase quality. Henkel offers composite solutions for the automotive industry.

More information

AC : DEVELOPMENT OF A LABORATORY MODULE IN HY- BRID BIODEGRADABLE CORNSTARCH MATERIALS

AC : DEVELOPMENT OF A LABORATORY MODULE IN HY- BRID BIODEGRADABLE CORNSTARCH MATERIALS AC 2011-447: DEVELOPMENT OF A LABORATORY MODULE IN HY- BRID BIODEGRADABLE CORNSTARCH MATERIALS Spencer Seung-hyun Kim, Rochester Institute of Technology (RIT) Dr. Spencer Seung-hyun Kim is Associate Professor

More information

NMS Programme Formulation and Roadmaps

NMS Programme Formulation and Roadmaps NMS Programme Formulation and Roadmaps Polymeric Materials IAG Wednesday 12 March 2008 Roadmaps: Why we need them, what they will be used for and how we move forward Martin Rides, Bill Nimmo Rolling formulation

More information

Biodegradable biorenewable polymeric nanocomposites for food packaging applications. Tarek M. Madkour Professor of Polymer Chemistry

Biodegradable biorenewable polymeric nanocomposites for food packaging applications. Tarek M. Madkour Professor of Polymer Chemistry The American University in Cairo Department of Chemistry Biodegradable biorenewable polymeric nanocomposites for food packaging applications By: Tarek M. Madkour Professor of Polymer Chemistry The Current

More information

ELECTROSPUN EVOH FIBRES REINFORCED WITH BACTERIAL CELLULOSE NANOWHISKERS WITH POTENTIAL IN FOOD PACKAGING APPLICATIONS

ELECTROSPUN EVOH FIBRES REINFORCED WITH BACTERIAL CELLULOSE NANOWHISKERS WITH POTENTIAL IN FOOD PACKAGING APPLICATIONS ELECTROSPUN EVOH FIBRES REINFORCED WITH BACTERIAL CELLULOSE NANOWHISKERS WITH POTENTIAL IN FOOD PACKAGING APPLICATIONS Novel Materials and Nanotechnology Group Marta Martínez-Sanz Richard T. Olsson Amparo

More information

Post-harvest fibre processing and use. Jan E.G. van Dam

Post-harvest fibre processing and use. Jan E.G. van Dam Post-harvest fibre processing and use Jan E.G. van Dam 24-07-2013 Fibre crops post-harvest and use Background Fibre crops Fibre sources Fibre quality Fibre processing Fibre markets Textiles to nano-cellulose

More information

The effect of Nano-fibrillated cellulose on the mechanical properties of polymer films.

The effect of Nano-fibrillated cellulose on the mechanical properties of polymer films. The effect of Nano-fibrillated cellulose on the mechanical properties of polymer films. Gerard Gagnon, Rikard Rigdal, Jake Schual-Berke, Mike Bilodeau and Douglas W. Bousfield Department of Chemical and

More information

DMA Analysis of PVAc Latex Reinforced with Cellulose Nanofibrils

DMA Analysis of PVAc Latex Reinforced with Cellulose Nanofibrils DMA Analysis of PVAc Latex Reinforced with Cellulose Nanofibrils Francisco López-Suevos, Nico Bordeanu & Christian Eyholzer Wood Laboratory Swiss Federal Laboratories for Materials Testing and Research

More information

Commercialization of Dry Re-dispersible CNF at Sappi - Challenges and Opportunities. Math Jennekens Sappi Europe Director R&D PEFC- 2 november 2017

Commercialization of Dry Re-dispersible CNF at Sappi - Challenges and Opportunities. Math Jennekens Sappi Europe Director R&D PEFC- 2 november 2017 Commercialization of Dry Re-dispersible CNF at Sappi - Challenges and Opportunities Math Jennekens Sappi Europe Director R&D PEFC- 2 november 2017 Sappi at a glance We produce and deliver specialised cellulose,

More information

DEVELOPMENT OF BASALT FIBRE AND MONTMORILLONITE NANOPARTICLE CO-REINFORCED POLY(LACTIC-ACID) MATRIX HYBRID COMPOSITES

DEVELOPMENT OF BASALT FIBRE AND MONTMORILLONITE NANOPARTICLE CO-REINFORCED POLY(LACTIC-ACID) MATRIX HYBRID COMPOSITES DEVELOPMENT OF BASALT FIBRE AND MONTMORILLONITE NANOPARTICLE CO-REINFORCED POLY(LACTIC-ACID) MATRIX HYBRID COMPOSITES MÉSZÁROS László 1,2, GONDA Bence 1 1 Department of Polymer Engineering, Faculty of

More information

M. Oishi et al. Nano Studies, 2015, 11, DEVELOPMENT OF THERMOPLASTIC STARCH NANOCOMPOSITES FOR WET CONDITIONS

M. Oishi et al. Nano Studies, 2015, 11, DEVELOPMENT OF THERMOPLASTIC STARCH NANOCOMPOSITES FOR WET CONDITIONS M. Oishi et al. Nano Studies, 2015, 11, 69-74. DEVELOPMENT OF THERMOPLASTIC STARCH NANOCOMPOSITES FOR WET CONDITIONS M. Oishi 1, 2, Ch. Dal Castel 1, R. Park 1, B. Wolff 1, 3, L. Simon 1 1 University of

More information

CREEP AND IMPACT PROPERTIES OF PA6 WITH MONTMORILLONITE AND HALLOYISITE NANOPARTICLES. Robert VÁLEK a, Jaroslav HELL a

CREEP AND IMPACT PROPERTIES OF PA6 WITH MONTMORILLONITE AND HALLOYISITE NANOPARTICLES. Robert VÁLEK a, Jaroslav HELL a CREEP AND IMPACT PRPERTIES F PA6 WITH MNTMRILLNITE AND HALLYISITE NANPARTICLES Robert VÁLEK a, Jaroslav HELL a a SVÚM, a. s., Podnikatelská 565, 190 11 Praha 9 - Běchovice, Czech Republic, valek@svum.cz

More information

CHAPTER 7: POLYMER BLENDS AND COMPOSITES

CHAPTER 7: POLYMER BLENDS AND COMPOSITES CHAPTER 7: POLYMER BLENDS AND COMPOSITES Polymer Science and Technology II November 18, 2015 The major problem in the application of polymers in engineering is their low stiffness and strength. When compared

More information

Carbon Nanofiber Composites: From Innovative R&D to Commercial Reality. Carla L. Lake, PhD Applied Sciences Inc 141 W. Xenia Ave Cedarville, Ohio

Carbon Nanofiber Composites: From Innovative R&D to Commercial Reality. Carla L. Lake, PhD Applied Sciences Inc 141 W. Xenia Ave Cedarville, Ohio Carbon Nanofiber Composites: From Innovative R&D to Commercial Reality Carla L. Lake, PhD Applied Sciences Inc 141 W. Xenia Ave Cedarville, Ohio Outline Carbon / Nano carbon Carbon Nanofibers Carbon Nanofibers

More information

MECHANICAL, PHYSICAL, AND WEAR PROPERTIES OF POLYPROPYLENE REINFORCED SHORT CARBON FIBER COMPOSITES WITH DIFFERENT FIBER LENGTH

MECHANICAL, PHYSICAL, AND WEAR PROPERTIES OF POLYPROPYLENE REINFORCED SHORT CARBON FIBER COMPOSITES WITH DIFFERENT FIBER LENGTH MECHANICAL, PHYSICAL, AND WEAR PROPERTIES OF POLYPROPYLENE REINFORCED SHORT CARBON FIBER COMPOSITES WITH DIFFERENT FIBER LENGTH Harri Junaidi 1, Abdulrahman Alfawzan 1, Sattam Aloraini 1, Turki Almutairi

More information

Optinyl COP2342. Optinyl COP2342 is a granulate developed for compounders to improve processing and properties of bioplastics.

Optinyl COP2342. Optinyl COP2342 is a granulate developed for compounders to improve processing and properties of bioplastics. is a granulate developed for compounders to improve processing and properties of bioplastics. is a biodegradable granulate based on vinyl and lactic acid homo- and/or copolymers. Version 01 / Date 07-07-2013

More information

MECHANICAL PROPERTIES AND ENERGY ABSORPTION BEHAVIOUR OF POLYMER-NANOCOMPOSITES

MECHANICAL PROPERTIES AND ENERGY ABSORPTION BEHAVIOUR OF POLYMER-NANOCOMPOSITES THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS MECHANICAL PROPERTIES AND ENERGY ABSORPTION BEHAVIOUR OF POLYMER-NANOCOMPOSITES L. Gendre 1,2, S. Sachse 1, J. Zhu, J. Njuguna 1 * 1 Centre for

More information

EXPERIMENTAL STUDY OF EXTRUSION AND SURFACE TREATMENT OF ORGANO CLAY WITH PET NANOCOMPOSITES

EXPERIMENTAL STUDY OF EXTRUSION AND SURFACE TREATMENT OF ORGANO CLAY WITH PET NANOCOMPOSITES EXPERIMENTAL STUDY OF EXTRUSION AND SURFACE TREATMENT OF ORGANO CLAY WITH PET NANOCOMPOSITES Karnik Tarverdi, Somchoke Sontikaew, Peter Allan Wolfson Centre for Materials Processing, School of Engineering

More information

Micro/nano Carbon Materials and Their Reinforced Composites

Micro/nano Carbon Materials and Their Reinforced Composites Micro/nano Carbon Materials and Their Reinforced Composites Xiaodong (Chris) Li University of Virginia XL3P@virginia.edu Epoxy- SWCNT nanocomposites X. D. Li et al., Nanotechnology, 15 (2004) 1416-1423

More information

Water-based Modification of Cellulose Nano Fibrils for Packaging Applications. Kendra Fein Doug Bousfield William Gramlich

Water-based Modification of Cellulose Nano Fibrils for Packaging Applications. Kendra Fein Doug Bousfield William Gramlich Water-based Modification of Cellulose Nano Fibrils for Packaging Applications Kendra Fein Doug Bousfield William Gramlich 1 Motivation Environmental Plastic Microplastics in oceans centuries to degrade

More information

Conductive Classification & Testing

Conductive Classification & Testing THERM0PLASTIC ELASTOMERS STRUCTURAL WEAR CONDUCTIVE COLOR FLAME RETARDANT Conductive & EMI Thermoplastic Technologies Conductive Classification & Testing Overview of Conductive Modifiers EMI Shielding

More information

engineering plastics Intelligent Solutions for Extrusion

engineering plastics Intelligent Solutions for Extrusion engineering plastics Intelligent Solutions for Extrusion High Performance Extrusion Solutions from eurotec High Performance Extrusion Solutions from eurotec eurotec is an independent compounder of engineering

More information

PROCESS FOR MANUFACTURING A HIGH PERFORMANCE NATURAL FIBER COMPOSITE BY SHEET MOLDING

PROCESS FOR MANUFACTURING A HIGH PERFORMANCE NATURAL FIBER COMPOSITE BY SHEET MOLDING PROCESS FOR MANUFACTURING A HIGH PERFORMANCE NATURAL FIBER COMPOSITE BY SHEET MOLDING T.Behzad and M. Sain a Centre for Biocomposites and Biomaterials Processing and Department of Chemical Engineering

More information

Automotive: Applications, Processes and products -- Fiberglass for PA Reinforcement. Dr. Heinz Zhang. Product R&D Center

Automotive: Applications, Processes and products -- Fiberglass for PA Reinforcement. Dr. Heinz Zhang. Product R&D Center Automotive: Applications, Processes and products -- Fiberglass for PA Reinforcement Dr. Heinz Zhang Product R&D Center Overview 1 Fiberglass Reinforced Thermoplastic Composites 2 PA & Fiberglass Reinforced

More information

Optinyl CPR2342. Optinyl CPR2342 is a granulate developed for improving the properties & processing of biobased & biodegradable products.

Optinyl CPR2342. Optinyl CPR2342 is a granulate developed for improving the properties & processing of biobased & biodegradable products. is a granulate developed for improving the properties & processing of biobased & biodegradable products. is a biodegradable granulate based on vinyl and lactic acid homo- and/or copolymers. Version 01

More information

WHITE BIOTECHNOLOGY CELLS FOR MATERIALS AND MATERIALS FOR CELLS

WHITE BIOTECHNOLOGY CELLS FOR MATERIALS AND MATERIALS FOR CELLS WHITE BIOTECHNOLOGY CELLS FOR MATERIALS AND MATERIALS FOR CELLS WHITE BIOTECHNOLOGY CELLS FOR MATERIALS AND MATERIALS FOR CELLS Design by ex nihilo APPLICATIONS Durable and profitable products and processes

More information

Is Super 5 Rayon possible? Dr. Axel Rußler, DI Bernhard Müller R&D Glanzstoff Industries

Is Super 5 Rayon possible? Dr. Axel Rußler, DI Bernhard Müller R&D Glanzstoff Industries Is Super 5 Rayon possible? Dr. Axel Rußler, DI Bernhard Müller R&D Glanzstoff Industries 10.09.2014 Overview Glanzstoff Industries High Tech Cellulose The Glanzstoff Approach Glanzstoff at a Glance Tire

More information

Grafted α-cellulose-poly(hydroxybutyrate-co-hydroxyvalerate) Biocomposites. Liqing Wei and Armando G. McDonald Renewable Materials Program June 2015

Grafted α-cellulose-poly(hydroxybutyrate-co-hydroxyvalerate) Biocomposites. Liqing Wei and Armando G. McDonald Renewable Materials Program June 2015 Grafted α-cellulose-poly(hydroxybutyrate-co-hydroxyvalerate) Biocomposites Liqing Wei and Armando G. McDonald Renewable Materials Program June 2015 1.1 Why Use Bioplastics Issues with Conventional Plastic

More information

BIO-BASED BASED NANOCOMPOSITES: CHALLENGES AND OPPORTUNITIES. John Simonsen Department of Wood Science & Engineering Oregon State University

BIO-BASED BASED NANOCOMPOSITES: CHALLENGES AND OPPORTUNITIES. John Simonsen Department of Wood Science & Engineering Oregon State University BIO-BASED BASED NANOCOMPOSITES: CHALLENGES AND OPPORTUNITIES John Simonsen Department of Wood Science & Engineering Oregon State University Outline What is the difference between composites and nanocomposites?

More information

Fully Bio-Based Thermoplastic Lignin Composites

Fully Bio-Based Thermoplastic Lignin Composites Fully Bio-Based Thermoplastic Lignin Composites 22.5.2013 Biomaterials - Towards Industrial Applications Kalle Nättinen, Antti Ojala, Lisa Wikström, VTT Technical Research Centre of Finland 2 Content VTT

More information

SOLUTION IMPREGNATION OF NATURAL FIBRES/ABS MATRIX COMPOSITES

SOLUTION IMPREGNATION OF NATURAL FIBRES/ABS MATRIX COMPOSITES SOLUTION IMPREGNATION OF NATURAL FIBRES/ABS MATRIX COMPOSITES M. Durante, C. Leone, M. Ussorio, I. Crivelli Visconti 1 Department of Materials and Production Engineering, University of Naples "Federico

More information

Effect of Processing on the Mechanical and Electrical Properties of Exfoliated Nano-Graphite Reinforced Polypropylene

Effect of Processing on the Mechanical and Electrical Properties of Exfoliated Nano-Graphite Reinforced Polypropylene Effect of Processing on the Mechanical and Electrical Properties of Exfoliated Nano-Graphite Reinforced Polypropylene Kyriaki Kalaitzidou, Hiroyuki Fukushima and Lawrence T. Drzal Department of Chemical

More information

β Silicon Carbide Coated MWCNTs Reinforced Polyetherimide Nanocomposites

β Silicon Carbide Coated MWCNTs Reinforced Polyetherimide Nanocomposites β Silicon Carbide Coated MWCNTs Reinforced Polyetherimide Nanocomposites β Silicon Carbide Coated MWCNTs Reinforced Polyetherimide Nanocomposites Nitin Nagar, K.N. Pandey *, Pratibha Singh, Vishal Verma,

More information

COST-EFFECTIVE CORROSION BARRIERS. The technology of nanoclay polymer composites is currently generating

COST-EFFECTIVE CORROSION BARRIERS. The technology of nanoclay polymer composites is currently generating 28 Source: chernikovatv - Fotolia.com COST-EFFECTIVE CORROSION BARRIERS Novel epoxy nanoclay composites keep costs down whilst improving performance. By Samuel Kenig, Shenkar College of Engineering and

More information

rhdpe/wood Fiber Composites: Effect of Maleic Anhydride on Tensile Properties and Morphology Analysis

rhdpe/wood Fiber Composites: Effect of Maleic Anhydride on Tensile Properties and Morphology Analysis rhdpe/wood Fiber Composites: Effect of Maleic Anhydride on Tensile Properties and Morphology Analysis M. P. M. Hanif *,1,a, A. G. Supri 2,b and F. Zainuddin 2,c 1 School of Materials Engineering, Universiti

More information

Mechanical isolation of cellulose nanofibers and their utilisation in novel nanocomposites for medical applications

Mechanical isolation of cellulose nanofibers and their utilisation in novel nanocomposites for medical applications Mechanical isolation of cellulose nanofibers and their utilisation in novel nanocomposites for medical applications Aji P. Mathew and Kristiina Oksman Niska Division of Manufacturing and Design of Wood

More information

Av. Copacabana, 100 Campus de Sapucaia do Sul, RS , Brasil. University of Minho, Campus of Azurém Guimarães, Portugal

Av. Copacabana, 100 Campus de Sapucaia do Sul, RS , Brasil. University of Minho, Campus of Azurém Guimarães, Portugal Materials Science Forum Vols. 730-732 (2013) pp 969-974 (2013) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/msf.730-732.969 Assessment of the Shrinkage and Ejection Forces of Reinforced

More information

DRAGONITE. Halloysite: Reinforcing halogen free fire retardant for plastics from PE to PEEK

DRAGONITE. Halloysite: Reinforcing halogen free fire retardant for plastics from PE to PEEK DRAGONITE Halloysite: Reinforcing halogen free fire retardant for plastics from PE to PEEK AMI Fire Retardants in Plastics Denver Colorado June 14 th 2012 The statements above are believed to be accurate

More information

Polymer/Clay. Nanocomposites for Paper Barrier Coating

Polymer/Clay. Nanocomposites for Paper Barrier Coating Polymer/Clay 2006 International Conference on Nanotechnology, April 26-28, 2006 Atlanta, GA Nanocomposites for Paper Barrier Coating Presented by: Qunhui Sun and Yulin Deng School of Chemical and Biomolecular

More information

ADHESION ADDITIVE INFLUENCE ON PA6 NANO POLYMER COMPOSITES PROPERTIES. Jiří HABR, Petr LENFELD, Jiří BOBEK, Luboš BĚHÁLEK

ADHESION ADDITIVE INFLUENCE ON PA6 NANO POLYMER COMPOSITES PROPERTIES. Jiří HABR, Petr LENFELD, Jiří BOBEK, Luboš BĚHÁLEK ADHESION ADDITIVE INFLUENCE ON PA6 NANO POLYMER COMPOSITES PROPERTIES Jiří HABR, Petr LENFELD, Jiří BOBEK, Luboš BĚHÁLEK Technical University of Liberec, Liberec, Czech Republic, EU jiri.habr@tul.cz, petr.lenfeld@tul.cz,

More information

Effect of processing conditions on mechanical and barrier properties of PLA/Clay nanocomposites

Effect of processing conditions on mechanical and barrier properties of PLA/Clay nanocomposites Effect of processing conditions on mechanical and barrier properties of PLA/Clay nanocomposites Yoji NAKADE a*, Tatsuya TANAKA b, Yoshihiko ARAO b a Graduate school of Doshisha University b Depertment

More information

BIO-BASED NANOCOMPOSITES: CHALLENGES AND OPPORTUNITIES. John Simonsen Department of Wood Science & Engineering Oregon State University

BIO-BASED NANOCOMPOSITES: CHALLENGES AND OPPORTUNITIES. John Simonsen Department of Wood Science & Engineering Oregon State University BIO-BASED NANOCOMPOSITES: CHALLENGES AND OPPORTUNITIES John Simonsen Department of Wood Science & Engineering Oregon State University Outline What is the difference between composites and nanocomposites?

More information

Heat transfer analyses of natural fibre composites

Heat transfer analyses of natural fibre composites Natural Filler and Fibre Composites: Development and Characterisation 217 Heat transfer analyses of natural fibre composites H. Takagi 1, A. N. Nakagaito 1 & K. Liu 2 1 University of Tokushima, Japan 2

More information

ELECTRO CONDUCTIVE THERMOPLASTICS FOR EMI SHIELDING AND STATIC CONTROL

ELECTRO CONDUCTIVE THERMOPLASTICS FOR EMI SHIELDING AND STATIC CONTROL ELECTRO CONDUCTIVE THERMOPLASTICS FOR EMI SHIELDING AND STATIC CONTROL Introduction to Conductive Thermoplastics TBA Protective Solutions supplies a wide range of polymers modified with a variety of conductive

More information

Developments in Recycled Carbon Fiber for High Volume Manufacturing. JEC Forum International Conference on Automotive Technology Knoxville, 2016

Developments in Recycled Carbon Fiber for High Volume Manufacturing. JEC Forum International Conference on Automotive Technology Knoxville, 2016 Developments in Recycled Carbon Fiber for High Volume Manufacturing JEC Forum International Conference on Automotive Technology Knoxville, 2016 Overview of ELG Carbon Fibre Established in 2011 when ELG

More information

CARBOXYMETHYL CELLULOSE NANOCOMPOSITES

CARBOXYMETHYL CELLULOSE NANOCOMPOSITES CARBOXYMETHYL CELLULOSE NANOCOMPOSITES YongJae Choi Department of Chemical Engineering and John Simonsen Department of Wood Science & Engineering Oregon State University Outline I. Introduction II. Materials

More information

IJSRD - International Journal for Scientific Research & Development Vol. 1, Issue 8, 2013 ISSN (online):

IJSRD - International Journal for Scientific Research & Development Vol. 1, Issue 8, 2013 ISSN (online): IJSRD - International Journal for Scientific Research & Development Vol., Issue 8, ISSN (online): -6 Alginate composite preparation with Nano clay and enhancing its properties M. Divyabharathi B. E. Student

More information

2011 ACCE. C. H. Choi. Research & Development Division

2011 ACCE. C. H. Choi. Research & Development Division 2011 ACCE C. H. Choi Hyundai Kia Motors Research & Development Division Contents 1. Introduction 2. Applications of Thermoplastic Composites High Flow TPO Long Glass Fiber Reinforced PP Glass Microsphere

More information

Cellulose Nanofibers from Wheat Straw NDSU Bernie Steele October 12, 2007

Cellulose Nanofibers from Wheat Straw NDSU Bernie Steele October 12, 2007 1 Cellulose Nanofibers from Wheat Straw NDSU Bernie Steele October 12, 2007 Cellulose Nanofibers from Wheat Straw for High-value Green Nanocomposite Materials Applications 2 Outline Why cellulose nanofibers?

More information

THE RELATION BETWEEN BAMBOO FIBRE MICROSTRUCTURE AND MECHANICAL PROPERTIES. Lina Osorio. Promotors: Dr. Aart Van Vuure Prof.

THE RELATION BETWEEN BAMBOO FIBRE MICROSTRUCTURE AND MECHANICAL PROPERTIES. Lina Osorio. Promotors: Dr. Aart Van Vuure Prof. THE RELATION BETWEEN BAMBOO FIBRE MICROSTRUCTURE AND MECHANICAL PROPERTIES Lina Osorio 9 th World Bamboo Congress Antwerp, Belgium 11 th April 2012 Promotors: Dr. Aart Van Vuure Prof. Ignaas Verpoest Motivation

More information

HIERARCHICAL COMPOSITES COMBINING NANOSCALE REINFORCEMENTS WITH CONVENTIONAL FIBRES

HIERARCHICAL COMPOSITES COMBINING NANOSCALE REINFORCEMENTS WITH CONVENTIONAL FIBRES HIERARCHICAL COMPOSITES COMBINING NANOSCALE REINFORCEMENTS WITH CONVENTIONAL FIBRES M Shaffer, H Qian, A Menner, J Juntaro, S Mantalaris, E Greenhalgh, A Bismarck Imperial College London South Kensington

More information

COMPOUNDING AND SPINNING OF POLYPROPYLENE NANOCOMPOSITES WITH KAOLINITE

COMPOUNDING AND SPINNING OF POLYPROPYLENE NANOCOMPOSITES WITH KAOLINITE COMPOUNDING AND SPINNING OF POLYPROPYLENE NANOCOMPOSITES WITH KAOLINITE I. Dabrowska a, L. Fambri a, M. Batistella b, J.-M. Lopez-Cuesta b a Department of Industrial Engineering, University of Trento,

More information

Structure and Analysis of Natural Nano Silicate Layers Based on (RM-K) Fracture Theory

Structure and Analysis of Natural Nano Silicate Layers Based on (RM-K) Fracture Theory Transactions of JWRI, Vol.38 (9), No. Structure and Analysis of Natural Nano Silicate Layers Based on (RM-K) Fracture Theory EL-SHEIKHY Refat*, AL-SHAMRANI Mosleh* and KOBAYASHI Akira** Abstract Current

More information

Technological aspects of Encapsulation via Melt Extrusion Technology

Technological aspects of Encapsulation via Melt Extrusion Technology Technological aspects of Encapsulation via Melt Extrusion Technology ChemSource Symposium 27-28 June Amsterdam Gülden Yılmaz, WUR, Biobased Products Encapsulation Encapsulation is a commonly applied technology

More information

Poly (lactic acid) organoclay nano composites for paper coating applications

Poly (lactic acid) organoclay nano composites for paper coating applications Songklanakarin J. Sci. Technol. 36 (5), 535-540, Sep. - Oct. 2014 http://www.sjst.psu.ac.th Original Article Poly (lactic acid) organoclay nano composites for paper coating applications Tatcha Sonjui 1

More information

The Influence of the Extrusion Temperature on the Mechanical Properties of MMT Filled PA 6 Composite

The Influence of the Extrusion Temperature on the Mechanical Properties of MMT Filled PA 6 Composite The Influence of the Extrusion Temperature on the Mechanical Properties of MMT Filled PA 6 Composite The Influence of the Extrusion Temperature on the Mechanical Properties of MMT Filled PA 6 Composite

More information

Effects of Processing on Natural Fibres in Thermoplastic Composites

Effects of Processing on Natural Fibres in Thermoplastic Composites 1 Effects of Processing on Natural Fibres in Thermoplastic Composites Kalle Nättinen, Heidi Peltola, VTT Technical Research Centre of Finland Bo Madsen, Danish Technical University/Risoe Roberts Joffe,

More information

Global overview of bio-nano composite technology

Global overview of bio-nano composite technology Global overview of bio-nano composite technology Mohini Sain Director of Centre for Biocomposites and Biomaterials Processing University of Toronto OECD Nanocellulose Workshop, July 16th, 2009 Outlines

More information

GRAPHENE NANOPLATELETS REINFORCED BIOBASED POLYAMIDE COMPOSITES

GRAPHENE NANOPLATELETS REINFORCED BIOBASED POLYAMIDE COMPOSITES GRAPHENE NANOPLATELETS REINFORCED BIOBASED POLYAMIDE COMPOSITES * Alper Kiziltas, Jennifer Zhu, Dan Frantz, William Paxton, Hiroko Ohtani, Kevin Ellwood and Debbie Mielewski * Research Scientist, Sustainable

More information

IN-SITU POLYMERIZATION OF REINFORCED THERMOPLASTICS

IN-SITU POLYMERIZATION OF REINFORCED THERMOPLASTICS IN-SITU POLYMERIZATION OF REINFORCED THERMOPLASTICS Jim Mihalich Cyclics Corp Abstract Most reinforced thermoplastics are produced from fully polymerized resins which are then introduced to the reinforcement

More information

Influence of Angle Ply Orientation on Tensile Properties of Carbon/Glass Hybrid Composite

Influence of Angle Ply Orientation on Tensile Properties of Carbon/Glass Hybrid Composite Journal of Minerals and Materials Characterization and Engineering, 2013, 1, 231-235 http://dx.doi.org/10.4236/jmmce.2013.15036 Published Online September 2013 (http://www.scirp.org/journal/jmmce) Influence

More information

MECHANICAL PROPERTIES OF SISAL/GLASS FIBER REINFORCED HYBRID COMPOSITES: A REVIEW

MECHANICAL PROPERTIES OF SISAL/GLASS FIBER REINFORCED HYBRID COMPOSITES: A REVIEW MECHANICAL PROPERTIES OF SISAL/GLASS FIBER REINFORCED HYBRID COMPOSITES: A REVIEW 1 *Govind Pathak, 2 Om Prakash Dubey, 3 Prafful Kumar Manoharan. 1 AISECT University, Bhopal-Chiklod Road, Raisen, M. P.

More information

Forming of the dermis structure with using of mineral compositions based on zeolite and montmorillonite for shoe leather

Forming of the dermis structure with using of mineral compositions based on zeolite and montmorillonite for shoe leather 2 nd International Conference Science for Business: Innovation for textiles, polymers and leather Forming of the dermis structure with using of mineral compositions based on zeolite and montmorillonite

More information

P. Pereira, C. N. Barbosa, J. C. Viana. University of Minho, Portugal

P. Pereira, C. N. Barbosa, J. C. Viana. University of Minho, Portugal P. Pereira, C. N. Barbosa, J. C. Viana University of Minho, Portugal » University of Minho Guimarães, Portugal 26 October 211 » Aims INTERREG EUROPEANPROJECT PROJECT : TECNA» To promote the uses of polymer

More information

LATEST on PVC NANOCOMPOSITES & COMPOSITES

LATEST on PVC NANOCOMPOSITES & COMPOSITES LATEST on VC NANOCOMOSITES & COMOSITES World Vinyl Forum III Boston, September 26-28, 2007 Dr. James W. Summers 3Consultants, Inc. VC NANOCOMOSITES VC compounds containing fillers of nanometer size, practically

More information

Effect of multiple cellulose whiskers on mechanical and barrier properties of polymer films

Effect of multiple cellulose whiskers on mechanical and barrier properties of polymer films Effect of multiple cellulose whiskers on mechanical and barrier properties of polymer films Tangi SENECHAL, Ludovic PERRIN, Alain DUFRESNE, Julien BRAS LGP2 Grenoble MATBIM2010 March 5th 1 Laboratory of

More information

New nanocomposite concept based on crosslinking of hyperbranched polymers in cellulose nanopaper templates

New nanocomposite concept based on crosslinking of hyperbranched polymers in cellulose nanopaper templates New nanocomposite concept based on crosslinking of hyperbranched polymers in cellulose nanopaper templates Marielle Henriksson, Linda Fogelström, Lars A. Berglund, Mats Johansson, Anders Hult Fibre and

More information

New Paper/Board Composites GT Project Staff: Principal Investigator: Art Ragauskas PROGRAM OBJECTIVE:

New Paper/Board Composites GT Project Staff: Principal Investigator: Art Ragauskas PROGRAM OBJECTIVE: New Paper/Board Composites GT Project Staff: Principal Investigator: Art Ragauskas PROGRAM OBJECTIVE: The objective of New Paper/Board composites program is to utilize recent advances in hydrophobic bonding

More information

HIGH VALUE-ADDED CHEMICALS AND BIORESINS FROM ALGAE BIOREFINERIES

HIGH VALUE-ADDED CHEMICALS AND BIORESINS FROM ALGAE BIOREFINERIES HIGH VALUE-ADDED CHEMICALS AND BIORESINS FROM ALGAE BIOREFINERIES Ana Palanca R&D DEPARTMENT AIMPLAS apalanca@aimplas.es FOLOW @aimplas Content About AIMPLAS Presentation BISIGODOS Project About AIMPLAS

More information

DTI funded collaborative research opportunity : Studio projects e.g. Polymer nano-composites

DTI funded collaborative research opportunity : Studio projects e.g. Polymer nano-composites Presentation to 2 nd IAG DTI funded collaborative research opportunity : Studio projects e.g. Polymer nano-composites Sekhar Chakravorty Date: 19 March 2003 Studio projects The Studios are NPL / Industry

More information

TERPOLYMER ETHYLENE VINYL ACETATE MALEIC ANHYDRIDE

TERPOLYMER ETHYLENE VINYL ACETATE MALEIC ANHYDRIDE TERPOLYMER ETHYLENE VINYL ACETATE MALEIC ANHYDRIDE Hot Melt Formulation To optimise cost/performance, OREVAC Terpolymers are combined with EVATANE. Adhesion tests have been performed in a classical Hot

More information

POLY(LACTIC ACID) BASED SINGLE COMPOSITES

POLY(LACTIC ACID) BASED SINGLE COMPOSITES POLY(LACTIC ACID) BASED SINGLE COMPOSITES S. Ouajai 1*, T. Ungtrakul 1, A. Reung-u-rai 1 and R.A. Shanks 2 1 Department of Industrial Chemistry, Faculty of Applied Science, KMUTNB 1518 Piboonsongkarm road,

More information

Nanofibrillated Cellulose Fibers:

Nanofibrillated Cellulose Fibers: Nanofibrillated Cellulose Fibers: Where Size Matters in Opening New Markets to Nanofiber Usage Presentation to 2008 TAPPI Nanotechnology Conference June 25-27, 27, 2008 St Louis, MO By E.C. Homonoff, R.E.

More information

Mechanical and Morphological Properties of PP/MWNT/MMT Hybrid Nanocomposites

Mechanical and Morphological Properties of PP/MWNT/MMT Hybrid Nanocomposites Mechanical and Morphological Properties of PP/MWNT/MMT Hybrid Nanocomposites V.Selvakumar 1*, N.Manoharan 2 1 Research Scholar, AMET University, Chennai-603112 2 Director Research, AMET University, Chennai-603112

More information

Nanodiamond-Polymer Composite Fibers and Coatings

Nanodiamond-Polymer Composite Fibers and Coatings Nanodiamond-Polymer Composite Fibers and Coatings Yury Gogotsi et al. A.J. Drexel Nanotechnology Institute and Department of Materials Science and Engineering Drexel University, Philadelphia, Pennsylvania

More information

EFFECT OF ORGANOCLAY TYPES ON MECHANICAL PROPERTIES AND FLAMMABILITY OF POLYPROPYLENE/SISAL FIBER COMPOSITES

EFFECT OF ORGANOCLAY TYPES ON MECHANICAL PROPERTIES AND FLAMMABILITY OF POLYPROPYLENE/SISAL FIBER COMPOSITES 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS EFFECT OF ORGANOCLAY TYPES ON MECHANICAL PROPERTIES AND FLAMMABILITY OF POLYPROPYLENE/SISAL FIBER COMPOSITES W. Chanprapanon 1,2, N. Suppakarn 1,2

More information

Preliminary Study on the Functionality and Durability of Adhesive. Powder in Mortar

Preliminary Study on the Functionality and Durability of Adhesive. Powder in Mortar Preliminary Study on the Functionality and Durability of Adhesive Powder in Mortar In recent years, various kinds of special dry powder mortar products have gradually been accepted and widely used. As

More information

DISPERGATION OF VERMICULITES IN POLYMER MATRIX AND ELECTED PROPERTY CHARACTERIZATION OF PREPARED NANOCOMPOSITES

DISPERGATION OF VERMICULITES IN POLYMER MATRIX AND ELECTED PROPERTY CHARACTERIZATION OF PREPARED NANOCOMPOSITES DISPERGATION OF VERMICULITES IN POLYMER MATRIX AND ELECTED PROPERTY CHARACTERIZATION OF PREPARED NANOCOMPOSITES Dušan KIMMER a, Jan FENYK a, Martin ZATLOUKAL b, Petr SLOBODIAN b, Karla ČECH BARABASZOVÁ

More information

1923 P a g e. Fig.1 Tensile Strength of composites moulded at different temperatures

1923 P a g e. Fig.1 Tensile Strength of composites moulded at different temperatures Effect Of Moulding Temperature On The Properties Of Polypropylene/High Density Polyethylene/Clay/Glass Fibre Ranjusha J P 1, Anjana R 1 and K E George 2 1. Dept. of Chemical Engg., Govt. Engg. College,

More information