Windmill Project: The Windthrill. EF152 Section A

Size: px
Start display at page:

Download "Windmill Project: The Windthrill. EF152 Section A"

Transcription

1 Windmill Project: The Windthrill EF15 Section A Team 8: Zach Jacob John Greer Trey Coates Boyd Culver Gage Craig 1

2 -Overview Our project goal was to create a functioning windmill that could light up a small light bulb using only wind generated by a fan. We had to loop enough wire around a rotating magnet moving fast enough to in turn generate this electricity. Along with this, our device must act by itself with now outside interference. It must not be built from a kit, and the materials cost must be less than forty dollars. -Description of Wind Power Man has been harnessing wind power since the Ancient Persians used it to pump water. Since then, we ve had all sorts of windmills, from vertical axis windmills, to quaint Dutch windmills, to today s modern turbines. Though windmills are used heavily, especially out west, they are not very efficient at all. According to one source, to replace just one power plant with wind power, you would need 300 square miles (roughly an area the size of New York City) of land covered in wind turbines! This is because wind turbines only take in energy from a small area (the circular area covered by the blades). As such, wind power only generates about 1.5% of the world s energy. (Sources) cy_of_wind_power?blog=49

3 -Design Process To start out, we immediately decided on a horizontal axis windmill, as opposed to one that rotated on a vertical axis. Since this is how you typically see it done in wind farms and such, we surmised that this was the superior design. Ours would have the typical flower design you see so often on windmills. Of course, as often happens, our actual device would look much different than this model. We decided on four blades, because they would be easier to space than three blades. We actually looked to pictures of windmills to determine what we wanted our final product to look like. We took ideas from two notable examples. A four bladed modern windmill and an old Midwestern farm windmill. These two windmills were inspirations for own device. We took the four-bladed design from the turbine on the left, and added a rudder similar to the one on the right. This rudder would ideally direct the windmill blades into the wind, so the maximum energy can be harnessed from the powerful breezes. 3

4 We quickly determined that our generator would need a box or casing of some sort for it to rotate in. We also determined that a wooden frame would work better for that than a plastic one, as there would be much less friction on the rotating axle. We would also need a strong, sturdy base on which our large contraption could balance easily. In addition, we played with the angle of the blades until we achieved an angle that worked best to capture wind. We wrapped wire around the magnet box both vertically and horizontally for maximum coverage. Ideally, this magnet would spin at a high enough speed amongst the wires to generate enough electricity to power our small light bulb. The majority of our design is made from wood, with the axles (the blade axle, and the vertical rotational axle) being small metal poles. The wire is 30 gauge copper wire, and the fan blades are made from cut PVC pipe. We have a group of magnets in the center 4

5 of our generator, and our rudder is made of poster board and duct tape. To help prop up the generator, we also used a small amount of actual U.S. coins. To determine the amount of energy we are creating, we used two equations. 1 KE = ρ A v This is the first. KE is kinetic energy, ρ is the density of air, A is the circular area covered by the windmill blades when they spin, and v is the wind speed. Since we do not know the wind speed, we cannot solve this equation. V KE = R However, using a volt meter, we can solve the above equation. Using hypothetical wind speeds, we can see how our numbers, particularly our efficiency and voltage, change as our speed increases. Windspeed(mph) Windspeed(m/s) Resistance (ohm) Voltage (volt) Input Watts Generator Watts Windswept Area (m^) air density (kg/m^3) efficiency

6 -Bill of Materials Scrap Wood $.00 PVC Pipe $5.00 Nails, Screws, Metal poles $.00 Magnets $5.00 Posterboard $1.00 Duct Tape $1.00 Copper Wire $1.00 Spare Change 50 cents Total $8.50 -Conclusions In the end, we did actually generate some electricity. However, we had many problems. Unfortunately for us, we were reading the volt meter incorrectly. Also, our light bulb that we were given was broken from the start. So we had no way to see if it would light up or not. Friction of our axle against our box was also a problem, as this limited the amount of useful energy. We also had to make a box small enough so the wire was close to our rotating magnet, but big enough so the magnet wouldn t catch on the sides of the box. We had difficulty finding our wire. We also were originally using metal nails on the box, but the magnets kept sticking, so we had to find a different way to hold the box together. If we could do it differently, we would ve made sure we were using the volt meter correctly. We also would ve added gears to increase the speed at which the magnet is rotated amongst the wire, since a quicker rotation generates more electricity. Perhaps we would have even switched our design to a vertical axis design, 6

7 as these seemed to work quite well. But we did have a unique and interesting design. Our rudder was a unique idea, and our incorporation of both modern and nostalgic design into our device was noble. Overall, I would call our project a success, because some electricity was generated and our design was ingenious. -References Instructions&id=

The Cap'n 4/23/2009. Andrew Riley, Russell Estes, Stephen Swearingen, George Threagill. Team Number D2-3. EF 152 Section D2

The Cap'n 4/23/2009. Andrew Riley, Russell Estes, Stephen Swearingen, George Threagill. Team Number D2-3. EF 152 Section D2 1 The Cap'n 4/23/2009 Andrew Riley, Russell Estes, Stephen Swearingen, George Threagill Team Number D2-3 EF 152 Section D2 2 Overview For the final project in our engineering fundamentals class we were

More information

Windmill Generator Project

Windmill Generator Project Windmill Generator Project November 30, 2009 Nick Jones Michael Potts John Riser Emily Curtis Wrinn Jennifer Young Team 3 EF 152 - B1 Abstract The purpose of this project is to work as team to build a

More information

University of Tennessee EF 152 A 2. The Wind O Nator. Team A 2 7. Richard Ammons, Rachel Dunlap, Kayla Hughes, and Uchung Whang 12/2/2009

University of Tennessee EF 152 A 2. The Wind O Nator. Team A 2 7. Richard Ammons, Rachel Dunlap, Kayla Hughes, and Uchung Whang 12/2/2009 1 University of Tennessee EF 152 A 2 The Wind O Nator Team A 2 7 Richard Ammons, Rachel Dunlap, Kayla Hughes, and Uchung Whang 12/2/2009 2 Abstract The main objective was to create a generator that was

More information

The Vending Machine. April 23, Olivia Juneau Logan Taylor Chris Hensel Michael Culley. Team 6 Class C1

The Vending Machine. April 23, Olivia Juneau Logan Taylor Chris Hensel Michael Culley. Team 6 Class C1 1 The Vending Machine April 23, 2009 Olivia Juneau Logan Taylor Chris Hensel Michael Culley Team 6 Class C1 2 OVERVIEW The project being conducted is to make a windmill out of household items that will

More information

Page 1. The Flux Capacitor 12/2/09. Joshua Jefferies. Isaak Samsel. Austin Bootin. Brian Plaag. Team A1-5, EF 152 Sec. A1

Page 1. The Flux Capacitor 12/2/09. Joshua Jefferies. Isaak Samsel. Austin Bootin. Brian Plaag. Team A1-5, EF 152 Sec. A1 Page 1 The Flux Capacitor 12/2/09 Joshua Jefferies Isaak Samsel Austin Bootin Brian Plaag Team A1-5, EF 152 Sec. A1 Page 2 Project Overview The purpose of this project is to transform the mechanical energy

More information

Vertical Axis Wind Turbines

Vertical Axis Wind Turbines Goals ᄏᄏ ᄏᄏ ᄏᄏ Assemble a vertical-axis wind turbine Modify it to change its efficiency Make calculations based on data Background Wind turbines are quickly becoming a major source of electricity in countries

More information

Wind to Hydrogen Earth Sci. Lab

Wind to Hydrogen Earth Sci. Lab Wind to Hydrogen Earth Sci. Lab Name: Class: Date: Earth Sciences Middle School 8 hours Objective To explore wind and hydrogen fuel cell power sources and try to improve the power output of both. Materials

More information

Turbine subsystems include: What is wind energy? What is a wind turbine and how does it work?

Turbine subsystems include: What is wind energy? What is a wind turbine and how does it work? What is wind energy? In reality, wind energy is a converted form of solar energy. The sun's radiation heats different parts of the earth at different rates-most notably during the day and night, but also

More information

16.3 Electric generators and transformers

16.3 Electric generators and transformers ElEctromagnEts and InductIon Chapter 16 16.3 Electric generators and transformers Motors transform electrical energy into mechanical energy. Electric generators do the opposite. They transform mechanical

More information

LESSON: Engineering Better Blades GRADE: 4 SUMMARY:

LESSON: Engineering Better Blades GRADE: 4 SUMMARY: LESSON: GRADE: 4 SUMMARY: Working in groups, students will design mini wind turbine blades from recycled materials, and measure the energy generated. After each trial, they will refine their design and

More information

Lesson Four THE POWER OF THE WIND. Lesson 4 TEP BRIGHT STUDENTS: THE CONSERVATION GENERATION. Grade level appropriateness: Grades 6-8

Lesson Four THE POWER OF THE WIND. Lesson 4 TEP BRIGHT STUDENTS: THE CONSERVATION GENERATION. Grade level appropriateness: Grades 6-8 Lesson Four Lesson 4 THE POWER OF THE WIND TEP BRIGHT STUDENTS: THE CONSERVATION GENERATION Grade level appropriateness: Grades 6-8 Lesson Length: 1 ½ full class periods (~90 minutes) Additional documents:

More information

2015 Georgia Grazing School: Choosing the right fence, fence charger, and wire or tape for your grazing system

2015 Georgia Grazing School: Choosing the right fence, fence charger, and wire or tape for your grazing system Choosing the Right Fence, Charger, and Wire or Tape for Your Grazing System 2015 Georgia Grazing School Fencing Systems Plan the system before building Choose the right materials Use the right construction

More information

HEAD TANK (FOREBAY TANK)

HEAD TANK (FOREBAY TANK) HEAD TANK (FOREBAY TANK) Head-tank - Pond at the top of a penstock or pipeline; serves as final settling basin, maintains the required water level of penstock inlet and prevents foreign debris entering

More information

Guided Reading Chapter 10: Electric Charges and Magnetic Fields

Guided Reading Chapter 10: Electric Charges and Magnetic Fields Name Number Date Guided Reading Chapter 10: Electric Charges and Magnetic Fields Section 10-1: Electricity, Magnetism, and Motion 1. The ability to move an object some distance is called 2. Complete the

More information

800 Wind Powered Generator

800 Wind Powered Generator 800 Wind Powered Generator Purpose: The Wind Powered Generator is an excellent device for studying wind as a source of energy. The generator will allow students an opportunity to measure the amount of

More information

Technology Exploration-II

Technology Exploration-II Technology Exploration-II Module 2 Renewable Energy PREPARED BY Academic Services Unit January 2012 Institute of Applied Technology, 2012 Module Objectives Module 2: Renewable Energy After the completion

More information

Working with Watermills

Working with Watermills Provided by TryEngineering - Lesson Focus Lesson focuses on how watermills generate power. Student teams design and build a working watermill out of everyday products and test their design in a basin.

More information

Problem Statement. Design and construct a small wind turbine to produce as much power as possible while

Problem Statement. Design and construct a small wind turbine to produce as much power as possible while Problem Statement Design and construct a small wind turbine to produce as much power as possible while still maintaining efficiency. One must be able to measure the output of the turbine, the design must

More information

Wind Turbine Design Worksheet Answer Key

Wind Turbine Design Worksheet Answer Key Wind Turbine Design Worksheet Answer Key You will be engineering blades for a wind turbine to provide power to a research station on a remote island. You will then test your turbine using a multimeter

More information

Wind Turbine Project

Wind Turbine Project Name: Date Hour Partner Name: Introduction: Alternative energy has been a hot topic in the last few years. We have seen more and more wind turbines and wind farms implemented to shift our main use of energy

More information

Off-Shore Wind Blue Ribbon Panel Energy and Wind Systems 101 The Basics

Off-Shore Wind Blue Ribbon Panel Energy and Wind Systems 101 The Basics Off-Shore Wind Blue Ribbon Panel Energy and Wind Systems 101 The Basics 1 This Report is a summary of the general energy generation information and general information on wind energy systems. For more

More information

of iron. The bug has a magnet attached to its bottom. The magnet in the bug sticks to the door.

of iron. The bug has a magnet attached to its bottom. The magnet in the bug sticks to the door. reflect Look at this picture. The bug sticks to the refrigerator door. Why does the bug stick to the door? We know it s not a real bug, so something else must be making the bug stick there. Magnets stick

More information

Big Idea 6. Day 1. Weekly Question How do windmills make electricity?

Big Idea 6. Day 1. Weekly Question How do windmills make electricity? 1 The universe runs on many types of energy. Mechanical energy is the energy of a movable object. Thermal energy is internal energy produced by the vibrations of a substance s molecules. Chemical energy

More information

Wind Power. Yale University Science Olympiad January 21, You may not open this exam until given permission by your proctors.

Wind Power. Yale University Science Olympiad January 21, You may not open this exam until given permission by your proctors. Yale University Science Olympiad January 21, 2017 Wind Power You may not open this exam until given permission by your proctors. DO NOT WRITE ON THIS EXAM Report all answers on the provided answer booklet.

More information

Design and Construction of a Mini Hydro Turbine Model

Design and Construction of a Mini Hydro Turbine Model American Journal of Modern Energy 2018; 4(1): 1-6 http://www.sciencepublishinggroup.com/j/ajme doi: 10.11648/j.ajme.20180401.11 ISSN: 2575-3908 (Print); ISSN: 2575-3797 (Online) Design and Construction

More information

Table of Contents. Career Overview... 4

Table of Contents. Career Overview... 4 Table of Contents Career Overview.................................................. 4 Basic Lesson Plans Activity 1 Becoming Energy Conscious... 5 Activity 2 Solar Cooking... 14 Activity 3 Solar Transportation........................................

More information

Renewable Energy. Visible light. Cool air. Warm air. Condensation. Precipitation. Evaporation

Renewable Energy. Visible light. Cool air. Warm air. Condensation. Precipitation. Evaporation Renewable Energy All renewable energy sources derive from the Sun. The Sun provides the energy that drives our weather systems and water cycle. It is the prime source of all energy on Earth and it is essential

More information

STUDENT NAME. Science Grade 4. Read each question and choose the best answer. Be sure to mark all of your answers.

STUDENT NAME. Science Grade 4. Read each question and choose the best answer. Be sure to mark all of your answers. FORMATIVE MINI ASSESSMENTS Third Grading Period 2010-11 March 21-24 STUDENT NAME DATE Science Grade 4 Read each question and choose the best answer. Be sure to mark all of your answers. 1 In the circuit

More information

Wind Turbine Activity Worksheet

Wind Turbine Activity Worksheet Wind Turbine Activity Worksheet You will be engineering blades for a wind turbine to provide power to a research station on a remote island. You will then test your turbine using a multimeter to see how

More information

Hydro Electric Power (Hydel Power)

Hydro Electric Power (Hydel Power) Operating Principle Hydro Electric Power (Hydel Power) Hydro-electric power is generated by the flow of water through turbine, turning the blades of the turbine. A generator shaft connected to this turbine

More information

Problem statement, Standards, Data and Technology

Problem statement, Standards, Data and Technology 1 Lesson Plan Title: Wind Turbine Design Challenge Teacher Name: Hwa Tsu Subject: IB Physics SL Grade Level: 11 Problem statement, Standards, Data and Technology Asking questions and defining problems

More information

APPENDIX B: Example Lab Preparation Guide and Manual. The University of Texas at Austin. Mechanical Engineering Department

APPENDIX B: Example Lab Preparation Guide and Manual. The University of Texas at Austin. Mechanical Engineering Department APPENDIX B: Example Lab Preparation Guide and Manual ME 130L 17905 17990 The University of Texas at Austin Mechanical Engineering Department Spring 12 Dr. Hidrovo Lab #4 Preparation Guide - Dimensional

More information

Energy from Wind Turbines. An Activity Guide for Grade 4-6 Teachers

Energy from Wind Turbines. An Activity Guide for Grade 4-6 Teachers Energy from Wind Turbines An Activity Guide for Grade 4-6 Teachers Table of Contents Introduction... 3 Curriculum Links from Revised 2007/2008 Ontario Curriculum... 3 Theory & Background Information (for

More information

Newton s Trap. Overview. Design Process. EF 151 Section A.1 Group A.4 Dean Dudley James Bickel Chip Hovis

Newton s Trap. Overview. Design Process. EF 151 Section A.1 Group A.4 Dean Dudley James Bickel Chip Hovis EF 151 Section A.1 Group A.4 Dean Dudley James Bickel Chip Hovis Newton s Trap Overview Newton's Trap begins with mouse trap (elastic energy) that hits a PVC pipe that has a battery in it. The pipe tilts

More information

Activity Guide. MacGyver Windmill Class Pack. Materials for 15 Windmills or Students. Time Required. Grades. Objectives.

Activity Guide. MacGyver Windmill Class Pack. Materials for 15 Windmills or Students. Time Required. Grades. Objectives. MacGyver Windmill Class Pack Activity Guide Materials for 15 Windmills or 15 45 Students Grades 5 8, 9 12 (Extension Activity) Concepts Energy and Transformations Forces and Motion Engineering, Art, and

More information

Focus: This lesson will provide a basic overview of wind energy and wind turbines. Grade Level: 9 th Grade to 12 th Grade Time: 50 minutes

Focus: This lesson will provide a basic overview of wind energy and wind turbines. Grade Level: 9 th Grade to 12 th Grade Time: 50 minutes Wind Energy 101 Focus: This lesson will provide a basic overview of wind energy and wind turbines. Grade Level: 9 th Grade to 12 th Grade Time: 50 minutes 1. Have students brainstorm a list of ways we

More information

Water pumping with a windmill. ing. A. Kragten. March 2012 reviewed September 2018 KD 490

Water pumping with a windmill. ing. A. Kragten. March 2012 reviewed September 2018 KD 490 Water pumping with a windmill ing. A. Kragten March 2012 reviewed September 2018 KD 490 It is allowed to copy this report for private use. Engineering office Kragten Design Populierenlaan 51 5492 SG Sint-Oedenrode

More information

Designing the Most Energy Efficient. Wind Turbine Blades. Secondary Subjects Physical Science, Social Studies, Technology, Math, Art

Designing the Most Energy Efficient. Wind Turbine Blades. Secondary Subjects Physical Science, Social Studies, Technology, Math, Art Designing the Most Energy Efficient Wind Turbine Blades Lesson Plan By Shay Motalebi Primary Subject Earth Science Secondary Subjects Physical Science, Social Studies, Technology, Math, Art Grade levels

More information

Group Size ( Divide the class into teams of four or five students each. )

Group Size ( Divide the class into teams of four or five students each. ) Subject Area(s) Science & technology Associated Unit Engineering Associated Lesson wind lesson Activity Title wind turbines Grade Level 6 (5-7) Activity Dependency wind lesson Time Required 2 hour periods

More information

Flapper Wind Turbine

Flapper Wind Turbine Flapper Wind Turbine Prof. Pramod Maurya 1, Dhinu Puthuppully 2, Niraj Chaudhary 3, Shehzad Ansari 4, Sanjay Rathod 5 Mechanical Department 1,2,3,4,5 Professor in Theem College of Engineering 1, B.E. Mechanical

More information

6 Generator Testing Data Analysis

6 Generator Testing Data Analysis RMS Voltage 6 Generator Testing Data Analysis 1. Using the generator equations below. 2. Insert your measured component values. 3. Create a spread sheet and plot the data. 4. How close is the calculated

More information

Feasibility Study of Conversion of Wind Energy to Electrical Energy at Delhi Metro Stations using Light Rotor Turbines

Feasibility Study of Conversion of Wind Energy to Electrical Energy at Delhi Metro Stations using Light Rotor Turbines IJSRD National Conference on Inspired Learning October 2015 Feasibility Study of Conversion of Wind Energy to Electrical Energy at Delhi Metro Stations using Light Rotor Turbines S. Patwal 1 Kavita 2 T.

More information

Types of Energy Heat energy Heat energy is the transfer of thermal energy (associated with the motion) ll matter is made up of particles too small to

Types of Energy Heat energy Heat energy is the transfer of thermal energy (associated with the motion) ll matter is made up of particles too small to 1 Types of Energy Heat energy Heat energy is the transfer of thermal energy (associated with the motion) ll matter is made up of particles too small to be seen. As heat energy is added to a substance,

More information

TEAMS Competition 2015

TEAMS Competition 2015 TEAMS Competition 2015 Generating Power from Wind Introduction W ind can be defined as a natural movement of air at any velocity. Along the earth s surface, wind typically occurs blowing horizontally across

More information

GRADE 9: Physical processes 2. UNIT 9P.2 12 hours. Electricity and energy. Resources. About this unit. Previous learning.

GRADE 9: Physical processes 2. UNIT 9P.2 12 hours. Electricity and energy. Resources. About this unit. Previous learning. GRADE 9: Physical processes 2 Electricity and energy UNIT 9P.2 12 hours About this unit This unit is the second of four units on physical processes for Grade 3. It builds on work done on electricity in

More information

To: Aimee McClure, John Krueger From: Karl Vachuska, Shiven Advani, Pilar Gonzalez, Valerie Nehls Subject: Hydroelectric Generator Recommendation

To: Aimee McClure, John Krueger From: Karl Vachuska, Shiven Advani, Pilar Gonzalez, Valerie Nehls Subject: Hydroelectric Generator Recommendation To: Aimee McClure, John Krueger From: Karl Vachuska, Shiven Advani, Pilar Gonzalez, Valerie Nehls Subject: Hydroelectric Generator Recommendation Date: 12/5/2016 Our group worked with Pierce Manufacturing

More information

KEYWORDS: alternative energy waves ocean currents electricity

KEYWORDS: alternative energy waves ocean currents electricity UNC Coastal Studies Institute 1 TITLE: Ocean Energy and Education KEYWORDS: alternative energy waves ocean currents electricity Waves are a potential energy source for the future. ABSTRACT: As the population

More information

AP Environmental Science. Understanding Energy Units- Skeleton Notes

AP Environmental Science. Understanding Energy Units- Skeleton Notes Name: Period: Date: AP Environmental Science Understanding Energy Units- Skeleton Notes The Joule Energy is defined as the ability to do work. The Joule (J) is a unit of energy or work. 10 Joules of energy

More information

James T okishi CEE491 5/5/2009

James T okishi CEE491 5/5/2009 James Tokishi CEE491 5/5/2009 General term for any use of the wind to generate usable power Sailing ships (>5500 years) Windmills (>1300 years) Electricity generation (~100 years) Wind causes turbine blade

More information

Enhancement of the Efficiency of Windmill Using Helical Designed Savonius Turbine

Enhancement of the Efficiency of Windmill Using Helical Designed Savonius Turbine Enhancement of the Efficiency of Windmill Using Helical Designed Savonius Turbine M. Ganesh Karthikeyan 1, Shanmugasundaram K 2, Shree Bubesh Kumaar S 3, Siddhath K 4, Srinath B 5 Assistant Professor,

More information

A Problem Based Learning Experience in a Post-Apocalyptic. 6 th grade

A Problem Based Learning Experience in a Post-Apocalyptic. 6 th grade A Problem Based Learning Experience in a Post-Apocalyptic world 6 th grade To audio recording. Grade Level: 6th grade SC Stds: Energy, Technology 6-1.4 Use a technological design process to plan and produce

More information

Analysis Performance of DC Motor as Generator in The Horizontal Axis Wind Turbine

Analysis Performance of DC Motor as Generator in The Horizontal Axis Wind Turbine Analysis Performance of DC Motor as Generator in The Horizontal Axis Wind Turbine Suhardi, a, Faisal Mahmuddin, b Andi Husni Sitepu, c and Muhammad Uswah Pawara, d,* a) Naval Architecture Department, Faculty

More information

Harnessing Wind Energy with Recyclable Materials By Katherine Carroll, Margo Dufek, Leanne Willey, and Andrew McCarthy Team 03

Harnessing Wind Energy with Recyclable Materials By Katherine Carroll, Margo Dufek, Leanne Willey, and Andrew McCarthy Team 03 Harnessing Wind Energy with Recyclable Materials By Katherine Carroll, Margo Dufek, Leanne Willey, and Andrew McCarthy Team 03 Final Project Report Document Submitted towards partial fulfillment of the

More information

NATURAL SCIENCES AND TECHNOLOGY TERM 3 GRADE 6 ENERGY AND CHANGE

NATURAL SCIENCES AND TECHNOLOGY TERM 3 GRADE 6 ENERGY AND CHANGE NATURAL SCIENCES AND TECHNOLOGY TERM 3 GRADE 6 ENERGY AND CHANGE 1 TEACHING PLAN Introduction Natural Science: The scientific method format Technology : The design process format UNIT 1 Electric Circuits

More information

Hydro-wind Education Kit ASSEMBLY GUIDE

Hydro-wind Education Kit ASSEMBLY GUIDE Hydro-wind Education Kit ASSEMBLY GUIDE Battery operation instructions: Model No.: FCJJ-56 Warning To avoid the risk of property damage, serious injury or death: This kit should only be used by persons

More information

2010 Culver Media, LLC 1

2010 Culver Media, LLC 1 Alternating current Also known as AC power, alternating current is electricity that reverses direction within a circuit. The electricity we use in our homes does this 120 times per second. Appliances Devices

More information

Activity Guide. Mini Windmills Class Pack. Materials for 30 Mini Windmills or 30 Students. Grades. Time required. Concepts.

Activity Guide. Mini Windmills Class Pack. Materials for 30 Mini Windmills or 30 Students. Grades. Time required. Concepts. Mini Windmills Class Pack Activity Guide Materials for 30 Mini Windmills or 30 Students Grades 2 3 Concepts Energy and Transformations Forces and Motion Engineering, Art, and Design Collecting and Interpreting

More information

DESIGN OF EXPERIMENTAL SETUP OF 1KW WIND TURBINE BLADE TESTING

DESIGN OF EXPERIMENTAL SETUP OF 1KW WIND TURBINE BLADE TESTING DESIGN OF EXPERIMENTAL SETUP OF 1KW WIND TURBINE BLADE TESTING Chanchal Narkhede 1, Nilesh Nikale 2, Sushant Howal 3 Raviraj Mulaje 4, Prof.S.R.Sandanshiv 5 1,2,3 Mech, G.S.Moze College of Engineering,

More information

EWB-UK Training Hand Over Pack. Pico Hydro Workshop

EWB-UK Training Hand Over Pack. Pico Hydro Workshop EWB-UK Training Hand Over Pack Pico Hydro Workshop At a glance: Community of Practice: Energy Type: Workshop Duration: 1 hour Min/Max participants: 4 per group Room/space requirements: Tables (to build

More information

Wind Energy: Overview

Wind Energy: Overview Wind Energy: Overview Learning objectives: 1)To understand the pattern of usage of wind energy internationally 2)To understand the pattern of usage of wind energy in India 3)To become aware of geographical

More information

Basic Electrical Theory by: Brian H. Hurd. Work

Basic Electrical Theory by: Brian H. Hurd. Work Basic Electrical Theory by: Brian H. Hurd Work Work is the transfer of energy from one form to another. Electricity is one form of energy that results from a transfer of energy from any of several other

More information

7.9.6 Magnetic Poles. 85 minutes. 117 marks. Page 1 of 37

7.9.6 Magnetic Poles. 85 minutes. 117 marks. Page 1 of 37 7.9.6 Magnetic Poles 85 minutes 117 marks Page 1 of 37 Q1. The diagram shows an electromagnet used in a door lock. (a) The push switch is closed and the door unlocks. Explain in detail how this happens.

More information

Renewable vs. Non-Renewable Energy

Renewable vs. Non-Renewable Energy Renewable vs. Non-Renewable Energy In today s society, we are heavily reliant on electrical energy to complete a lot of the work that we do. It seems to be the most functional form of energy and the most

More information

Energy in Agricultural Systems

Energy in Agricultural Systems Energy in Agricultural Systems MODULE 5: WIND ENERGY IN AGRICULTURE Funding provided by The Minnesota Environment and Natural Resources Trust Fund as recommended by the Legislative-Citizen Commission on

More information

Windmills. We Don t Create Energy, We Convert Energy! Description. Next Generation Science Standards: Outcomes. Guiding Question

Windmills. We Don t Create Energy, We Convert Energy! Description. Next Generation Science Standards: Outcomes. Guiding Question We Don t Create Energy, We Convert Energy! Levels: Grades 4-12 Content Areas: Engineering; Physics, Energy Lesson Time: 90 Minutes Next Generation Science Standards: Performance Expectations 3-5-ETS1,

More information

Introduction. Who is it for? What is it for? LEGO Education is pleased to bring you the curriculum pack for the Renewable Energy Add-on Set.

Introduction. Who is it for? What is it for? LEGO Education is pleased to bring you the curriculum pack for the Renewable Energy Add-on Set. LEGO Education is pleased to bring you the curriculum pack for the Renewable Energy Add-on Set. Who is it for? The material is designed for introducing and teaching the topic of renewable energy to middle

More information

Renewable Resources. CAES Energy Efficiency Research Institute Boise State University

Renewable Resources. CAES Energy Efficiency Research Institute Boise State University Renewable Resources Hydroelectric Power CAES Energy Efficiency Research Institute Boise State University What are some energy sources that we know exist? Nuclear Coal Natural Gas Biomass Geothermal Hydro

More information

Windmill Challenge STEM Module VCS April 24, 2012

Windmill Challenge STEM Module VCS April 24, 2012 Windmill Challenge Teacher Notes Volusia County STEM-Extension Lesson Using the 5E Model Windmill Challenge Objective: Students will use background knowledge of energy to create a windmill and compete

More information

Experimental Study on a Model of Bulk Wind Energy Collecting System

Experimental Study on a Model of Bulk Wind Energy Collecting System Experimental Study on a Model of Bulk Wind Energy Collecting System Zhongjian Sun & Zhibo Tang (Corresponding author) School of Naval Architecture and Civil Engineering, Zhejiang Ocean University Wenhua

More information

Simple Solutions Prices. Corex with Econo Stand. Vertical Banner with Bracket System. Billboard with Holder. Bailey Signage Solutions

Simple Solutions Prices. Corex with Econo Stand. Vertical Banner with Bracket System. Billboard with Holder. Bailey Signage Solutions Simple Solutions 2017 Prices Corex with Econo Stand Vertical Banner with Bracket System Bailey Signage Solutions 1325 Bailey Road Newport, MN 55055 BNISS-0016 12-16 Billboard with Holder PHONE: (800) 829-8898

More information

Windmill Activity. The Volcanic Hazards & City Planning Board Game. Description: Using this Lesson: Background: Levels:

Windmill Activity. The Volcanic Hazards & City Planning Board Game. Description: Using this Lesson: Background: Levels: Windmill Activity The Volcanic Hazards & City Planning Board Game Levels: Grades 6-8 Content Areas: Engineering; Physics Lesson Time: 80 Minutes Next Generation Science Standards: MS - ETS 1 - MS - PS

More information

Natural Science and Technology Grade 5 Term 3 Energy and Change and Systems and Control. Topic 10: Stored energy in fuels Unit: 1 Fuels...

Natural Science and Technology Grade 5 Term 3 Energy and Change and Systems and Control. Topic 10: Stored energy in fuels Unit: 1 Fuels... Natural Science and Technology Grade 5 Term 3 Energy and Change and Systems and Control 1 Contents Topic 10: Stored energy in fuels... 2 Unit: 1 Fuels... 2 Fuels are sources of useful energy... 3 Examples

More information

Window Assembly Lines

Window Assembly Lines Window Assembly Lines With today s labor market, no aspect of the manufacturing process should be left unstudied. The assembly process is often one of the more labor-intensive operations where small improvements

More information

Bladeless Wind Turbine

Bladeless Wind Turbine Bladeless Wind Turbine Pratik Oswal 1, Abhishek Patil 2 1, 2 Final Year Students, Mechanical Engineering, SMT Kashibai Navale College Of Engineering, Maharashtra, India Abstract: A wind turbine is a device

More information

Wind energy is available in the country situated on bank of the sea. Both type of plant large scale and small scale can be constructed.

Wind energy is available in the country situated on bank of the sea. Both type of plant large scale and small scale can be constructed. WIND POWER PLANT INRODUCTION- Energy is an important part of any country s economy. Today major energy need in a country is achieved by using conventional sources of energy. It includes coal, natural gas,

More information

Solar Boat. c t. r u. i o. n s. i n s t

Solar Boat. c t. r u. i o. n s. i n s t Solar Boat i n s t r u c t i o n s About KidWind The KidWind Project is a team of teachers, students, engineers, and practitioners exploring the science behind wind energy in classrooms around the US.

More information

Solar Boat. c t. r u. i o. n s. i n s t

Solar Boat. c t. r u. i o. n s. i n s t Solar Boat i n s t r u c t i o n s About KidWind The KidWind Project is a team of teachers, students, engineers, and practitioners exploring the science behind wind energy in classrooms around the US.

More information

TUNNELWORKS KS4 SCIENCE LESSON 2 (ESSENTIALS) TEACHERS NOTES

TUNNELWORKS KS4 SCIENCE LESSON 2 (ESSENTIALS) TEACHERS NOTES TUNNELWORKS KS4 SCIENCE LESSON 2 (ESSENTIALS) TEACHERS NOTES KS4 Science About this lesson This lesson explores energy, efficiency, power and circuits in a realistic situation. Students interpret simple

More information

Wind and Wave Power. By Nelle Anderson, Jenna Raderstrong, and Ryan Heltemes

Wind and Wave Power. By Nelle Anderson, Jenna Raderstrong, and Ryan Heltemes Wind and Wave Power By Nelle Anderson, Jenna Raderstrong, and Ryan Heltemes How a Wind Generator Works How is the energy in the wind captured? The wind is used to generate mechanical power or electricity.

More information

TRADE OF HEAVY VEHICLE MECHANIC

TRADE OF HEAVY VEHICLE MECHANIC TRADE OF HEAVY VEHICLE MECHANIC PHASE 2 Module 2 Basic Electricity/Batteries UNIT: 1 Table of Contents 1.0 Learning Outcome... 1 1.1 Key Learning Points... 1 2.0... 2 2.1 What is... 2 2.2 Classification

More information

Wind Turbine Blade Design

Wind Turbine Blade Design Michael Arquin Kidwind Teachers at a Kidwind Workshop at the National Wind Technology Center Learning about wind turbine blade design and testing. Wind Turbine Blade Design Copyright 2006 2/06 Version

More information

Environmental Life Cycle Assessment PSE 476/FB 576

Environmental Life Cycle Assessment PSE 476/FB 576 Environmental Life Cycle Assessment PSE 476/FB 576 Lecture 4: Life Cycle Inventory: Units and Material and Energy Balances Fall 2016 Richard A. Venditti Forest Biomaterials North Carolina State University

More information

Lesson 5 Energy. OAA Science Lesson 5 52

Lesson 5 Energy. OAA Science Lesson 5 52 Lesson 5 Energy OAA Science Lesson 5 52 Name Date Period Student Lesson 5: Energy Reference Sheet: Energy - is the ability to do work or cause change - can be changed from one form to another - cannot

More information

Micro Hydro Electric Generators

Micro Hydro Electric Generators Micro Hydro Electric Generators Harris Pelton Turbines ES and D Turgo Generators Pressure Drop in Pipe Flow Rate Through Various Nozzles We offer a variety of small hydroelectric generators that are designed

More information

TECHNOLOGY TO IMPLEMENT THE CONCEPTUAL DESIGN CHANGES TO GAINGOOD IMPROVEMENT IN HORIZONTAL AXIS WIND TURBINE PERFORMANCE AND EFFICIENCY

TECHNOLOGY TO IMPLEMENT THE CONCEPTUAL DESIGN CHANGES TO GAINGOOD IMPROVEMENT IN HORIZONTAL AXIS WIND TURBINE PERFORMANCE AND EFFICIENCY International Journal of Mechanical and Production Engineering Research and Development (IJMPERD ) Vol.1, Issue 2 Dec 2011 124-132 TJPRC Pvt. Ltd., TECHNOLOGY TO IMPLEMENT THE CONCEPTUAL DESIGN CHANGES

More information

Generators supply electrical energy.

Generators supply electrical energy. Page of 5 KY CONCPT Generators supply electrical energy. BFOR, you learned Magnetism is a force exerted by magnets A moving magnetic field can generate an electric current in a conductor Generators use

More information

Project Measuring Energy

Project Measuring Energy Project 3.1.4 Measuring Energy Introduction Wind power is a popular option for producing electricity. Power companies are not only harnessing wind through wind farms, but individuals are also constructing

More information

Changing Forms of Energy Prep Time: 15 minutes Teaching Time: 3 hours

Changing Forms of Energy Prep Time: 15 minutes Teaching Time: 3 hours Prep Time: 15 minutes Teaching Time: 3 hours Science Concept: Energy can be transformed. Objectives: The student will: identify and explain common energy transformations; record observations; and write

More information

Use of Wind and Solar Energy

Use of Wind and Solar Energy Faculty of Electrical Engineering University of Žilina Use of Wind and Solar Energy Conversion technologies & grid integration Marek Höger www.fel.uniza.sk Marek.Hoger@fel.uniza.sk Use of Wind and Solar

More information

Power Generation on Highway by using Vertical Axis Wind Turbine & Solar System

Power Generation on Highway by using Vertical Axis Wind Turbine & Solar System Power Generation on Highway by using Vertical Axis Wind Turbine & Solar System Prof. Sachin Y. Sayais 1, Govind P. Salunkhe 2, Pankaj G. Patil 3, Mujahid F. Khatik 1Assistant Professor, Dept. of Electrical

More information

Modeling of a Vertical Axis Wind Turbine with Permanent Magnet Synchronous Generator for Nigeria

Modeling of a Vertical Axis Wind Turbine with Permanent Magnet Synchronous Generator for Nigeria International Journal of Engineering and Technology Volume 3 No. 2, February, 2013 Modeling of a Vertical Axis Wind Turbine with Permanent Magnet Synchronous Generator for Nigeria B.O.Omijeh, C. S. Nmom,

More information

Magnetism 1. In this presentation you will: explore how magnets can be used to investigate magnetism. Next >

Magnetism 1. In this presentation you will: explore how magnets can be used to investigate magnetism. Next > Magnetism 1 In this presentation you will: explore how magnets can be used to investigate magnetism Introduction Magnetism was recognized as a naturally occurring phenomenon by Greek philosophers as long

More information

Energy. Wind. Teacher s Guide. Hydro. Investigate. Power. Technology. Renewable. Solar

Energy. Wind. Teacher s Guide. Hydro. Investigate. Power. Technology. Renewable. Solar 2009694 Hydro Solar Technology Wind Investigate Power Energy Renewable Teacher s Guide Table of Contents 1. Introduction... 3 2. Curriculum... 8 3. Teacher s Resources 3.1 Renewable Energy... 12 3.2 Potential

More information

Farm Energy IQ. Farms Today Securing Our Energy Future. Farm Energy Efficiency Principles Tom Manning, New Jersey Agricultural Experiment Station

Farm Energy IQ. Farms Today Securing Our Energy Future. Farm Energy Efficiency Principles Tom Manning, New Jersey Agricultural Experiment Station Farm Energy IQ Farms Today Securing Our Energy Future Farm Energy Efficiency Principles Tom Manning, New Jersey Agricultural Experiment Station Farm Energy IQ Farm Energy Efficiency Principles Tom Manning,

More information

ENGR 1181 Lab 7: Wind Turbine

ENGR 1181 Lab 7: Wind Turbine ENGR 1181 Lab 7: Wind Turbine - Preparation Material (Lab 7A) - Lab Procedure (Lab 7A) - Preparation Material (Lab 7B) - Lab Procedure (Lab 7B) - Report Guidelines (Combined) 1 Preparation Material 7A

More information

S.T.E.M. Integrated Robotics Detailed Outline

S.T.E.M. Integrated Robotics Detailed Outline S.T.E.M. Integrated Robotics Detailed Outline Unit 1: An Introduction to Drones Time: 4 Days Lesson 1.1 Introduction to MINDS-i 1. A brief intro of how MINDS-i defines STEM education and STEM Integrated

More information

Engineering with Renewable Energy: Solar Water Pumping

Engineering with Renewable Energy: Solar Water Pumping Engineering with Renewable Energy: Solar Water Pumping AUTHOR: Jamie Repasky DESCRIPTION: Students will learn that energy from a renewable resource can be converted to electrical energy to do work by engineering

More information

What are the 3 ways in which energy can travel? Explain what. conduction is. Does conduction happen best in solids, liquids or gases?

What are the 3 ways in which energy can travel? Explain what. conduction is. Does conduction happen best in solids, liquids or gases? What are the 3 ways in which energy can travel? Explain what conduction is What type of materials are good conductors and what type of materials are bad conductors (good insulators)? Does conduction happen

More information

ENERGY OVERVIEW TARA SMITH, BSU

ENERGY OVERVIEW TARA SMITH, BSU Grade level: 6 th -8th Standards: Taken from the May 2012 Next Generation Science Standards. Time Frame: 4.E Energy (2) 50 minute class periods Math: 6.RP.A.3c Find a percent of a quantity as a rate per

More information

!!!!!! Renewables energy and efficiency. Researching Physics. Higher. Photo: Wikipedia, GDFL

!!!!!! Renewables energy and efficiency. Researching Physics. Higher. Photo: Wikipedia, GDFL Renewables energy and efficiency Photo: Wikipedia, GDFL Researching Physics Higher Higher Physics Researching Physics Contents Renewables energy and efficiency Advice to students Page 3 Overview of the

More information