RNA interferance as new approaches for pest management

Size: px
Start display at page:

Download "RNA interferance as new approaches for pest management"

Transcription

1 RNA interferance as new approaches for pest management Nabil Killiny Assistant professor Plant Pathology Citrus Research and Education Center

2 Outlines Introduction Mechanism Applications Conclusion

3 Introduction: The Central Dogma

4 In the early 1990s A number of scientists observed independently that RNA inhibited protein expression in plants and fungi. This phenomenon, identified but not understood. Posttranscriptional gene silencing PTGS or co-suppression in plant (Napoli et al., 1990; Campbell, 2005) Quelling in fungi (Romano and Macino in 1992) Neurospora crassa RNA interference (RNAi) in nematodes (Fire et al 1991) C. elegans Animal

5 Gene silencing in Cenorhabditis elegans dsrna can cause a systemic RNA-interference. RNAi lead to partial or complete loss-of-function of specific genes. Could be used to determine the biological roles of certain genes. If targets important gene could lead to mortality!!!

6 Definition RNAi (RNAi) is a mechanism that inhibits gene expression at the stage of translation of specific gene.

7 Role of RNAi in nature Gene regulations Genome maintenance Development Defense mechanism Viral infection Transposable elements. RNAi overview During RNAi Double-stranded RNAs cut into short doublestranded RNAs, s(small) i(interfering) RNA's, by an enzyme called Dicer. These then base pair to an mrna through a dsrnaenzyme complex. This will either lead to degradation of the mrna strand Highly specific process Very potent activity So far only been seen in eukaryotes Evidence 30% of genome is regulated by RNAi

8 Gene regulations RNAi acts to regulate gene expression by two dicerdependent mechanisms sirna (small interfering) mirna (microrna)

9 The Players In Interference RNA sirna: dsrna nt. mirna: ssrna 19-25nt. Encoded by non protein coding genome RISC: RNA induced Silencing Complex, that cleaves mrna Enzymes Dicer : produces nt cleavages that initiate RNAi Drosha : cleaves base hairpin in to form pre mirna; which is later processed by Dicer

10 sirnas Small interfering RNAs that have an integral role in the phenomenon of RNA interference (RNAi), a form of posttranscriptional gene silencing mirna RNAi: nt fragments, which bind to the complementary portion of the target mrna and tag it for degradation A single base pair difference between the sirna template and the target mrna is enough to block the process. Originate from capped & polyadenylated full length precursors (pri-mirna) Hairpin precursor ~70 nt (pre-mirna) Mature mirna ~22 nt (mirna) Each strand of sirna has: a. 5 -phosphate termini b. 3 -hydroxyl termini c. 2/3-nucleotide 3 overhangs

11 Difference between mirna and sirna Function of both species is regulation of gene expression. Difference is in where they originate. sirna originates with dsrna. sirna is most commonly a response to foreign RNA (usually viral) and is often 100% complementary to the target. mirna originates with ssrna that forms a hairpin secondary structure. mirna regulates post-transcriptional gene expression and is often not 100% complementary to the target. And also mirna help to regulate gene expression, particularly during induction of heterochromatin formation serves to downregulate genes pre- transcriptionally (RNA induced transcriptional silencing or RITS)

12 Defense mechanism Schematic illustration of systemic viral spread as well as RNAi and subsequent viral recovery in plants. Green and red indicate the presence and loss of GFP fluorescence, respectively, and orange denotes the presence of both colors. The red dots on leaves show viral lesions. The bold arrows indicate the stages of plant growth, and the leaves are numbered accordingly. An arrow with a thin line shows a newly emerged leaf recovered from viral attack.

13 Understanding how RNAi works is the key to using it as a genetic tool and for pest control

14 Dicer is required for RNAi fluorescence dsrna wild-type dcr1 -/-

15 They used an antisense strategy to effectively disrupt the expression of two genes encoding myofilament proteins present in C. elegans body wall muscles.

16 RNAi and the genes that control it in plants and animals. From RNAi for insect-proof plants Karl H J Gordon & Peter M Waterhouse Nature Biotechnology 25, (2007) doi: /nbt

17

18 Citrus Greening RNAi CLasinteractions Feeding activity Transmission factors Flight ability Healthy CLas-infected

19 Efficiency Application! Facing the challenges

20 Genes implicated in development (metamorphosis ) Topical application Gene/protein expression Morphology/biology Malformation Survival Flight ability Feeding ability X

21 Pauropsylline type nymph Psylline type nymph White and Hodkinson 1981 Triozine type nymph Diaphorina citri

22 I- IIItarget A Cloning B M PCR product containing the T7RNA Polymerase promoter sequences in the plus strand (A) and minus strand (B). M. DNA molecular markers. DNA template II- dsrna single strands Annealing the single stranded RNA plus and minus to create the dsrna

23

24 Wing malformation

25 Myosins comprise a family of ATPdependent motor proteins and are best known for their role in muscle contraction and their involvement in a wide range of other eukaryotic motility processes.

26 4 3.5 Gene expression myl myh myl myh myl myh myl myh myl myh myl myh myl myh instar1 inster2 inster3 inster4 inster5 teneral adults Expression of myosin genes during ACP development

27 30 25 # of emerged adults ng 10ng 50ng 100ng 500ng 1000ng 0ng 10ng 50ng 100ng 500ng 1000ng 0ng 10ng 50ng 100ng 500ng 1000ng myl-dsrna myh-dsrna gfp-dsrna Effect of knocking down of myosin on ACP development

28 Survival probability Survival probability Survival probability Test Statistics Method Chi-Square DF P-Value Log-Rank Wilcoxon Test Statistics Method Chi-Square DF P-Value Log-Rank Wilcoxon Test Statistics Method Chi-Square DF P-Value Log-Rank Wilcoxon Lifespan (days) Lifespan (days) Lifespan (days) dsrna-myl dsrna-myh dsrna-gfp Effect of knocking down of myosin on ACP fitness

29 Gene expression tubulin myl myh tubulin myl myh tubulin myl myh tubulin myl myh tubulin myl myh tubulin myl myh 0ng 10ng 50ng 100ng 500ng 1000ng myl-dsrna tubulin myl myh tubulin myl myh tubulin myl myh tubulin myl myh tubulin myl myh tubulin myl myh tubulin myl myh 1000ng gfp-dsrna 0ng 10ng 50ng 100ng 500ng 1000ng myh-dsrna

30 myh myl Hot plate (60 C) GFP water # of jumps/ 10 sec

31

32 Control myl-dsrna myh-dsrna Ultrastructural microct images of D. citri adults showing the effects RNAi treatments. Two-dimensional coronal microct cross sections through the body and wing joints (white arrows) show that muscle tissue was not visible in healthy adults (A), but muscle groups were visible in adults treated with RNAi targeting light (D) or heavy chain (G) myosin. Three-dimensional volume renderings of ACP adults treated with RNAi targeting light and heavy chain myosin showed abnormal development of the wing attachment point compared to control adults. Close up images of the wing attachment (red highlighted area) revealed diaphanous and weakened connections to the wing (blue highlighted area) in adults treated with RNAi targeting light chain myosin, while connections were sunken and malformed in adults treated with RNAi targeting heavy chain myosin

33 Three-dimensional microct volume renderings of D. citri adults showing the internal ultrastructure of the thorax Muscles tissue are invisible in control Flight Muscles group are visible in dsrna treated insect

34

35 Controls LC-myosin HC-myosin Thorax Sagittal Traverse

36 Control Mechanism is complete MLC-dsRNA Brain keeps sending signals to make Ca+ available and bind to tropnin Troponin is saturated with Ca+ Relaxed muscles ( no Ca+) Muscles are not detected by X-ray Troponin is saturated with Ca+ Muscles are detected by X-ray

37 H 2 O gfp-dsrna Ca+ Bone Calcification In Foot calcium oxalate kidney stones myl-dsrna Relationship of Calcium Penetration and Contrast to Photon Energy

38 Control myl-dsrna Ca+ treated

39

40

41 Reduction in gene expression dsrna concentration 0ng 50ng 100ng 500ng 1000ng awd myl myh troi Awd myl myh troi

42

43

44

45

46 RNAi and the genes that control it in plants and animals. From RNAi for insect-proof plants Karl H J Gordon & Peter M Waterhouse Nature Biotechnology 25, (2007) doi: /nbt

47

48 Schematic representation of the CTV genome in binary vector pcambia-1380 showing potential insertion positions (shown by upward arrows), where foreign genes could be engineered in the genome.

49 CTV p23 ORF tpds ttroponin tawd CTV 3 NTR CTV p23 ORF tpds/or ALAd twnt tmyocin CTV 3 NTR Various types of silencing inserts have been/will be tested with CTV-based silencing vector; they include (A) one gene fragment insertion with promoter (B) two gene fragments in-tandem insertion with promoter (C) one gene fragment insertion without promoter (D) two gene fragments in-tandem insertion without promoter (E) three gene fragments in-tandem insertion without promoter to enable silencing of more than one target at any one event.

50 Summary of agroinfiltration procedure of Citrus tristeza virus (CTV) vector constructs into Nicotiana benthamiana, CTV virion isolation and inoculation to citrus. Fully expanded true leaves of N. benthamiana plants were infiltrated with agrobacterium culture of CTV constructs in the binary vector plasmid. After 4-8 weeks post infiltration, systemic leaves of N. benthamiana leaves showing CTV symptoms are harvested. CTV virions are isolated by sucrose cushion gradient ultracentrifugation. Isolated virions are examined under electron microscope. CTV virions are inoculated to Citrus macrophylla plant by bark-flap method.

51 ACP wing development

52 A B C Survival probability Control dsrna Days D Average of adult lifetime Control dsrna

53 Designing ideal Psyllid Trap Plants to protect and increase sustainability of new citrus plantings.

54 Carotenoid biosynthesis pathway

55

56 δ ALA dehydratase

57 δ ALA dehydratase

58 Abundance at 296 nm (mau) Chlorophyl B Lutein Chlorophyl A Zeaxanthin Control CTV-wt CTV-t-AWD CTV-t-δ ALA CTV-tPDS CTV-tPDS-As CLas-infected Cis β-carotene β-cryptoxanthin α-carotene β-carotene Isolutien Retention time (min)

59

60 Abundance at 296 nm (mau) Phytoene 1 Control CTV-wt CTV-t-AWD CTV-t-δ ALA CTV-tPDS CTV-tPDS-As CLas-infected Phytoene 2 Concentration (μg/g leaf tissue) Phyotene 1 ns Abundance Retention time (min) Phytoene 1 Phytoene 2 Concentration (μg/g leaf tissue) Phyotene 2 * Wavelength (nm) Wavelength (nm)

61 Carotin Carotin Phaeophytin A Phaeophytin B Chlorophyll A Lutein Chlorophyll B Violaxanthin Neoxanthin Lutein

62 Chlorophyl A Chlorophyl B Abundance Wavelength (nm) Concentration (μg/g leaf tissue a Chlorophyl A b a Chlorophyl B b

63 P< a b c d Number of D. citri settled per plant (%) P< P< P= P< P= CTV-wt (control) CTV-tPDS-As CLas-infected

64 CLas infected CTV-tPDS-As CTV-wt (control) 0% 20% 40% 60% 80% 100% 120% Base Middele Top

65 Number of insects landed Number of insects landed Light Dark

66 Questions? What do you think?

Plants Fight it out Intrinsic defence mechanism The magic world of Gene silencing

Plants Fight it out Intrinsic defence mechanism The magic world of Gene silencing I LOVE YOU Plants Fight it out Intrinsic defence mechanism The magic world of Gene silencing Over expression of Chalcone synthase gene to get Purple Petunias Napoli, Lemieux & Jorgensen,1990 Desired Effect

More information

Technical tips Session 4

Technical tips Session 4 Technical tips Session 4 Biotinylation assay: Streptavidin is a small bacterial protein that binds with high affinity to the vitamin biotin. This streptavidin-biotin combination can be used to link molecules

More information

OmicsLink shrna Clones guaranteed knockdown even in difficult-to-transfect cells

OmicsLink shrna Clones guaranteed knockdown even in difficult-to-transfect cells OmicsLink shrna Clones guaranteed knockdown even in difficult-to-transfect cells OmicsLink shrna clone collections consist of lentiviral, and other mammalian expression vector based small hairpin RNA (shrna)

More information

Learning Objectives. Define RNA interference. Define basic terminology. Describe molecular mechanism. Define VSP and relevance

Learning Objectives. Define RNA interference. Define basic terminology. Describe molecular mechanism. Define VSP and relevance Learning Objectives Define RNA interference Define basic terminology Describe molecular mechanism Define VSP and relevance Describe role of RNAi in antigenic variation A Nobel Way to Regulate Gene Expression

More information

A Survey of Genetic Methods

A Survey of Genetic Methods IBS 8102 Cell, Molecular, and Developmental Biology A Survey of Genetic Methods January 24, 2008 DNA RNA Hybridization ** * radioactive probe reverse transcriptase polymerase chain reaction RT PCR DNA

More information

Chapter 19 Genetic Regulation of the Eukaryotic Genome. A. Bergeron AP Biology PCHS

Chapter 19 Genetic Regulation of the Eukaryotic Genome. A. Bergeron AP Biology PCHS Chapter 19 Genetic Regulation of the Eukaryotic Genome A. Bergeron AP Biology PCHS 2 Do Now - Eukaryotic Transcription Regulation The diagram below shows five genes (with their enhancers) from the genome

More information

Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. A. Fire et al. (1998) Nature Vol 391:

Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. A. Fire et al. (1998) Nature Vol 391: Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans A. Fire et al. (1998) Nature Vol 391: 806-810 1 Outline 1. Introduction 2. Objective 3. Results 4. Mechanism 5.

More information

Molecular Cloning. Genomic DNA Library: Contains DNA fragments that represent an entire genome. cdna Library:

Molecular Cloning. Genomic DNA Library: Contains DNA fragments that represent an entire genome. cdna Library: Molecular Cloning Genomic DNA Library: Contains DNA fragments that represent an entire genome. cdna Library: Made from mrna, and represents only protein-coding genes expressed by a cell at a given time.

More information

RNA folding and its importance. Mitesh Shrestha

RNA folding and its importance. Mitesh Shrestha RNA folding and its importance Mitesh Shrestha Diseases Caused due to Protein Misfolding Alzheimer s Disease Parkinson s Disease Cataracts Sickle Cell Disease Prion Diseases Cystic Fibrosis Ribozymes Ribonucleic

More information

There are four major types of introns. Group I introns, found in some rrna genes, are self-splicing: they can catalyze their own removal.

There are four major types of introns. Group I introns, found in some rrna genes, are self-splicing: they can catalyze their own removal. 1 2 Continuous genes - Intron: Many eukaryotic genes contain coding regions called exons and noncoding regions called intervening sequences or introns. The average human gene contains from eight to nine

More information

METODOLOGIE INTEGRATE PER LA SELEZIONE GENOMICA DI PIANTE ORTIVE

METODOLOGIE INTEGRATE PER LA SELEZIONE GENOMICA DI PIANTE ORTIVE CORSO GENHORT METODOLOGIE INTEGRATE PER LA SELEZIONE GENOMICA DI PIANTE ORTIVE Marzo 2014 Docente: e-mail: Pasquale Termolino termolin@unina.it Posttranscriptional gene silencing Transcriptional gene silencing

More information

17.5 Eukaryotic Transcription Initiation Is Regulated by Transcription Factors That Bind to Cis-Acting Sites

17.5 Eukaryotic Transcription Initiation Is Regulated by Transcription Factors That Bind to Cis-Acting Sites 17.5 Eukaryotic Transcription Initiation Is Regulated by Transcription Factors That Bind to Cis-Acting Sites 1 Section 17.5 Transcription regulatory proteins, transcription factors, target cis-acting sites

More information

EUKARYOTIC GENE CONTROL

EUKARYOTIC GENE CONTROL EUKARYOTIC GENE CONTROL THE BIG QUESTIONS How are genes turned on and off? How do cells with the same DNA/ genes differentiate to perform completely different and specialized functions? GENE EXPRESSION

More information

BCH Graduate Survey of Biochemistry

BCH Graduate Survey of Biochemistry BCH 5045 Graduate Survey of Biochemistry Instructor: Charles Guy Producer: Ron Thomas Director: Glen Graham Lecture 30 Slide sets available at: http://hort.ifas.ufl.edu/teach/guyweb/bch5045/index.html

More information

Control of Eukaryotic Gene Expression (Learning Objectives)

Control of Eukaryotic Gene Expression (Learning Objectives) Control of Eukaryotic Gene Expression (Learning Objectives) 1. Compare and contrast chromatin and chromosome: composition, proteins involved and level of packing. Explain the structure and function of

More information

RNA Interference and the World of Small RNAs

RNA Interference and the World of Small RNAs RNA Interference and the World of Small RNAs O, I die, Horatio; The potent poison quite o'er-crows my spirit: I cannot live to hear the news from England; But I do prophesy the election lights On Fortinbras:

More information

Control of Eukaryotic Genes. AP Biology

Control of Eukaryotic Genes. AP Biology Control of Eukaryotic Genes The BIG Questions How are genes turned on & off in eukaryotes? How do cells with the same genes differentiate to perform completely different, specialized functions? Evolution

More information

Cambridge University Press

Cambridge University Press Figure 1.1. Model of RNAi pathway in C. elegans. Transmembrane protein SID-1 allows dsrna to enter the cell. In the cytoplasm,dsrna gets processed by DCR-1,existing in a complex with RDE-4,RDE-1 and DRH-1.

More information

Unit IX Problem 3 Genetics: Basic Concepts in Molecular Biology

Unit IX Problem 3 Genetics: Basic Concepts in Molecular Biology Unit IX Problem 3 Genetics: Basic Concepts in Molecular Biology - The central dogma (principle) of molecular biology: Information from DNA are transcribed to mrna which will be further translated to synthesize

More information

The first experiments

The first experiments RNA interference So that I don t get myself into any trouble, most of the following text is verbatim from the Ambion website, which nicely summarizes a lot of what I will talk about in class. I ve edited

More information

*Post-trascriptional gene silencing (PTGS) is an ubiquitary mechanism of adaptative defence against viruses and mobile genetic elements

*Post-trascriptional gene silencing (PTGS) is an ubiquitary mechanism of adaptative defence against viruses and mobile genetic elements The research activities of the present FIRB project involving the use of PTGS* are: 1) PTGS to improve plant resistance against viruses 2) PTGS for studying the function of genes involved in fruit set

More information

New microribbon production

New microribbon production New microribbon production In vitro transformation Excystation brief exposure to acidic ph (~2) flagellar activity within 5-10 min after return to neutral ph breakdown of cyst wall (proteases) trophozoite

More information

Value Correct Answer Feedback. Student Response. A. Dicer enzyme. complex. C. the Dicer-RISC complex D. none of the above

Value Correct Answer Feedback. Student Response. A. Dicer enzyme. complex. C. the Dicer-RISC complex D. none of the above 1 RNA mediated interference is a post-transcriptional gene silencing mechanism Which component of the RNAi pathway have been implicated in cleavage of the target mrna? A Dicer enzyme B the RISC-siRNA complex

More information

The Silence of the Genes

The Silence of the Genes The Silence of the Genes Initial Observation: Plant geneticists aim to turn pink petunia to purple by over-expression of chalcone synthetase wt wt + Chalcone synthetase cdna driven by cauliflower mosaic

More information

Biotechnology Unit 3: DNA to Proteins. From DNA to RNA

Biotechnology Unit 3: DNA to Proteins. From DNA to RNA From DNA to RNA Biotechnology Unit 3: DNA to Proteins I. After the discovery of the structure of DNA, the major question remaining was how does the stored in the 4 letter code of DNA direct the and of

More information

DNA Cloning with Cloning Vectors

DNA Cloning with Cloning Vectors Cloning Vectors A M I R A A. T. A L - H O S A R Y L E C T U R E R O F I N F E C T I O U S D I S E A S E S F A C U L T Y O F V E T. M E D I C I N E A S S I U T U N I V E R S I T Y - E G Y P T DNA Cloning

More information

RNA Structure and the Versatility of RNA. Mitesh Shrestha

RNA Structure and the Versatility of RNA. Mitesh Shrestha RNA Structure and the Versatility of RNA Mitesh Shrestha Ribonucleic Acid (RNA) Nitrogenous Bases (Adenine, Uracil, Guanine, Cytosine) Ribose Sugar Ribonucleic Acid (RNA) Phosphate Group RNA world Hypothesis

More information

Researchers use genetic engineering to manipulate DNA.

Researchers use genetic engineering to manipulate DNA. Section 2: Researchers use genetic engineering to manipulate DNA. K What I Know W What I Want to Find Out L What I Learned Essential Questions What are the different tools and processes used in genetic

More information

Prof. Fahd M. Nasr. Faculty of Sciences Lebanese University Beirut, Lebanon.

Prof. Fahd M. Nasr. Faculty of Sciences Lebanese University Beirut, Lebanon. Prof. Fahd M. Nasr Faculty of Sciences Lebanese University Beirut, Lebanon https://yeastwonderfulworld.wordpress.com/ Biol328 - B3212 Molecular Biotechnology Partial Exam Question I Explain the procedure

More information

RNAi minilecture and Using Genetics to Explore Complex Biological Processes

RNAi minilecture and Using Genetics to Explore Complex Biological Processes RNAi minilecture and Using Genetics to Explore Complex Biological Processes 2 American Worm People Win Nobel for RNA Work New York Times Oct. 2, 2006 The 2006 Nobel Prize in Physiology or Medicine was

More information

AP Biology Gene Expression/Biotechnology REVIEW

AP Biology Gene Expression/Biotechnology REVIEW AP Biology Gene Expression/Biotechnology REVIEW Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Gene expression can be a. regulated before transcription.

More information

Chapter 20 Recombinant DNA Technology. Copyright 2009 Pearson Education, Inc.

Chapter 20 Recombinant DNA Technology. Copyright 2009 Pearson Education, Inc. Chapter 20 Recombinant DNA Technology Copyright 2009 Pearson Education, Inc. 20.1 Recombinant DNA Technology Began with Two Key Tools: Restriction Enzymes and DNA Cloning Vectors Recombinant DNA refers

More information

GENETICS - CLUTCH CH.10 TRANSCRIPTION.

GENETICS - CLUTCH CH.10 TRANSCRIPTION. !! www.clutchprep.com CONCEPT: OVERVIEW OF TRANSCRIPTION Transcription is the process of using DNA as a template to RNA RNA polymerase is the enzyme that transcribes DNA - There are many different types

More information

pdsipher and pdsipher -GFP shrna Vector User s Guide

pdsipher and pdsipher -GFP shrna Vector User s Guide pdsipher and pdsipher -GFP shrna Vector User s Guide NOTE: PLEASE READ THE ENTIRE PROTOCOL CAREFULLY BEFORE USE Page 1. Introduction... 1 2. Vector Overview... 1 3. Vector Maps 2 4. Materials Provided...

More information

Biotechnology and DNA Technology

Biotechnology and DNA Technology 11/27/2017 PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College CHAPTER 9 Biotechnology and DNA Technology Introduction to Biotechnology Learning Objectives Compare

More information

Concepts and Methods in Developmental Biology

Concepts and Methods in Developmental Biology Biology 4361 Developmental Biology Concepts and Methods in Developmental Biology June 16, 2009 Conceptual and Methodological Tools Concepts Genomic equivalence Differential gene expression Differentiation/de-differentiation

More information

Regulation of Gene Expression

Regulation of Gene Expression Chapter 18 Regulation of Gene Expression Edited by Shawn Lester PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley

More information

Molecular Cell Biology - Problem Drill 11: Recombinant DNA

Molecular Cell Biology - Problem Drill 11: Recombinant DNA Molecular Cell Biology - Problem Drill 11: Recombinant DNA Question No. 1 of 10 1. Which of the following statements about the sources of DNA used for molecular cloning is correct? Question #1 (A) cdna

More information

Experimental genetics - 2 Partha Roy

Experimental genetics - 2 Partha Roy Partha Roy Experimental genetics - 2 Making genetically altered animal 1) Gene knock-out k from: a) the entire animal b) selected cell-type/ tissue c) selected cell-type/tissue at certain time 2) Transgenic

More information

Test Bank for Molecular Cell Biology 7th Edition by Lodish

Test Bank for Molecular Cell Biology 7th Edition by Lodish Test Bank for Molecular Cell Biology 7th Edition by Lodish Link download full: http://testbankair.com/download/test-bank-formolecular-cell-biology-7th-edition-by-lodish/ Chapter 5 Molecular Genetic Techniques

More information

Applicazioni biotecnologiche

Applicazioni biotecnologiche Applicazioni biotecnologiche Analisi forense Sintesi di proteine ricombinanti Restriction Fragment Length Polymorphism (RFLP) Polymorphism (more fully genetic polymorphism) refers to the simultaneous occurrence

More information

Name Class Date. Practice Test

Name Class Date. Practice Test Name Class Date 12 DNA Practice Test Multiple Choice Write the letter that best answers the question or completes the statement on the line provided. 1. What do bacteriophages infect? a. mice. c. viruses.

More information

Biotechnology. Chapter 20. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Biotechnology. Chapter 20. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 20 Biotechnology PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Copyright

More information

Selected Techniques Part I

Selected Techniques Part I 1 Selected Techniques Part I Gel Electrophoresis Can be both qualitative and quantitative Qualitative About what size is the fragment? How many fragments are present? Is there in insert or not? Quantitative

More information

Exam 2 Key - Spring 2008 A#: Please see us if you have any questions!

Exam 2 Key - Spring 2008 A#: Please see us if you have any questions! Page 1 of 5 Exam 2 Key - Spring 2008 A#: Please see us if you have any questions! 1. A mutation in which parts of two nonhomologous chromosomes change places is called a(n) A. translocation. B. transition.

More information

Chapter 20 Biotechnology

Chapter 20 Biotechnology Chapter 20 Biotechnology Manipulation of DNA In 2007, the first entire human genome had been sequenced. The ability to sequence an organisms genomes were made possible by advances in biotechnology, (the

More information

Recitation CHAPTER 9 DNA Technologies

Recitation CHAPTER 9 DNA Technologies Recitation CHAPTER 9 DNA Technologies DNA Cloning: General Scheme A cloning vector and eukaryotic chromosomes are separately cleaved with the same restriction endonuclease. (A single chromosome is shown

More information

BIOLOGY - CLUTCH CH.20 - BIOTECHNOLOGY.

BIOLOGY - CLUTCH CH.20 - BIOTECHNOLOGY. !! www.clutchprep.com CONCEPT: DNA CLONING DNA cloning is a technique that inserts a foreign gene into a living host to replicate the gene and produce gene products. Transformation the process by which

More information

Gene Expression and Heritable Phenotype. CBS520 Eric Nabity

Gene Expression and Heritable Phenotype. CBS520 Eric Nabity Gene Expression and Heritable Phenotype CBS520 Eric Nabity DNA is Just the Beginning DNA was determined to be the genetic material, and the structure was identified as a (double stranded) double helix.

More information

DNA REPLICATION & BIOTECHNOLOGY Biology Study Review

DNA REPLICATION & BIOTECHNOLOGY Biology Study Review DNA REPLICATION & BIOTECHNOLOGY Biology Study Review DNA DNA is found in, in the nucleus. It controls cellular activity by regulating the production of, which includes It is a very long molecule made up

More information

Transcription Regulation And Gene Expression in Eukaryotes (Cycle G2# )

Transcription Regulation And Gene Expression in Eukaryotes (Cycle G2# ) Transcription Regulation And Gene Expression in Eukaryotes (Cycle G2#13709-01) SMALL RNA REGULATORS OF GENE EXPRESSION RG. Clerc May 05, 2010 www.fmi.ch/training/teaching RNAi for RNA interference : discovered

More information

Prokaryotic Transcription

Prokaryotic Transcription Prokaryotic Transcription Transcription Basics DNA is the genetic material Nucleic acid Capable of self-replication and synthesis of RNA RNA is the middle man Nucleic acid Structure and base sequence are

More information

Gene Expression: Transcription, Translation, RNAs and the Genetic Code

Gene Expression: Transcription, Translation, RNAs and the Genetic Code Lecture 28-29 Gene Expression: Transcription, Translation, RNAs and the Genetic Code Central dogma of molecular biology During transcription, the information in a DNA sequence (a gene) is copied into a

More information

MISSION shrna Library: Next Generation RNA Interference

MISSION shrna Library: Next Generation RNA Interference Page 1 of 6 Page 1 of 6 Return to Web Version MISSION shrna Library: Next Generation RNA Interference By: Stephanie Uder, Henry George, Betsy Boedeker, LSI Volume 6 Article 2 Introduction The technology

More information

Genetics Lecture 21 Recombinant DNA

Genetics Lecture 21 Recombinant DNA Genetics Lecture 21 Recombinant DNA Recombinant DNA In 1971, a paper published by Kathleen Danna and Daniel Nathans marked the beginning of the recombinant DNA era. The paper described the isolation of

More information

WORKING WITH THE FIGURES. 1. In Figure 8-3, why are the arrows for genes 1 and 2 pointing in opposite directions?

WORKING WITH THE FIGURES. 1. In Figure 8-3, why are the arrows for genes 1 and 2 pointing in opposite directions? 8 RNA: Transcription and Processing WORKING WITH THE FIGURES 1. In Figure 8-3, why are the arrows for genes 1 and 2 pointing in opposite directions? The arrows for genes 1 and 2 indicate the direction

More information

Biosc10 schedule reminders

Biosc10 schedule reminders Biosc10 schedule reminders Review of molecular biology basics DNA Is each person s DNA the same, or unique? What does DNA look like? What are the three parts of each DNA nucleotide Which DNA bases pair,

More information

Methods for Reverse genetics References:

Methods for Reverse genetics References: Methods for Reverse genetics References: 1. Alonso JM, Ecker JR. Moving forward in reverse: genetic technologies to enable genomewide phenomic screens in Arabidopsis. Nat Rev Genet. 2006 Jul;7(7):524-36.

More information

Genetics - Problem Drill 19: Dissection of Gene Function: Mutational Analysis of Model Organisms

Genetics - Problem Drill 19: Dissection of Gene Function: Mutational Analysis of Model Organisms Genetics - Problem Drill 19: Dissection of Gene Function: Mutational Analysis of Model Organisms No. 1 of 10 1. The mouse gene knockout is based on. (A) Homologous recombination (B) Site-specific recombination

More information

Expressed genes profiling (Microarrays) Overview Of Gene Expression Control Profiling Of Expressed Genes

Expressed genes profiling (Microarrays) Overview Of Gene Expression Control Profiling Of Expressed Genes Expressed genes profiling (Microarrays) Overview Of Gene Expression Control Profiling Of Expressed Genes Genes can be regulated at many levels Usually, gene regulation, are referring to transcriptional

More information

Genetic analysis - mutants

Genetic analysis - mutants Genetic analysis - mutants Forward genetics From mutant phenotype to gene, from gene to protein function Reverse genetics From gene to mutant phenotype, to function Forward genetics 1. Screen for mutants

More information

7.1 Techniques for Producing and Analyzing DNA. SBI4U Ms. Ho-Lau

7.1 Techniques for Producing and Analyzing DNA. SBI4U Ms. Ho-Lau 7.1 Techniques for Producing and Analyzing DNA SBI4U Ms. Ho-Lau What is Biotechnology? From Merriam-Webster: the manipulation of living organisms or their components to produce useful usually commercial

More information

CHAPTER 20 DNA TECHNOLOGY AND GENOMICS. Section A: DNA Cloning

CHAPTER 20 DNA TECHNOLOGY AND GENOMICS. Section A: DNA Cloning Section A: DNA Cloning 1. DNA technology makes it possible to clone genes for basic research and commercial applications: an overview 2. Restriction enzymes are used to make recombinant DNA 3. Genes can

More information

Design. Construction. Characterization

Design. Construction. Characterization Design Construction Characterization DNA mrna (messenger) A C C transcription translation C A C protein His A T G C T A C G Plasmids replicon copy number incompatibility selection marker origin of replication

More information

BS 50 Genetics and Genomics Week of Oct 24

BS 50 Genetics and Genomics Week of Oct 24 BS 50 Genetics and Genomics Week of Oct 24 Additional Practice Problems for Section Question 1: The following table contains a list of statements that apply to replication, transcription, both, or neither.

More information

sirna Overview and Technical Tips

sirna Overview and Technical Tips 1 sirna Overview and Technical Tips 2 CONTENTS 3 4 5 7 8 10 11 13 14 18 19 20 21 Introduction Applications How Does It Work? Handy Tips Troubleshooting Conclusions Further References Contact Us 3 INTRODUCTION

More information

Genome research in eukaryotes

Genome research in eukaryotes Functional Genomics Genome and EST sequencing can tell us how many POTENTIAL genes are present in the genome Proteomics can tell us about proteins and their interactions The goal of functional genomics

More information

Overview: The DNA Toolbox

Overview: The DNA Toolbox Overview: The DNA Toolbox Sequencing of the genomes of more than 7,000 species was under way in 2010 DNA sequencing has depended on advances in technology, starting with making recombinant DNA In recombinant

More information

Technology Overview. Figure 1. asirna structure

Technology Overview. Figure 1. asirna structure BMT, Inc. Technology Overview Small interfering RNAs (sirnas) are short, double-stranded RNAs (dsrnas) that mediate efficient gene silencing in a sequence-specific manner. The specific cleavage of mrna

More information

Gene regulation V Biochemistry 302. March 6, 2006

Gene regulation V Biochemistry 302. March 6, 2006 Gene regulation V Biochemistry 302 March 6, 2006 Common structural motifs associated with transcriptional regulatory proteins Helix-turn-helix Prokaryotic repressors and activators Eukaryotic homeodomain

More information

RNA interference: A review

RNA interference: A review 2018; 7(4): 37-41 ISSN (E): 2277-7695 ISSN (P): 2349-8242 NAAS Rating: 5.03 TPI 2018; 7(4): 37-41 2018 TPI www.thepharmajournal.com Received: 21-02-2018 Accepted: 22-03-2018 Athe Rajendra Prasad N Govardhana

More information

Suplementary Materials Epub: No 2016_1339 Vol. 63, Regular paper

Suplementary Materials Epub: No 2016_1339 Vol. 63, Regular paper Suplementary Materials Epub: No 2016_1339 Vol. 63, 2016 https://doi.org/10.18388/abp.2016_1339 Regular paper How short RNAs impact the human ribonuclease Dicer activity: putative regulatory feedback-loops

More information

Concept 13.1 Recombinant DNA Can Be Made in the Laboratory

Concept 13.1 Recombinant DNA Can Be Made in the Laboratory 13 Biotechnology Concept 13.1 Recombinant DNA Can Be Made in the Laboratory It is possible to modify organisms with genes from other, distantly related organisms. Recombinant DNA is a DNA molecule made

More information

Molecular Genetics Student Objectives

Molecular Genetics Student Objectives Molecular Genetics Student Objectives Exam 1: Enduring understanding 3.A: Heritable information provides for continuity of life. Essential knowledge 3.A.1: DNA, and in some cases RNA, is the primary source

More information

Control of Eukaryotic Genes

Control of Eukaryotic Genes Control of Eukaryotic Genes 2007-2008 The BIG Questions How are genes turned on & off in eukaryotes? How do cells with the same genes differentiate to perform completely different, specialized functions?

More information

BIOTECHNOLOGY. Sticky & blunt ends. Restriction endonucleases. Gene cloning an overview. DNA isolation & restriction

BIOTECHNOLOGY. Sticky & blunt ends. Restriction endonucleases. Gene cloning an overview. DNA isolation & restriction BIOTECHNOLOGY RECOMBINANT DNA TECHNOLOGY Recombinant DNA technology involves sticking together bits of DNA from different sources. Made possible because DNA & the genetic code are universal. 2004 Biology

More information

Guided Notes Unit 5: Molecular Genetics

Guided Notes Unit 5: Molecular Genetics Name: Date: Block: Chapter 8: From DNA to Protein I. Concept 8.4: Transcription a. Central Dogma of Molecular Biology i. Information flows in one direction: ii. How? Guided Notes Unit 5: Molecular Genetics

More information

Supporting Information

Supporting Information Supporting Information SI Materials and Methods RT-qPCR The 25 µl qrt-pcr reaction mixture included 1 µl of cdna or DNA, 12.5 µl of 2X SYBER Green Master Mix (Applied Biosystems ), 5 µm of primers and

More information

Chapter 13: Biotechnology

Chapter 13: Biotechnology Chapter Review 1. Explain why the brewing of beer is considered to be biotechnology. The United Nations defines biotechnology as any technological application that uses biological system, living organism,

More information

Control of Eukaryotic Genes. AP Biology

Control of Eukaryotic Genes. AP Biology Control of Eukaryotic Genes The BIG Questions How are genes turned on & off in eukaryotes? How do cells with the same genes differentiate to perform completely different, specialized functions? Evolution

More information

Genetics and Biotechnology. Section 1. Applied Genetics

Genetics and Biotechnology. Section 1. Applied Genetics Section 1 Applied Genetics Selective Breeding! The process by which desired traits of certain plants and animals are selected and passed on to their future generations is called selective breeding. Section

More information

Regulation of enzyme synthesis

Regulation of enzyme synthesis Regulation of enzyme synthesis The lac operon is an example of an inducible operon - it is normally off, but when a molecule called an inducer is present, the operon turns on. The trp operon is an example

More information

UNIT 3 GENETICS LESSON #41: Transcription

UNIT 3 GENETICS LESSON #41: Transcription UNIT 3 GENETICS LESSON #41: Transcription Objective: Explain how transcription converts a gene into a singlestranded RNA molecule. Suppose you want to play a game but you need tokens and you only have

More information

CHAPTERS 16 & 17: DNA Technology

CHAPTERS 16 & 17: DNA Technology CHAPTERS 16 & 17: DNA Technology 1. What is the function of restriction enzymes in bacteria? 2. How do bacteria protect their DNA from the effects of the restriction enzymes? 3. How do biologists make

More information

CELL BIOLOGY - CLUTCH CH. 7 - GENE EXPRESSION.

CELL BIOLOGY - CLUTCH CH. 7 - GENE EXPRESSION. !! www.clutchprep.com CONCEPT: CONTROL OF GENE EXPRESSION BASICS Gene expression is the process through which cells selectively to express some genes and not others Every cell in an organism is a clone

More information

Chapter 20 DNA Technology & Genomics. If we can, should we?

Chapter 20 DNA Technology & Genomics. If we can, should we? Chapter 20 DNA Technology & Genomics If we can, should we? Biotechnology Genetic manipulation of organisms or their components to make useful products Humans have been doing this for 1,000s of years plant

More information

Non-Organic-Based Isolation of Mammalian microrna using Norgen s microrna Purification Kit

Non-Organic-Based Isolation of Mammalian microrna using Norgen s microrna Purification Kit Application Note 13 RNA Sample Preparation Non-Organic-Based Isolation of Mammalian microrna using Norgen s microrna Purification Kit B. Lam, PhD 1, P. Roberts, MSc 1 Y. Haj-Ahmad, M.Sc., Ph.D 1,2 1 Norgen

More information

Chapter 15 Recombinant DNA and Genetic Engineering. Restriction Enzymes Function as Nature s Pinking Shears

Chapter 15 Recombinant DNA and Genetic Engineering. Restriction Enzymes Function as Nature s Pinking Shears Chapter 15 Recombinant DNA and Genetic Engineering In this chapter you will learn How restriction enzyme work and why they are essential to DNA technology. About various procedures such as cloning and

More information

Unit 8: Genomics Guided Reading Questions (150 pts total)

Unit 8: Genomics Guided Reading Questions (150 pts total) Name: AP Biology Biology, Campbell and Reece, 7th Edition Adapted from chapter reading guides originally created by Lynn Miriello Chapter 18 The Genetics of Viruses and Bacteria Unit 8: Genomics Guided

More information

RNA Interference and the World of Small RNAs

RNA Interference and the World of Small RNAs RNA Interference and the World of Small RNAs O, I die, Horatio; The potent poison quite o'er-crows my spirit: I cannot live to hear the news from England; But I do prophesy the election lights On Fortinbras:

More information

MicroRNA Biogenesis Dr. V. Narry Kim

MicroRNA Biogenesis Dr. V. Narry Kim MicroRNA Biogenesis V. Narry Kim Seoul National University 1 What is a microrna (mirna)? A mirna is defined as a single-stranded RNA of ~22 nt, which is generated by the RNase III-type enzyme from an endogenous

More information

XXII DNA cloning and sequencing. Outline

XXII DNA cloning and sequencing. Outline XXII DNA cloning and sequencing 1) Deriving DNA for cloning Outline 2) Vectors; forming recombinant DNA; cloning DNA; and screening for clones containing recombinant DNA [replica plating and autoradiography;

More information

Transcription and Post Transcript Modification

Transcription and Post Transcript Modification Transcription and Post Transcript Modification You Should Be Able To 1. Describe transcription. 2. Compare and contrast eukaryotic + prokaryotic transcription. 3. Explain mrna processing in eukaryotes.

More information

Feedback D. Incorrect! No, although this is a correct characteristic of RNA, this is not the best response to the questions.

Feedback D. Incorrect! No, although this is a correct characteristic of RNA, this is not the best response to the questions. Biochemistry - Problem Drill 23: RNA No. 1 of 10 1. Which of the following statements best describes the structural highlights of RNA? (A) RNA can be single or double stranded. (B) G-C pairs have 3 hydrogen

More information

Cell type-specific delivery of sirnas with aptamer-sirna chimeras

Cell type-specific delivery of sirnas with aptamer-sirna chimeras Cell type-specific delivery of sirnas with aptamer-sirna chimeras Sullenger, B. A. et al Duke Center for Translational Research, Duke University Nature Biotechnology, 2006, 24, 1005 Julia Vargas November

More information

The Nature of Genes. The Nature of Genes. Genes and How They Work. Chapter 15/16

The Nature of Genes. The Nature of Genes. Genes and How They Work. Chapter 15/16 Genes and How They Work Chapter 15/16 The Nature of Genes Beadle and Tatum proposed the one gene one enzyme hypothesis. Today we know this as the one gene one polypeptide hypothesis. 2 The Nature of Genes

More information

Lecture Summary: Regulation of transcription. General mechanisms-what are the major regulatory points?

Lecture Summary: Regulation of transcription. General mechanisms-what are the major regulatory points? BCH 401G Lecture 37 Andres Lecture Summary: Regulation of transcription. General mechanisms-what are the major regulatory points? RNA processing: Capping, polyadenylation, splicing. Why process mammalian

More information

Regulation of Gene Expression

Regulation of Gene Expression CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 15 Regulation of Gene Expression Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION

More information

3.1.4 DNA Microarray Technology

3.1.4 DNA Microarray Technology 3.1.4 DNA Microarray Technology Scientists have discovered that one of the differences between healthy and cancer is which genes are turned on in each. Scientists can compare the gene expression patterns

More information

Heterochromatin Silencing

Heterochromatin Silencing Heterochromatin Silencing Heterochromatin silencing Most DNA in eukaryotes consists of repetitive DNA, including retrotransposons, transposable elements. Packaged into a condensed form: Heterochromatin:

More information