AP Biology Math Review-Answers

Size: px
Start display at page:

Download "AP Biology Math Review-Answers"

Transcription

1 AP Biology Math Review-Answers There are many basic math skills that you must be able to do to work the more complex math problems in AP Biology. Use this as a review, to sharpen your skills, and gain some comfort in working with math and biology. Working with decimals, ratios, fractions and percentages Convert scientific notation to standard numbers Calculating rates or slopes Report your answer with the number of significant figures that the question requires 1. In a monohybrid cross, two heterozygotes are crossed and produce 345 offspring: You are supposed to know the ratio of a monohybrid cross; the problem probably won t tell you. a. What is your expected phenotypic ratio? 3:1 b. How many individuals are expected to have the dominant phenotype? 345 x.75 = 259 c. How many individuals are expected to have the recessive phenotype? 345 x.25 = In this genetic cross Aa x aa there are 714 offspring: Make a Punnett square to help you determine the ratio. a. How many individuals are expected to have the dominant phenotype? 714 x.5 = 357 b. How many individuals are expected to have the recessive phenotype? 714 x.5 = In a dihybrid cross between two heterozygotes, if you have 360 offspring, how many of each of the following? Make a Punnett square or understand that the ratio of any dihybrid cross is 9:3:3:1 a. Both dominant phenotypes 9/16 =.56 = 56%, 360 x.56 = 202 b. One dominant; one recessive 3/16 =.19 = 19%, 360 x.19 = 68 c. One recessive; one dominant 3/16 =.19 = 19%, 360 x.19 = 68 d. Both recessive phenotypes 1/16 =.06 = 6%, 360 x.06 = The following data was observed; fill in the missing values. Stage of the Cell Cycle Number of Cells in each stage % of Cells in each stage Interphase 62 62/117 = 53% Prophase 31 31/117 = 26% Metaphase 12 12/117 = 10% Anaphase 8 8/117 = 7% Telophase 4 4/117 = 3% 5. What percentage of the cells listed above are in mitosis? 47% (or 46% because of rounding) On the AP Biology exam, you will only be allowed to use a four function calculator. You will not be able to enter numbers using scientific notation. You must convert to standard numbers, then simply add or subtract (and maybe convert to percentages) to get the correct answer. Use the Energy flow diagram below. AP BIOLOGY EXAM REVIEW - KRABATH 1

2 6. What percentage of the biomass in the forest community is tied up in the grass layer? Give your answer to the nearest whole number. 9% see description below 1 st Law of Thermodynamics- energy cannot be created or destroyed, but it can change form: 18,000 energy accumulated as biomass; 12,000 going to the tree layer; 4,400 going to the shrub layer; 1,600 left, to go to the grass layer. 1,600 is 9% of 18,000 (1,600/18,000 x 100) NOTE: The question asked that you give your answer as a whole number. When you do the calculation, you probably got What percent of country 1 is under the age of 20? 55% The answer range is 45% - 55% which is determined by looking at the population pyramid. 8. Use the graph to the left to calculate the mean rate of population growth (individuals per hour) between hours 6 and 9. Give your answer in the nearest whole number. 12 per hour = 36 (Population change) /3-hour time change 36/3 = 12. The word mean in this question confuses some students AP BIOLOGY EXAM REVIEW - KRABATH 2

3 9. The graph shows the growth in cm of a pea plant over a period of 5 weeks. What was the mean growth rate per day between week 1 and week 3? Give your answer to the nearest tenth. 3.6 days = 50 height change)/ 14 days are in 2 weeks 50/14 = 3.6 days Use the graph on Atmospheric Carbon Dioxide levels to: 10. Calculate the rate of increase in CO 2 production from 1974 to Record your answer to the nearest tenth. 1.7 ppm/year; see below for explanation 11. What will be the approximate CO 2 concentration in 2100? Record your answer to the nearest whole number. 154 ppm; see below for explanation AP BIOLOGY EXAM REVIEW - KRABATH 3

4 Hardy-Weinberg Problems: 12. The allele for the hair pattern called widow s peak is dominant over the allele for no widow s peak. In a population of 100 individuals, 91 show the dominant phenotype. 91 have a widow s peak & 9 don t (don t miss this step!!) 9 =.09% = q2 q =.3 p =.7 a. What is the frequency of the dominant allele?.3 b. What is the frequency of the recessive allele?.7 c. How many individuals would you expect to be heterozygous for the trait? 2(.3)(.7) =.42 = 42% = The ability to taste PTC is due to a single dominant allele (T). You sampled 215 individuals in biology and determined that 150 could taste PTC and 65 could not. How many individuals in this population show the following genotype? Give your answer to the nearest whole number. a. TT 44 Of the 150, some are TT and some are Tt. b. Tt 106 The answer to tt is given in the problem, it is 65 c. tt 65 65/215 =.30 (students will skip this step!) 3 = q2; q =.55 p =.45 Check your answer by seeing if this adds up to In a population of robins in which the allele for dark head plumage is dominant to the allele for light head plumage, a cold winter leads to the selection against lighter head plumage. When the winter is over, 8% of the remaining birds exhibit light head plumage. If the population is now in Hardy-Weinberg equilibrium, what will be the frequency of the light head plumage in the next generation? Give your answer to the nearest tenth..3 8% =.08 = q2 q = In a certain population of deer on Fire Island, NY, the allele for a black spot behind the eye is dominant to the allele for no spot. After the hunting season, the percent of deer with no black spot is 17% and the population is in Hardy-Weinberg Equilibrium. What is the frequency for the allele for having no black spot, to the hundredths?.41 17% =.17 = q2 q =.41 Combine Hardy-Weinberg expectations with Chi Square Analysis: 16. In poultry, the autosomal gene FB produces feathers black in color and another allele, FW, produces white feathers. The heterozygous condition produces feathers of blue color. When a population of white hens was mated to black roosters, the resulting offspring were all blue. These blue offspring were mated with one another. The F2 generation yielded 78 black, 206 blue, and 116 white chickens. Determine the frequency of each allele in the F2 population. Determine if the population is in Hardy-Weinberg equilibrium by calculating the chi-squared value. Give your answer for χ2 to the nearest hundredth. FB =.45 and FW =.55 AP BIOLOGY EXAM REVIEW - KRABATH 4

5 Sample FRQs: 17. A study was conducted on the island of Daphne Major in the Galapagos Islands by Peter and Rosemary Grant. This study lasted over 20 years. The study investigated how the type of seeds available to the finches impacted the depth of their beaks. In years when rain and water were plentiful, the available seeds were smaller and easy to crack. In years experiencing drought, fewer seeds were produced, and the finches had to eat the larger, leftover seeds produced from previous years. During years of drought, birds with a greater beak depth had a selective advantage. a. Use the data above to determine the increase in the mean of the depth of the beak between the wet and dry years. Give your answer to the nearest hundredth of a millimeter mm AP BIOLOGY EXAM REVIEW - KRABATH 5

6 18. How much carbon (g/m 2 ) is released into the atmosphere as a result of the metabolic activity of herbivores? Give your answer to the nearest whole number. 42 g/m2 100 going to Herbivores; subtract 58 which is the total leaving, 8 to predators and 50 to decomposers. 19. A large population of laboratory animals has been allowed to breed randomly for a number of generations. After several generations, 36% of the animals display a recessive trait (aa), the same percentage as at the beginning of the breeding program. The rest of the animals show the dominant phenotype, with heterozygotes indistinguishable from the homozygous dominants. What is the estimated frequency of allele a in the gene pool? Record your answer to the nearest hundredth..36 = q2 so q = In a hypothetical population of 1,000 people, tests of blood-type genes show that 160 have the genotype AA, 480 have the genotype AB, and 360 have the genotype BB. What is the frequency of the A allele? p2 = 160/1000 =.16 there for p =.4 What percentage of the population has type O blood? 0% The o allele is not shown the population If there are 4,000 children born to this generation, how many would be expected to have AB blood under the conditions of Hardy-Weinberg equilibrium? p =.4 then q =.6 so 2pq = 2(.4)(.6) =.48.48(4000) = 1, Upon chemical analysis, a particular protein was found to contain 556 amino acids. How many peptide bonds are present in this protein? Starting with a fertilized egg (zygote), a series of five cell divisions would produce an early embryo with how many cells? Cytosine makes up 38% of the nucleotides in a sample of DNA from an organism. Approximately, what percentage of the nucleotides in this sample will be thymine? 12% remember Chargaff s rule that the percentage of A = T and the percentage of C = G. Also the total of each must equal 100%. Therefore, G =38% C =38% A = 12 % and T =12%12% 24. A population of ground squirrels has an annual per capita birth rate of 0.06 and an annual per capita death rate of Estimate the number of individuals added to (or lost from) a population of 1,000 individuals in one year. Birthrate of 0.06 death rate of.02 =.04 therefore.04 x 1,000 = 40 added ,000 kcal of producer would support approximately kcal of tertiary consumer. 10 kcal Draw a trophic diagram and apply the 10% rule AP BIOLOGY EXAM REVIEW - KRABATH 6

What percentage of the cells listed above are in mitosis?

What percentage of the cells listed above are in mitosis? AP Biology - Math Review Basics: There are many basic math skills that you must be able to do to work the more complex math problems in AP Biology. Don t screw up on the basics. 1. Working with decimals,

More information

1. Working with decimals, ratios, fractions and percentages. 3. Report your answer with the number of significant figures that the question requires

1. Working with decimals, ratios, fractions and percentages. 3. Report your answer with the number of significant figures that the question requires AP Biology - Math Review Basics: There are many basic math skills that you must be able to do to work the more complex math problems in AP Biology. It will be sad if our students know how to do the hard

More information

EVOLUTION OF POPULATIONS Genes and Variation

EVOLUTION OF POPULATIONS Genes and Variation Section Outline Section 16-1 EVOLUTION OF POPULATIONS Genes and Variation When Darwin developed his theory of evolution, he didn t know how HEREDITY worked. http://www.answers.com/topic/gregor-mendel Mendel

More information

Virtual Lab 2 Hardy-Weinberg

Virtual Lab 2 Hardy-Weinberg Name Period Assignment # Virtual Lab 2 Hardy-Weinberg http://www.phschool.com/science/biology_place/labbench/lab8/intro.html Read the introduction Click Next 1) Define allele 2) Define Hardy-Weinberg equilibrium

More information

Chapter 23: The Evolution of Populations

Chapter 23: The Evolution of Populations AP Biology Reading Guide Name Chapter 23: The Evolution of Populations This chapter begins with the idea that we focused on as we closed the last chapter: Individuals do not evolve! Populations evolve.

More information

Genetic Equilibrium: Human Diversity Student Version

Genetic Equilibrium: Human Diversity Student Version Genetic Equilibrium: Human Diversity Student Version Key Concepts: A population is a group of organisms of the same species that live and breed in the same area. Alleles are alternate forms of genes. In

More information

Evolution of Populations (Ch. 17)

Evolution of Populations (Ch. 17) Evolution of Populations (Ch. 17) Doonesbury - Sunday February 8, 2004 Beak depth of Beak depth Where does Variation come from? Mutation Wet year random changes to DNA errors in gamete production Dry year

More information

Chapter 23: The Evolution of Populations. 1. Populations & Gene Pools. Populations & Gene Pools 12/2/ Populations and Gene Pools

Chapter 23: The Evolution of Populations. 1. Populations & Gene Pools. Populations & Gene Pools 12/2/ Populations and Gene Pools Chapter 23: The Evolution of Populations 1. Populations and Gene Pools 2. Hardy-Weinberg Equilibrium 3. A Closer Look at Natural Selection 1. Populations & Gene Pools Chapter Reading pp. 481-484, 488-491

More information

Exam 1 Answers Biology 210 Sept. 20, 2006

Exam 1 Answers Biology 210 Sept. 20, 2006 Exam Answers Biology 20 Sept. 20, 2006 Name: Section:. (5 points) Circle the answer that gives the maximum number of different alleles that might exist for any one locus in a normal mammalian cell. A.

More information

*No in-class activities can be made up for unexcused absences. See syllabus.

*No in-class activities can be made up for unexcused absences. See syllabus. ICA 13 Key *No in-class activities can be made up for unexcused absences. See syllabus. Bluegill Q1. A large population of bluegill (a freshwater fish) was observed over ten consecutive summers. When traits

More information

Chapter 9. Objectives. Table of Contents. Gregor Mendel. Gregor Mendel, continued. Section 1 Mendel s Legacy. Section 2 Genetic Crosses

Chapter 9. Objectives. Table of Contents. Gregor Mendel. Gregor Mendel, continued. Section 1 Mendel s Legacy. Section 2 Genetic Crosses Fundamentals of Genetics Table of Contents Objectives Describe how Mendel was able to control how his pea plants were pollinated. Describe the steps in Mendel s experiments on true-breeding garden peas.

More information

5/2/ Genes and Variation. How Common Is Genetic Variation? Variation and Gene Pools

5/2/ Genes and Variation. How Common Is Genetic Variation? Variation and Gene Pools 16-1 Genes 16-1 and Variation Genes and Variation 1 of 24 How Common Is Genetic Variation? How Common Is Genetic Variation? Many genes have at least two forms, or alleles. All organisms have genetic variation

More information

Exploring Mendelian Genetics 11-3

Exploring Mendelian Genetics 11-3 Exploring Mendelian Genetics 11- GENES are more complicated than Mendel thought Some traits have MORE than 2 allele choices = MULTIPLE ALLELE TRAIT http://www.eslkidstuff.com/images/tallshort.gif EX: blood

More information

Name Date Period Biology S2: Final Exam Review

Name Date Period Biology S2: Final Exam Review Name Date Period Biology S2: Final Exam Review Final Exam Study Guide Unit 1: Molecular Genetics 1. Terms to Know: A. Amino acid: B. Codon: C. Anticodon: D. Cancer: E. Gene Regulation: F. Crossing Over:

More information

Honors Biology Semester 2 Final Exam Review Guide

Honors Biology Semester 2 Final Exam Review Guide Honors Biology Semester 2 Final Exam Review Guide As the final exam approaches, so should your preparation for the test. You should review all old exams given this semester: Cell Cycle, DNA, Genetics,

More information

Read each question, and write your answer in the space provided. 2. How did Mendel s scientific work differ from the work of T. A. Knight?

Read each question, and write your answer in the space provided. 2. How did Mendel s scientific work differ from the work of T. A. Knight? Name Date Class CHAPTER 8 DIRECTED READING Mendel and Heredity Section 8-1: The Origins of Genetics Mendel and Others Studied Garden-Pea Traits 1. What did T. A. Knight discover? 2. How did Mendel s scientific

More information

Genetics. Chapter 10/12-ish

Genetics. Chapter 10/12-ish Genetics Chapter 10/12-ish Learning Goals For Biweekly Quiz #7 You will be able to explain how offspring receive genes from their parents You will be able to calculate probabilities of simple Mendelian

More information

Some Vocab. Genotype allele combination. Phenotype physical appearance

Some Vocab. Genotype allele combination. Phenotype physical appearance Genetics Some Vocab. Genotype allele combination Capital letter = dominant allele Lowercase letter = recessive allele Ex AA, Aa, aa Phenotype physical appearance Ex green, yellow Some Vocab. Homozygous

More information

Genetic variation and change the short version

Genetic variation and change the short version Part 1: Biodiversity and variation Genetic variation and change the short version Define biodiversity and describe its advantages. Why is variation important to a species? What is DNA? A chromosome? A

More information

Crossing and Probabilities

Crossing and Probabilities Let us review Crossing and Probabilities RR= homozygous dominant for Rr = homozygous recessive for white. P gen: RR x rr F1 gen: Rr F2 gen: Purple: 1RR, 2 Rr = total 3 Purple White : 1 rr = 1 total white

More information

Multiple Choice (3.35 each) Total = 100pts. Choice the choice that best answers the question! Good luck!

Multiple Choice (3.35 each) Total = 100pts. Choice the choice that best answers the question! Good luck! NAME DATE Multiple Choice (3.35 each) Total = 100pts. Choice the choice that best answers the question! Good luck! 1. Could the characteristic followed in the pedigree be caused by an autosomal dominant

More information

Section. Test Name: Cell Reproduction and Genetics Test Id: Date: 02/08/2018

Section. Test Name: Cell Reproduction and Genetics Test Id: Date: 02/08/2018 Test Name: Cell Reproduction and Genetics Test Id: 308393 Date: 02/08/2018 Section 1. Gregor Mendel was an Austrian monk that observed the different colors of pea plants in his monestary. He discovered

More information

Mendel and The Gene Idea

Mendel and The Gene Idea Mendel and The Gene Idea Gregor Mendel was a monk who experimented with pea plants and was also a scientist He is known as the Father of Genetics. Mendel s two fundamental principles of heredity are now

More information

AP Biology Laboratory 8 Population Genetics Virtual Student Guide

AP Biology Laboratory 8 Population Genetics Virtual Student Guide AP Biology Laboratory 8 Population Genetics Virtual Student Guide http://www.phschool.com/science/biology_place/labbench/index.html Introduction The Hardy-Weinberg law of genetic equilibrium provides a

More information

Gregor Mendel. Austrian Monk Worked with pea plants

Gregor Mendel. Austrian Monk Worked with pea plants Gregor Mendel Austrian Monk Worked with pea plants A. True Breeding Pea Plants Self pollinate and produce new plants genetically identical to themselves Mendel decides to cross pollinate the plants Offspring

More information

INTRODUCTION TO GENETICS USING TOBACCO (Nicotiana tabacum) SEEDLINGS

INTRODUCTION TO GENETICS USING TOBACCO (Nicotiana tabacum) SEEDLINGS INTRODUCTION TO GENETICS USING TOBACCO (Nicotiana tabacum) SEEDLINGS By Dr. Elaine Winshell Updated and Revised by Dr. Susan Petro Objectives To apply Mendel s Law of Segregation To use Punnett squares

More information

Block: Science 10 Biology Biology Review Package. 1. What is the full name for DNA? Label the following diagram on the right. Deoxyriboucleic Acid

Block: Science 10 Biology Biology Review Package. 1. What is the full name for DNA? Label the following diagram on the right. Deoxyriboucleic Acid Review Package 1. What is the full name for DNA? Label the following diagram on the right. Deoxyriboucleic Acid 2. What is the function of DNA? DNA provides the genetic code for organisms. It makes you

More information

Chapter 25 Population Genetics

Chapter 25 Population Genetics Chapter 25 Population Genetics Population Genetics -- the discipline within evolutionary biology that studies changes in allele frequencies. Population -- a group of individuals from the same species that

More information

COMPETITOR NAMES: TEAM NAME: TEAM NUMBER:

COMPETITOR NAMES: TEAM NAME: TEAM NUMBER: COMPETITOR NAMES: TEAM NAME: TEAM NUMBER: Section 1:Crosses In a fictional species of mice, with species name Mus SciOlyian, fur color is controlled by a single autosomal gene. The allele for brown fur

More information

Outer. Last. Possible gamete combinations for parent 1: RY RY ry ry F (first) O (outer) I (inner) L (last)

Outer. Last. Possible gamete combinations for parent 1: RY RY ry ry F (first) O (outer) I (inner) L (last) Dihybrid Crosses Explained: Mendel s Law of Independent Assortment says that genes for different traits can segregate independently during the formation of gametes. What does that mean? It means that the

More information

Gene$cs: Part II Predic$ng Offspring APGRU5L2

Gene$cs: Part II Predic$ng Offspring APGRU5L2 Gene$cs: Part II Predic$ng Offspring APGRU5L2 The answer, of course, is no. However, this is a common misconception or misunderstanding about how the numbers work in inheritance. 2 Key Male Female Affected

More information

AP BIOLOGY Population Genetics and Evolution Lab

AP BIOLOGY Population Genetics and Evolution Lab AP BIOLOGY Population Genetics and Evolution Lab In 1908 G.H. Hardy and W. Weinberg independently suggested a scheme whereby evolution could be viewed as changes in the frequency of alleles in a population

More information

Exploring Mendelian Genetics. Dihybrid crosses. Dihybrid crosses

Exploring Mendelian Genetics. Dihybrid crosses. Dihybrid crosses Objective 8: Predict the results of dihybrid genetic crosses by using Punnett squares Exploring Mendelian Genetics 11.3 Dihybrid cross--a cross that involves two pairs of contrasting traits. A cross between

More information

The Making of the Fittest: Natural Selection in Humans

The Making of the Fittest: Natural Selection in Humans POPULATION GENETICS, SELECTION, AND EVOLUTION INTRODUCTION A common misconception is that individuals evolve. While individuals may have favorable and heritable traits that are advantageous for survival

More information

Biol 1408 : Chapter 9 Patterns of Inheritance

Biol 1408 : Chapter 9 Patterns of Inheritance Biol 08 : Chapter Patterns of Inheritance We previously discussed mono - hybrid crosses The Experiment P generation (true-breeding parents) Purple flowers White flowers F generation All plants have purple

More information

What is Genetics? Genetics The study of how heredity information is passed from parents to offspring. The Modern Theory of Evolution =

What is Genetics? Genetics The study of how heredity information is passed from parents to offspring. The Modern Theory of Evolution = What is Genetics? Genetics The study of how heredity information is passed from parents to offspring The Modern Theory of Evolution = Genetics + Darwin s Theory of Natural Selection Gregor Mendel Father

More information

Mendel & Inheritance. SC.912.L.16.1 Use Mendel s laws of segregation and independent assortment to analyze patterns of inheritance.

Mendel & Inheritance. SC.912.L.16.1 Use Mendel s laws of segregation and independent assortment to analyze patterns of inheritance. Mendel & Inheritance SC.912.L.16.1 Use Mendel s laws of segregation and independent assortment Mendel s Law of Segregation: gene pairs separate when gametes (sex cells) are formed; each gamete as only

More information

Summary Genes and Variation Evolution as Genetic Change. Name Class Date

Summary Genes and Variation Evolution as Genetic Change. Name Class Date Chapter 16 Summary Evolution of Populations 16 1 Genes and Variation Darwin s original ideas can now be understood in genetic terms. Beginning with variation, we now know that traits are controlled by

More information

THE STUDY OF GENETICS is extremely

THE STUDY OF GENETICS is extremely Exploring Animal Genetics and Probability THE STUDY OF GENETICS is extremely valuable to several areas of science. From medical to agricultural applications, the development of new techniques in studying

More information

Lecture 3 Monohybrid and Dihybrid Crosses

Lecture 3 Monohybrid and Dihybrid Crosses THE MONOHYBRID CROSS Lecture 3 Monohybrid and Dihybrid Crosses FOLLOWING THE INHERITANCE OF ONE TRAIT Monohybrid cross Parents differ by a single trait. Crossing two pea plants that differ in stem size,

More information

Biology. Semester 2 Exam Review. Name: Block: Replication Transcription Translation Genetic Engineering. Mutation Codon Anticodon DNA Fingerprint

Biology. Semester 2 Exam Review. Name: Block: Replication Transcription Translation Genetic Engineering. Mutation Codon Anticodon DNA Fingerprint Biology Semester 2 Exam Review Name: Block: Unit 1: DNA Define the following terms on a separate sheet of paper: Replication Transcription Translation Genetic Engineering Mutation Codon Anticodon DNA Fingerprint

More information

University of York Department of Biology B. Sc Stage 2 Degree Examinations

University of York Department of Biology B. Sc Stage 2 Degree Examinations Examination Candidate Number: Desk Number: University of York Department of Biology B. Sc Stage 2 Degree Examinations 2016-17 Evolutionary and Population Genetics Time allowed: 1 hour and 30 minutes Total

More information

Biology Semester Exam Study Guide--January 2016

Biology Semester Exam Study Guide--January 2016 Objective Response Reflection 3 = I totally know this! :) 2 = I remember this somewhat 1 = I don't remember this at all Explain the difference between independent and dependent variables. Explain what

More information

CH. 22/23 WARM-UP. 1. List 5 different pieces of evidence for evolution.

CH. 22/23 WARM-UP. 1. List 5 different pieces of evidence for evolution. CH. 22/23 WARM-UP 1. List 5 different pieces of evidence for evolution. 2. (Review) What are the 3 ways that sexual reproduction produces genetic diversity? 3. What is 1 thing you are grateful for today?

More information

wheat yield (tonnes ha 1 ) year Key: total yield contribution to yield made by selective breeding Fig. 4.1

wheat yield (tonnes ha 1 ) year Key: total yield contribution to yield made by selective breeding Fig. 4.1 1 Wheat is an important food crop in many European countries. Developments in farming allowed the yield of wheat produced by farms in the UK to increase rapidly in the second half of the 20th century.

More information

Part I: Predicting Genetic Outcomes

Part I: Predicting Genetic Outcomes Part I: Predicting Genetic Outcomes Deoxyribonucleic acid (DNA) is found in every cell of living organisms, and all of the cells in each organism contain the exact same copy of that organism s DNA. Because

More information

The Evolution of Populations

The Evolution of Populations Microevolution The Evolution of Populations C H A P T E R 2 3 Change in allele frequencies over generations Three mechanisms cause allele frequency change: Natural selection (leads to adaptation) Genetic

More information

Hardy-Weinberg Equilibrium

Hardy-Weinberg Equilibrium Hardy-Weinberg Equilibrium Hardy-Weinberg Equilibrium, also referred to as the Hardy-Weinberg principle, is used to compare allele frequencies in a given population over a period of time. A population

More information

environment (diffusion, etc.). High SA:V ratio is favorable. Ex. 6:1 is better than 6:5

environment (diffusion, etc.). High SA:V ratio is favorable. Ex. 6:1 is better than 6:5 Page 21 AP Biology: 2013 Exam Review CONCEPT 4 THE CELL CYCLE AND HEREDITY 1. Cell cycle a. Reason for division- as cells increase in volume, the surface area decreases and demand for material resources

More information

Measuring Evolution of Populations

Measuring Evolution of Populations Measuring Evolution of Populations 5 Agents of evolutionary change Mutation Gene Flow Non-random mating Genetic Drift Selection Populations & gene pools Concepts u a population is a localized group of

More information

Biol 331 Genetics Exam 1a Fall 2016

Biol 331 Genetics Exam 1a Fall 2016 Biol 331 Genetics Exam 1a Fall 2016 Multiple Choice. (2points each) 1. An allele is. A. one of the bases in DNA B. an alternate form of a gene C. another term for epistasis D. present only in males and

More information

Ch. 14 Mendel and the Gene Idea

Ch. 14 Mendel and the Gene Idea Ch. 14 Mendel and the Gene Idea 2006-2007 Gregor Mendel Modern genetics began in the mid-1800s in an abbey garden, where a monk named Gregor Mendel documented inheritance in peas used experimental method

More information

The Evolution of Populations

The Evolution of Populations LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 23 The Evolution of Populations

More information

LAB ACTIVITY ONE POPULATION GENETICS AND EVOLUTION 2017

LAB ACTIVITY ONE POPULATION GENETICS AND EVOLUTION 2017 OVERVIEW In this lab you will: 1. learn about the Hardy-Weinberg law of genetic equilibrium, and 2. study the relationship between evolution and changes in allele frequency by using your class to represent

More information

Why Pea Plants? Mendel chose to study garden peas, because: 1. They reproduce & have a short life cycle 1

Why Pea Plants? Mendel chose to study garden peas, because: 1. They reproduce & have a short life cycle 1 Name: Date: Per: Genetic Notes Genetics Genetics Vocab Identify the definitions and/or vocabulary words below. You will need to know these terms moving forward! 1. P Generation 2. Hybrid (F1) Generation

More information

LAB. POPULATION GENETICS. 1. Explain what is meant by a population being in Hardy-Weinberg equilibrium.

LAB. POPULATION GENETICS. 1. Explain what is meant by a population being in Hardy-Weinberg equilibrium. Period Date LAB. POPULATION GENETICS PRE-LAB 1. Explain what is meant by a population being in Hardy-Weinberg equilibrium. 2. List and briefly explain the 5 conditions that need to be met to maintain a

More information

GENETICS AND MENDEL 2/20/2013. Mendel s Experiment. Genetic Terms. How is each group the same? How is each group different?

GENETICS AND MENDEL 2/20/2013. Mendel s Experiment. Genetic Terms. How is each group the same? How is each group different? GENETICS AND MENDEL How is each group the same? How is each group different? Heredity transmission of traits from parents to offspring Genetics study of heredity HISTORY OF DISCOVERERY OF HEREDITY Up to

More information

Chapter 14: Mendel and the Gene Idea

Chapter 14: Mendel and the Gene Idea Chapter 4: Mendel and the Gene Idea. The Experiments of Gregor Mendel 2. Beyond Mendelian Genetics 3. Human Genetics . The Experiments of Gregor Mendel Chapter Reading pp. 268-276 TECHNIQUE Parental generation

More information

7-1. Read this exercise before you come to the laboratory. Review the lecture notes from October 15 (Hardy-Weinberg Equilibrium)

7-1. Read this exercise before you come to the laboratory. Review the lecture notes from October 15 (Hardy-Weinberg Equilibrium) 7-1 Biology 1001 Lab 7: POPULATION GENETICS PREPARTION Read this exercise before you come to the laboratory. Review the lecture notes from October 15 (Hardy-Weinberg Equilibrium) OBECTIVES At the end of

More information

LABORATORY 8. POPULATION GENETICS AND EVOLUTION

LABORATORY 8. POPULATION GENETICS AND EVOLUTION STUDENT GUIDE LABORATORY 8. POPULATION GENETICS AND EVOLUTION Objectives In this activity, you will learn about the Hardy-Weinberg law of genetic equilibrium study the relationship between evolution and

More information

Genetics & The Work of Mendel

Genetics & The Work of Mendel Genetics & The Work of Mendel 2011-2012 Gregor Mendel Modern genetics began in the mid-1800s in an abbey garden, where a monk named Gregor Mendel documented inheritance in peas used experimental method

More information

We can use a Punnett Square to determine how the gametes will recombine in the next, or F2 generation.

We can use a Punnett Square to determine how the gametes will recombine in the next, or F2 generation. AP Lab 7: The Mendelian Genetics of Corn Objectives: In this laboratory investigation, you will: Use corn to study genetic crosses, recognize contrasting phenotypes, collect data from F 2 ears of corn,

More information

Hardy-Weinberg Principle 4/5/09. Chapter 20. Godfrey H. Hardy: English mathematician Wilhelm Weinberg: German physician

Hardy-Weinberg Principle 4/5/09. Chapter 20. Godfrey H. Hardy: English mathematician Wilhelm Weinberg: German physician Chapter 20 1 Godfrey H. Hardy: English mathematician Wilhelm Weinberg: German physician Concluded that: The original proportions of the genotypes in a population will remain constant from generation to

More information

Lab Mendelian Genetics-Exploring Genetic Probability -Revisiting Mendel s Observations

Lab Mendelian Genetics-Exploring Genetic Probability -Revisiting Mendel s Observations NAMES: (one packet per partner pair to be turned in) DATE: Lab Mendelian Genetics-Exploring Genetic -Revisiting Mendel s Observations Purpose: Students will 1. Learn that probability is strongly related

More information

BIOLOGY - CLUTCH CH.14 - MENDELIAN GENETICS.

BIOLOGY - CLUTCH CH.14 - MENDELIAN GENETICS. !! www.clutchprep.com CONCEPT: MENDEL S EXPERIMENT Gregor Mendel designed an experiment to study inheritance in pea plants. Character a feature that can be inherited, and shows variation between individuals

More information

GENETICS AND MENDEL 2/4/2018. Mendel s Experiment. Genetic Terms. Genetic Terms. Mendel: Experiment 1 HISTORY OF DISCOVERERY OF HEREDITY

GENETICS AND MENDEL 2/4/2018. Mendel s Experiment. Genetic Terms. Genetic Terms. Mendel: Experiment 1 HISTORY OF DISCOVERERY OF HEREDITY HISTORY OF DISCOVERERY OF HEREDITY 1851: Gregor Mendel, father of heredity studied pea plants GENETICS AND MENDEL prevented self pollination used cross pollination brought experimental and quantitative

More information

EVOLUTION/HERDEDITY UNIT Unit 1 Part 8A Chapter 23 Activity Lab #11 A POPULATION GENETICS AND EVOLUTION

EVOLUTION/HERDEDITY UNIT Unit 1 Part 8A Chapter 23 Activity Lab #11 A POPULATION GENETICS AND EVOLUTION AP BIOLOGY EVOLUTION/HERDEDITY UNIT Unit Part 8A Chapter Activity Lab # A NAME DATE PERIOD POPULATION GENETICS AND EVOLUTION In 908 G. H. Hardy and W. Weinberg independently suggest a scheme whereby evolution

More information

Hardy Weinberg Equilibrium

Hardy Weinberg Equilibrium Gregor Mendel Hardy Weinberg Equilibrium Lectures 4-11: Mechanisms of Evolution (Microevolution) Hardy Weinberg Principle (Mendelian Inheritance) Genetic Drift Mutation Sex: Recombination and Random Mating

More information

Lecture 9b: Applications of the Hardy-Weinberg Theorem

Lecture 9b: Applications of the Hardy-Weinberg Theorem Lecture 9b: Applications of the Hardy-Weinberg Theorem For a two-allele locus: Let p = the frequency of one allele in the population (usually the dominant) Let q = the frequency of the recessive allele

More information

Evolution in a Genetic Context

Evolution in a Genetic Context Evolution in a Genetic Context What is evolution? Evolution is the process of change over time. In terms of genetics and evolution, our knowledge of DNA and phenotypic expression allow us to understand

More information

Observing Patterns in Inherited Traits. Chapter 11 Updated Reading Not

Observing Patterns in Inherited Traits. Chapter 11 Updated Reading Not Observing Patterns in Inherited Traits Chapter 11 Updated Reading 11.1-11.3 Not 11.5-11.7 What you absolutely need to know Punnett Square with monohybrid and dihybrid cross Heterozygous, homozygous, alleles,

More information

Module 20: Population Genetics, Student Learning Guide

Module 20: Population Genetics, Student Learning Guide Name: Period: Date: Module 20: Population Genetics, Student Learning Guide Instructions: 1. Work in pairs (share a computer). 2. Make sure that you log in for the first quiz so that you get credit. 3.

More information

Genetics is the study of inheritance The field of genetics began with the work of Gregor Mendel He had no knowledge of chromosomes, meiosis, or DNA

Genetics is the study of inheritance The field of genetics began with the work of Gregor Mendel He had no knowledge of chromosomes, meiosis, or DNA Inheritance 1 Mendel and the Black Box 2 The Experimental Subjects: Pisum sativum 3 Starting the Experiments: Purple and White Flowers 4 Mendel s Generations Illustrated 5 Crosses Involving Two Characters

More information

Unit 10: Genetics. Chapter 9: Read P

Unit 10: Genetics. Chapter 9: Read P Unit 10: Genetics Chapter 9: Read P. 145-167 10.0 Genetics The Definition of Genetics The study of heredity and how traits are passed on through generations. Gregor Mendel: The Father of Genetics Gregor

More information

Mendel and the Gene Idea

Mendel and the Gene Idea LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 14 Mendel and the Gene Idea Lectures

More information

A A A A a. a A a a a. The genotypes of the offspring are: AA = homozygous dominant = 1/4 Aa = heterozygous = 1/2 aa = homozygous recessive = 1/4

A A A A a. a A a a a. The genotypes of the offspring are: AA = homozygous dominant = 1/4 Aa = heterozygous = 1/2 aa = homozygous recessive = 1/4 Natural Selection Introduction: The Case of the Peppered Moth Background Information: Name: Date : Per. : Prior to the Industrial Revolution in England (pre-1740), the peppered moth was found almost always

More information

POPULATION GENETICS AND EVOLUTION

POPULATION GENETICS AND EVOLUTION AP BIOLOGY EVOLUTION ACTIVITY # NAME DATE HOUR POPULATION GENETICS AND EVOLUTION INTRODUCTION In 908 G. H. Hardy and W. Weinberg independently suggest a scheme whereby evolution could be viewed as changes

More information

Active Learning Exercise 8 Mendelian Genetics & the Chromosomal Basis of Inheritance

Active Learning Exercise 8 Mendelian Genetics & the Chromosomal Basis of Inheritance Name Biol 211 - Group Number Active Learning Exercise 8 Mendelian Genetics & the Chromosomal Basis of Inheritance Reference: Chapter 14-15 (Biology by Campbell/Reece, 8 th ed.) Note: In addition to the

More information

The Evolution of Populations

The Evolution of Populations The Evolution of Populations Population genetics Population: a localized group of individuals belonging to the same species Species: a group of populations whose individuals have the potential to interbreed

More information

Genetics Test. Multiple Choice Identify the choice that best completes the statement or answers the question.

Genetics Test. Multiple Choice Identify the choice that best completes the statement or answers the question. Genetics Test Multiple Choice Identify the choice that best completes the statement or answers the question. 41. Situations in which one allele for a gene is not completely dominant over another allele

More information

Biology Genetics Practice Quiz

Biology Genetics Practice Quiz Biology Genetics Practice Quiz Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The table above shows information related to blood types. What genotype(s)

More information

Localized group of individuals belonging to the same species. Group of populations that have the potential to interbreed

Localized group of individuals belonging to the same species. Group of populations that have the potential to interbreed QUESTIONS: 1. Match the definition with the correct term. A. Gene pool B. Population C. Population genetics D. Species Study of genetic variation within a population Localized group of individuals belonging

More information

Mendelian problems done.notebook

Mendelian problems done.notebook Mendelian Genetics Problems hen a genetic cross occurs beteen the gametes of to individuals, there are a number of possible combinations for the arrangement of alleles in the offspring. e can easily organize

More information

Observing Patterns In Inherited Traits

Observing Patterns In Inherited Traits Observing Patterns In Inherited Traits Ø Where Modern Genetics Started/ Gregor Mendel Ø Law of Segregation Ø Law of Independent Assortment Ø Non-Mendelian Inheritance Ø Complex Variations in Traits Genetics:

More information

Edexcel (B) Biology A-level

Edexcel (B) Biology A-level Edexcel (B) Biology A-level Topic 8: Origins of Genetic Variation Notes Meiosis is reduction division. The main role of meiosis is production of haploid gametes as cells produced by meiosis have half the

More information

DNA and GENETICS UNIT NOTES

DNA and GENETICS UNIT NOTES DNA and GENETICS UNIT NOTES NAME: DO NOT LOSE! DNA DNA - Deoxyribose Nucleic Acid Shape is called double helix DNA has the information for our cells to make proteins. DNA through transcription makes mrna

More information

Module 20: Population Genetics, Student Learning Guide

Module 20: Population Genetics, Student Learning Guide Name: Period: Date: Module 20: Population Genetics, Student Learning Guide Instructions: 1. Work in pairs (share a computer). 2. Make sure that you log in for the first quiz so that you get credit. 3.

More information

5 FINGERS OF EVOLUTION

5 FINGERS OF EVOLUTION MICROEVOLUTION Student Packet SUMMARY EVOLUTION IS A CHANGE IN THE GENETIC MAKEUP OF A POPULATION OVER TIME Microevolution refers to changes in allele frequencies in a population over time. NATURAL SELECTION

More information

Population Dynamics. Population: all the individuals of a species that live together in an area

Population Dynamics. Population: all the individuals of a species that live together in an area Population Dynamics Population Dynamics Population: all the individuals of a species that live together in an area Demography: the statistical study of populations, make predictions about how a population

More information

LABORATORY 8: POPULATION GENETICS AND EVOLUTION

LABORATORY 8: POPULATION GENETICS AND EVOLUTION LABORATORY 8: POPULATION GENETICS AND EVOLUTION OVERVIEW In this activity you will learn about the Hardy-Weinberg law of genetic equilibrium and study the relationship between evolution and changes in

More information

-Is change in the allele frequencies of a population over generations -This is evolution on its smallest scale

-Is change in the allele frequencies of a population over generations -This is evolution on its smallest scale Remember: -Evolution is a change in species over time -Heritable variations exist within a population -These variations can result in differential reproductive success -Over generations this can result

More information

Non Mendelian Genetics

Non Mendelian Genetics Non Mendelian Genetics TEKS 6 Science concepts. The student knows the mechanisms of genetics, including the role of nucleic acids and the principles of Mendelian Genetics. The student is expected to: 6F

More information

Biology. Chapter 13. Observing Patterns in Inherited Traits. Concepts and Applications 9e Starr Evers Starr. Cengage Learning 2015

Biology. Chapter 13. Observing Patterns in Inherited Traits. Concepts and Applications 9e Starr Evers Starr. Cengage Learning 2015 Biology Concepts and Applications 9e Starr Evers Starr Chapter 13 Observing Patterns in Inherited Traits 13.1 How Do Alleles Contribute to Traits? Blending inheritance 19th century idea Failed to explain

More information

i. allelic frequency c. reproductive isolation j. sexual selection d. allopatric speciation k. founder effect e. sympatric speciation

i. allelic frequency c. reproductive isolation j. sexual selection d. allopatric speciation k. founder effect e. sympatric speciation Name Hardy-Weinberg and Evolution The Hardy-Weinberg equation is used to determine whether there is any change in the distribution of given alleles over time. You will work through several examples of

More information

Bio 6 Natural Selection Lab

Bio 6 Natural Selection Lab Bio 6 Natural Selection Lab Overview In this laboratory you will demonstrate the process of evolution by natural selection by carrying out a predator/prey simulation. Through this exercise you will observe

More information

GENETICS. I. Review of DNA/RNA A. Basic Structure DNA 3 parts that make up a nucleotide chains wrap around each other to form a

GENETICS. I. Review of DNA/RNA A. Basic Structure DNA 3 parts that make up a nucleotide chains wrap around each other to form a GENETICS I. Review of DNA/RNA A. Basic Structure DNA 3 parts that make up a nucleotide 1. 2. 3. chains wrap around each other to form a Chains run in opposite direction known as Type of bond between the

More information

Chapter 02 Mendel s Principles of Heredity

Chapter 02 Mendel s Principles of Heredity Chapter 02 Mendel s Principles of Heredity Multiple Choice Questions 1. What was the importance of Mendel performing reciprocal crosses? To be able to breed plants all year round To obtain enough plants

More information

Genetics & The Work of Mendel

Genetics & The Work of Mendel Genetics & The Work of Mendel TEKS 6 Science concepts. The student knows the mechanisms of genetics, including the role of nucleic acids and the principles of Mendelian Genetics. The student is expected

More information

Genetics. Ms. Gunjan M. Chaudhari

Genetics. Ms. Gunjan M. Chaudhari Genetics Ms. Gunjan M. Chaudhari UNIT 1 Introduction to genetics Genetics:: The scientific study of heredity Heredity : The passing on of characteristics (traits) from parents to offspring Importance of

More information

The Hardy-Weinberg Principle. Essential Learning Objectives 1.A.1 (g) and 1.A.1 (h)

The Hardy-Weinberg Principle. Essential Learning Objectives 1.A.1 (g) and 1.A.1 (h) The Hardy-Weinberg Principle Essential Learning Objectives 1.A.1 (g) and 1.A.1 (h) Evolution of Populations Individuals do not evolve, but rather, populations evolve Scientists use mathematical models

More information