Driven by increasingly stringent

Size: px
Start display at page:

Download "Driven by increasingly stringent"

Transcription

1 Applying building energy modeling ELECTRONICALLY REPRINTED FROM OCTOBER 2014 Whole building energy modeling techniques and software are crucial for designing code-compliant buildings. At the same time, this near-mandatory exercise introduces opportunities for engineers to add significant value to projects. BY PAUL ERICKSON, LEED AP; and BILL TALBERT, PE, LEED AP, Affiliated Engineers Inc., Madison, Wis. Learning objectives n Understand what building energy modeling is and why it is used. n Recognize how energy modeling tools and techniques can be used throughout the entire design process and the value they can provide. n Learn how to use energy modeling to maintain and improve building performance over the life of the building. Driven by increasingly stringent building energy codes and certification programs, owners operating cost needs, institutional sustainability imperatives, and growing regulatory legislation, high-performance building design has become a fundamental component of the overall building design process. The high-performance building design process integrates building system design to optimize overall building energy and water use, operability, function, cost, and resilience over the intended life of the building. With the desire to reduce carbon emissions accelerating the pace of energy code and standards development, prescriptive design of compliant building systems is more and more challenging. At the same time, participation in building certification programs that include energy-performance improvements over energy codes is on the rise. To meet these needs, engineering-led building energy modeling provides design teams with a powerful tool for predicting how design characteristics will affect energy use and cost, assisting in the creation of integrated building systems that can exceed building performance targets associated with project program and budget goals. But energy modeling not only provides owners with the knowledge necessary to make informed decisions in satisfying energy code requirements, it also provides the data necessary to continue improvement of building operation over the life of the facility. Code compliance Ten years ago, energy modeling executed during the design phases of projects was generally still relegated to the role of documentation, whether for code compliance, the U.S. Green Building Council s (USGBC) LEED rating system, or possibly a few lifecycle cost scenarios. Compared to today, there were very few modeling practitioners, the budget for such activity was often limited, and many of the tools were not nearly as user-friendly. The rapid growth of the LEED rating system and other certification programs that require energy performance improvements over energy code has had a significant impact on the role of energy modeling in design, both directly and indirectly. The direct impact, attributable to the need or preference of many projects to complete modeling, has led to development of energy modeling talent within architecture, engineering, and construction (AEC) firms and has created a large contingent of firms

2 Figure 1: The status of state energy code adoption is shown, based on information available at All graphics courtesy: Affiliated Engineers Inc. that provide LEED, energy modeling, and related consulting services. Indirect impacts are largely the result of heightened awareness of energy issues attributable to the USGBC s efforts, manifested in the form of institutional policy or legislation. One example is the decision by many organizations to require that all new projects achieve particular energy savings targets as compared to code because their LEED projects were not necessarily achieving high scores in the energy savings credit. The University of California, the University of Michigan, and the State of North Carolina are such entities. Energy modeling for code compliance While some states were still using the 1989 version of ASHRAE Standard 90.1 as recently as 5 years ago, today most states have adopted recent versions of ASHRAE 90.1 (2013, 2010, or 2007) or the International Energy Conservation Code (IECC) (2012 or 2009). (See Figure 1.) This reflects the importance being placed on energy and energy performance in buildings and has in part been driven by federal legislation advancing the energy codes on a more regular basis. It also has placed a challenging requirement on project teams to demonstrate compliance. In the past many teams used a prescriptive path within these standards to demonstrate compliance (e.g., limit window area, use a certain level of insulation, select an air conditioning unit with a certain efficiency or better), but with performance requirements trending higher for code, many are forced to use a performance path to demonstrate compliance. Energy modeling is used to support the performance path, allowing project teams to make trade-offs (e.g., perhaps the window area and fan horsepower don t comply with code requirements, but improved glass and more efficient HVAC system types can provide counterbalance). The energy model for the prescriptive path takes all of these factors into account to demonstrate that the proposed building will perform as well or better than the code minimum building. Mandatory energy targets, lifecycle cost States, universities, the federal government, and other organizations across the country have been incorporating energy savings targets into their design standards, many using a target of 30% savings as compared to code (e.g., the federal government, the states of Iowa and North Carolina, the University of Michigan, the

3 Building energy modeling Figure 2: The University of Michigan Ross School of Business Phase 2 Concept energy mandate analysis shows the impacts of proposed design strategies leading to a current design along with impacts of additional strategies that would help achieve the campus energy performance target. University of Texas, and Cornell University). The University of California s Office of the President instituted a 20% betterthan-code target. Regardless of the savings target, this requirement is being applied to all of the institution s projects as part of its design standards. These and other entities are also applying more aggressive targets on individual projects. In many cases this takes the form of energy use intensity (EUI) targets and even net-zero energy. Cornell University s approach is an example of considering percent energy savings reductions to develop EUI targets for various building types. All of these have contributed to the increased demand for energy modeling. However, to evaluate the various possible pathways for achieving the targeted savings in the most cost-effective manner, energy modeling functions more as a complex, dynamic platform than as a simple verification tool. Cost effectiveness is paramount to implementing truly efficient design strategies; many organizations allow exemptions if reaching the target cannot be justified based on economics. The private sector typically uses return on investment as the basis for decisions, often looking for returns that essentially provide payback in the 1- to 5-year range. Institutional clients tend to think in terms of total cost of ownership over a 20- to 30-year life. Lifecycle cost (LCC) is generally used to evaluate the economics. The Dept. of Energy s BLCC tool lifecycle cost analysis (LCCA) is one of several that are freely available and it, like others, may be the required tool depending on the client. Integrated design Achieving energy targets is often no easy feat for many project teams, especially if design option testing doesn t begin early. The need for engineers and architects to engage in design conversations much earlier and to better understand the interplay of design options and decisions on the part of both is what the American Institute of Architects, USGBC, and others meant by integrated design when they began to promote the concept well over a decade ago and continue to do so today in such publications as An Architect s Guide to Integrating Energy Modeling in the Design Process. Though these mandates do not hold design teams accountable for the full breadth of integrated design, they do drive it. There is still a prevalent attitude that modeling should begin late in the schematic phase of a project when more details are known, so as to not consume too much fee with the modeling process. Modeling at this point can still serve to assist in achieving energy targets. More encouragingly, an awareness is growing that minimal additional investment can create a great opportunity to leverage the energy model even earlier (programming and concept phases), increasing the potential impact and value of using modeling to inform the design process. Figure 2 shows an example of how early testing of strategies served to identify architectural and engineering strategies for meeting the project energy mandate. The models and knowledge gained can then be used continuously throughout the design process. Figure 3: Building components and characteristics are necessary for a building energy model simulation.

4 Figure 4: This shows a comparison of baseline versus proposed fenestration percentage with OpenStudio user interface for EnergyPlus engine. Leveraging energy modeling techniques and software in design The complex interaction of building systems, exterior climate, and occupant actions makes understanding building energy performance a design challenge for which energy modeling is particularly well suited. The building components and characteristics that determine energy use by the building need to be included in an energy model simulation (see Figure 3). Every decision made as a building design progresses from the conceptual stage through the completion of construction documents has potential impact on energy use. Waiting until the later stages of the design process limits the impact and benefit that energy modeling can provide. Understanding how much energy a building will use and how it compares to the maximum energy use allowed by an energy code or to a baseline building starts with conceptual development. Programming, conceptual design phases Space programming initiates conceptual design; building form and aesthetic decisions are made along with preliminary building load estimates for testing building system options. Employed at this stage, energy modeling quantifies the effect of building shape, orientation, and massing on daylighting potential and heating and cooling loads. Site and climate-related factors such as temperature, wind speed, and solar access are considered for direct impacts on system loads and types, and on natural ventilation opportunities. Other environmental factors, such as air quality and noise, also need to be considered and accounted for so proposed systems aren t modeled in isolation from real-world design limitations. As detailed building geometry and space descriptions are not available at this stage of the design process, the analysis methodology primarily needs to incorporate and account for overall building massing, general building and space usage patterns, and site-specific climate data. Simplified geometry and zoning based on the space types identified in programming allow the creation of energy models that are accurate enough to direct design decisions through comparisons of relative differences between scenarios and to allow quick exploration of multiple design strategies. Comparisons of relative differentials between design strategies are typically within 10% of the values estimated at later stages of the energy modeling process when final building geometry and zoning are available. The goals of the conceptual phase analysis should focus on quantifying the impacts of massing, orientation, building envelope performance, and space program on building heating, cooling, and electrical system loads and overall energy performance as well as identifying building mechanical and lighting system energy savings strategies. Projects energy performance goals and requirements should be identified during predesign and concepts. It is not too early to begin comparing system types to understand how the proposed project performance compares to the code-compliant baseline and begin to understand energy and construction cost differences between options. Figure 4 provides an example of how the energy model can not only provide the numerical results, but also be helpful for visually articulating the differences between scenarios being evaluated. Renewable energy strategies can also be assessed for their ability to offset energy supply needs, especially in the case of projects that are pursuing net-zero energy targets, or in climates and locations where solar and wind resources provide significant opportunities. Detailed design phases While project delivery methods may range from the traditional design-bid-build approach to design-build, construction management-led, and integrated project delivery, as the project proceeds past conceptual design, energy modeling continues to be a valuable tool for making design decisions, verifying code compliance, and measuring performance targets. With energy modeling initially adopted into project workflows largely due to LEED, analysis was likely initiated at the schematic design phase or later as project designers didn t

5 Building energy modeling necessarily recognize the value and were hesitant to invest significant efforts during earlier phases when so many parameters were unknown. With the improvement of analysis tools, improved energy modeling workflows, and maturation of the analyst workforce, the value of earlier phase modeling is being recognized and more effectively integrated into project work plans. While many design decisions on a project are yet to be made, those factors affecting energy use and cost are best resolved by the end of the schematic design phase using LCCA. Energy modeling in concert with construction cost estimating can be used to determine the options with the best value at a time in the design process when space planning for building systems and system type selection is occurring. Once design development and later phases have been reached, energy analysis may be best suited for value engineering (VE), equipment selection, and bid evaluation exercises. Although it often becomes increasingly difficult to significantly change design approaches due to the perception, real or perceived, that construction costs and design efforts will increase, energy analysis remains well-suited for design refinement. During the construction document and bidding phases, the energy model can be used for final code compliance documentation, building certification program documentation and further design verification or VE. Benchmarking and energy analysis Using benchmark data for energy use at similar facilities is a useful tool to provide context to project performance. Benchmark data is now more readily available through such Web-based tools as the Dept. of Energy Buildings Performance Database, EnergyIQ, and Energy Star s Portfolio Manager that uses data from the Commercial Buildings Energy Consumption Survey (CBECS), the California Commercial End Use Survey (CEUS), as well as more user provided data. The state of Minnesota recently rolled out its B3 Benchmarking program, and many universities and large institutional clients are benchmarking their building portfolios. This data is very informative when developing energy models, as the information provides a comparison to actual building energy use for like facilities and climates. It serves as a quality control mechanism as well as a comparative performance metric for simulations. Energy modeling has grown from manual calculation methods developed in the 1960s to complex computer modeling tools used today with the significant growth in building energy modeling driven by LEED and energy code compliance requirements. Currently, numerous software tools are available for energy modeling, ranging from such specialized component-based modeling tools as COMFEN and THERM, to such whole building analysis tools as For energy code compliance, minimum modeling software requirements may be specified, as they are in ASHRAE 90.1 and the IECC. EnergyPlus, equest, Trace 700, and IES-VE, to specialized tools for renewable energy system analysis including System Advisor Model and RETScreen. The choice of energy model tool should be based on the purpose of the analysis and types of systems being analyzed, though the choice may be defined by the owner. All software tools are not created equal, however. Owners, design teams, and energy analysts should all be aware of each software s capabilities and limitations before selecting an analysis tool. Many current whole building analysis tools are suitable for quick conceptual phase analysis thanks to the development of increasingly user-friendly front-end graphical user interfaces that harness the power of the calculation engines on the back end. equest is an interface that uses DOE2.2 as the calculation engine while Bentley s AECOSim uses EnergyPlus as its calculation engine. Many tools offer methods to run multiple parametric simulations, which is also important for design phase analysis as there usually isn t one single scenario or answer in the design process. In addition, multiple analysis tools may be necessary to adequately simulate complex or novel systems. Software such as TRNSYS is well suited to creating custom system configurations. Custom configuration also allows for integration with other tools in the design process, whether that be for daylighting, computational fluid dynamics, or integrated water modeling. For energy code compliance, minimum modeling software requirements may be specified, as they are in ASHRAE 90.1 and the IECC. For instance, ASHRAE requires a whole building analysis tool capable of explicitly modeling 8760 hours/year, including hourly variations in occupancy, lighting power, miscellaneous equipment power, thermostat setpoints, and HVAC system operation, as well as thermal mass effects and part-load performance curves for mechanical equipment among other parameters. The whole building analysis tools mentioned above generally satisfy the software requirements specified in ASHRAE In the past, the creation of the baseline compliant model was a completely manual process. Many current versions of software tools are offering some degree of automated baseline model generation ranging from simple library items with code compliant baseline characteristics to automatic selection of baseline characteristics based on user input for project location and applicable code. Fully automated baseline generation is not currently available, but protocols for consistent baseline energy model input have been developed for several versions of ASHRAE 90.1 and are published in the COMNET Modeling Guidelines & Procedures. Designers may consider using energy modeling software for heating and cooling load calculations. Whole building analysis tools use a variety of load calculation methodologies and may include design day calculations and automated equipment sizing. Older software such

6 Table 1: Energy model use opportunities Planning/concepts Schematic design Detailed design Construction/ commissioning Post-occupancy n Energy target testing and budget alignment n Assessment of programmatic impacts n Preliminary utility cost ranges n Equipment selection support based on building part-load profiles n Lifecycle cost analysis support n Occupant thermal comfort evaluation n Value engineering support n Control sequence optimization n Product specification support n Goal check-ins n Utility incentive estimation n Product submittal evaluation n Control sequence comparison n Utility incentive documentation n Measurement and verification n Facility management optimization Table 1: Energy modeling can occur at all stages of the building design process. as equest uses a form of the transfer function method with weighting factors for load calculations, while EnergyPlus uses the more current heat balance method recommended by ASHRAE. Specifying design day information in equest is limited to single heating and cooling design days, whereas EnergyPlus allows monthly design days to be input. It is important that the energy modeler understands which methodology is appropriate for the application and specifies the correct inputs as certain system types may dictate which load calculation method is more appropriate, such as in the case of radiant systems versus all air systems. Capitalizing on the model investment Energy modeling in the design process has traditionally been used to answer such routine either/or questions as which glass type or HVAC system should be used. These are important considerations and this is a valuable use of the tool, but the additional value that can be extracted from the energy model merits consideration because the investment is already being made. Integrated design, energy audits/retrofits, and building performance tuning are three significant areas of opportunity. The first allows for enhanced decision making during the design process and the second two both help to deliver on the good intentions of the owner and the design team. The use of modeling to facilitate the interplay of architects and engineers design options and decisions represents great forward progress relative to the early design concept and strategy considerations of the project team. However, as shown in Table 1, the project team can capitalize on additional opportunities using the energy model from early through late stages of project progression as well as post-occupancy. Two of the most significant impediments to such enhanced use of the energy model are often fee and response time. Fees for modeling at least in initial project conversations still tend to reflect the value proposition and perspective of a decade ago. Reasons for this range from the topic being completely new to some owners to an outdated belief in a prescription path of code compliance no longer viable with advancing codes due to not having recently built a building. Others see modeling as only a documentation tool, and still others see the value only in early comparisons. With the increasing number of practitioners both internal and external to AEC firms, a slow shift is taking place toward greater recognition of value and associated effort to deliver the value. Value can fall short if the modeling struggles to keep pace with project decisions and milestones, however. Considering the dramatic improvements in software capabilities and calculation speeds, communication is now frequently the largest impediment, which can be particularly pronounced when modeling takes place external to the core AEC team. Latency in the process of sharing information externally, whether between architect and engineer or between the AEC firms and the modeler, is common. Communication can even be hampered when modeling is internal; in all cases a nimbleness with tools and effective communication are essential to keep the modeling on pace with the design process. BIM The building information modeling (BIM) industry has begun to embrace energy modeling as another component to BIM tools. Both Autodesk and Bentley have acquired energy analysis software companies and integrated energy modeling tools into their product offerings. Historically, the physical geometry for the model description had to be generated directly in the energy modeling software as with early versions of DOE2.1. The ability to import 2-D CAD files is now generally widespread among analysis tools. The import of 3-D model descriptions along with building material properties, internal load inputs, and schedules is also possible with Autodesk s Green Building Studio and Bentley s AECOSim, but with varying degrees of success based on the original BIM setup and creation approach. While BIM may be valuable at later stages of the design when model development has progressed, many architects are not using BIM tools at early phases of design when it is most beneficial to begin energy analysis. The generation of the energy model from the BIM often requires both BIM efforts beyond traditional design workflows and additional energy model efforts to clean and debug the inputs. Industry

7 Building energy modeling Foundation Classes (IFC) and Green Building XML (gbxml) are the two primary data exchangeable schema between BIM and building energy simulation programs. IFC supports bi-directional transfer of building geometry and construction data information, but currently doesn t support the exchange of HVAC system information. The gbxml schema is simpler, focused on information necessary for engineering analysis, but currently only supports one directional exchange of data between CAD and energy modeling software. Both schema currently necessitate the use of middleware software to import the BIM into most modeling software. Trace 700 and IES-VE modeling software are capable of directly importing gbxml. Middlewares such as Solibri Model Checker (SMC), Green Building Studio (GBS), Ecotect, OpenStudio Application Suite (EnergyPlus GUI), and Simergy (EnergyPlus GUI) help not only in transforming the data, but also in visualizing the geometry. Measurement and verification The value of energy modeling does not end at the completion of building design and construction. Once a building is occupied, energy analysis can assist in ensuring that actual building performance meets the intended design performance through the measurement and verification (M&V) process. During the construction administration phase of a project, submittal review, field inspections, start-up, and commissioning are all employed to achieve a finished product that meets the design intent. Changes may have occurred during construction controls may not be tuned correctly, operational changes may have been made after start-up, building and equipment use may vary from original intentions all leading to energy performance not meeting project goals. By measuring energy use and trending such operation data as setpoints and equipment use, building owners can compare this information to energy model results to help verify that building system performance is as predicted, identify causes for performance variations, and make necessary corrections or adjustments. This process begins with updating the design model with any changes made during construction and aligning operational schedules and setpoints with actual control parameters established at start-up and commissioning. This model updating can be part of the commissioning process, and while this is occurring, measured data collection starts and continues to the end of a predetermined measurement period, usually a minimum of 1 year after occupancy. Regular moni- Energy modeling and climate change As modeling tools and practitioners become increasingly skillful, energy models are nevertheless still limited by input assumptions. One of the major assumptions is weather data. For decades modelers have used such weather files as the Typical Meteorological Year-type, now existing in multiple versions (TMY, TMY2, and TMY3). The TMY and other weather file types such as EnergyPlus Weather (EPW) and International Weather for Energy Calculation (IWEC) generally use the same commonly available data, and although there are some differences between types, a constant commonality is that all are derived from historical data over the past 30 to 50 years. With changing weather patterns and climatological data indicating that a climatic shift is underway, it is important to consider how this impacts energy model results and, perhaps more importantly, how to account for the shift. Weather data is used not only to drive the hour-byhour response of the building to the climate, but in many cases also to size the systems in model, thus affecting capacities, performance curves, and possibly the types of systems to use. All the effects have an impact on the predicted energy use in the model. If practitioners use the older climate data solely, they may very well be underestimating the peak conditions, and likely the increased frequency of warmer conditions that will exist in 20, 40, or 60 years. No single climate model will be accurate. The benefit to the building design community is that it is now possible to quickly evaluate a range of climate change scenarios over different timeframes. The intent is not to predict what will happen but to provide a risk assessment. As practitioners, it is possible to provide insights about the likelihood of energy and water use increases. The modern standard for weather and future climate change prediction is the Hadley Centre s HadCM3 model. Fuel escalation rates, which are effectively climate escalation rates, can be considered in tandem with climate projections. Because many building and campus utility infrastructure investments are made on a 50-year time horizon, it is important to understand and mitigate risks to the extent possible. Using research conducted by the Hadley Centre for Climate Change Prediction and Research at the U.K. Meteorological Office, any energy model can be simulated using predicted changes in the local climate of any location in the world. Timeframes for these future weather predictions include the 2020s, 2050s, and 2080s, to see multiple distinct future scenarios that facilities might encounter. The modern standard for weather and future climate change prediction is the Hadley Centre s HadCM3 model, one of the major models used by the Intergovernmental Panel on Climate Change (IPCC) to develop its predictions for possible future weather conditions. By using predicted future weather data in an energy model, it is possible to predict increases in future energy consumption due to climate change, as well as increases in future design conditions for sizing equipment. In this way, we can provide our clients with systems capable of facing an uncertain climate future. Knowing the long-term impact of climate change on a building can also inform lifecycle cost analysis efforts a technology that isn t attractive given current climate patterns might become more viable if the future is warmer/colder and wetter/drier than our current conditions. These new techniques being employed are straightforward to implement and provide for a future and even a present where energy modeling efforts will benefit from sensitivity analyses with regard to climate change.

8 Figure 5: Shown are the differences between the measured and predicted electrical energy data with calibration steps and final error ranges for an institutional client s building project. toring of measured data should occur to ensure data quality and consistency are maintained. In addition, the data can be used in the commissioning process and can often identify problems early. Any operational changes that impact energy use, such as occupancy rate changes, should be noted for use during energy model calibration. Energy model calibration is performed after the measurement period and initial model tuning is complete. This process changes model input parameters to those documented during the measurement period, including climate data, in order to calibrate simulated energy use with actual measured energy use. When significant variations (>5%) are discovered, the energy model can be used to identify potential causes by testing different inputs. A similar process is used on existing buildings to identify operational deficiencies and upgrade strategies that could be implemented to improve performance. For one institutional client s project, the M&V process identified significant variations between predicted and measured performance. Some of these variations were associated with higher than anticipated plug loads, variable air volume turndown, and exhaust fan operation. Figure 5 demonstrates differences between the measured and predicted electrical energy data with calibration steps and final error ranges. Ongoing commissioning Once a calibrated model is available, it offers continuing value for facility management as an ongoing commissioning tool. Buildings are complex systems requiring diligent attention to maintain energy performance. Operationally, multiple participants are responsible for servicing, monitoring, and maintaining building systems and, over time, building energy use tends to increase. Numerous studies have demonstrated the value of retro-commissioning, and energy savings of 5% to 15% have been documented (A Retrocommissioning Guide for Building Owners, PECI and EPA, 2007). Building managers can use a calibrated building model as a diagnostic tool to sustain building performance over the building s lifecycle. The model can be integrated into building energy management systems, notifying operators when energy performance is outside of predicted usage ranges. Paul Erickson is sustainable practice leader at Affiliated Engineers Inc., where he champions integrated design on an array of project types using performance modeling tools to help guide exploration and decision making. Bill Talbert is sustainable department facilitator at Affiliated Engineers Inc. He leads the firm s building performance modeling team and is a member of the ASHRAE Standard 90.1 SSPC Energy Cost Budget Subcommittee. Posted with permission from October 2014 Consulting-Specifying Engineer, CFE Media. Copyright All rights reserved. For more information on the use of this content, contact Wright s Media at

ENERGY MODELING GUIDELINES. D. Section Building Automation and Control System Guidelines

ENERGY MODELING GUIDELINES. D. Section Building Automation and Control System Guidelines 018130 ENERGY MODELING GUIDELINES PART 1: GENERAL 1.01 RELATED SECTIONS A. Section 018110 Green Building Guidelines B. Section 230000 Basic HVAC Requirements C. Section 230540 Laboratories D. Section 230900

More information

and LEED Energy and Atmosphere Credits Jean Ascoli, LEED AP BD+C Architect, Energy Specialist

and LEED Energy and Atmosphere Credits Jean Ascoli, LEED AP BD+C Architect, Energy Specialist ASHRAE University of Illinois Student Chapter April 20, 2011 Building Energy Efficiency and LEED Energy and Atmosphere Credits Jean Ascoli, LEED AP BD+C Architect, Energy Specialist Building Research Council,

More information

BGSU Construction Standards Office of Design & Construction Bowling Green State University

BGSU Construction Standards Office of Design & Construction Bowling Green State University TABLE O CONTENTS: ENERGY MANAGEMENT GUIDELINE... 1 PURPOSE... 1 REERENCES... 1 GENERAL... 1 1. ENERGY CONSERVATION GOALS... 1 2. ENERGY MODELING & ANALYSIS.... 3 3. MEASUREMENT AND VERIICATION (M&V)...

More information

Improving the efficiency, occupant comfort, and financial well-being of campus buildings

Improving the efficiency, occupant comfort, and financial well-being of campus buildings GHAUSI HALL ENERGY PROJECT REPORT Improving the efficiency, occupant comfort, and financial well-being of campus buildings ACE TEAM, ENERGY CONSERVATION OFFICE UC DAVIS FACILITIES MANAGEMENT Executive

More information

Energy Conservation Measure Development Identify, Screen, and Analyze

Energy Conservation Measure Development Identify, Screen, and Analyze Energy Conservation Measure Development Identify, Screen, and Analyze Zodiac Baskar Subbarao PE, CxA, CMVP, LEED AP http://www.zodiacintl.com info@zodiacintl.com Agenda Definition of Energy Conservation

More information

Energy Modeling Applications for Existing Buildings

Energy Modeling Applications for Existing Buildings Energy Modeling Applications for Existing Buildings Presented by: Clark Denson PE, CEM, BEMP, LEED AP BD+C 4/27/12 Learning Objectives 1. List available methods and tools for energy modeling 2. Explain

More information

Be Aggressive About the Passive Solutions

Be Aggressive About the Passive Solutions Be Aggressive About the Passive Solutions Integrating Building Envelope Design in Whole Building Energy Goals Daniel Luddy, PE BEMP CPHC LEEP AP Senior Energy Engineer 2015 Building Envelope Forum AIA

More information

Explain key terms, programs, standards ASHRAE 90.1 ENERGY DOE average energy use

Explain key terms, programs, standards ASHRAE 90.1 ENERGY DOE average energy use INTEGRATING GREEN BUILDING STRATEGIES INTO YOUR PROJECTS Introduction to Key Terms, Programs and Standards Julie Walleisa, AIA, LEED AP Overview Explain key terms, programs, standards ASHRAE 90.1 ENERGY

More information

BALANCING ENERGY EFFICIENCY AND THERMAL COMFORT

BALANCING ENERGY EFFICIENCY AND THERMAL COMFORT BALANCING ENERGY EFFICIENCY AND THERMAL COMFORT The need for energy efficient building designs has increasingly gained acceptance by the public. The A/E industry has been developing methods to create more

More information

IESVE Compliance for ASHRAE IES Virtual Environment

IESVE Compliance for ASHRAE IES Virtual Environment IESVE Compliance for ASHRAE 90.1 - IES Virtual Environment July 2018 IES Virtual Environment and Compliance with ASHRAE 90.1-2004, 2007, 2010 & 2013; Appendix G, Performance Rating Method and Chapter 11,

More information

DLR Group is ranked #1 by ARCHITECT, the official publication of the American Institute of Architects, in its 2012 ARCHITECT 50 ranking of U.S.

DLR Group is ranked #1 by ARCHITECT, the official publication of the American Institute of Architects, in its 2012 ARCHITECT 50 ranking of U.S. DLR Group is ranked #1 by ARCHITECT, the official publication of the American Institute of Architects, in its 2012 ARCHITECT 50 ranking of U.S. firms. This ranking is based on design excellence (reflected

More information

DIRECTIVE 1B-7 Issue date: October Energy, Sustainability, LEED and Executive Orders

DIRECTIVE 1B-7 Issue date: October Energy, Sustainability, LEED and Executive Orders DIRECTIVE 1B-7 Issue date: October 2017 Energy, Sustainability, LEED and Executive Orders As of December 28, 2012, Executive Order No. 88 (E.O. 88) replaced E.O.111 ( Green and Clean State Buildings and

More information

ENSURING A PRODUCTIVE ENERGY MODELING PROCESS

ENSURING A PRODUCTIVE ENERGY MODELING PROCESS ENSURING A PRODUCTIVE ENERGY MODELING PROCESS ASHRAE Rocky Mountain Technical Conference April 15, 2011 Kendra Tupper, P.E. (RMI) Sue Reilly, P.E., BEMP (Group 14) Michael Brendle, FAIA (RNL) OVERVIEW

More information

PROJECT DESIGN EVALUATION AND APPROVAL PROCESS DESIGN AND CONSTRUCTION STANDARD

PROJECT DESIGN EVALUATION AND APPROVAL PROCESS DESIGN AND CONSTRUCTION STANDARD PART 1: GENERAL 1.01 General Requirements A. These guidelines are intended to provide a framework to evaluate building projects for the University of Texas at Austin to: 1. Verify the feasibility of options

More information

Appendix Energy Guidelines Deliverable Requirements

Appendix Energy Guidelines Deliverable Requirements Appendix 3.3-19 Energy Guidelines Deliverable Requirements 1. I n t r o d u c t i o n The 2008 edition of the University Energy Guidelines are written in support of aggressive campus carbon reduction goals

More information

Responding to Climate Change Imperative: Reducing Energy Use & Operating Costs with ENERGY STAR

Responding to Climate Change Imperative: Reducing Energy Use & Operating Costs with ENERGY STAR Responding to Climate Change Imperative: Reducing Energy Use & Operating Costs with ENERGY STAR Karen P. Butler Energy Star Commercial Building Design US Environmental Protection Agency Overview Climate

More information

COMFEN A COMMERCIAL FENESTRATION/FAÇADE DESIGN TOOL

COMFEN A COMMERCIAL FENESTRATION/FAÇADE DESIGN TOOL COMFEN A COMMERCIAL FENESTRATION/FAÇADE DESIGN TOOL Robert J. Hitchcock 1, Robin Mitchell 1, Mehry Yazdanian 1, Eleanor Lee 1 and Charlie Huizenga 2 1 Lawrence Berkeley National Laboratory, Building Technologies

More information

23-28 = -5. Zero Net Energy Case Study WEST BERKELEY PUBLIC LIBRARY OVERVIEW. Planning & Design Approach. Measured Energy Stats

23-28 = -5. Zero Net Energy Case Study WEST BERKELEY PUBLIC LIBRARY OVERVIEW. Planning & Design Approach. Measured Energy Stats Zero Net Energy Case Study Photos Mark Luthringer Photography OVERVIEW Building Size: 9,400 SF Location: Berkeley, CA Construction Type: New Construction Completion Date: December 2013 Building Type: Public

More information

AIA+2030 Professional Series Overview + Learning Objectives

AIA+2030 Professional Series Overview + Learning Objectives AIA+2030 Professional Series Overview + Learning Objectives Session I: The 2030 Challenge: setting + achieving energy goals with integrated design Integrated design is an important element in the creation

More information

Autodesk MEP Engineering Solutions. Engineer for energy efficiency.

Autodesk MEP Engineering Solutions. Engineer for energy efficiency. Autodesk MEP Engineering Solutions Engineer for energy efficiency. Deliver Sustainable Building Systems More Quickly and Economically Autodesk MEP Engineering Solutions help MEP engineers, designers, and

More information

ASHRAE Presentation to the Montreal Chapter. Gordon Holness, P.E. Presidential Member

ASHRAE Presentation to the Montreal Chapter. Gordon Holness, P.E. Presidential Member ASHRAE Presentation to the Montreal Chapter Gordon Holness, P.E. Presidential Member February 2011 Providing Valuable Information to Building Owners and Operations Staff Objectives of the Program Promote

More information

Summary Paper on Controls for Metering and Feedback

Summary Paper on Controls for Metering and Feedback Summary Paper on Controls for Metering and Feedback Measured performance for commercial buildings, the actual collection of data and use in benchmarking and efficiency assessments, is making significant

More information

Required Treatment of District Thermal Energy in LEED-NC version 2.2 and LEED for Schools

Required Treatment of District Thermal Energy in LEED-NC version 2.2 and LEED for Schools 1 Required Treatment of District Thermal Energy in LEED-NC version 2.2 and LEED for Schools Version 1.0 May 28, 2008 Administrative All LEED-NC v2.2 or LEED for Schools projects that register with USGBC

More information

Connecticut Housing Finance Authority. Construction Guidelines: Energy Conservation 2019

Connecticut Housing Finance Authority. Construction Guidelines: Energy Conservation 2019 Connecticut Housing Finance Authority Construction Guidelines: Energy Conservation 2019 These Guidelines are effective I. Energy Conservation Guidelines Energy efficiency is strongly encouraged. An objective

More information

Net Zero Building Commissioning. Phillip Saieg, CEM, LEED AP O+M Josh Harwood

Net Zero Building Commissioning. Phillip Saieg, CEM, LEED AP O+M Josh Harwood Net Zero Building Commissioning Phillip Saieg, CEM, LEED AP O+M Josh Harwood AIA Quality Assurance The Building Commissioning Association is a Registered Provider with The American Institute of Architects

More information

EA PREREQUISITE 2: MINIMUM ENERGY PERFORMANCE

EA PREREQUISITE 2: MINIMUM ENERGY PERFORMANCE THRESHOLD ATTEMPTED LEED 29 for New Construction and Major Renovations EA PREREQUISITE 2: MINIMUM ENERGY PERFORMANCE Project # 138123 Jacobs Hall All fields and uploads are required unless otherwise noted.

More information

Building Energy Asset Score

Building Energy Asset Score Building Energy Asset Score An opportunity to participate with pioneering programs guided by the Consortium for Building Energy Innovation (CBEI) 15 th October, 2015 2 Consortium for Building Energy Innovation

More information

Commercial Retro-Commissioning Program Manual for 2015 SECTION 1

Commercial Retro-Commissioning Program Manual for 2015 SECTION 1 Commercial Retro-Commissioning Program Manual for 2015 SECTION 1 Introduction The Commercial Retro-Commissioning Program (RCx) is designed to achieve demand and energy savings in commercial facilities.

More information

Variance and Optimization in Nonresidential Building Simulation Receptacle Loads

Variance and Optimization in Nonresidential Building Simulation Receptacle Loads Variance and Optimization in Nonresidential Building Simulation Receptacle Loads Jeff Cropp, Cadmus, Portland, OR Katrina Leichliter, Cadmus, Portland, OR ABSTRACT A key challenge in developing nonresidential

More information

Energy Efficiency: Designing Wood-Frame Buildings for Occupant Comfort

Energy Efficiency: Designing Wood-Frame Buildings for Occupant Comfort Please add relevant logo here Energy Efficiency: Designing Wood-Frame Buildings for Occupant Comfort Presented by: Peter J. Arsenault, FAIA, NCARB, LEED-AP Disclaimer: This presentation was developed by

More information

Simulation Before Design? A New Software Program for Introductory Design Studios

Simulation Before Design? A New Software Program for Introductory Design Studios SIMULATION BEFORE DESIGN? 1 Simulation Before Design? A New Software Program for Introductory Design Studios TROY NOLAN PETERS California Polytechnic State University INTRODUCTION The 2010 Imperative states:

More information

M&V Applications and Approaches Balancing Project Demands to Deliver an Accurate, Cost Effective, and Verifiable M&V Outcome

M&V Applications and Approaches Balancing Project Demands to Deliver an Accurate, Cost Effective, and Verifiable M&V Outcome M&V Applications and Approaches Balancing Project Demands to Deliver an Accurate, Cost Effective, and Verifiable M&V Outcome Doug Chamberlin, P.E., LEED AP; Director of Northwest Region Mark Goldberg;

More information

White Paper ENVELOPE-FIRST APPROACH TO NET-ZERO ENERGY BUILDINGS

White Paper ENVELOPE-FIRST APPROACH TO NET-ZERO ENERGY BUILDINGS BOULDER CHICAGO NASHVILLE SALT LAKE CITY SAN FRANCISCO SPRINGFIELD, MO WASHINGTON, DC 2540 Frontier Avenue, Suite 100 Boulder, Colorado 80301 303.444.4149 White Paper ENVELOPE-FIRST APPROACH TO NET-ZERO

More information

Using EnergyPlus for Compliance

Using EnergyPlus for Compliance EnergyPlus Version 8.5 Documentation Using EnergyPlus for Compliance U.S. Department of Energy March 31, 2016 COPYRIGHT (c) 1996-2016 THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLI- NOIS AND THE REGENTS

More information

REQUEST FOR QUALIFICATIONS DESIGN PROFESSIONAL

REQUEST FOR QUALIFICATIONS DESIGN PROFESSIONAL FACILITIES MANAGEMENT Planning, Design & Construction REQUEST FOR QUALIFICATIONS DESIGN PROFESSIONAL BOWEN SCIENCE BUILDING MODERNIZE BUILDING SYSTEMS Project No. 0548201 October 24, 2014 The University

More information

ENERGY EFFICIENT RETROFIT OF A HIGH-RISE MULTIFAMILY BUILDING

ENERGY EFFICIENT RETROFIT OF A HIGH-RISE MULTIFAMILY BUILDING ENERGY EFFICIENT RETROFIT OF A HIGH-RISE MULTIFAMILY BUILDING Brittany Hanam 1, Lorne Ricketts 2, Andrew Pape-Salmon 3 ABSTRACT The National Institute of Building Sciences estimates that over 70% of the

More information

Public Sector New Construction Overview Calendar Year 2018

Public Sector New Construction Overview Calendar Year 2018 Public Sector New Construction Overview Calendar Year 2018 Presented by: Jean Ascoli and Cassie Carroll C O N F I D E N T I A L ComEd Energy Efficiency Program Public Sector New Construction INTRODUCTION

More information

SUSTAINABILITY An Energy & Emissions Case Study

SUSTAINABILITY An Energy & Emissions Case Study SUSTAINABILITY An Energy & Emissions Case Study 1 Energy & Emissions Case Study WASHINGTON UNIVERSITY IN ST. LOUIS has a history of responsibly investing resources to increase the efficiency of our operations

More information

Building Performance Evaluation Guide

Building Performance Evaluation Guide Building Performance Evaluation Guide Version 1.6 April 2012 1. Schematic Design & Design Development Phase Requirements Whole building energy simulation shall be used to determine the basis for the designed

More information

Lori A. Brown, LEED AP BD+C, LEED AP ND, LEED AP O+M -- LEED Green Associate Exam -- Power Jam Study! -- lorisweb.com 1

Lori A. Brown, LEED AP BD+C, LEED AP ND, LEED AP O+M -- LEED Green Associate Exam -- Power Jam Study! -- lorisweb.com 1 Lori A. Brown, LEED AP BD+C, LEED AP ND, LEED AP O+M -- LEED Green Associate Exam -- Power Jam Study! -- lorisweb.com 1 Lori A. Brown, LEED AP BD+C, LEED AP ND, LEED AP O+M -- LEED Green Associate Exam

More information

BIM-based Sustainability Analysis: An Evaluation of Building Performance Analysis Software

BIM-based Sustainability Analysis: An Evaluation of Building Performance Analysis Software BIM-based Sustainability Analysis: An Evaluation of Building Performance Analysis Software Salman Azhar and Justin Brown Auburn University Auburn, Alabama Rizwan Farooqui Florida International University

More information

Conceptual Energy Analysis. Performance Analysis. Introduction

Conceptual Energy Analysis. Performance Analysis. Introduction Conceptual Energy Analysis & Performance Analysis Introduction Agenda Introduction Conceptual vsdetailed Process Tools Conclusion Introduction Energy modeling. What comes to your mind first? Introduction

More information

NFRC Regulatory Affairs Committee: Energy Codes Update SEPTEMBER 2017

NFRC Regulatory Affairs Committee: Energy Codes Update SEPTEMBER 2017 NFRC Regulatory Affairs Committee: Energy Codes Update SEPTEMBER 2017 Refresher: The Importance of Energy Codes 2 Most states and local jurisdictions adopt building energy codes to establish the minimum

More information

Measuring Up to Net Zero: The Status of New Construction Programs and How They Can Further Zero Net Energy in the Commercial Sector

Measuring Up to Net Zero: The Status of New Construction Programs and How They Can Further Zero Net Energy in the Commercial Sector Measuring Up to Net Zero: The Status of New Construction Programs and How They Can Further Zero Net Energy in the Commercial Sector Celia King-Scott, DNV GL Tarek Salameh, DNV GL ABSTRACT In the past few

More information

Do-It-Yourself Energy Audit. Bob Furgeson, PE CEM CBCP GBE CEA Shive-Hattery Architects+Engineering

Do-It-Yourself Energy Audit. Bob Furgeson, PE CEM CBCP GBE CEA Shive-Hattery Architects+Engineering Do-It-Yourself Energy Audit Bob Furgeson, PE CEM CBCP GBE CEA Shive-Hattery Architects+Engineering Agenda» Basic Terminology» Background» Benchmarking» Audit Types/ASHRAE Standard» Building Audit Systems

More information

Bridging the Gap. Between Design and Operating Performance. Jesse Sycuro, PE, CEM May 2014

Bridging the Gap. Between Design and Operating Performance. Jesse Sycuro, PE, CEM May 2014 Bridging the Gap Between Design and Operating Performance Jesse Sycuro, PE, CEM May 2014 Learning objectives Improve the understanding of the following: 1. The gap between designed performance and actual

More information

EA PREREQUISITE 2: MINIMUM ENERGY PERFORMANCE Project # SFPUC Administration Office Building

EA PREREQUISITE 2: MINIMUM ENERGY PERFORMANCE Project # SFPUC Administration Office Building LEED 29 for New Construction and Major Renovations EA PREREQUISITE 2: MINIMUM ENERGY PERFORMANCE Project # 1588 SFPUC Administration Office Building All fields and uploads are required unless otherwise

More information

Both components are available to non-residential customers in Public Service s electric and natural gas service territory.

Both components are available to non-residential customers in Public Service s electric and natural gas service territory. Page 122 of 507 New Construction A. Description The New Construction product influences building owners, architects, and engineers to include energy efficient systems and equipment in their design for

More information

Building Commissioning, LEED Coordination and Energy Audit Services

Building Commissioning, LEED Coordination and Energy Audit Services Building Commissioning, LEED Coordination and Energy Audit Services Firm Profile is a building consulting firm which came about as a direct result from the increased demand from Crenshaw Consulting Engineers

More information

Commissioning In Energy Savings Performance Contracts

Commissioning In Energy Savings Performance Contracts Commissioning In Energy Savings Performance Contracts Karl Stum, P.E., Portland Energy Conservation Inc. (PECI) ABSTRACT Energy savings performance contracts (PCs) using the international measurement and

More information

University of Minnesota Duluth Civil Engineering Building

University of Minnesota Duluth Civil Engineering Building Energy Data Attachment University of Minnesota Duluth Civil Engineering Building LEED Energy Modeling The energy modeling for LEED NC 2.2 was performed against ASHRAE 9.1-24 Appendix using equest version

More information

Guidelines for Using Building Information Modeling for Energy Analysis of Buildings

Guidelines for Using Building Information Modeling for Energy Analysis of Buildings Buildings 2015, 5, 1361-1388; doi:10.3390/buildings5041361 Article OPEN ACCESS buildings ISSN 2075-5309 www.mdpi.com/journal/buildings/ Guidelines for Using Building Information Modeling for Energy Analysis

More information

City Council Staff Report

City Council Staff Report City Council Staff Report Subject: Consideration of RESOLUTION 28-2017 ADOPTING NET-ZERO ENERGY PERFORMANCE REQUIREMENTS Author: Celia Peterson Department: Sustainability Date: October 12, 2017 Type of

More information

Incorporating ZNE into Your Design & Operations Sean Denniston, NBI

Incorporating ZNE into Your Design & Operations Sean Denniston, NBI Incorporating ZNE into Your Design & Operations Sean Denniston, NBI ACHIEVEMENT ZNE for Existing Buildings In 5 Easy Steps Assess Set Goals Scope Operate Implement the Retrofit Understanding ZNE Owners

More information

Comprehensive Certificate Course for BEAM Plus on Energy Use (EU) 2016

Comprehensive Certificate Course for BEAM Plus on Energy Use (EU) 2016 Comprehensive Certificate Course for BEAM Plus on Energy Use (EU) 2016 Session 2 Energy Simulation & Modelling Honorable Speaker Mr Antony Ho ARUP Methodology and data analysis of building energy simulation

More information

Rob Samish, AIA, LEED AP. Architect, Lionakis CHPS Board Member

Rob Samish, AIA, LEED AP. Architect, Lionakis CHPS Board Member Rob Samish, AIA, LEED AP Architect, Lionakis CHPS Board Member The Mission of CHPS: To make schools better places to learn. What is a high performance school? Healthy Thermally, visually and acoustically

More information

BETA OPTION 1: PERFORMANCE RATING METHOD. Section General Information

BETA OPTION 1: PERFORMANCE RATING METHOD. Section General Information LEED-CS 2. Certification Submittal Template OPTION 1: PERFORMANCE RATING METHOD I confirm that the energy simulation software used for this project has all capabilities described in EITHER section `G2

More information

A Real-time Building HVAC Model Implemented as a Plug-in for Trimble SketchUp Zaker A. Syed 1 and Thomas H. Bradley 2

A Real-time Building HVAC Model Implemented as a Plug-in for Trimble SketchUp Zaker A. Syed 1 and Thomas H. Bradley 2 A Real-time Building HVAC Model Implemented as a Plug-in for Trimble SketchUp Zaker A. Syed 1 and Thomas H. Bradley 2 1 Graduate Research Assistant, Department of Mechanical Engineering, Colorado State

More information

Advanced Energy Community Oak View, Huntington Beach, CA Sustain OC 8 th Annual conference & Expo

Advanced Energy Community Oak View, Huntington Beach, CA Sustain OC 8 th Annual conference & Expo Advanced Energy Community Oak View, Huntington Beach, CA Sustain OC 8 th Annual conference & Expo Advanced Energy Community (AEC) Award Huntington Beach Advanced Energy Community A Scalable, Replicable,

More information

DCAS Energy Management. August 15, 2014 Ellen Ryan & Mike Dipple

DCAS Energy Management. August 15, 2014 Ellen Ryan & Mike Dipple DCAS Energy Management August 15, 2014 Ellen Ryan & Mike Dipple DCAS Energy Management Mission DCAS Energy Management (DEM) serves as the hub for City government s energy management. DEM provides energy

More information

BIM and sustainable design

BIM and sustainable design SBS5322 Basics of Building Information Modelling http://ibse.hk/sbs5322/ BIM and sustainable design Ir. Dr. Sam C. M. Hui Faculty of Science and Technology E-mail: cmhui@vtc.edu.hk Jan 2018 Contents Environmental

More information

PARTICIPANT HANDBOOK

PARTICIPANT HANDBOOK 2013-2014 PARTICIPANT HANDBOOK POLICIES AND PROCEDURES FOR PARTICIPATION IN THE STATEWIDE SAVINGS BY DESIGN PROGRAM Last Revised: January 15, 2014 www.savingsbydesign.com This program is funded by California

More information

Optimizing Energy Efficiency During Integrated Design: A Whitehorse Case Study

Optimizing Energy Efficiency During Integrated Design: A Whitehorse Case Study Optimizing Energy Efficiency During Integrated Design: A Whitehorse Case Study Northern Energy Solutions Conference 17 February 2010 Curt Hepting, P.Eng., P.E. EnerSys Analytics Inc. 1 Introduction Cost-effective

More information

A CASE STUDY OF BUILDING PERFORMANCE ANALYSES USING BUILDING INFORMATION MODELING

A CASE STUDY OF BUILDING PERFORMANCE ANALYSES USING BUILDING INFORMATION MODELING A CASE STUDY OF BUILDING PERFORMANCE ANALYSES USING BUILDING INFORMATION MODELING Salman Azhar McWhorter School of Building Science, Auburn University, Auburn, Alabama, USA salman@auburn.edu Justin W.

More information

Benchmarking EPA Portfolio Manager and Energy Star Certification

Benchmarking EPA Portfolio Manager and Energy Star Certification Benchmarking EPA Portfolio Manager and Energy Star Certification 1 What is Benchmarking? Energy Benchmarking is the practice of comparing any given building to similar buildings for the purpose of evaluating

More information

< Energy Management and Life Cycle Cost Analysis >

< Energy Management and Life Cycle Cost Analysis > Presented at the ISPE ISA Automation Forum - 2010 < Energy Management and Life Cycle Cost Analysis > Author Name Title < President > Company < Comfort Systems USA Energy Services >

More information

Dynamic simulation of buildings: Problems and solutions Università degli Studi di Trento

Dynamic simulation of buildings: Problems and solutions Università degli Studi di Trento Dynamic simulation of buildings: Problems and solutions Università degli Studi di Trento Paolo BAGGIO The basic problem To design (and operate) energy efficient buildings, accurate modeling tools are needed.

More information

FIVE WAYS YOUR MOVE TO A BIM WORKFLOW PAYS OFF

FIVE WAYS YOUR MOVE TO A BIM WORKFLOW PAYS OFF ARCHITECTURE & BUILDING ENGINEERING AEC COLLECTION EBOOK FIVE WAYS YOUR MOVE TO A BIM WORKFLOW PAYS OFF Get started > 01 02 03 04 05 DELIVER HIGHER- QUALITY WORK OPERATE MORE EFFICIENTLY EXPAND YOUR BILLABLE

More information

Delmarva Power C&I Energy Savings Program. Retro-Commissioning for Existing Buildings and Enhanced Commissioning for New Construction

Delmarva Power C&I Energy Savings Program. Retro-Commissioning for Existing Buildings and Enhanced Commissioning for New Construction Delmarva Power C&I Energy Savings Program Retro-Commissioning for Existing Buildings and Enhanced Commissioning for New Construction Technical Resource Manual January 19, 2010 Page 1 of 16 Lockheed Martin

More information

Energy Codes and Residential Programs: Meeting the Climate Action Plan

Energy Codes and Residential Programs: Meeting the Climate Action Plan Energy Codes and Residential Programs: Meeting the Climate Action Plan Patrick Hudson hudsonp1@michigan.gov Residential Energy Specialist Michigan Bureau of Energy Systems Climate Action Plan Recommendations

More information

CAE 331/513 Building Science Fall 2016

CAE 331/513 Building Science Fall 2016 CAE 331/513 Building Science Fall 2016 Week 15: December 1, 2016 Standards and guidelines for energy efficiency Advancing energy, environmental, and sustainability research within the built environment

More information

OUR EXPERIENCE WITH RCX SOFTWARE: TRIUMPHS AND CHALLENGES

OUR EXPERIENCE WITH RCX SOFTWARE: TRIUMPHS AND CHALLENGES OUR EXPERIENCE WITH RCX SOFTWARE: TRIUMPHS AND CHALLENGES By Celeste L. Cizik, PE, CEM, PMP, LEED-AP Group14 Engineering, PBC. ABSTRACT With the ever increasing complexity in commercial building HVAC and

More information

UMass Amherst Energy Modeling Guidelines

UMass Amherst Energy Modeling Guidelines University of Massachusetts Amherst ScholarWorks@UMass Amherst Campus Planning Reports and Plans Campus Planning 2015 UMass Amherst Energy Modeling Guidelines Nariman Mostafavi University of Massachusetts

More information

A Building Commissioning Overview. Presented by: Goetting & Associates Commissioning

A Building Commissioning Overview. Presented by: Goetting & Associates Commissioning A Building Commissioning Overview Presented by: Goetting & Associates Commissioning www.goettingcx.com What is the Definition of Commissioning? Building Commissioning is a Quality Assurance Process of

More information

EA PREREQUISITE 2: MINIMUM ENERGY PERFORMANCE

EA PREREQUISITE 2: MINIMUM ENERGY PERFORMANCE EA PREREQUISITE 2: MINIMUM ENERGY PERFORMANCE Project # 12332 THRESHOLD ATTEMPTED Points Attempted: All fields and uploads are required unless otherwise noted. ALL OPTIONS TARGET FINDER The following fields

More information

Ocean Discovery Institute: Designing for Zero Net Energy

Ocean Discovery Institute: Designing for Zero Net Energy CASE STUDY Ocean Discovery Institute: Designing for Zero Net Energy How one client used targeted energy analysis to navigate a limited budget and a tight schedule to join the ranks of San Diego s Zero

More information

UNIFIED FACILITIES CRITERIA (UFC)

UNIFIED FACILITIES CRITERIA (UFC) UNIFIED FACILITIES CRITERIA (UFC) ENERGY CONSERVATION APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED UNIFIED FACILITIES CRITERIA (UFC) ENERGY CONSERVATION Any copyrighted material included in this

More information

Proceedings of the 2011 Winter Simulation Conference S. Jain, R.R. Creasey, J. Himmelspach, K.P. White, and M. Fu, eds.

Proceedings of the 2011 Winter Simulation Conference S. Jain, R.R. Creasey, J. Himmelspach, K.P. White, and M. Fu, eds. Proceedings of the 211 Winter Simulation Conference S. Jain, R.R. Creasey, J. Himmelspach, K.P. White, and M. Fu, eds. ANALYSIS OF THE DIFFERENCES IN ENERGY SIMULATION RESULTS BETWEEN BUILDING INFORMATION

More information

To Lead or not to LEED? A No-Nonsense Approach to Sustainability

To Lead or not to LEED? A No-Nonsense Approach to Sustainability To Lead or not to LEED? A No-Nonsense Approach to Sustainability Lourdes Gonzalez Director of Sustainability Adam Stribling Manager of Retro-Commissioning Agenda What is LEED and LEED EBOM? Why choose

More information

Green California Summit It s Happening Now April 9, 2014 Sacramento, California. Porus Sam Antia

Green California Summit It s Happening Now April 9, 2014 Sacramento, California. Porus Sam Antia ZERO NET ENERGY BUILDINGS: PRACTICE, POLICIES, AND PERFORMANCE Green California Summit It s Happening Now April 9, 2014 Sacramento, California Porus Sam Antia 1 STANTEC NET ZERO ENERGY BUILDINGS 2 BUILDING

More information

BUSINESS NEW CONSTRUCTION Energy Design Assistance Energy Efficient Buildings

BUSINESS NEW CONSTRUCTION Energy Design Assistance Energy Efficient Buildings BUSINESS NEW CONSTRUCTION Energy Design Assistance Energy Efficient Buildings Add energy efficiency to your new construction plans Business New Construction is a FREE, comprehensive approach to energy

More information

APPENDIX 2C ENERGY 1. ENERGY SUPPLY AND CONSUMPTION... 1

APPENDIX 2C ENERGY 1. ENERGY SUPPLY AND CONSUMPTION... 1 APPENDIX 2C ENERGY 1. ENERGY SUPPLY AND CONSUMPTION... 1 1.1 Energy Supply and Payment... 1 1.2 Recording and Monitoring of Weather Data and Energy Consumption... 1 1.3 Energy Consumption Certificate...

More information

= 32. Zero Net Energy Portfolio Case Study GUNDERSEN HEALTH SYSTEM OVERVIEW. Overview. Project Goals. Portfolio Details. Measured Energy Stats

= 32. Zero Net Energy Portfolio Case Study GUNDERSEN HEALTH SYSTEM OVERVIEW. Overview. Project Goals. Portfolio Details. Measured Energy Stats Zero Net Energy Portfolio Case Study OVERVIEW Portfolio Details Location: Headquartered in La Crosse, WI Climate Zone: 6A Measured Energy Stats 141-109 = 32 BUILDING S TOTAL EUI RENEWABLE PRODUCTION RPI

More information

A Stable Whole Building Performance Method For Standard 90.1

A Stable Whole Building Performance Method For Standard 90.1 This article was published in ASHRAE Journal, May 2013. Copyright 2013 ASHRAE. Reprinted here by permission from ASHRAE at www.pnnl.gov. This article may not be copied nor distributed in either paper or

More information

ASHRAE Standard 90.1 App G, PHI and PHIUS+

ASHRAE Standard 90.1 App G, PHI and PHIUS+ ASHRAE Standard 90.1 App G, PHI and PHIUS+ A NYSERDA Comparative Evaluation Study June 16, 2017 Governor Cuomo s strategy to build a clean, resilient and affordable energy system for all New Yorkers 2

More information

B3 Benchmarking. B3 Building Benchmarking. Program Overview.

B3 Benchmarking. B3 Building Benchmarking. Program Overview. B3 Benchmarking B3 Building Benchmarking Program Overview B3 Benchmarking: Background B3 stands for: Buildings Benchmarking and Beyond B3 Benchmarking: Background The State of Minnesota B3 Energy Benchmarking

More information

A SIMPLE USER INTERFACE FOR ENERGY RATING OF BUILDINGS

A SIMPLE USER INTERFACE FOR ENERGY RATING OF BUILDINGS Proceedings of Building Simulation 2011: 1 2 3 4 5 6 7 8 9 10 A SIMPLE USER INTERFACE FOR ENERGY RATING OF BUILDINGS Abraham Yezioro 1, Oren Shapir 1, and Guedi Capeluto 1 1 Faculty of Architecture and

More information

Zero Net Energy Buildings February 12, 2014 Beth Brummitt, CEM, CEA, LEED AP. Your guide for improving the performance and value of buildings

Zero Net Energy Buildings February 12, 2014 Beth Brummitt, CEM, CEA, LEED AP. Your guide for improving the performance and value of buildings Zero Net Energy Buildings February 12, 2014 Beth Brummitt, CEM, CEA, LEED AP Your guide for improving the performance and value of buildings 1 Courtesy of Bill Reed, Integrative Design Collaborative, www.integrativedesign.net

More information

9.36 Energy Modeling and Energy Auditing

9.36 Energy Modeling and Energy Auditing 9.36 Energy Modeling and Energy Auditing BOABC Conference 2014 Einar Halbig, Principal Speaker introduction. Outline: Define energy modeling and energy auditing Applications Process Who does it Example

More information

Commissioning Green Buildings

Commissioning Green Buildings Commissioning Green Buildings Hazem Elzarka, PhD, PE, LEED AP University of Denver Denver, CO, USA Owners are increasingly recognizing building commissioning as an effective means of ensuring quality and

More information

In early 2014, the Building Commissioning Association (BCA) surveyed two different. What. Should Know About Building Commissioning.

In early 2014, the Building Commissioning Association (BCA) surveyed two different. What. Should Know About Building Commissioning. What Owners an d Pro Should Know About Building Commissioning (And Each Other) By Diana Bjornskov In early 2014, the Building Commissioning Association (BCA) surveyed two different building community groups

More information

Energy Efficiency in Multi-Tenant Office Buildings

Energy Efficiency in Multi-Tenant Office Buildings Energy Efficiency in Multi-Tenant Office Buildings Presented by David Herman, PE, LEED AP Principal, EnerG Associates, LLC 3/10/2015 1 Learning Objectives 1. List the principal sources and uses of energy

More information

Building Energy Research Research and development to support design, operation and retrofit of buildings

Building Energy Research Research and development to support design, operation and retrofit of buildings Building Energy Research Research and development to support design, operation and retrofit of buildings Sang Hoon Lee, PhD Simulation Research Group Building Technology and Urban Systems Division Energy

More information

Module 3: Simulation and Data Analysis

Module 3: Simulation and Data Analysis INSTRUCTIONAL MODULES DEMONSTRATING BUILDING ENERGY ANALYSIS USING A BUILDING INFORMATION MODEL Christian Daniel Douglass Industrial and Enterprise Systems Engineering December 1, 2010 Module Summary In

More information

AIA Quality Assurance

AIA Quality Assurance AIA Quality Assurance The Building Commissioning Association is a Registered Provider with The American Institute of Architects Continuing Education Systems (AIA/CES). Credit(s) earned on completion of

More information

GUIDELINES FOR USING BUILDING INFORMATION MODELING (BIM) FOR ENVIRONMENTAL ANALYSIS OF BUILDINGS

GUIDELINES FOR USING BUILDING INFORMATION MODELING (BIM) FOR ENVIRONMENTAL ANALYSIS OF BUILDINGS GUIDELINES FOR USING BUILDING INFORMATION MODELING (BIM) FOR ENVIRONMENTAL ANALYSIS OF BUILDINGS By THOMAS J. REEVES A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

More information

DEVELOPMENT OF A DESIGN TOOL TO SIMULATE THE THERMAL PERFORMANCE OF DIRECT GAIN PASSIVE SOLAR SYSTEMS USING TMY3 DATA

DEVELOPMENT OF A DESIGN TOOL TO SIMULATE THE THERMAL PERFORMANCE OF DIRECT GAIN PASSIVE SOLAR SYSTEMS USING TMY3 DATA DEVELOPMENT OF A DESIGN TOOL TO SIMULATE THE THERMAL PERFORMANCE OF DIRECT GAIN PASSIVE SOLAR SYSTEMS USING TMY3 DATA Alfredo Fernández-González University of Nevada, Las Vegas 4505 Maryland Parkway, Box

More information

Duluth Energy Future Chapter 2: Investigating Zero-Energy Potential

Duluth Energy Future Chapter 2: Investigating Zero-Energy Potential 2016 Duluth Energy Future Chapter 2: Investigating Zero-Energy Potential August 2016 August 2016 0 Duluth Energy Transition, Chapter 2: Investigating Zero- Energy Potential Authors: Jacob Cherry, Graduate

More information

Incentives. After work is complete:

Incentives. After work is complete: SAVE your WAY Create your own Energy Demand Savings with OUC s Commercial & Industrial Custom Incentive Program Overview OUC is committed to helping your business become more energy efficient. We understand

More information