Developmental genetics of the mutant grandchildless of Drosophila subobscura

Size: px
Start display at page:

Download "Developmental genetics of the mutant grandchildless of Drosophila subobscura"

Transcription

1 /. Embryol. exp. Morph., Vol. 17, 2, pp , April With 1 plate Printed in Great Britain Developmental genetics of the mutant grandchildless of Drosophila subobscura By C.J.FIELDING 1 From the Department of Zoology and Comparative Anatomy, University College London A study of the embryology of female-sterile mutants can provide information on the course of normal development, particularly when several mutants affect the same organ system. A favourable situation for an investigation of this kind arises with the formation and migration of the pole cells in Drosophila species. A number of genetic characters are known whose expression in the embryology of the offspring of affected mutant females involves the complete loss of pole cells or a change in their distribution after gastrulation. Thus the sex-linked female sterile mutant fs na3a (Counce & Ede, 1957), and the sex-linked lethals Lfll (Ede, 1956a), X2 (Ede, 19566), X27 (Ede, 1956c) and X10 (Ede, 1956c?) all show disturbances of the pole cell complement. This paper presents an account of the embryological effects of the mutant grandchildless (gs) of Drosophila subobscura (Spurway, 1948). The homozygous mutant female lays eggs which develop into adults with rudimentary gonads, which are otherwise phenotypically normal. There is no phenotypic effect in the offspring of homozygous males by normal females, although the gene is expressed in the offspring of homozygous females whatever the genotype of the male parent. MATERIALS AND METHODS The gene grandchildless, which is autosomal and recessive, is maintained by sibmating within cultures of the first cousins of gonadless individuals. The maintenance of this stock has been described in detail by Suley (1953). Freshly eclosed cousins of gonadless individuals were put into shell vials, a male and a female to each. The vials contained a mixture of dried yeast, agar, molasses and corn meal, seeded with live yeast. The pairs were transferred every 4 days to a new food medium, until the female genotype could be established from the phenotype of the offspring. Because of the number of cultures involved only the adults could be examined for the presence of gonads, about 20 days after the eclosion of the parents. Thereafter the homozygous grand- 1 Author's address: Department of Biochemistry, University of Oxford, Oxford, U.K. 24 JEEM 17

2 376 C. J. FIELDING childless females and sufficient of their sisters, taken at random from the population, provided a supply of eggs for analysis; only eggs from actively laying females were used. In this paper the term 'grandchildless egg' refers to an egg laid by a homozygous mutant female, and 'normal egg' to one laid by her phenotypically normal sister; and similarly with larvae and adult offspring. In some experiments whole ovaries and isolated mature oocytes (stage 14 of King, Rubinson & Smith, 1956) were frozen in liquid nitrogen, sectioned at 5 fi in a cryostat, thawed and fixed in formol-calcium (Baker, 1944), and stained with Oil Red O (Lillie, 1944) to display neutral glyceride. Developing eggs were fixed with formol-alcohol-acetic acid (Smith, 1940) and after impregnation with paraffin wax (melting point 58 C) sections were cut at 5 fi and stained with iron haematoxylin. Freshly excised larval midguts were suspended in aqueous sodium diethyldithiocarbamate to show the presence of copper (Waterhouse, 1945). RESULTS Structure of the gonad rudiment of adult offspring of grandchildless females The ovary of the newly eclosed female contains about a dozen ovarioles, containing egg chambers at stages 1-5 of ICing, Rubinson & Smith (1956). In the ovary rudiment of the newly eclosed female offspring of the homozygous grandchildless female there were no egg chambers or oogonia. The organ contained about a dozen columnar masses of small cells, within a substantial matrix of connective tissue (Plate 1, fig. 1). At its anterior end each cell mass narrowed to a thread of a single thickness of cells. The position of the rudiment in the abdominal cavity, and its association with a group of tracheoles whose components passed between the columnar masses, were as in the normal ovary. Within a few days of eclosion the individual cells of the masses coalesced, and stained darkly with haematoxylin. In the adult male offspring of the homozygous grandchildless female the testis rudiment was a minute structure attached to the vas deferens. It was composed throughout its length of the orange pigmented tissue characteristic of the vas deferens wall, and tunica externa of the normal testis. Whilst the rudiment usually consisted of a spherical knob attached by a thin thread of the same orange tissue, in a few individuals (the proportion varying with the residual genotype) it lay unattached in the body cavity, or was completely absent. In occasional cultures which contain gonadless individuals there are a few flies with one or both gonads, which contain maturing sperm or eggs, and these are fully fertile.

3 /. Embryol. exp. Morph., Vol. 17, Part 2 PLATE 1 Fig. 1. Ovary rudiment of newly eclosed gonadless female offspring of a homozygous grandchild/ess mother. Iron haematoxylin. x 275. Fig. 2. Grandchild/ess ovum, early cleavage, showing the chains of vacuoles. Iron haematoxylin. x520. Fig. 3. Grandchildless embryo, blastula showing degenerated pole plasm. Iron haematoxylin. x 520. Fig. 4. Egg chamber of homozygous grandchildless female. Oil Red O. x 275. Fig. 5. Egg chamber of normal female of the same stock. Oil Red O. x 275. C. J. FIELDING facing p. 376

4 Genetics of mutant grandchildless 377 Structure of the gonad rudiment in larvae of grandchildless females In the newly hatched normal larva there was found, in the fifth abdominal segment on each side, an organ of a few large cells within a single-layered envelope of small cuboidal cells. This is the larval gonad. In the second and third instars, when the differentiation of the gonad had proceeded farther, the relationship of the gonad to the segmental fat body was the same as that described for Drosophila melanogaster by Kerkis (1933): in the female the fat body tissue appeared to surround the gonad, whereas in the male the gonad is merely apposed to it by the external face. Out of twelve complete series of sections of second and third instar larvae of homozygous grandchildless females, a ball of cuboidal cells in the position of the normal larval gonad was found in seven, surrounded by the segmental fat body. In the remaining five no organ was found, and the fat body tissue, which was normally developed, was continuous across the expected position of the gonad. Embryology of normal and grandchildless ova Yolk granules and large vacuoles are distributed rather evenly through the volume of the freshly laid normal egg, except that at each pole there is an area of clear cytoplasm, devoid of yolk spheres, which extends also as a narrow cortex about the entire periphery. At a point below the base of the chorionic filament, and close to the surface of the egg, the clear layer is expanded to include the egg pronucleus. After the second maturation division has been completed there, this moves inwards to meet the sperm head. The polar bodies remain behind at the surface. In Drosophila subobscura as in D. melanogaster the maturation division spindles have no centrioles or asters (Huettner, 1923). In the grandchildless eggs of the same stock there were far fewer yolk spheres and an increased number of large vacuoles. Further, these vacuoles were not distributed singly through the cytoplasm but were associated together in chains (Plate 1, fig. 2). Although the fertility of a few of these malformed eggs cannot be decided, approximately one-quarter of the eggs which have passed the second maturation division, fixed at up to 8 h after laying (25 out of 97 series, 26 %), show a variety of spindle disorders, including half-spindles, spindles of very large size containing diffuse masses of chromatin, and closely apposed triplets of complete spindles, in eggs containing other normal nuclei. In some cases the distorted spindles are peripheral and are presumably derived from the first or second maturation divisions, in some cases by further division of the polar bodies. In others it appears to be early cleavage nuclei in the central ooplasm which are involved. In the entire series of experiments 8616 out of 9370 normal eggs hatched (92-0%). Of the eggs laid by homozygous grandchildless females 1259 out of 1773 hatched (71-1 %). The observed frequency of eggs not developing beyond 24-2

5 378 C. J. FIELDING maturation or early cleavage could therefore account for the whole of the increased mortality found in the mutant series, and in practice dying embryos of later stages are not encountered. In the normal embryos at 3 h after laying, the cleavage nuclei had moved out to the circumference of the egg into the cortex. Since the cleavage divisions involved not only a multiplication but a distribution of nuclei in the ooplasm, the whole cortex was nucleated at approximately the same time, although the zygote was formed in the anterior third. As nuclei reached the poles of the egg, they bulged out but remained spherical. Elsewhere they became flattened against the vitelline membrane. At about 3- h after laying the first pole cells were cut off from the clear posterior pole plasm. At the anterior pole the bulging nuclei were withdrawn. A few nuclei remained behind in the yolky ooplasm after the formation of the blastoderm, and these are the equivalent of the primary vitellophags of D. melanogaster as defined by Rabinowitz (1941Z?). In 16 examples of normal early embryos of D. subobscura between 12 and 21 pole cells were cut off. Other nuclei in the polar region pushed out but were drawn back without severance of the cytoplasmic connexion. At this time the blastoderm has not yet been completed posteriorly, and these nuclei migrate anteriorly in the ooplasm, because in sections of embryos at a slightly later stage, when the blastoderm wall has been completed, nuclei identical in appearance to those of the pole cells, with a prominent nucleolus, appear just anterior to it. No evidence was found that pole cells divide while outside the embryo. In grandchildless embryos the posterior third of the egg has not yet received nuclei 3 h after laying. Not until 4-4 h do nuclei reach the anterior edge of the pole plasm. Pole cells have not been found in any grandchildless embryo; before the arrival of the first cleavage nuclei the posterior pole plasm is observed to be crumbling and vacuolated (Plate 1, fig. 3). The extent and size of the damaged area is the same as that of the normal pole plasm, defined as the area of clear cytoplasm found at the posterior pole in the mature egg. By 5 h after laying, however, the blastoderm is completed posteriorly but the pole plasm has been undercut and is excluded from the embryo. Certain of the cleavage nuclei during the outwards migration aggregated anterior to the degenerating pole plasm, and these were seen to remain there together as the blastula wall extended back around them (Plate 1, fig. 3). The primary vitellophags were present as usual, distributed singly in the ooplasm. The multiplication of nuclei in the blastoderm, and the development of cleavage furrows between them, proceeded normally in the mutant embryos. In the normal embryo, 5 h after laying, the blastula wall nuclei are placed peripherally, next to the vitelline membrane. In embryos fixed slightly later it was seen that at the postero-dorsal surface the nuclei were drawn inwards and a small depression had appeared over them. Into it passed the pole cells which had remained together posteriorly, outside the completed blastula wall. In sections

6 Genetics of mutant grandchildless 379 of later embryos it was seen that the depression moved anteriorly and at the same time curved backwards inside the embryo so that at its maximum extension, at about 7 h after laying, the opening was in the anterior third, and the diverticulum stretched back almost to the posterior blastoderm wall. This organ is clearly homologous with the midgut diverticulum of D. melanogaster and other Diptera (Sonnenblick, 1950). In embryos older than 7 h the pole cells in the diverticulum have become fewer and by 9 h have disappeared entirely from the lumen. In the grandchildless embryos, where no pole cells are cut off, the midgut diverticulum was found to be normally developed. The mass of nuclei which had aggregated anterior to the degenerated pole plasm became associated with the diverticulum but could not be traced further. The cuprophilic cells of the larval midgut Poulson (1947, 1950) has shown that in D. melanogaster the cuprophilic cells (calycocytes) of a region of the larval midgut are derived from a proportion of the pole cells. The number of calycocytes in the midguts of normal and grandchildless larvae was counted, using preparations stained with sodium diethyldithiocarbamate solution to display copper (Waterhouse, 1945). Normal larvae contain an average of 69 calycocytes (69 examples, range 57-86); grandchildless larvae contain an average of 75 (33 examples, range 57-84). A complete absence of pole cells is therefore not associated with any reduction in the number of calycocytes of the mutant larva. Oogenesis in homozygous grandchildless females and their normal sisters Oogenesis in homozygous grandchildless females shows the following unusual features. Firstly, in all mutant ovaries there is a high proportion of egg chambers at stage 10 of King et al. (1956), that is, with the oocyte occupying about half the volume of the chamber, and the nurse cell chromosomes at their maximum size. It is at this stage in both normal and mutant oogenesis that the amount of neutral lipid in the egg chamber rapidly increases, particularly in the nurse cells, and droplets can be seen in passage from the nurse cells to the oocyte. Secondly, in both nurse cells and oocytes of mutant ovaries the neutral lipid is present as a few large globules (Plate 1, fig. 4), rather than as the mass of fine droplets characteristic of this stage of oogenesis in the normal ovary (Plate 1, fig. 5). DISCUSSION The occurrence of rudimentary gonads in the adults of Drosophila species has been reported previously, not as the result of the action of a single gene, as in the present case, but in two other circumstances. In a number of inter-specific crosses [Drosophila aztecaxd. athebasca (Sturtevant & Dobzhansky, 1936),

7 380 C. J. FIELDING D. melanogaster xd. simulans (Bonnier, 1924; Sturtevant, 1929; Kerkis, 1933; Pontecorvo, 1942), D. mirandaxd. pseudoobscura (Dobzhansky, 1938)] the testes of the male offspring are minute and not functional. In the first two cases the ovary is also reduced, but in the third the female hybrid offspring have a delayed but superficially normal oogenesis, but of the eggs produced, none develop beyond the maturation division or early cleavage stages and show a variety of disorders of the division figures (Kauffman, 1940). Rudimentary gonads are also developed in normal eggs of D. melanogaster (and presumably other species) when the pole plasm or separate pole cells have been irradiated with ultraviolet light (Geigy, 1931; Aboim, 1945; Poulson & Waterhouse, 1960). In adult females from irradiated eggs the ovary is rudimentary and contains columnar masses of flattened cells. These cells have been shown to develop from the envelope of the larval gonad, which would normally provide the follicle cells of the egg chambers (Geigy, 1931). Germ cells and their derivatives, which are produced from the pole cells of the embryo (Huettner, 1923; Rabinowitz, 1941a; Sonnenblick, 1941), are completely absent. The embryological origin of the gonad rudiment tissue in the crosses mentioned is known only for D. melanogaster x D. simulans, where Pontecorvo (1942) has shown that certain masses of round cells (not present in the grandchildless rudiment) represent germ cells which have undergone multiple mitotic divisions. The close resemblance between the structures of the ovaries of offspring of irradiated and homozygous mutant females, together with the presence of only the small cuboidal cells in the position of the mutant larval gonad in those larvae possessing the organ, suggests that the mutant rudimentary ovary contains no germ cells. The observation that the individuals bearing these organs develop from embryos without pole cells gives confirmation to previous research showing that the two cell types have the same embryological origin. In adult males developing from eggs irradiated at the posterior pole the testis is represented by connective tissue and tunic only (Geigy, 1931). In the male offspring of homozygous grandchildless females it consists entirely of the pigmented tissue that in the normal testis contributes to the tunica externa only, and which late in pupal life spreads from the gonad over the vas deferens (Stern & Hadorn, 1939). Since in their structure and their position in relation to the segmental fat body the gonad rudiments which are found in grandchildless larvae correspond to those of the normal female, it is likely that those larvae showing no rudiment are genetically male. The size of the adult male rudiment reported by Spurway (1948) is much greater than that found in the present investigation, and it seems likely that in the intervening generations a loss of the inner mass of loose tissue has occurred, and that it was this component which was present in the male grandchildless larva in the gonad transplantation studies of Suley (1953). There is no sign in the testis rudiment of irradiated males or those from the grandchildless stock of a cell type equivalent to the follicle cells of the ovary.

8 Genetics of mutant grandchildless 381 This supports the conclusion reached by Bodenstein (1950) from a study of the normal embryology of D. melanogaster. In D. subobscura, as in Diptera generally, there is a very early separation of the germ line from the remainder of the embryo by the formation of pole cells after nucleation of the posterior pole plasm. Not all the pole cells contribute to the germ line (Rabinowitz, 1941a; Sonnenblick, 1941; Poulson, 1947). These cells migrate by two distinct and alternative routes: by passage between the cells of the posterior blastoderm wall, and later by migration into the growing hollow of the midgut diverticulum. Counce (1961), who termed these migrations phase I and phase II respectively, has suggested that the migration is continuous rather than diphasic. Hathaway & Selman (1961) used an ultraviolet microbeam to irradiate the posterior pole of embryos at three early stages of development: prior to the formation of any pole cells, after completion of pole cell formation, and after phase I migration but before the migration of the remaining pole cells into the midgut diverticulum. The number of pole cells found in the embryonic gonad was counted, and it was found that the same significant reduction in the number of gonadal pole cells was found after irradiation of all the pole cells or of the remaining phase II cells only. Thus a clear demonstration was obtained that the pole cells migrating at phase II give rise to the germ line. Embryos from homozygous grandchildless females show no phase II migration, and no pole cells in the gonads, but the calycocytes are present as usual. These results are therefore completely in accord with those of Hathaway & Selman (1961). These authors also conclude that the migrating pole cells cannot be equipotent, because otherwise a deficiency of phase II pole cells caused by ultraviolet treatment would presumably be compensated for by a contribution of phase I cells to the gonad. However, these authors' results are not able to provide information on the equipotency of the pole cells before the phase I migration. As Rabinowitz (1941 a) has shown, the phase I nuclei fuse with the cytoplasm of the blastoderm, whereas the phase II nuclei retain the cytoplasm with which they were associated at the time of their formation. Thus a differentiation into germ-line and calycocyte-line pole cells at the time of budding from the pole plasm, during the period outside the embryo, or during the phase I migration, would give the same results in terms of reduction of gonadal pole cells, namely that irradiation of all the pole cells, or of the remaining phase II only, would give significantly fewer in the gonad than before the formation of any pole cells, but irradiation at both stages would show the same reduction. This distinction is of considerable importance because of two observations that do not fit readily into the simple scheme that phase I gives rise to the calycocytes and phase II to the germ line. In grandchildless embryos no nuclei enter the pole plasm because of its early degeneration, and therefore the aggregation of nuclei anterior to it derive their cytoplasm from the blastoderm directly. However, grandchildless larvae developed from these contain the normal

9 382 C. J. FIELDING complement of calycocytes. Since in normal development the calycocytes are derived from pole cells which have been budded off from the main body of the embryo, it is reasonable to conclude that the irreversible differentiation of germ line from calycocytes required by the observations of Hathaway & Selman occurs after the migration of the phase I nuclei, which fuse with the blastoderm. Secondly, Counce & Ede (1957) found that in the mutant/s nasa there was no phase II migration; nevertheless gonads were formed in some cases. If, as seems likely from plate 1, fig. C of these authors, the pole cells migrating back through the blastoderm do not readily fuse with it, but retain their original cytoplasm, then the determination of the presumptive pole cell nuclei in this mutant is compatible with that in normal and irradiated embryos, and of grandchildless embryos. In this case, the determination of the germ line would require the interaction of presumptive pole cell nuclei and pole plasm at the onset of gastrulation, after the migration of the phase I nuclei, which, rejoined with the general blastoderm, would there complete their differentiation to calycocytes. SUMMARY 1. The development of the gonad rudiment of the offspring of female Drosophila subobscura homozygous for the gene grandchildless, in the embryo and larva, has been investigated. 2. An absence of germ cells in the larval and adult gonads has been correlated with the absence of pole cells in the midgut diverticulum of the embryo. 3. Early in the development of the mutant embryo the posterior pole plasm degenerates. The calycocytes of the larval midgut, which are derived from pole cells, are present in full number. 4. In the grandchildless embryo the presumptive pole cell nuclei stop short of the pole plasm, and aggregate anterior to it. These nuclei are thought to enter subsequently the midgut. 5. Observations on the fate of the presumptive pole cell nuclei in mutant embryos confirm previous research on the origin of the germ-line pole cells. The implications of the development of calycocytes in these embryos are discussed. RESUME Genetique du developpement du mutant 'grandchildless' de Drosophila pseudoobscura 1. Le developpement de l'ebauche gonadique de la progeniture de femelles de Drosophila subobscura homozygotes pour le gene 'grandchildless' ('absence de petits-enfants') a ete etudie chez Pembryon et la larve. 2. L'absence de gonocytes dans les gonades larvaires et adultes est correlative de l'absence de cellules polaires dans le diverticule de l'intestin moyen de l'embryon.

10 Genetics of mutant grandchildless Au debut du developpement de l'embryon mutant, le plasme polaire posterieur degenere. Les calyocytes de l'intestin moyen de la larve, qui derivent des cellules polaires, sont presents en totalite. 4. Chez l'embryon 'grandchildless', les noyaux presomptifs des cellules polaires s'arretent en avant du plasme polaire et s'agregent anterieurement a lui. On pense que ces noyaux entrent par la suite dans l'intestin anterieur. 5. Des observations sur le sort des noyaux presomptifs des cellules polaires chez les embryons mutants confirment les recherches precedentes sur l'origine des cellules polaires de la lignee germinale. On discute les implications du developpement des calyocytes chez ces embryons. This research is part of that presented to the University of London for the award of a Doctorate of Philosophy, and was supported by a Postgraduate Studentship of the Agricultural Research Council. I am indebted to Professor John Maynard Smith for his supervision of this investigation. REFERENCES ABOIM, A. N. (1945). Developpement embryonnaire et post-embryonnaire des gonades normales et agametiques de Drosophila melanogaster. Revue suisse Zool. 52, BAKER, J. R. (1944). The structure and chemical composition of the Golgi element. Q. Jl. microsc. Sci. 85, BODENSTEIN, D. (1950). The postembryonic development of Drosophila. In Biology of Drosophila, ed. M. Demerec. New York: Wiley and Sons. BONNIER, G. (1924). Contributions to the knowledge of intra- and inter-specific relationships in Drosophila. Ada. zool., Stockh. 5, COUNCE, S. J. (1961). The analysis of insect embryogenesis. Ann. Rev. Entomol. 6, COUNCE, S. J. & EDE, D. A. (1957). The effect in embryogenesis of a sex-linked femalesterility factor in Drosophila melanogaster. J. Embryol. exp. Morph. 5, DOBZHANSKY, T. (1937). Further data on Drosophila miranda and its hybrids with Drosophila pseudoobscura. J. Genet. 34, EDE, D. A. (1956a). Studies on the effects of some genetic lethal factors on the embryonic development of Drosophila melanogaster. I. A preliminary survey of some sex-linked lethal stocks, and an analysis of the mutant Lffll. Wilhelm Roux Arch. EntwMech. 148, EDE, D. A. (19566). Ibid. II. An analysis of the mutant X2. Wilhelm Roux Arch. EntwMech. 148, EDE, D. A. (1956C). Ibid. III. An analysis of the mutant X27. Wilhelm Roux Arch. Entw.- Mech. 149, EDE, D. A. (1956d). Ibid. V. An analysis of the mutant X10. Wilhelm Roux Arch. Entw.- Mech. 149, GEIGY, R. (1931). Action de l'ultra-violet sur le pole germinal dans l'oeuf de Drosophila melanogaster. Revue suisse Zool. 38, HATHAWAY, D. S. & SELMAN, G. G. (1961). Certain aspects of cell lineage and morphogenesis studied in Drosophila melanogaster with an ultraviolet microbeam. J. Embryol. exp. Morph. 9, HuETTNER, A. F. (1923). The origin of the germ cells in Drosophila melanogaster. J. Morph. 37, KAUFFMAN, B. P. (1940). The nature of hybrid sterility abnormal development in eggs of hybrids between Drosophila miranda and Drosophila pseudoobscura. J. Morph. 66, KERKIS, J. (1933). Development of gonads in hybrids between Drosophila melanogaster and Drosophila simulans. J. exp. Zool. 66,

11 384 C. J. FIELDING KING, R. C, RUBINSON, A. C. & SMITH, R. F. (1956). Oogenesis in adult Drosophila melanogaster. Growth 20, LILLIE, R. D. (1944). Various oil soluble dyes as fat stains in the supersaturated isopropanol technic. Stain Technol. 19, PARKS, H. B. (1936). Cleavage patterns in Drosophila and mosaic formation. Ann. ent. Soc. Am. 29, PONTECORVO, G. (1942). Hybrid sterility in artificially produced recombinants between Drosophila melanogaster and Drosophila simulans. Proc. R. Soc. Edinb. 61, POULSON, D. F. (1947). The pole cells of Diptera, their fate and significance. Proc. natn. Acad. Sci. U.S.A. 6, POULSON, D. F. (1950). Histogenesis, organogenesis, and differentiation in the embryo of Drosophila melanogaster (Meigen). In Biology of Drosophila, ed. M. Demerec. New York: Wiley and Sons. POULSON, D. F. & WATERHOUSE, D. F. (1960). Experimental studies on pole cells and midgut differentiation in Diptera. Aust. J. biol. Sci. 13, RABINOWTTZ, M. (1941a). Studies on the cytology and early embryology of the egg of Drosophila melanogaster. J. Morph. 69, RABINOWTTZ, M. (19416). Yolk nuclei in the egg of Drosophila melanogaster. Anat. Rec. 81 (Suppl. 2), SMITH, S. G. (1940). A new embedding schedule for insect cytology. Stain Technol. 15, SONNENBLICK, B. P. (1941). Germ cell movements and sex differentiation of the gonads in the Drosophila embryo. Proc. natn. Acad. Sci. U.S.A. 27, SONNENBLICK, B. P. (1950). The early embryology of Drosophila melanogaster. In Biology of Drosophila, ed. M. Demerec. New York: Wiley and Sons. SPURWAY, H. (1948). Genetics and cytology of Drosophila subobscura. IV. An extreme example of delay in gene action, causing sterility. J. Genet. 49, STERN, C. & HADORN, E. (1939). The relation between the colour of testis and vas deferens in Drosophila. Genetics, Princeton 24, STURTEVANT, A. H. (1929). The genetics of Drosophila. Publs Carnegie Instn 399, STURTEVANT, A. H. & DOBZHANSKY, T. (1936). Observations on the species related to Drosophila affinis, with descriptions of seven new forms. Am. Nat. 70, SULEY, A. C. E. (1953). Genetics of Drosophila subobscura. VIII. Studies on the mutant grandchildless. J. Genet. 51, WATERHOUSE, D. F. (1945). Studies on the physiology and toxicology of blowflies. 10. A histochemical examination of the distribution of copper in Lucilia cuprina. Bull. Coun. scient. ind. Res., Melb. 191, {Manuscript received 18 October 1966)

Lecture 20: Drosophila melanogaster

Lecture 20: Drosophila melanogaster Lecture 20: Drosophila melanogaster Model organisms Polytene chromosome Life cycle P elements and transformation Embryogenesis Read textbook: 732-744; Fig. 20.4; 20.10; 20.15-26 www.mhhe.com/hartwell3

More information

Blastoderm Formation in the Silkworm,

Blastoderm Formation in the Silkworm, Recent Advances in Insect Embryology in Japan Edited by H. Ando and K. Miya. ISEBU Co. Ltd., Tsukuba 1985 125 Blastoderm Formation in the Silkworm, Bombyx. mori (Lepidoptera, Bombycidae) Sachiko TAKESUE

More information

The Genetic Basis of Development

The Genetic Basis of Development Chapter 21 The Genetic Basis of Development Overview: From Single Cell to Multicellular Organism The application of genetic analysis and DNA technology Has revolutionized the study of development PowerPoint

More information

The Chromosomal Basis of Inheritance

The Chromosomal Basis of Inheritance CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 12 The Chromosomal Basis of Inheritance Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION

More information

Introduction. Thomas Hunt Morgan. Chromosomes and Inheritance. Drosophila melanogaster

Introduction. Thomas Hunt Morgan. Chromosomes and Inheritance. Drosophila melanogaster Chromosomes and Inheritance 1 4 Fig. 12-10, p. 244 Introduction It was not until 1900 that biology finally caught up with Gregor Mendel. Independently, Karl Correns, Erich von Tschermak, and Hugo de Vries

More information

Figure 1: Testing the CIT: T.H. Morgan s Fruit Fly Mating Experiments

Figure 1: Testing the CIT: T.H. Morgan s Fruit Fly Mating Experiments I. Chromosomal Theory of Inheritance As early cytologists worked out the mechanism of cell division in the late 1800 s, they began to notice similarities in the behavior of BOTH chromosomes & Mendel s

More information

The Effect of Chloroacetophenone on the Inducing Capacity of Hensen's Node

The Effect of Chloroacetophenone on the Inducing Capacity of Hensen's Node The Effect of Chloroacetophenone on the Inducing Capacity of Hensen's Node by M. S. LAKSHMI 1 From the Department of Zoology, University ofpoona RODUCTION IN a previous paper (Lakshmi, 1962) the effects

More information

Differentiation markers in the Drosophila ovary

Differentiation markers in the Drosophila ovary J. Embryol. exp. Morph. 84,275-286 (1984) 275 Printed in Great Britain The Company of Biologists Limited 1984 Differentiation markers in the Drosophila ovary By ROBERT A. H. WHITE 1 *, NORBERT PERRIMON

More information

Activity 47.1 What common events occur in the early development of animals? 1. What key events occur at each stage of development?

Activity 47.1 What common events occur in the early development of animals? 1. What key events occur at each stage of development? Notes to Instructors Chapter 47 Animal Development What is the focus of this activity? Chapter 21 provided a review of how genes act to control development. Chapter 47 reviews some of the major morphological

More information

E/70C-64C/56B-51E/87B-91A/15F-cm. of X

E/70C-64C/56B-51E/87B-91A/15F-cm. of X 8 GENETICS: B. P. KA UFMA NN A COMPLEX INDUCED REARRANGEMENT OF DROSOPHILA CHROMOSOMES AND ITS BEARING ON THE PROBLEM OF CHROMOSOME RECOMBINA TION DEPARTMENT OF GENETICS, By.B. P. KAUFMANN CARNEGIE INSTITUTION

More information

Chapter 3. DNA Replication & The Cell Cycle

Chapter 3. DNA Replication & The Cell Cycle Chapter 3 DNA Replication & The Cell Cycle DNA Replication and the Cell Cycle Before cells divide, they must duplicate their DNA // the genetic material DNA is organized into strands called chromosomes

More information

Reading. Lecture III. Nervous System Embryology. Biology. Brain Diseases. September 5, Bio 3411 Lecture III. Nervous System Embryology

Reading. Lecture III. Nervous System Embryology. Biology. Brain Diseases. September 5, Bio 3411 Lecture III. Nervous System Embryology Reading NEUROSCIENCE: 5 th ed, pp. 477-506 NEUROSCIENCE: 4 th ed, pp. 545-575 Bio 3411 Wednesday 2 Summary from Lecture II Biology Understanding the brain is THE major question in biology and science.

More information

Lecture III. Nervous System Embryology

Lecture III. Nervous System Embryology Bio 3411 Wednesday Reading NEUROSCIENCE: 5 th ed, pp. 477-506 NEUROSCIENCE: 4 th ed, pp. 545-575 2 1 Summary from Lecture II Biology Understanding the brain is THE major question in biology and science.

More information

Gregor Mendel. Austrian Monk Worked with pea plants

Gregor Mendel. Austrian Monk Worked with pea plants Gregor Mendel Austrian Monk Worked with pea plants A. True Breeding Pea Plants Self pollinate and produce new plants genetically identical to themselves Mendel decides to cross pollinate the plants Offspring

More information

Trasposable elements: Uses of P elements Problem set B at the end

Trasposable elements: Uses of P elements Problem set B at the end Trasposable elements: Uses of P elements Problem set B at the end P-elements have revolutionized the way Drosophila geneticists conduct their research. Here, we will discuss just a few of the approaches

More information

four chromosomes ` four chromosomes correct markers (sister chromatids identical!)

four chromosomes ` four chromosomes correct markers (sister chromatids identical!) Name KEY total=107 pts 1. Genes G and H are on one chromosome; gene F is on another chromosome. Assume the organism is diploid and that there is no crossing over in this species. You are examining the

More information

wheat yield (tonnes ha 1 ) year Key: total yield contribution to yield made by selective breeding Fig. 4.1

wheat yield (tonnes ha 1 ) year Key: total yield contribution to yield made by selective breeding Fig. 4.1 1 Wheat is an important food crop in many European countries. Developments in farming allowed the yield of wheat produced by farms in the UK to increase rapidly in the second half of the 20th century.

More information

LECTURE 5: LINKAGE AND GENETIC MAPPING

LECTURE 5: LINKAGE AND GENETIC MAPPING LECTURE 5: LINKAGE AND GENETIC MAPPING Reading: Ch. 5, p. 113-131 Problems: Ch. 5, solved problems I, II; 5-2, 5-4, 5-5, 5.7 5.9, 5-12, 5-16a; 5-17 5-19, 5-21; 5-22a-e; 5-23 The dihybrid crosses that we

More information

Reproduction, Heredity, & Molecular Genetics. A. lipids B. amino acids C. nucleotides D. polysaccarides

Reproduction, Heredity, & Molecular Genetics. A. lipids B. amino acids C. nucleotides D. polysaccarides Name: Date: 1. A strand of DNA consists of thousands of smaller, repeating units known as A. lipids B. amino acids C. nucleotides D. polysaccarides 2. Which two bases are present in equal amounts in a

More information

Development of Eye Colors in Drosophila: Fat Bodies and Malpighian Tubes as Sources of Diffusible Substances. G. W. Beadle

Development of Eye Colors in Drosophila: Fat Bodies and Malpighian Tubes as Sources of Diffusible Substances. G. W. Beadle Development of Eye Colors in Drosophila: Fat Bodies and Malpighian Tubes as Sources of Diffusible Substances G. W. Beadle PNAS 1937;23;146-152 doi:10.1073/pnas.23.3.146 This information is current as of

More information

Michelle Wang Department of Biology, Queen s University, Kingston, Ontario Biology 206 (2008)

Michelle Wang Department of Biology, Queen s University, Kingston, Ontario Biology 206 (2008) An investigation of the fitness and strength of selection on the white-eye mutation of Drosophila melanogaster in two population sizes under light and dark treatments over three generations Image Source:

More information

Developmental Biology 3230 Exam 1 (Feb. 6) NAME

Developmental Biology 3230 Exam 1 (Feb. 6) NAME DevelopmentalBiology3230Exam1(Feb.6)NAME 1. (10pts) What is a Fate Map? How would you experimentally acquire the data to draw a Fate Map? Explain what a Fate Map does and does not tell you about the mechanisms

More information

SELECTION FOR REDUCED CROSSING OVER IN DROSOPHILA MELANOGASTER. Manuscript received November 21, 1973 ABSTRACT

SELECTION FOR REDUCED CROSSING OVER IN DROSOPHILA MELANOGASTER. Manuscript received November 21, 1973 ABSTRACT SELECTION FOR REDUCED CROSSING OVER IN DROSOPHILA MELANOGASTER NASR F. ABDULLAH AND BRIAN CHARLESWORTH Department of Genetics, Unicersity of Liverpool, Liverpool, L69 3BX, England Manuscript received November

More information

& Practice

& Practice IB BIOLOGY 4.1-4.3 & 10.1-10.3 Practice 1. Red-green colour blindness is a sex-linked condition. Which of the following always shows normal vision? (HL p1 May09 TZ1 q11) A. A homozygous male B. A homozygous

More information

Production of Duck-Chicken Chimeras by Transferring Early Blastodermal Cells

Production of Duck-Chicken Chimeras by Transferring Early Blastodermal Cells Production of Duck-Chicken Chimeras by Transferring Early Blastodermal Cells Z. D. Li, 1 H. Deng, C. H. Liu, Y. H. Song, J. Sha, N. Wang, and H. Wei Department of Biochemistry and Molecular Biology, China

More information

Read each question, and write your answer in the space provided. 2. How did Mendel s scientific work differ from the work of T. A. Knight?

Read each question, and write your answer in the space provided. 2. How did Mendel s scientific work differ from the work of T. A. Knight? Name Date Class CHAPTER 8 DIRECTED READING Mendel and Heredity Section 8-1: The Origins of Genetics Mendel and Others Studied Garden-Pea Traits 1. What did T. A. Knight discover? 2. How did Mendel s scientific

More information

Cells and Tissues. Overview CELLS

Cells and Tissues. Overview CELLS Cells and Tissues WIll The basic unit of structure and function in the human body is the cell. Each of a cell's parts, or organelles, as well as the entire cell, is organized to perform a specific function.

More information

We can use a Punnett Square to determine how the gametes will recombine in the next, or F2 generation.

We can use a Punnett Square to determine how the gametes will recombine in the next, or F2 generation. AP Lab 7: The Mendelian Genetics of Corn Objectives: In this laboratory investigation, you will: Use corn to study genetic crosses, recognize contrasting phenotypes, collect data from F 2 ears of corn,

More information

164 Teaching Notes Dros. Inf. Serv. 91 (2008)

164 Teaching Notes Dros. Inf. Serv. 91 (2008) 164 Teaching Notes Dros. Inf. Serv. 91 (2008) Histochem. 70(5): 220-33; Dulbecco, R., and M. Vogt 1954, J. Exp. Med. 99(2): 167-182; Pearson, H., 2005, Nature 434: 952 953; Chatterjee, R., 2006, Science

More information

Genetics and Heredity. Mr. Gagnon

Genetics and Heredity. Mr. Gagnon Genetics and Heredity Mr. Gagnon Key Terms: Traits Heredity Genetics Purebred Genes Alleles Recessive Allele Dominant Allele Hybrids Key Concepts: What factors control the inheritance of traits in organisms?

More information

MECHANISM OF TRANSMISSION OF CHARACTERS FROM PARENTS TO OFFSPRINGS & HEREDITARY VARIATION IN LIVING ORGANISMS BY DESCENT.

MECHANISM OF TRANSMISSION OF CHARACTERS FROM PARENTS TO OFFSPRINGS & HEREDITARY VARIATION IN LIVING ORGANISMS BY DESCENT. VARIATIONS & PRINCIPLES OF INHERITANCE BY:- HIMANSHU LATAWA BIOLOGY LECTURER G.G.S.S.SCHOOL, SIRHIND MANDI anshu223@gmail.com GENETICS: SCIENTIFIC STUDY OF MECHANISM OF TRANSMISSION OF CHARACTERS FROM

More information

CHAPTER 4 STURTEVANT: THE FIRST GENETIC MAP: DROSOPHILA X CHROMOSOME LINKED GENES MAY BE MAPPED BY THREE-FACTOR TEST CROSSES STURTEVANT S EXPERIMENT

CHAPTER 4 STURTEVANT: THE FIRST GENETIC MAP: DROSOPHILA X CHROMOSOME LINKED GENES MAY BE MAPPED BY THREE-FACTOR TEST CROSSES STURTEVANT S EXPERIMENT CHAPTER 4 STURTEVANT: THE FIRST GENETIC MAP: DROSOPHILA X CHROMOSOME In 1913, Alfred Sturtevant drew a logical conclusion from Morgan s theories of crossing-over, suggesting that the information gained

More information

Growth and cell competition in Drosophila

Growth and cell competition in Drosophila J. Embryol exp. Morph. Vol. 65 (.Supplement), pp. 77-88, 1981 77 Printed in Great Britain Company of Biologists Limited 1981 Growth and cell competition in Drosophila By PAT SIMPSON 1 From the Laboratoire

More information

New Tool for Late Stage Visualization of Oskar Protein in Drosophila melanogaster. Oocytes. Kathleen Harnois. Supervised by Paul Macdonald

New Tool for Late Stage Visualization of Oskar Protein in Drosophila melanogaster. Oocytes. Kathleen Harnois. Supervised by Paul Macdonald New Tool for Late Stage Visualization of Oskar Protein in Drosophila melanogaster Oocytes Kathleen Harnois Supervised by Paul Macdonald Institute of Cellular and Molecular Biology, The University of Texas

More information

LINKAGE AND CHROMOSOME MAPPING IN EUKARYOTES

LINKAGE AND CHROMOSOME MAPPING IN EUKARYOTES LINKAGE AND CHROMOSOME MAPPING IN EUKARYOTES Objectives: Upon completion of this lab, the students should be able to: Understand the different stages of meiosis. Describe the events during each phase of

More information

Page 1. Name: 1) Which letter indicates a cell structure that directly controls the movement of molecules into and out of the cell?

Page 1. Name: 1) Which letter indicates a cell structure that directly controls the movement of molecules into and out of the cell? Name: 1) Which letter indicates a cell structure that directly controls the movement of molecules into and out of the cell? A) A B) B C) C D) D 2) A single-celled organism is represented in the diagram

More information

I attempt has been made to attack various problems concerned with eye

I attempt has been made to attack various problems concerned with eye DEVELOPMENT OF EYE COLORS IN DROSOPHILA: DIFFUSIBLE SUBSTANCES AND THEIR INTERRELATIONS G. W. BEADLE AND BORIS EPHRUSSI California Institute of Technology, Pasadena, California and Institut de Biologie

More information

Beyond Mendel s Laws of Inheritance

Beyond Mendel s Laws of Inheritance Chapter 14. Beyond Mendel s Laws of Inheritance 1 Extending Mendelian genetics Mendel worked with a simple system peas are genetically simple most traits are controlled by a single gene each gene has only

More information

CELLULAR PROCESSES; REPRODUCTION. Unit 5

CELLULAR PROCESSES; REPRODUCTION. Unit 5 CELLULAR PROCESSES; REPRODUCTION Unit 5 Cell Cycle Chromosomes and their make up Crossover Cytokines Diploid (haploid diploid and karyotypes) Mitosis Meiosis What is Cancer? Somatic Cells THE CELL CYCLE

More information

17.1 Variation, 17.2 Chromosomes and DNA, 17.3 Monohybrid Inheritance, 17.4 Selection, 17.5 Genetic Engineering SYLLABUS CHECKLIST

17.1 Variation, 17.2 Chromosomes and DNA, 17.3 Monohybrid Inheritance, 17.4 Selection, 17.5 Genetic Engineering SYLLABUS CHECKLIST Topic 17 INHERITANCE 17.1 Variation, 17.2 Chromosomes and DNA, 17.3 Monohybrid Inheritance, 17.4 Selection, 17.5 Genetic Engineering SUFEATIN SURHAN BIOLOGY MSPSBS 2010 SYLLABUS CHECKLIST Candidates should

More information

No, because expression of the P elements and hence transposase in suppressed in the F1.

No, because expression of the P elements and hence transposase in suppressed in the F1. Problem set B 1. A wild-type ry+ (rosy) gene was introduced into a ry mutant using P element-mediated gene transformation, and a strain containing a stable ry+ gene was established. If a transformed male

More information

Temperature sensitive gene expression: Two rules.

Temperature sensitive gene expression: Two rules. 32 Research Notes Dros. Inf. Serv. 92 (2009) Temperature sensitive gene expression: Two rules. Gupta, Anand P. Johnson C. Smith University, Department of Science and Mathematics, 100 Beatties Ford Road,

More information

Spontaneous recombination; males; Drosophila bipectinata.

Spontaneous recombination; males; Drosophila bipectinata. J. Biosci., Vol. 21, Number 6, December 1996, pp. 775-779. Printed in India. Spontaneous recombination in males of Drosophila bipectinata Β Ν SINGH* and RAKHEE BANERJEE Genetics Laboratory, Department

More information

the neoplasms, the development of the mutated animals

the neoplasms, the development of the mutated animals Environmental Health Perspectives Vol. 88, pp. 163-167, 1990 Molecular Action of the l(2)gl Tumor Suppressor Gene of Drosophila melanogaster by Reinhard Merz,* Martina Schmidt,* Istvan Torok,* Ursula Protin,t

More information

Chapter 6 Linkage and Chromosome Mapping in Eukaryotes

Chapter 6 Linkage and Chromosome Mapping in Eukaryotes Chapter 6 Linkage and Chromosome Mapping in Eukaryotes Early Observations By 1903 Sutton pointed out likelihood that there were many more unit factors than chromosomes in most species Shortly, observations

More information

Genetics II: Linkage and the Chromosomal Theory

Genetics II: Linkage and the Chromosomal Theory Genetics II: Linkage and the Chromosomal Theory An individual has two copies of each particle of inheritance (gene). These two copies separate during the formation of gametes and come together when the

More information

PUBLICATIONS ALFRED H. STURTEVANT E S P. Electronic Scholarly Publishing

PUBLICATIONS ALFRED H. STURTEVANT E S P. Electronic Scholarly Publishing PUBLICATIONS OF ALFRED H. STURTEVANT 1891 1970 E S P Electronic Scholarly Publishing http://www.esp.org Electronic Scholarly Publishing Project Foundations Series Classical Genetics Series Editor: Robert

More information

Light-Dependent Pupation Site Preferences in Drosophila" Behavior of Adult Visual Mutants

Light-Dependent Pupation Site Preferences in Drosophila Behavior of Adult Visual Mutants BEHAVIORAL AND NEURAL BIOLOGY 31, 348-353 (1981) Light-Dependent Pupation Site Preferences in Drosophila" Behavior of Adult Visual Mutants THERESE ANN MARKOW Department of Zoology, Arizona State University,

More information

Drosophila melanogaster: Genetic Portrait of the Fruit Fly

Drosophila melanogaster: Genetic Portrait of the Fruit Fly Drosophila melanogaster: Genetic Portrait of the Fruit Fly ReferenceD A wild-type Drosophila melanogaster, or fruit fly, has multifaceted brick red eyes, a tan thorax studded with arched black bristles,

More information

Localization of vasa, a component of Drosophila polar granules, in maternaleffect mutants that alter embryonic anteroposterior polarity

Localization of vasa, a component of Drosophila polar granules, in maternaleffect mutants that alter embryonic anteroposterior polarity Development 109, 425-433 (1990) Printed in Great Britain The Company of Biologists Limited 1990 425 Localization of vasa, a component of Drosophila polar granules, in maternaleffect mutants that alter

More information

Mendel and the Gene Idea

Mendel and the Gene Idea Chapter 4 Mendel and the Gene Idea PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan

More information

Linkage & Genetic Mapping in Eukaryotes. Ch. 6

Linkage & Genetic Mapping in Eukaryotes. Ch. 6 Linkage & Genetic Mapping in Eukaryotes Ch. 6 1 LINKAGE AND CROSSING OVER! In eukaryotic species, each linear chromosome contains a long piece of DNA A typical chromosome contains many hundred or even

More information

7.22 Example Problems for Exam 1 The exam will be of this format. It will consist of 2-3 sets scenarios.

7.22 Example Problems for Exam 1 The exam will be of this format. It will consist of 2-3 sets scenarios. Massachusetts Institute of Technology Department of Biology 7.22, Fall 2005 - Developmental Biology Instructors: Professor Hazel Sive, Professor Martha Constantine-Paton 1 of 10 7.22 Fall 2005 sample exam

More information

Introduction to Basic Human Genetics. Professor Hanan Hamamy Department of Genetic Medicine and Development Geneva University Switzerland

Introduction to Basic Human Genetics. Professor Hanan Hamamy Department of Genetic Medicine and Development Geneva University Switzerland Introduction to Basic Human Genetics Professor Hanan Hamamy Department of Genetic Medicine and Development Geneva University Switzerland Training Course in Sexual and Reproductive Health Research Geneva

More information

Human Inheritance for Health and Social Care

Human Inheritance for Health and Social Care Unit 34: Human Inheritance for Health and Social Care Unit code: QCF Level 3: Credit value: 10 Guided learning hours: 60 Aim and purpose Y/600/8991 BTEC Nationals This unit aims to enable learners to understand

More information

Exploring Mendelian Genetics. Dihybrid crosses. Dihybrid crosses

Exploring Mendelian Genetics. Dihybrid crosses. Dihybrid crosses Objective 8: Predict the results of dihybrid genetic crosses by using Punnett squares Exploring Mendelian Genetics 11.3 Dihybrid cross--a cross that involves two pairs of contrasting traits. A cross between

More information

Cells Reproduction and Inheritance

Cells Reproduction and Inheritance S2 Biology 3 Cells Reproduction and Inheritance Cells Cells are the tiny building blocks that make up all living things. Living things can be unicellular or multicellular. Unicellular = organism made of

More information

A targeted gene silencing technique shows that Drosophila myosin VI is required for egg chamber and imaginal disc morphogenesis

A targeted gene silencing technique shows that Drosophila myosin VI is required for egg chamber and imaginal disc morphogenesis Journal of Cell Science 112, 3677-3690 (1999) Printed in Great Britain The Company of Biologists Limited 1999 JCS0531 3677 A targeted gene silencing technique shows that Drosophila myosin VI is required

More information

Embryonic development, epigenics and somatic cell nuclear transfer - The science and its social implications -

Embryonic development, epigenics and somatic cell nuclear transfer - The science and its social implications - Embryonic development, epigenics and somatic cell nuclear transfer - The science and its social implications - Moshe Yaniv Unité d Expression Génétique et Maladies, Institut Pasteur, Paris, France September

More information

-Genes on the same chromosome are called linked. Human -23 pairs of chromosomes, ~35,000 different genes expressed.

-Genes on the same chromosome are called linked. Human -23 pairs of chromosomes, ~35,000 different genes expressed. Linkage -Genes on the same chromosome are called linked Human -23 pairs of chromosomes, ~35,000 different genes expressed. - average of 1,500 genes/chromosome Following Meiosis Parental chromosomal types

More information

Inheritance Biology. Unit Map. Unit

Inheritance Biology. Unit Map. Unit Unit 8 Unit Map 8.A Mendelian principles 482 8.B Concept of gene 483 8.C Extension of Mendelian principles 485 8.D Gene mapping methods 495 8.E Extra chromosomal inheritance 501 8.F Microbial genetics

More information

1/21/ Exploring Mendelian Genetics. What is the principle of independent assortment? Independent Assortment. Biology.

1/21/ Exploring Mendelian Genetics. What is the principle of independent assortment? Independent Assortment. Biology. Biology 1 of 31 11-3 Exploring Mendelian Exploring Genetics Mendelian Genetics 2 of 31 What is the principle of independent assortment? 3 of 31 1 The principle of independent assortment states that genes

More information

Developmental Biology. Cell Fate, Potency, and Determination

Developmental Biology. Cell Fate, Potency, and Determination Developmental Biology Cell Fate, Potency, and Determination Definitions Fate The sum of all structures that the cell or its descendants will form at a later stage of normal development. Cell Fate & Fate

More information

Rapid Learning Center Presents. Teach Yourself AP Biology in 24 Hours

Rapid Learning Center Presents. Teach Yourself AP Biology in 24 Hours Rapid Learning Center Chemistry :: Biology :: Physics :: Math Rapid Learning Center Presents Teach Yourself AP Biology in 24 Hours 1/35 *AP is a registered trademark of the College Board, which does not

More information

Genotype AA Aa aa Total N ind We assume that the order of alleles in Aa does not play a role. The genotypic frequencies follow as

Genotype AA Aa aa Total N ind We assume that the order of alleles in Aa does not play a role. The genotypic frequencies follow as N µ s m r - - - - Genetic variation - From genotype frequencies to allele frequencies The last lecture focused on mutation as the ultimate process introducing genetic variation into populations. We have

More information

Sponsored document from Current Biology From Stem Cell to Embryo without Centrioles Naomi R. Stevens Alexandre A.S.F. Raposo Renata Basto

Sponsored document from Current Biology From Stem Cell to Embryo without Centrioles Naomi R. Stevens Alexandre A.S.F. Raposo Renata Basto Sponsored document from Current Biology From Stem Cell to Embryo without Centrioles Naomi R. Stevens 1, Alexandre A.S.F. Raposo 1, Renata Basto 1, Daniel St Johnston 1, and Jordan W. Raff 1 1 The Gurdon

More information

3/9/04 Cloning/Stem Cells

3/9/04 Cloning/Stem Cells 3/9/04 Cloning/Stem Cells 1 Meet (left to right): Rainbow, Allie and cc (carbon copy) who is a genetic clone of Rainbow. Allie is cc s surrogate mom 2 To see entire article: http://fire.biol.wwu.edu/trent/trent/2.14.02nytcat.pdf

More information

Table of Contents. Chapter: Heredity. Section 1: Genetics. Section 2: Genetics Since Mendel. Section 3: Biotechnology

Table of Contents. Chapter: Heredity. Section 1: Genetics. Section 2: Genetics Since Mendel. Section 3: Biotechnology Table of Contents Chapter: Heredity Section 1: Genetics Section 2: Genetics Since Mendel Section 3: Biotechnology 1 Genetics Inheriting Traits Eye color, nose shape, and many other physical features are

More information

Early Development and Axis Formation in Amphibians

Early Development and Axis Formation in Amphibians Biology 4361 Early Development and Axis Formation in Amphibians October 25, 2006 Overview Cortical rotation Cleavage Gastrulation Determination the Organizer mesoderm induction Setting up the axes: dorsal/ventral

More information

Commitment of stem cells to nerve cells and migration of nerve cell precursors in preparatory bud development in Hydra

Commitment of stem cells to nerve cells and migration of nerve cell precursors in preparatory bud development in Hydra /. Embryol. exp. Morph. Vol. 60, pp. 373-387, 980 373 Printed in Great Britain Company of Biologists Limited 980 Commitment of stem cells to nerve cells and migration of nerve cell precursors in preparatory

More information

DNA segment: T A C T G T G G C A A A

DNA segment: T A C T G T G G C A A A DNA Structure, Replication, Protein Synthesis & Name Period Genetics Study Guide Chapter 12 and 13 Structure of DNA and Protein Synthesis 1. What macromolecule is coded for by genes located on DNA? Provide

More information

The information in this document is meant to cover topic 4 and topic 10 of the IB syllabus. Details of meiosis are found in Notes for Cells.

The information in this document is meant to cover topic 4 and topic 10 of the IB syllabus. Details of meiosis are found in Notes for Cells. The information in this document is meant to cover topic 4 and topic 10 of the IB syllabus. Details of meiosis are found in Notes for Cells. Mendelian Genetics Gregor Mendel was an Austrian monk, who,

More information

1936 Salivary gland chromosomes of Drosophila virilis 273

1936 Salivary gland chromosomes of Drosophila virilis 273 272 Cytologia; Salivary Gland Chromosomes of Drosophila virilis By Sukeichi Fujii Zoological Institute, Kyoto Imperial University Received December3l, 1935 Introduction HEITZ and BAUER (1933) found that

More information

Genetic variation, genetic drift (summary of topics)

Genetic variation, genetic drift (summary of topics) Bio 1B Lecture Outline (please print and bring along) Fall, 2007 B.D. Mishler, Dept. of Integrative Biology 2-6810, bmishler@berkeley.edu Evolution lecture #11 -- Hardy Weinberg departures: genetic variation

More information

Asexu. Figure 6 A small glass tube, called a micropipette, is used to remove the nucleus from a cell and later introduce a new nucleus.

Asexu. Figure 6 A small glass tube, called a micropipette, is used to remove the nucleus from a cell and later introduce a new nucleus. While plant cloning experiments were being conducted, Robert Briggs and Thomas King were busy investigating nuclear transplants in frogs. Working with the common grass frog, the scientists extracted the

More information

DNA/Genetics Test 2016

DNA/Genetics Test 2016 N/Genetics Test 2016 Name: ate: 1. Genetic information usually flows in one specific direction. Which of the following best represents this flow?. N Protein RN. Protein RN N. RN Protein N. N RN Protein

More information

Chapter 8. An Introduction to Population Genetics

Chapter 8. An Introduction to Population Genetics Chapter 8 An Introduction to Population Genetics Matthew E. Andersen Department of Biological Sciences University of Nevada, Las Vegas Las Vegas, Nevada 89154-4004 Matthew Andersen received his B.A. in

More information

Chp 10 Patterns of Inheritance

Chp 10 Patterns of Inheritance Chp 10 Patterns of Inheritance Dogs, one of human s longest genetic experiments Over 1,000 s of years, humans have chosen and mated dogs with specific traits. A process called -artificial selection The

More information

Cell position and developmental fate in leech embryogenesis

Cell position and developmental fate in leech embryogenesis Proc. Nati. Acad. Sci. USA Vol. 87, pp. 8457-8461, November 1990 Developmental Biology Cell position and developmental fate in leech embryogenesis (cell lineage/transfating/equivalence group/determination)

More information

1. For each of these genetic traits which is the dominant allele and which is the recessive allele:

1. For each of these genetic traits which is the dominant allele and which is the recessive allele: Biology 114 Name: Lab Section Prelab questions for Lab 8 1. For each of these genetic traits which is the dominant allele and which is the recessive allele: being a tongue roller having attached earlobes

More information

High-efficiency genetic transformation of maize by a mixture of

High-efficiency genetic transformation of maize by a mixture of Proc. Nati. Acad. Sci. USA Vol. 83, pp. 715-719, February 1986 Genetics High-efficiency genetic transformation of maize by a mixture of pollen and exogenous DNA (induced gene transfer/endosperm/aleurone

More information

Indentification and Mapping of Unknown Mutations in the Fruit Fly in Drosophila melanogaster. By Michael Tekin and Vincent Saraceno

Indentification and Mapping of Unknown Mutations in the Fruit Fly in Drosophila melanogaster. By Michael Tekin and Vincent Saraceno Indentification and Mapping of Unknown Mutations in the Fruit Fly in Drosophila melanogaster By Michael Tekin and Vincent Saraceno Bilology 332 Section 2 December 5, 2012 Abstract The code of the unknown

More information

REVIEW 5: EVOLUTION UNIT. A. Top 10 If you learned anything from this unit, you should have learned:

REVIEW 5: EVOLUTION UNIT. A. Top 10 If you learned anything from this unit, you should have learned: Period Date REVIEW 5: EVOLUTION UNIT A. Top 10 If you learned anything from this unit, you should have learned: 1. Darwin s Principle of Natural Selection a. Variation individuals within a population possess

More information

BIOLOGY. TOPIC: Life Processes: Growth, Reproduction & Development (plants)

BIOLOGY. TOPIC: Life Processes: Growth, Reproduction & Development (plants) BIOLOGY CLASS: VIII TOPIC: Life Processes: Growth, Reproduction & Development (plants) Pollination: The transfer of pollen grains from the ripe anther of a flower to the stigma of a flower. Pollination

More information

Exam 1 Answers Biology 210 Sept. 20, 2006

Exam 1 Answers Biology 210 Sept. 20, 2006 Exam Answers Biology 20 Sept. 20, 2006 Name: Section:. (5 points) Circle the answer that gives the maximum number of different alleles that might exist for any one locus in a normal mammalian cell. A.

More information

6.2 Chromatin is divided into euchromatin and heterochromatin

6.2 Chromatin is divided into euchromatin and heterochromatin 6.2 Chromatin is divided into euchromatin and heterochromatin Individual chromosomes can be seen only during mitosis. During interphase, the general mass of chromatin is in the form of euchromatin. Euchromatin

More information

Readings. Lecture IV. Mechanisms of Neural. Neural Development. September 10, Bio 3411 Lecture IV. Mechanisms of Neural Development

Readings. Lecture IV. Mechanisms of Neural. Neural Development. September 10, Bio 3411 Lecture IV. Mechanisms of Neural Development Readings Lecture IV. Mechanisms of Neural NEUROSCIENCE: References : 5 th ed, pp 477-506 (sorta) 4 th ed, pp 545-575 (sorta) Fainsod, A., Steinbeisser, H., & De Robertis, E. M. (1994). EMBO J, 13(21),

More information

LAB ACTIVITY ONE POPULATION GENETICS AND EVOLUTION 2017

LAB ACTIVITY ONE POPULATION GENETICS AND EVOLUTION 2017 OVERVIEW In this lab you will: 1. learn about the Hardy-Weinberg law of genetic equilibrium, and 2. study the relationship between evolution and changes in allele frequency by using your class to represent

More information

Gen e e n t e i t c c V a V ri r abi b li l ty Biolo l gy g Lec e tur u e e 9 : 9 Gen e et e ic I n I her e itan a ce

Gen e e n t e i t c c V a V ri r abi b li l ty Biolo l gy g Lec e tur u e e 9 : 9 Gen e et e ic I n I her e itan a ce Genetic Variability Biology 102 Lecture 9: Genetic Inheritance Asexual reproduction = daughter cells genetically identical to parent (clones) Sexual reproduction = offspring are genetic hybrids Tendency

More information

Review. Molecular Evolution and the Neutral Theory. Genetic drift. Evolutionary force that removes genetic variation

Review. Molecular Evolution and the Neutral Theory. Genetic drift. Evolutionary force that removes genetic variation Molecular Evolution and the Neutral Theory Carlo Lapid Sep., 202 Review Genetic drift Evolutionary force that removes genetic variation from a population Strength is inversely proportional to the effective

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/331/6018/753/dc1 Supporting Online Material for Embryological Evidence Identifies Wing Digits in Birds as Digits 1, 2, and 3 Koji Tamura,* Naoki Nomura, Ryohei Seki,

More information

Chapter 14: Genes in Action

Chapter 14: Genes in Action Chapter 14: Genes in Action Section 1: Mutation and Genetic Change Mutation: Nondisjuction: a failure of homologous chromosomes to separate during meiosis I or the failure of sister chromatids to separate

More information

Concepts of Genetics Ninth Edition Klug, Cummings, Spencer, Palladino

Concepts of Genetics Ninth Edition Klug, Cummings, Spencer, Palladino PowerPoint Lecture Presentation for Concepts of Genetics Ninth Edition Klug, Cummings, Spencer, Palladino Chapter 5 Chromosome Mapping in Eukaryotes Copyright Copyright 2009 Pearson 2009 Pearson Education,

More information

Quantitative Genetics

Quantitative Genetics Quantitative Genetics Polygenic traits Quantitative Genetics 1. Controlled by several to many genes 2. Continuous variation more variation not as easily characterized into classes; individuals fall into

More information

1a. What is the ratio of feathered to unfeathered shanks in the offspring of the above cross?

1a. What is the ratio of feathered to unfeathered shanks in the offspring of the above cross? Problem Set 5 answers 1. Whether or not the shanks of chickens contains feathers is due to two independently assorting genes. Individuals have unfeathered shanks when they are homozygous for recessive

More information

DNA Profiling with PCR

DNA Profiling with PCR Name: DNA Profiling with PCR OBJECTIVES To review the structure and function of DNA. Understand and perform the polymerase chain reaction (PCR) To gain experience using the micropipettes, thermocycler,

More information

Basic Concepts of Human Genetics

Basic Concepts of Human Genetics Basic Concepts of Human Genetics The genetic information of an individual is contained in 23 pairs of chromosomes. Every human cell contains the 23 pair of chromosomes. One pair is called sex chromosomes

More information

Bio 6 Natural Selection Lab

Bio 6 Natural Selection Lab Bio 6 Natural Selection Lab Overview In this laboratory you will demonstrate the process of evolution by natural selection by carrying out a predator/prey simulation. Through this exercise you will observe

More information

AP BIOLOGY Population Genetics and Evolution Lab

AP BIOLOGY Population Genetics and Evolution Lab AP BIOLOGY Population Genetics and Evolution Lab In 1908 G.H. Hardy and W. Weinberg independently suggested a scheme whereby evolution could be viewed as changes in the frequency of alleles in a population

More information