REPLICATION AND POLYMERASE CHAIN REACTION (PCR)

Size: px
Start display at page:

Download "REPLICATION AND POLYMERASE CHAIN REACTION (PCR)"

Transcription

1 REPLICATION AND POLYMERASE CHAIN REACTION (PCR) Debbie S. Retnoningrum School of Pharmacy, ITB References: 1. Glick, BR and JJ Pasternak, 2003, pages 27 28; Groves MJ, 2006, pages Brown TA, 2006, pages 6 7; Replication & PCR 1

2 The Central Dogma of Molecular Biology Replication & PCR 2

3 REPLICATION Replication is DNA duplication Synthesis of two DNA molecules from 1 DNA molecule Base pairing concept Direction of synthesis: 5 3 in the new strand Catalyzed by DNA polymerase Replication & PCR 3

4 Components of DNA replication Started at origin of replication (ori) Single strand binding protein (SSB) Helicase (opens the double helix) Primase (RNA polymerase) DNA polymerase Replication & PCR 4

5 DNA REPLICATION: Extension of new DNA strand dntps: datp, dttp, dgtp, dctp Role of DNA polymerase Replication & PCR 5

6 DNA POLYMERASE Prokaryote Pol I Pol II Pol III Eukariot Pol-α Pol-β Pol-δ Pol-γ Pol-ε Function(s) Gap filling & DNA repair Gap filling & DNA repair Replication Replication of lagging strand Gap filling & DNA repair Replication of leading strand Replication of mitochondria Gap filling & DNA repair Replication & PCR 6

7 Polymerase Chain Reaction (PCR) Karry Mullis, inventor of PCR Nobel prize winner Replication & PCR 7

8 PCR CYCLES CYCLE 1 CYCLE 2 CYCLE 3 T 94 o C 72 o C 55 o C TIME (SECOND) Replication & PCR 8

9 PCR CYCLES AND DNA AMPLIFICATION Replication & PCR 9

10 Polymerase Chain Reaction (PCR) Replication & PCR 10

11 PCR COMPONENTS DNA TEMPLATES SHORT OLIGONUCLEOTIDES (primers) Thermostabile DNA polymerase :Taq Polymerase (Thermus aquaticus)& buffer dntps (datp, dttp, dctp dan dgtp) Replication & PCR 11

12 Sequenced genomes Replication & PCR 12

13 Examples of genome information in genbank Replication & PCR 13

14 Amplification of target DNA from genome Replication & PCR 14

15 Amplification of target DNA from genome Replication & PCR 15

16 DETECTION OF PCR PRODUCT Replication & PCR 16

17 HOME BREW PCR COBAS AMPLICOR Replication & PCR 17

18 PCR FOR PATHOGEN DETECTION P1 GENE TARGET P2 PCR PRODUCT: 490 BASE PAIRS GENE TARGET SHOULD BE PATHOGEN SPECIFIC Replication & PCR 18

19 PCR FOR PATHOGEN DETECTION DETECTION OF Mycobacterium tuberculosis DNA TARGET: IS6110 HIGH COPY NUMBER SPESIMEN: SPUTUM DETECTION OFChlamydia trachomatis DNA TARGET: GEN MAJOR OUTER MEMBRANE PROTEIN = MOMP Spesimen: vaginal swap (4), blood (5), eye swab (6) Replication & PCR 19

20 MODIFIED PCR PCR HIBRIDIZATION (PCR PRODUCT WAS HYBRIDIZED WITH PROBE) MULTIPLEX PCR Nested PCR PCR Sequencing Real time PCR Replication & PCR 20

21 PRINCIPLE OF HYBRIDIZATION Hybridization Addition of probe Denaturation Replication & PCR 21

22 PCR HYBRIDIZATION USING COLORIMETRIC DETECTION lysis PCR Colorimertic detection Σ Target molecule Σsignal denaturation substrate hybridization Replication & PCR 22

23 COLORIMETRIC DETECTION TMB H2O2 Avidin Biotin Horse radish peroxidase PCR product Probe Replication & PCR 23

24 Multiplex PCR Primer pairs for target DNA > 1 Example: Escherichia coli: TARGET GENES LT1, ST1, SLT1, SLT2, VT1, VT2, VTE 7 PRIMER PAIRS 7 PCR PRODUCTS Replication & PCR 24

25 RESULT OF MULTIPLEX PCR S A B C D LT1 ST1 SLT1 SLT2 VT1 VT2 VTE Replication & PCR 25

26 Example of Multiplex PCR Replication & PCR 26

27 Nested PCR FLAGELIN GENE OF Salmonella typhi ST1 458 bp ST3 First PCR ST4 ST2 Second PCR 343 bp Replication & PCR 27

28 First Round S. typhi Nested PCR 1. DNA Marker (1, 0.75, 0.5, 0.3, 0.15, kb) 2. Negative control S. typhi 3. Positive control S. typhi (0.458 kb) 4. S. thypi non infected patient (negative) 5. S. thypi infected patient (positive) 6. S. thypi infected patient (positive) Second Round S. typhi Nested PCR 1. DNA Marker (1, 0.75, 0.5, 0.3, 0.15, kb) 2. Negative control S. typhi 3. Positive control S. typhi (0.343 kb) 4. S. thypi non infected patient (negative) 5. S. thypi infected patient (positive) 6. S. thypi infected patient (positive) Replication & PCR 28

29 PCR SEQUENCING Replication & PCR 29

30 PCR REAL TIME CONVENTIONAL PCR : AMPLIFICATION AND DETECTION STEPS OCCUR IN CONSECUTIVE REAL TIME PCR: AMPLIFICATION AND DETECTION STEPS OCCUR SIMULTANEOUSLY Replication & PCR 30

31 DETECTION IN CONVENTIONAL PCR Replication & PCR 31

32 Detection range of real time PCR Replication & PCR 32

33 HYBRIDIZATION PROBE Replication & PCR 33

34 HYBRIDIZATION PROBE Replication & PCR 34

35 Example of realtime PCR result Replication & PCR 35

Polymerase Chain Reaction (PCR) and Its Applications

Polymerase Chain Reaction (PCR) and Its Applications Polymerase Chain Reaction (PCR) and Its Applications What is PCR? PCR is an exponentially progressing synthesis of the defined target DNA sequences in vitro. It was invented in 1983 by Dr. Kary Mullis,

More information

DNA: Structure & Replication

DNA: Structure & Replication DNA Form & Function DNA: Structure & Replication Understanding DNA replication and the resulting transmission of genetic information from cell to cell, and generation to generation lays the groundwork

More information

DNA Replication. DNA Replication. Meselson & Stahl Experiment. Contents

DNA Replication. DNA Replication. Meselson & Stahl Experiment. Contents DNA Replication Contents 1 DNA Replication 1.1 Meselson & Stahl Experiment 1.2 Replication Machinery 2 Polymerase Chain Reaction (PCR) 3 External Resources: DNA Replication Meselson & Stahl Experiment

More information

BIOCHEMISTRY REVIEW. Overview of Biomolecules. Chapter 11 DNA Replication

BIOCHEMISTRY REVIEW. Overview of Biomolecules. Chapter 11 DNA Replication BIOCHEMISTRY REVIEW Overview of Biomolecules Chapter 11 DNA Replication 2 3 4 5 6 7 8 9 Are You Getting It?? Which characteristics will be part of semi-conservative replication? (multiple answers) a) The

More information

Polymerase Chain Reaction PCR

Polymerase Chain Reaction PCR Polymerase Chain Reaction PCR What is PCR? An in vitro process that detects, identifies, and copies (amplifies) a specific piece of DNA in a biological sample. Discovered by Dr. Kary Mullis in 1983. A

More information

PCR KIT/REAGENTS/BUFFERS/PRIMERS

PCR KIT/REAGENTS/BUFFERS/PRIMERS PCR KIT/REAGENTS/BUFFERS/PRIMERS 114330 DNA Amplification Kit DNA amplification kit is suitable for amplification of DNA size about 100bp to 5kb. It can be also used to RAPD PCR. This kit contains all

More information

Factors affecting PCR

Factors affecting PCR Lec. 11 Dr. Ahmed K. Ali Factors affecting PCR The sequences of the primers are critical to the success of the experiment, as are the precise temperatures used in the heating and cooling stages of the

More information

Zoo-342 Molecular biology Lecture 2. DNA replication

Zoo-342 Molecular biology Lecture 2. DNA replication Zoo-342 Molecular biology Lecture 2 DNA replication DNA replication DNA replication is the process in which one doubled-stranded DNA molecule is used to create two double-stranded molecules with identical

More information

Recitation CHAPTER 9 DNA Technologies

Recitation CHAPTER 9 DNA Technologies Recitation CHAPTER 9 DNA Technologies DNA Cloning: General Scheme A cloning vector and eukaryotic chromosomes are separately cleaved with the same restriction endonuclease. (A single chromosome is shown

More information

Molecular Biology: General Theory

Molecular Biology: General Theory Molecular Biology: General Theory Author: Dr Darshana Morar Licensed under a Creative Commons Attribution license. DNA REPLICATION DNA replication is the process of duplicating the DNA sequence in the

More information

Molecular Biology: General Theory

Molecular Biology: General Theory Molecular Biology: General Theory Author: Dr Darshana Morar Licensed under a Creative Commons Attribution license. DNA REPLICATION DNA replication is the process of duplicating the DNA sequence in the

More information

Methods of Biomaterials Testing Lesson 3-5. Biochemical Methods - Molecular Biology -

Methods of Biomaterials Testing Lesson 3-5. Biochemical Methods - Molecular Biology - Methods of Biomaterials Testing Lesson 3-5 Biochemical Methods - Molecular Biology - Chromosomes in the Cell Nucleus DNA in the Chromosome Deoxyribonucleic Acid (DNA) DNA has double-helix structure The

More information

Covalently bonded sugar-phosphate backbone with relatively strong bonds keeps the nucleotides in the backbone connected in the correct sequence.

Covalently bonded sugar-phosphate backbone with relatively strong bonds keeps the nucleotides in the backbone connected in the correct sequence. Unit 14: DNA Replication Study Guide U7.1.1: DNA structure suggested a mechanism for DNA replication (Oxford Biology Course Companion page 347). 1. Outline the features of DNA structure that suggested

More information

Polymerase Chain Reaction (PCR)

Polymerase Chain Reaction (PCR) Polymerase Chain Reaction (PCR) PCR protocols Polymerase Chain Reaction (PCR) A technique for the in vitro amplification of specific DNA sequences by the simultaneous primer extension of complementary

More information

Polymerase chain reaction

Polymerase chain reaction Core course BMS361N Genetic Engineering Polymerase chain reaction Prof. Narkunaraja Shanmugam Dept. Of Biomedical Science School of Basic Medical Sciences Bharathidasan University The polymerase chain

More information

Polymerase Chain Reaction

Polymerase Chain Reaction Polymerase Chain Reaction = multiple rounds of in vitro DNA replication = a region of DNA lying between two regions of known sequence is amplified hundreds of millions of time within a matter of several

More information

Appendix A. Introduction to PCR

Appendix A. Introduction to PCR Appendix A Introduction to PR In 1983, Kary Mullis at etus orporation developed the molecular biology technique that has since revolutionized genetic research, earning him the Nobel Prize in 1993. This

More information

Biotechnology. Explorer Program. Serious About Science Education 5/17/09 1

Biotechnology. Explorer Program. Serious About Science Education 5/17/09 1 Biotechnology Explorer Program Serious About Science Education 5/17/09 1 Chromosome 8: PCR TM PCR Workshop Kirk Brown,, Tracy High School; Tracy, Ca Stan Hitomi,, Monte Vista High School; Danville, CA

More information

IN E. COLI WHAT IS THE FUNCTION OF DNA POLYMERASE III

IN E. COLI WHAT IS THE FUNCTION OF DNA POLYMERASE III 10 January, 2018 IN E. COLI WHAT IS THE FUNCTION OF DNA POLYMERASE III Document Filetype: PDF 312 KB 0 IN E. COLI WHAT IS THE FUNCTION OF DNA POLYMERASE III The actual replication enzyme in E. Both will

More information

The Structure of DNA

The Structure of DNA The Structure of DNA Questions to Ponder 1) How is the genetic info copied? 2) How does DNA store the genetic information? 3) How is the genetic info passed from generation to generation? The Structure

More information

Polymerase Chain Reaction

Polymerase Chain Reaction Polymerase Chain Reaction Problem Suppose you have a patient with an infection or a heritable disease. You want to know which infection or disease it is and.. you want to know it fast and... from as little

More information

Optimizing a Conventional Polymerase Chain Reaction (PCR) and Primer Design

Optimizing a Conventional Polymerase Chain Reaction (PCR) and Primer Design Optimizing a Conventional Polymerase Chain Reaction (PCR) and Primer Design The Polymerase Chain Reaction (PCR) is a powerful technique used for the amplification of a specific segment of a nucleic acid

More information

Ah, Lou! There really are differences between us!

Ah, Lou! There really are differences between us! Name Per Ah, Lou! There really are differences between us! Introduction The human genome (the total sum of our genetic makeup) is made up of approximately 6 billion base pairs distributed on 46 chromosomes.

More information

Chapter 11 DNA Replication and Recombination

Chapter 11 DNA Replication and Recombination Chapter 11 DNA Replication and Recombination Copyright Copyright 2009 Pearson 2009 Pearson Education, Education, Inc. Inc. 11.1 DNA is reproduced by Semiconservative Replication The complementarity of

More information

Session 3 Cloning Overview & Polymerase Chain Reaction

Session 3 Cloning Overview & Polymerase Chain Reaction Session 3 Cloning Overview & Polymerase Chain Reaction Learning Objective: In this lab exercise, you will become familiar with the steps of a polymerase chain reaction, the required reagents for a successful

More information

Fun with DNA polymerase

Fun with DNA polymerase Fun with DNA polymerase Why would we want to be able to make copies of DNA? Can you think of a situation where you have only a small amount and would like more? Enzymatic DNA synthesis To use DNA polymerase

More information

Bacterial DNA replication

Bacterial DNA replication Bacterial DNA replication Summary: What problems do these proteins solve? Tyr OH attacks PO4 and forms a covalent intermediate Structural changes in the protein open the gap by 20 Å! 1 Summary: What problems

More information

Basic lab techniques

Basic lab techniques Basic lab techniques Sandrine Dudoit Bioconductor short course Summer 2002 Copyright 2002, all rights reserved Lab techniques Basic lab techniques for nucleic acids Hybridization. Cut: restriction enzymes.

More information

The Polymerase Chain Reaction. Chapter 6: Background

The Polymerase Chain Reaction. Chapter 6: Background The Polymerase Chain Reaction Chapter 6: Background Invention of PCR Kary Mullis Mile marker 46.58 in April of 1983 Pulled off the road and outlined a way to conduct DNA replication in a tube Worked for

More information

Recombinant DNA Technology

Recombinant DNA Technology History of recombinant DNA technology Recombinant DNA Technology (DNA cloning) Majid Mojarrad Recombinant DNA technology is one of the recent advances in biotechnology, which was developed by two scientists

More information

DNA Replication II Biochemistry 302. Bob Kelm January 28, 2004

DNA Replication II Biochemistry 302. Bob Kelm January 28, 2004 DNA Replication II Biochemistry 302 Bob Kelm January 28, 2004 Conceptual model for proofreading based on kinetic considerations Fig. 24.44 stalling transient melting exonuclease site occupancy Following

More information

Lecture 1 Sunday, 4 March :24 pm

Lecture 1 Sunday, 4 March :24 pm Lecture 1 Sunday, 4 March 2018 10:24 pm Amino acid side chains can be Hydrophobic, hydrophilic Positive, negatively charged Movement of information OH removed from 2' carbon to make the end more stable

More information

DNA Replication and Repair

DNA Replication and Repair DN Replication and Repair http://hyperphysics.phy-astr.gsu.edu/hbase/organic/imgorg/cendog.gif DN Replication genetic information is passed on to the next generation semi-conservative Parent molecule with

More information

DNA REPLICATION. Anna Onofri Liceo «I.Versari»

DNA REPLICATION. Anna Onofri Liceo «I.Versari» DNA REPLICATION Anna Onofri Liceo «I.Versari» Learning objectives 1. Understand the basic rules governing DNA replication 2. Understand the function of key proteins involved in a generalised replication

More information

Chapter 13 DNA The Genetic Material Replication

Chapter 13 DNA The Genetic Material Replication Chapter 13 DNA The Genetic Material Replication Scientific History The march to understanding that DNA is the genetic material T.H. Morgan (1908) Frederick Griffith (1928) Avery, McCarty & MacLeod (1944)

More information

BCMB Chapters 34 & 35 DNA Replication and Repair

BCMB Chapters 34 & 35 DNA Replication and Repair BCMB 3100 - Chapters 34 & 35 DNA Replication and Repair Semi-conservative DNA replication DNA polymerase DNA replication Replication fork; Okazaki fragments Sanger method for DNA sequencing DNA repair

More information

BCMB Chapters 34 & 35 DNA Replication and Repair

BCMB Chapters 34 & 35 DNA Replication and Repair BCMB 3100 - Chapters 34 & 35 DNA Replication and Repair Semi-conservative DNA replication DNA polymerase DNA replication Replication fork; Okazaki fragments Sanger method for DNA sequencing DNA repair

More information

Journal Club & MSc Seminar

Journal Club & MSc Seminar Journal Club & MSc Seminar 2 The Polymerase Chain Reaction (PCR) was not a discovery, but rather an invention A special DNA polymerase (Taq) is used to make many copies of a short length of DNA (100-10,000

More information

Appendix A DNA and PCR in detail DNA: A Detailed Look

Appendix A DNA and PCR in detail DNA: A Detailed Look Appendix A DNA and PCR in detail DNA: A Detailed Look A DNA molecule is a long polymer consisting of four different components called nucleotides. It is the various combinations of these four bases or

More information

Chapter 9 Preview - DNA

Chapter 9 Preview - DNA Chapter 9 Preview - DNA Multiple Choice Identify the choice that best completes the statement or answers the question. 1. In order to show that DNA in cell extracts is responsible for genetic transformation

More information

DNA Replication. Back ground.. Single celled zygote goes from being single celled to 100 trillion more cells in over 240 days in humans! Wow!

DNA Replication. Back ground.. Single celled zygote goes from being single celled to 100 trillion more cells in over 240 days in humans! Wow! DNA Replication Back ground.. Single celled zygote goes from being single celled to 100 trillion more cells in over 240 days in humans! Wow! Must be fast! six billion base pairs in a single human cell

More information

Enzymes used in DNA Replication

Enzymes used in DNA Replication Enzymes used in DNA Replication This document holds the enzymes used in DNA replication, their pictorial representation and functioning. DNA polymerase: DNA polymerase is the chief enzyme of DNA replication.

More information

The Size and Packaging of Genomes

The Size and Packaging of Genomes DNA Replication The Size and Packaging of Genomes Vary greatly in size Ø Smallest viruses- 4 or 5 genes Ø Escherichia coli- 4,288 genes Ø Human cell- 20,000 to 25,000 genes E. coli 4 million base pairs

More information

DNA Replication II Biochemistry 302. January 25, 2006

DNA Replication II Biochemistry 302. January 25, 2006 DNA Replication II Biochemistry 302 January 25, 2006 Following in Dad s footsteps Original A. Kornberg E. coli DNA Pol I is a lousy replicative enzyme. 400 molecules/cell but ~2 replication forks/cell

More information

DNA metabolism. DNA Replication DNA Repair DNA Recombination

DNA metabolism. DNA Replication DNA Repair DNA Recombination DNA metabolism DNA Replication DNA Repair DNA Recombination Chutima Talabnin Ph.D. School of Biochemistry,Institute of Science, Suranaree University of Technology Central Dogma or Flow of genetic information

More information

Molecular Biology, Lecture 3 DNA Replication

Molecular Biology, Lecture 3 DNA Replication Molecular Biology, Lecture 3 DNA Replication We will continue talking about DNA replication. We have previously t discussed the structure of DNA. DNA replication is the copying of the whole DNA content

More information

Fidelity of DNA polymerase

Fidelity of DNA polymerase Fidelity of DNA polymerase Shape selectivity: DNA polymerase's conformational change for determination of fidelity for each nucleotide Induced fit: Structure determines function Matched nucleotide Fidelity

More information

INTRODUCTION TO REVERSE TRANSCRIPTION PCR (RT-PCR) ABCF 2016 BecA-ILRI Hub, Nairobi 21 st September 2016 Roger Pelle Principal Scientist

INTRODUCTION TO REVERSE TRANSCRIPTION PCR (RT-PCR) ABCF 2016 BecA-ILRI Hub, Nairobi 21 st September 2016 Roger Pelle Principal Scientist INTRODUCTION TO REVERSE TRANSCRIPTION PCR (RT-PCR) ABCF 2016 BecA-ILRI Hub, Nairobi 21 st September 2016 Roger Pelle Principal Scientist Objective of PCR To provide a solution to one of the most pressing

More information

Molecular Biology (2)

Molecular Biology (2) Molecular Biology (2) DNA replication Mamoun Ahram, PhD Second semester, 2018-2019 Resources This lecture Cooper, pp. 191-207 2 Some basic information The entire DNA content of the cell is known as genome.

More information

Molecular Cell Biology - Problem Drill 11: Recombinant DNA

Molecular Cell Biology - Problem Drill 11: Recombinant DNA Molecular Cell Biology - Problem Drill 11: Recombinant DNA Question No. 1 of 10 1. Which of the following statements about the sources of DNA used for molecular cloning is correct? Question #1 (A) cdna

More information

Basic PCR Technique. Presented by : Noorul Hidayah Badri

Basic PCR Technique. Presented by : Noorul Hidayah Badri Basic PCR Technique Presented by : Noorul Hidayah Badri What is PCR? PCR is aninvitro technique which allow the amplification of a specific DNA region. PCR is like selecting a specific page from book and

More information

Polymerase Chain Reaction (PCR) May 23, 2017

Polymerase Chain Reaction (PCR) May 23, 2017 Polymerase Chain Reaction (PCR) May 23, 2017 Outline History of PCR Uses of PCR How PCR works How to set up and run PCR The structure of DNA PCR Polymerase chain reaction Selective amplification of target

More information

Tutorial Week #9 Page 1 of 11

Tutorial Week #9 Page 1 of 11 Tutorial Week #9 Page 1 of 11 Tutorial Week #9 DNA Replication Before the tutorial: Read ECB Chapter 6 p195-207, and review your lecture notes Read this tutorial and create a table of definitions and functions

More information

You Should Be Able To

You Should Be Able To DNA Replica,on You Should Be Able To 1. Describe the func9on of: DNA POL1, DNA POL3, Sliding Clamp, SSBPs, Ligase, Topoisomerase, Helicase, Primase 2. Describe DNA synthesis on the leading and lagging

More information

DNA ORGANIZATION AND REPLICATION

DNA ORGANIZATION AND REPLICATION DNA ORGANIZATION AND REPLICATION THE CENTRAL DOGMA DNA Replication Transcription Translation STRUCTURAL ORGANIZATION OF DNA DNA is present in the nucleus as CHROMATIN. The basic unit of chromatin is NUCLEOSOME

More information

NEW PARADIGM of BIOTECHNOLOGY - GENET BIO. GeNet Bio Global Gene Network

NEW PARADIGM of BIOTECHNOLOGY - GENET BIO. GeNet Bio Global Gene Network NEW PARADIGM of BIOTECHNOLOGY - GENET BIO GeNet Bio Global Gene Network GENET BIO DNA AMPLIFICATION PRODUCTS GUIDE Keynote of Products Prime TaqTM DNA Polymerase Prime TaqTM Premix ExPrime TaqTM DNA Polymerase

More information

DNA Technology. Asilomar Singer, Zinder, Brenner, Berg

DNA Technology. Asilomar Singer, Zinder, Brenner, Berg DNA Technology Asilomar 1973. Singer, Zinder, Brenner, Berg DNA Technology The following are some of the most important molecular methods we will be using in this course. They will be used, among other

More information

DNA Replication II Biochemistry 302. Bob Kelm January 26, 2005

DNA Replication II Biochemistry 302. Bob Kelm January 26, 2005 DNA Replication II Biochemistry 302 Bob Kelm January 26, 2005 Following in Dad s footsteps Original A. Kornberg E. coli DNA Pol I is a lousy replicative enzyme. 400 molecules/cell but ~2 replication forks/cell

More information

Genetic Fingerprinting

Genetic Fingerprinting Genetic Fingerprinting Introduction DA fingerprinting In the R & D sector: -involved mostly in helping to identify inherited disorders. In forensics: -identification of possible suspects involved in offences.

More information

Requirements for the Genetic Material

Requirements for the Genetic Material Requirements for the Genetic Material 1. Replication Reproduced and transmitted faithfully from cell to cell-generation to generation. 2. Information Storage Biologically useful information in a stable

More information

DNA vs. RNA DNA: deoxyribonucleic acid (double stranded) RNA: ribonucleic acid (single stranded) Both found in most bacterial and eukaryotic cells RNA

DNA vs. RNA DNA: deoxyribonucleic acid (double stranded) RNA: ribonucleic acid (single stranded) Both found in most bacterial and eukaryotic cells RNA DNA Replication DNA vs. RNA DNA: deoxyribonucleic acid (double stranded) RNA: ribonucleic acid (single stranded) Both found in most bacterial and eukaryotic cells RNA molecule can assume different structures

More information

Chapter 3: Duplicating the DNA- Replication

Chapter 3: Duplicating the DNA- Replication 3. Basic Genetics Plant Molecular Biology Chapter 3: Duplicating the DNA- Replication Double helix separation New strand synthesis Plant Biotechnology Lecture 2 1 I've missed more than 9000 shots in my

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature11988 Supplementary Figure 1. Digestion of model DNA substrates. a, Linearized plasmid DNA (pik31- PstI, lanes 1 and 2), supercoiled plasmid (pik31, lanes 3 and 4), singly nicked plasmid

More information

3.A.1 DNA and RNA: Structure and Replication

3.A.1 DNA and RNA: Structure and Replication 3.A.1 DNA and RNA: Structure and Replication Each DNA polymer is made of Nucleotides (monomer) which are made of: a) Phosphate group: Negatively charged and polar b) Sugar: deoxyribose- a 5 carbon sugar

More information

Prokaryotic Physiology. March 3, 2017

Prokaryotic Physiology. March 3, 2017 1. (10 pts) Explain the replication of both strands of DNA in prokaryotes. At a minimum explain the direction of synthesis, synthesis of the leading and lagging strand, separation of the strands and the

More information

All This For Four Letters!?! DNA and Its Role in Heredity

All This For Four Letters!?! DNA and Its Role in Heredity All This For Four Letters!?! DNA and Its Role in Heredity What Is the Evidence that the Gene Is DNA? By the 1920s, it was known that chromosomes consisted of DNA and proteins. A new dye stained DNA and

More information

CHAPTER 9 DNA Technologies

CHAPTER 9 DNA Technologies CHAPTER 9 DNA Technologies Recombinant DNA Artificially created DNA that combines sequences that do not occur together in the nature Basis of much of the modern molecular biology Molecular cloning of genes

More information

BIO 311C Spring Lecture 34 Friday 23 Apr.

BIO 311C Spring Lecture 34 Friday 23 Apr. BIO 311C Spring 2010 1 Lecture 34 Friday 23 Apr. Summary of DNA Replication in Prokaryotes origin of replication initial double helix origin of replication new growing polynucleotide chains Circular molecule

More information

Amplification Products for PCR and RT-PCR

Amplification Products for PCR and RT-PCR Selection guide Polymerase Hot start Comment UptiTherm DNA pol. no Most economic. Lower error rate than Taq polymerase Available in several formats, master mix including or not dntp, Mg 2+..., in gel format

More information

DNA replication. - proteins for initiation of replication; - proteins for polymerization of nucleotides.

DNA replication. - proteins for initiation of replication; - proteins for polymerization of nucleotides. DNA replication Replication represents the duplication of the genetic information encoded in DNA that is the crucial step in the reproduction of living organisms and the growth of multicellular organisms.

More information

DETERMINATION OF THE Rh FACTOR BY PCR

DETERMINATION OF THE Rh FACTOR BY PCR DETERMINATION OF THE Rh FACTOR BY PCR Ref.: PCR2 1. EXPERIMENT OBJECTIVE The aim of this experiment is to introduce students to the principles and practice of the Polymerase Chain Reaction (PCR) by studying

More information

ARUNAI ACADEMY FOR PG TRB-BOTANY DHARMAPURI REPLICATION - ENZYMES.

ARUNAI ACADEMY FOR PG TRB-BOTANY DHARMAPURI REPLICATION - ENZYMES. ARUNAI ACADEMY FOR PG TRB-BOTANY DHARMAPURI.9500244679 REPLICATION - ENZYMES DNA HELICASE Sparation of two strands- DNA helicase enzyme functions Unwinds DNA. DNA double helix by breaking the hydrogen

More information

Molecular Genetics Techniques. BIT 220 Chapter 20

Molecular Genetics Techniques. BIT 220 Chapter 20 Molecular Genetics Techniques BIT 220 Chapter 20 What is Cloning? Recombinant DNA technologies 1. Producing Recombinant DNA molecule Incorporate gene of interest into plasmid (cloning vector) 2. Recombinant

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter Introduction Table of Contents Introduction Page. Principles of PCR and RT-PCR...9.2 The Evolution of PCR....3 Purpose of this PCR Applications Manual...5 8 PCR Applications Manual Principles of

More information

DNA Replication in Eukaryotes

DNA Replication in Eukaryotes OpenStax-CNX module: m44517 1 DNA Replication in Eukaryotes OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the end of this section,

More information

DNA REPLICATION. Third Stage. Lec. 12 DNA Replication. Lecture No.: 12. A. Watson & Crick (1952) C. Cairns (1963) autoradiographic experiment

DNA REPLICATION. Third Stage. Lec. 12 DNA Replication. Lecture No.: 12. A. Watson & Crick (1952) C. Cairns (1963) autoradiographic experiment Lec. 12 DNA Replication A. Watson & Crick (1952) Proposed a model where hydrogen bonds break, the two strands separate, and DNA synthesis occurs semi-conservatively in the same net direction. While a straightforward

More information

Associate Professor Chatchawan Srisawat MD. Ph.D

Associate Professor Chatchawan Srisawat MD. Ph.D POLYMERASE CHAIN REACTION Associate Professor Chatchawan Srisawat MD. Ph.D POLYMERASE CHAIN REACTION In vitro technique for amplification of the specified DNA sequences. It enables us to produce enormous

More information

CHAPTER 16 MOLECULAR BASIS OF INHERITANCE

CHAPTER 16 MOLECULAR BASIS OF INHERITANCE CHAPTER 16 MOLECULAR BASIS OF INHERITANCE DNA as genetic material? Deducted that DNA is the genetic material Initially worked by studying bacteria & the viruses that infected them 1928 Frederick Griffiths

More information

Laboratory #7 PCR PCR

Laboratory #7 PCR PCR 1 Laboratory #7 Polymerase chain reaction () is DNA replication in a test tube. In vitro enzymatic amplification of a specific segment of DNA. Many Applications. direct cloning from DNA or cdna. Mutagenesis

More information

Chapter 12. DNA Replication and Recombination

Chapter 12. DNA Replication and Recombination Chapter 12 DNA Replication and Recombination I. DNA replication Three possible modes of replication A. Conservative entire original molecule maintained B. Semiconservative one strand is template for new

More information

The Polymerase Chain Reaction. Chapter 6: Background

The Polymerase Chain Reaction. Chapter 6: Background The Polymerase Chain Reaction Chapter 6: Background PCR Amplify= Polymerase Chain Reaction (PCR) Invented in 1984 Applications Invention of PCR Kary Mullis Mile marker 46.58 in April of 1983 Pulled off

More information

Expression of the genome. Books: 1. Molecular biology of the gene: Watson et al 2. Genetics: Peter J. Russell

Expression of the genome. Books: 1. Molecular biology of the gene: Watson et al 2. Genetics: Peter J. Russell Expression of the genome Books: 1. Molecular biology of the gene: Watson et al 2. Genetics: Peter J. Russell 1 Transcription 1. Francis Crick (1956) named the flow of information from DNA RNA protein the

More information

Student name ID # Second Mid Term Exam, Biology 2020, Spring 2002 Scores Total

Student name ID # Second Mid Term Exam, Biology 2020, Spring 2002 Scores Total Second Mid Term Exam, Biology 2020, Spring 2002 Scores 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. Total 1 1. Matching (7 pts). Each answer is used exactly once Helicase

More information

Questions from chapters in the textbook that are relevant for the final exam

Questions from chapters in the textbook that are relevant for the final exam Questions from chapters in the textbook that are relevant for the final exam Chapter 9 Replication of DNA Question 1. Name the two substrates for DNA synthesis. Explain why each is necessary for DNA synthesis.

More information

Polymerase Chain Reaction (PCR)

Polymerase Chain Reaction (PCR) Polymerase Chain Reaction (PCR) Outline 1. DNA 2. PCR Targets Denaturing Primers Annealing Cycles Requirements Outline 3. Applications of PCR Neisseria gonorrhoeae Chlamydia HIV-1 Factor V Leiden Forensic

More information

Index 273 Index A Acrylamide gel electrophoresis Trichomonas vaginalis, 231, 234 Agarose gel electrophoresis amplification detection, 3 HCV detection,

Index 273 Index A Acrylamide gel electrophoresis Trichomonas vaginalis, 231, 234 Agarose gel electrophoresis amplification detection, 3 HCV detection, Index 273 Index A Acrylamide gel electrophoresis Trichomonas vaginalis, 231, 234 Agarose gel electrophoresis amplification detection, 3 HCV detection, 167, 169, 170 Legionella species, 175, 177, 179, 180

More information

Chapter 8: Recombinant DNA. Ways this technology touches us. Overview. Genetic Engineering

Chapter 8: Recombinant DNA. Ways this technology touches us. Overview. Genetic Engineering Chapter 8 Recombinant DNA and Genetic Engineering Genetic manipulation Ways this technology touches us Criminal justice The Justice Project, started by law students to advocate for DNA testing of Death

More information

DNA replication: Enzymes link the aligned nucleotides by phosphodiester bonds to form a continuous strand.

DNA replication: Enzymes link the aligned nucleotides by phosphodiester bonds to form a continuous strand. DNA replication: Copying genetic information for transmission to the next generation Occurs in S phase of cell cycle Process of DNA duplicating itself Begins with the unwinding of the double helix to expose

More information

Proposed Models of DNA Replication. Conservative Model. Semi-Conservative Model. Dispersive model

Proposed Models of DNA Replication. Conservative Model. Semi-Conservative Model. Dispersive model 5.2 DNA Replication Cell Cycle Life cycle of a cell Cells can reproduce Daughter cells receive an exact copy of DNA from parent cell DNA replication happens during the S phase Proposed Models of DNA Replication

More information

Polymerase Chain Reaction

Polymerase Chain Reaction Polymerase Chain Reaction Variations of PCR in the Diagnostic Lab The most common variations of standard PCR used in the diagnostic laboratory are: Reverse Transcriptase PCR (RT-PCR) Nested PCR (n-pcr)

More information

Replication. Obaidur Rahman

Replication. Obaidur Rahman Replication Obaidur Rahman DIRCTION OF DNA SYNTHESIS How many reactions can a DNA polymerase catalyze? So how many reactions can it catalyze? So 4 is one answer, right, 1 for each nucleotide. But what

More information

PCR in the Classroom. UC Davis - PCR Workshop Friday, September 26, 2003

PCR in the Classroom. UC Davis - PCR Workshop Friday, September 26, 2003 PCR in the Classroom UC Davis - PCR Workshop Friday, September 26, 2003 A little history In 1983, Kary B. Mullis conceived the procedure. He went on to Cetus Corp in Emeryville, CA where it was developed

More information

DNA Model Building and Replica3on

DNA Model Building and Replica3on DNA Model Building and Replica3on DNA Replication S phase Origins of replication in E. coli and eukaryotes (a) Origin of replication in an E. coli cell Origin of replication Bacterial chromosome Doublestranded

More information

DNA stands for deoxyribose nucleic acid

DNA stands for deoxyribose nucleic acid DNA DNA stands for deoxyribose nucleic acid This chemical substance is present in the nucleus of all cells in all living organisms DNA controls all the chemical changes which take place in cells DNA Structure

More information

Computational Biology I LSM5191

Computational Biology I LSM5191 Computational Biology I LSM5191 Lecture 5 Notes: Genetic manipulation & Molecular Biology techniques Broad Overview of: Enzymatic tools in Molecular Biology Gel electrophoresis Restriction mapping DNA

More information

II. Integrative Genomics interactions between molecules and genes

II. Integrative Genomics interactions between molecules and genes . Structural Genomics Structure of Genome I. Functional Genomics Expression of Genome a. Transcriptomics b. Proteomics II. Integrative Genomics interactions between molecules and genes Fields of Genomics

More information

APPLICATION OF MOLECULAR TECHNICS FOR DIAGNOSIS OF VIRAL INFECTIONS

APPLICATION OF MOLECULAR TECHNICS FOR DIAGNOSIS OF VIRAL INFECTIONS APPLICATION OF MOLECULAR TECHNICS FOR DIAGNOSIS OF VIRAL INFECTIONS Hossein Keyvani Basic Diagnostic Methods in Virology Immunology and serology techniques (Antigen-Antibody Reactions) 1 ELISA ( Enzyme

More information

Experiment (5): Polymerase Chain Reaction (PCR)

Experiment (5): Polymerase Chain Reaction (PCR) BCH361 [Practical] Experiment (5): Polymerase Chain Reaction (PCR) Aim: Amplification of a specific region on DNA. Primer design. Determine the parameters that may affect he specificity, fidelity and efficiency

More information