Hydrogen and Syngas Generation from Gasification of Coal in an Integrated Fuel Processor

Size: px
Start display at page:

Download "Hydrogen and Syngas Generation from Gasification of Coal in an Integrated Fuel Processor"

Transcription

1 Applied Mechanics and Materials Online: ISSN: , Vol. 625, pp doi:1.28/ 214 Trans Tech Publications, Switzerland Hydrogen and Syngas Generation from Gasification of Coal in an Integrated Fuel Processor Sujan Chowdhury a*, Abrar Inayat b, Bawadi Abdullah c, Abdul Aziz Omar d, and Saibal Ganguly e Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 3175 Tronoh, Perak, Malaysia a sujan.chowdhury@gmail.com.my, b abrar.inayat@petronas.com.my, c bawadi_abdullah@petronas.com.my, c aaziz_omar@petronas.com.my, d saibal_ganguly@petronas.com.my Keywords: Coal, Gasification, Syngas, Hydrogen generation, Electricity. Abstract. Hydrogen is a clean and new energy carrier to generate power and effectively turned out through the gasification of organic material such as coal. The main objective of this manuscript is to present an analysis of the coal gasification for the generation of high-purity hydrogen in a lab-scale fixed-bed downdraft gasifier. Better understanding of the rank, formation, structure, composition and calorific value, and method of analysis of the material is crucial for the proper utilization of these resources requirements. Traditionally the quality of the coal samples has been determined by their physical and proximate analysis such as bulk density, free swelling index, gross calorific value, sulfur content, moisture content, fixed carbon, volatile matter, and ash content. In this study, coal is partially oxidized and ultimately converts into hydrogen rich syngas (CO and H 2 ). As well, approximately 22 kg h 1 of coal would be gasified at K and 46.2 atm with the reactor volume of.27 m 3 to obtain approximately kcal h 1 of thermal energy during over 67% syngas generation with the generation of 11 kw electrical powers. Introduction Coal is the most abundant fossil fuel for power generation through gasification process and has been applied for a long time. Coal can be found in all over the countries and its price has remained relatively constant in the recent years. The maximum electric energy is generated by fossil fuel, gas, and coal causes the air and water pollution which is considered to be one of the main contributors to the greenhouse effect [1]. Coal is characterized as having the highest concentration of carbon element compared to its caloric value. Properties of coal constitute an inherent part of technology to process and optimize the carbon emission. In the coal-mining process, replacing the inefficient power units with more efficient ones are the largest contributing factors to reduce carbon emission in coal-to-energy chain. In 21, Malaysia generated 18,175 GWh of electricity where 39.51% was sourced from coal. Within the next two decades, coal power generation is also planned to overtake natural gas as the main fuel for electricity generation [2 4]. In addition, coal gasification technology for power generation is related to the combined system involving steam and gas turbine implementation. Solid fuel coal gasification process is not completely converted to CO 2 and H 2 O, but mainly to CO and H 2. Indeed, hydrogen production processes and utilization as a fuel would produce almost negligible amount of pollutants to open up the window for enormous environmental impact with energy generation issues. The high purity of hydrogen fed to a proton exchange membrane fuel cell (PEMFC) stack for power generation makes solid fuel coal utilization system economically and environmentally attractive. Therefore, the main objective of the present work is to assess the feasibility of five different types of available solid fuel coals (from Barapukuria and Khalaspir, Indian 1, Indian 2, and Australian) gasification with syngas recycling for the potential application on an integrated fuel processor (e.g. PEMFC) system. Lab scale coal gasification experiments are conducted in the All rights reserved. No part of contents of this paper may be reproduced or transmitted in any form or by any means without the written permission of Trans Tech Publications, (ID: , Pennsylvania State University, University Park, USA-11/5/16,:5:57)

2 Applied Mechanics and Materials Vol present study to ensure an operationally simple and economically attractive process development. The physicochemical properties of different types of coals are also measured. Experimental In this typical study, coal samples were collected from Barapukuria and Khalaspir, which denoted as BP and BK respectively. In addition, Indian (IJ 1 and IJ 2) and Australian (IA) coal samples were collected from Birampur Hard Coke Limited and Geological Survey of Bangladesh, Dhaka. The coal sample operation could be divided into two main steps involving first, the collection of a gross sample followed by the reduction to a size convenient for laboratory work and finally, the preparation of laboratory sample for analysis [2]. The various contents of coal vary slightly from depth to depth. The maximum analysis followed by ASTM standard. The calorific values of the all the coal samples were calculated using ASTM D method with a bomb calorimeter (C, Germany) in pure oxygen of 3 kp/cm 2. In addition, experimental data obtained from a lab scale coal gasification system could be used as the basis for the scale up of this technology. In that follows, some simulation calculations and parameter evaluations were given for this system with the reaction or equilibrium equations using Microsoft Excel software. Results and Discussions Coal is an extremely complex heterogeneous organic rock as it formed from compaction and indurations of variously altered natural processes. The proximate analysis of the as obtained coal revealed that the indication of coal ranking for endeavor utilization. The results of proximate analysis for five different coal samples were shown in Fig. 1 and Table 1. Systematic proximate analysis on the coal under investigation included the moisture content, ash content, fixed carbon content, and etc. were shown Fig. 1 (a). Indeed, moisture content of coal could range from 2% to 15% in bituminous coal to nearly 45% in lignite. The higher the moisture content, the lower the energy values and bulk density of coal [2, 4]. Maximum moisture content of BP and BK were observed as 3.% and 3.45% and the minimum were 2.71% and 2.5% respectively. On the other hand, among the three other imported coal samples, the maximum moisture content was observed at 3.% and minimum was at 2.% with average moisture was 2.63%. This observation confirmed that the moisture content of BP and BK coal was nearly about Indian 1, Indian 2, and Australian coal. Table 1: Results of bulk density, free swelling index, calorific value, and sulphur of coal. Parameters Sample name Sample Bulk density (gm.cc -1 ) Free swelling index Calorific value (Btu/lb) Sulphur (%) Barapukuria Coal BP Khalaspir Coal BK India, S. Jaria IJ India, Tirap IJ Australia IA The coal rank decreased with decreasing of bulk density mainly due to increase of moisture fraction. Higher rank coal may have density more than 1.5 gm.cc -1 and lower one was lower than 1.3 gm/cc -1 [2]. The determined bulk density for BP, BK, IJ 1, IJ 2 and IA were around 1.45±.5 gm.cc -1 as shown in Fig. 1(b) and Table 1. It was observed from the analytical data that BP and IJ 2 coal exceeded the higher rank limit of bulk density. The ultimate analysis determined the amount of carbon (C), hydrogen (H), oxygen (O), sulphur (S), and other elements within the coal samples.

3 Weight percent [%] Weight percent [%] Weight percent [%] 646 Process and Advanced Materials Engineering These variables were also measured in weight percent (wt%) and calculated. Dry ash free (DAF) basis neglected all moisture and ash constituents in coal. The DAF basis of ultimate analysis of coal was chosen for this work. The major oxides of ash consisted of silicon dioxide (SiO 2 ), aluminium oxide (Al 2 O 3 ), ferric oxide (Fe 2 O 3 ), phosphorus penta-oxide (P 2 O 5 ), calcium oxide (CaO), magnesium oxide (MgO), sodium oxide (Na 2 O), and sulphur trioxide (SO 3 ) were observed as shown in the Fig. 2(a). In where, BP had higher SiO 2, while Al 2 O 3 content was lower than that of IJ 1, IJ 2, and IA coals. Indeed traces amount of Fe 2 O 3, P 2 O 5, CaO, MgO, Na 2 O, and SO 3 were observed. The calorific value was the most important value to determine for coal that was used for heating purpose. The calorific value (CV) for bituminous coal ranged from 1,5 Btu/lb to 14, Btu/lb. The gross CV among these five different types of solid coals varied from 1,7 Btu/lb to 12,931 Btu/lb. As per free swelling index and calorific value of BK and followed by BP coals were highly volatile and IJ 1, IJ 2, and IA coals were sub-volatile bituminous type respectively. The sulphur content was found less than 1% in both BP and BK coals, where IJ 1, IJ 2, and IA had consisted with higher sulphur content of less than 1%. (a) 1 8 (b) 2 2 Moisture Ash Fixed carbon Mineral Mater S N H O C Proximate analysis of coal Ultimate analysis of coal Fig. 1: (a) Proximate analysis and (b) ultimate analysis of coal. The principal operational units in the united gasification of simulated coal (BK) include a gasifier section (including a CO shift section), H 2 purification section (pressure swing adsorption (PSA) and Pd membrane purifier), and a final PEMFC were represented in Fig. 2 (b). Particulate free syngas was obtained from the gasification unit to convert CO and steam into CO 2 and H 2. 8 (a) (b) 2 Na 2 OP 2 O 5 SO 3 MgO K 2 O CaO TiO 2 Fe 2 O 3 Al 2 O 3 Major oxides of ash SiO 2 Fig. 2: (a) Major oxides of ash of coal and (b) material and energy balances of a pilot scale. The gaseous mixtures produced from gasification process also contained other gases in considerable amount like CH 4, CO and H 2 O vapors. The water gas shift reaction could be simply expressed by the following Eq. 1:

4 Applied Mechanics and Materials Vol Since the reaction was highly exothermic, a conventional heat recovery exchanger could be used to generate medium pressure steam for export or captive consumption [2, 4]. The effluent gas from the CO shift unit was then fed into a PSA unit with Pd membranes to obtain a high purity (> 99.99%) of H 2 stream as shown in Fig. 2 (b). The material and energy balances of a gasification process may provide the essential information about the feed system, a downdraft type gasifier, an ash discharge system, a coke/tar/slag or water adsorber, an internal combustion engine for power generation, CO/H 2 separator, hydrogen purifier, and an integrated fuel processor. Simulated data indicate that in order to generate a 11 kw of electric power, approximately 22 kg h -1 of coal would be gasified at 1173 K and 46.2 atm with the reactor volume.27 m 3. In the simulated pilot scale continuous operation of downdraf type gasification system included with individual units to be as stand aloned as possible in moderate to high level of automation was carried out with temperatures were much higher than K and the main product gases were CO and H 2 as were calculated in Fig 2(b). The global material balance for this gasification process was more than 67% (dry basis) of H 2 and CO were generated. In addition, the pressure of the gasifier was usually based on the pressure required for the delivery of the ultimate product (CO or H 2 ) to the end use (for instance, an integrated fuel processor or the refinery hydrogen header pressure) and purification was carried out through a PSA to separate CO 2. Indeed, approximately kcal h -1 of thermal energy may be recovered with and intregrated PEMFC for power generation owed to the consisting high purity H 2. Generally, operating pressures in the commercial biowaste or coal noncatalytic gasification processes were ranged from 5 to 8 bar. It was noteworthy that a commercial gasifier often operated at mid term temperatures or pressures and a well mixed gaseous environment in which the partial oxidation reactions take place. Conclusions Analytical results and subsequent rank classifications of Khalaspir coals are highly volatile to medium volatile bituminous type and Indian and Australian coals are sub bituminous type. BK and BP coals are better for power generation owing to their higher calorific value and lower sulphur content asses to suitable for environmental concern. Based on the gasification data analysis, approximtely 22 kg h -1 of BK coal would be gasified to generate 11 kw electric power with more than 67% (dry basis) of H 2 and CO are generated at 9 K and 46.2 atm, and in addition to the hydrogen generation, approximately kcal h -1 of thermal energy may be recovered. Futhermore, the catalytic gasification of coal to syngas, production of high purity hydrogen, and final processing make it suitable for the integrated fuel cell power generation system. References [1] A. H. Mondal, M. Denich, Hybrid systems for decentralized power generation in Bangladesh, Energy for Sustainable Development, 14 (21) [2] A. A. Rahman, A. H. Shamsuddin, Cofiring biomass with coal: Opportunities for Malaysia, IOP Conference Series: Earth and Environmental Science, 16 (213) [3] E. N. Grigorieva, T. L. Fedorova, D. N. Kagan, V. Y. Korobkov, S. S. Panchenko, I. V. Kalechitz, Thermal craking of coal strong bonds on diaryl ethers' and diarylmethanes' models, Coal Science and Technology, (1995) [4] K. Sakanishi, H. Hasuo, H. Taniguchi, I. Mochida, O. Okuma, Effects of coal pre-treatment and catalyst recovery on the liquefaction, Coal Science and Technology, (1995) (1)

5 Process and Advanced Materials Engineering 1.28/ Hydrogen and Syngas Generation from Gasification of Coal in an Integrated Fuel Processor 1.28/

PRODUCTION OF SYNGAS BY METHANE AND COAL CO-CONVERSION IN FLUIDIZED BED REACTOR

PRODUCTION OF SYNGAS BY METHANE AND COAL CO-CONVERSION IN FLUIDIZED BED REACTOR PRODUCTION OF SYNGAS BY METHANE AND COAL CO-CONVERSION IN FLUIDIZED BED REACTOR Jinhu Wu, Yitain Fang, Yang Wang Institute of Coal Chemistry, Chinese Academy of Sciences P. O. Box 165, Taiyuan, 030001,

More information

Flowsheet Modelling of Biomass Steam Gasification System with CO 2 Capture for Hydrogen Production

Flowsheet Modelling of Biomass Steam Gasification System with CO 2 Capture for Hydrogen Production ISBN 978-967-5770-06-7 Proceedings of International Conference on Advances in Renewable Energy Technologies (ICARET 2010) 6-7 July 2010, Putrajaya, Malaysia ICARET2010-035 Flowsheet Modelling of Biomass

More information

ADVANCES in NATURAL and APPLIED SCIENCES

ADVANCES in NATURAL and APPLIED SCIENCES ADVANCES in NATURAL and APPLIED SCIENCES ISSN: 1995-772 Published BY AENSI Publication EISSN: 1998-19 http://www.aensiweb.com/anas 216 April 1(4): pages 472-477 Open Access Journal Kinetic Modeling of

More information

EVALUATION OF AN INTEGRATED BIOMASS GASIFICATION/FUEL CELL POWER PLANT

EVALUATION OF AN INTEGRATED BIOMASS GASIFICATION/FUEL CELL POWER PLANT EVALUATION OF AN INTEGRATED BIOMASS GASIFICATION/FUEL CELL POWER PLANT JEROD SMEENK 1, GEORGE STEINFELD 2, ROBERT C. BROWN 1, ERIC SIMPKINS 2, AND M. ROBERT DAWSON 1 1 Center for Coal and the Environment

More information

Equilibrium analysis on sulfur material in oxyfuel combustion

Equilibrium analysis on sulfur material in oxyfuel combustion Advanced Materials Research Submitted: 2014-05-15 ISSN: 1662-8985, Vols. 986-987, pp 67-71 Accepted: 2014-05-19 doi:10.4028/www.scientific.net/amr.986-987.67 Online: 2014-07-18 2014 Trans Tech Publications,

More information

9/12/2018. Course Objectives MSE 353 PYROMETALLURGY. Prerequisite. Course Outcomes. Forms of Assessment. Course Outline

9/12/2018. Course Objectives MSE 353 PYROMETALLURGY. Prerequisite. Course Outcomes. Forms of Assessment. Course Outline Kwame Nkrumah University of Science & Technology, Kumasi, Ghana MSE 353 PYROMETALLURGY Course Objectives Understand the fundamental concepts of pyrometallurgy Understand the concepts of materials and energy

More information

Carbon To X. Processes

Carbon To X. Processes World CTX Carbon To X Processes Processes and Commercial Operations World CTX: let s Optimize the Use of Carbon Resource Carbon To X Processes Carbon To X technologies are operated in more than 50 plants

More information

Biomass gasification plant and syngas clean-up system

Biomass gasification plant and syngas clean-up system Available online at www.sciencedirect.com ScienceDirect Energy Procedia 75 (2015 ) 240 245 The 7 th International Conference on Applied Energy ICAE2015 Biomass gasification plant and syngas clean-up system

More information

Nuclear Hydrogen for Production of Liquid Hydrocarbon Transport Fuels

Nuclear Hydrogen for Production of Liquid Hydrocarbon Transport Fuels Nuclear Hydrogen for Production of Liquid Hydrocarbon Transport Fuels Charles W. Forsberg Oak Ridge National Laboratory Oak Ridge, Tennessee 37831 Email: forsbergcw@ornl.gov Abstract Liquid fuels (gasoline,

More information

Coupling gasification and metallurgical applications

Coupling gasification and metallurgical applications Coupling gasification and metallurgical applications Robert Pardemann, Tanja Schaaf, Jochen Grünig, Katharina Förster, Andreas Orth International Freiberg Conference on IGCC & XtL Technologies 12 16 June

More information

Mk Plus The Next Generation Lurgi FBDB Gasification. Leipzig, 22/05/2012 Dr. Henrik Timmermann

Mk Plus The Next Generation Lurgi FBDB Gasification. Leipzig, 22/05/2012 Dr. Henrik Timmermann Mk Plus The Next Generation Lurgi FBDB Gasification Leipzig, 22/05/2012 Dr. Henrik Timmermann Outline Air Liquide E&C Perspective Next Generation Lurgi FBDB TM Gasification Lurgi FBDB Clean Conversion

More information

Large scale experimental simulations of underground coal gasification (UCG) process with selected European lignites

Large scale experimental simulations of underground coal gasification (UCG) process with selected European lignites 8 th International Freiberg Conference on IGCC & XtL Technologies Large scale experimental simulations of underground coal gasification (UCG) process with selected European lignites Krzysztof Kapusta 1,

More information

12th International Conference on Fluidized Bed Technology

12th International Conference on Fluidized Bed Technology 12th International Conference on Fluidized Bed Technology PRESSURIZED FLASH DRYING CHARATERISTICS USING SUB- BITUMINOUS COALS FOR CIRCULATING FLUIDIZED BED GASIFIER See Hoon Lee 1*, In Seop Gwak 1 1 Department

More information

COMPREHENSIVE MSW PROCESSING STEPS BIO COKE METHOD

COMPREHENSIVE MSW PROCESSING STEPS BIO COKE METHOD COMPREHENSIVE MSW PROCESSING STEPS BIO COKE METHOD STEPS BIOCOKE METHOD FOR CONVERSION OF MSW TO COAL AND FUEL OIL STEPS BIOCOKE processing system is designed for converting the MSW which is received on

More information

Assembly and Testing of an On-Farm Manure to Energy Conversion BMP for Animal Waste Pollution Control

Assembly and Testing of an On-Farm Manure to Energy Conversion BMP for Animal Waste Pollution Control COLLEGE OF AGRICULTURE AND LIFE SCIENCES TR-366 2010 Assembly and Testing of an On-Farm Manure to Energy Conversion BMP for Animal Waste Pollution Control By Cady Engler, Sergio Capereda, and Saqib Mukhtar

More information

Discipline Chemical Testing Issue Date Certificate Number T-2133 Valid Until Last Amended on

Discipline Chemical Testing Issue Date Certificate Number T-2133 Valid Until Last Amended on Location 2: Plot No. 195, Ward No. DC-2, Gandhidham, Last Amended on 23.02.2015 Page 1 of 5 I. COAL, COKE & OTHER SOLID FUELS 1. Coal Total Moisture IS 1350 (Part 1): 1984 (RA 2007) ASTM D 3302/ D3302M-12

More information

Transportation in a Greenhouse Gas Constrained World

Transportation in a Greenhouse Gas Constrained World Transportation in a Greenhouse Gas Constrained World A Transition to Hydrogen? Rodney Allam Director of Technology Air Products PLC, Hersham, UK 3 4 The Problem: demand and cause People Prosperity Pollution

More information

Pilot Scale Production of Mixed Alcohols from Wood. Supplementary Information

Pilot Scale Production of Mixed Alcohols from Wood. Supplementary Information Pilot Scale Production of Mixed Alcohols from Wood Supplementary Information Richard L. Bain, Kimberly A. Magrini-Bair, Jesse E. Hensley *, Whitney S. Jablonski, Kristin M. Smith, Katherine R. Gaston,

More information

IMPLEMENTING CLEAN COAL TECHNOLOGY THROUGH GASIFICATION AND LIQUEFACTION THE INDIAN PERSPECTIVE

IMPLEMENTING CLEAN COAL TECHNOLOGY THROUGH GASIFICATION AND LIQUEFACTION THE INDIAN PERSPECTIVE IMPLEMENTING CLEAN COAL TECHNOLOGY THROUGH GASIFICATION AND LIQUEFACTION THE INDIAN PERSPECTIVE (Presented at the International Conference on Global Scenario in Environment and Energy held at MANIT, Bhopal

More information

Hydrogen and power co-generation based on syngas and solid fuel direct chemical looping systems

Hydrogen and power co-generation based on syngas and solid fuel direct chemical looping systems Hydrogen and power co-generation based on syngas and solid fuel direct chemical looping systems Calin-Cristian Cormos Babeş Bolyai University, Faculty of Chemistry and Chemical Engineering 11 Arany Janos,

More information

CALCIUM LOOPING PROCESS FOR CLEAN FOSSIL FUEL CONVERSION. Shwetha Ramkumar, Robert M. Statnick, Liang-Shih Fan. Daniel P. Connell

CALCIUM LOOPING PROCESS FOR CLEAN FOSSIL FUEL CONVERSION. Shwetha Ramkumar, Robert M. Statnick, Liang-Shih Fan. Daniel P. Connell CALCIUM LOOPING PROCESS FOR CLEAN FOSSIL FUEL CONVERSION Shwetha Ramkumar, Robert M. Statnick, Liang-Shih Fan William G. Lowrie Department of Chemical and Biomolecular Engineering The Ohio State University

More information

Hydrogen from biomass: large-scale hydrogen production based on a dual fluidized bed steam gasification system

Hydrogen from biomass: large-scale hydrogen production based on a dual fluidized bed steam gasification system Biomass Conv. Bioref. (2011) 1:55 61 DOI 10.1007/s13399-011-0004-4 REVIEW ARTICLE Hydrogen from biomass: large-scale hydrogen production based on a dual fluidized bed steam gasification system Stefan Müller

More information

Energy Values and Technologies for Non woody Biomass: as a clean source of Energy

Energy Values and Technologies for Non woody Biomass: as a clean source of Energy IOSR Journal of Electrical and Electronics Engineering (IOSRJEEE) ISSN : 2278-1676 Volume 1, Issue 2 (May-June 2012), PP 10-14 Energy Values and Technologies for Non woody Biomass: as a clean source of

More information

Calin-Cristian Cormos* VOL. 37, Introduction

Calin-Cristian Cormos* VOL. 37, Introduction 139 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 37, 2014 Guest Editors: Eliseo Ranzi, Katharina Kohse- Höinghaus Copyright 2014, AIDIC Servizi S.r.l., ISBN 978-88-95608-28-0; ISSN 2283-9216

More information

The Novel Design of an IGCC System with Zero Carbon Emissions

The Novel Design of an IGCC System with Zero Carbon Emissions 1621 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 61, 2017 Guest Editors: Petar S Varbanov, Rongxin Su, Hon Loong Lam, Xia Liu, Jiří J Klemeš Copyright 2017, AIDIC Servizi S.r.l. ISBN 978-88-95608-51-8;

More information

Chemical Looping Gasification Sulfur By-Product

Chemical Looping Gasification Sulfur By-Product Background: Coal Gasification Technology Chemical Looping Gasification Sulfur By-Product Fanxing Li and Liang-Shih Fan* Fly Ash By-Product Department of Chemical and Biomolecular Engineering The Ohio State

More information

Current Review of DOE s Syngas Technology Development Jai-woh Kim, Dave Lyons and Regis Conrad United States Department of Energy, USA

Current Review of DOE s Syngas Technology Development Jai-woh Kim, Dave Lyons and Regis Conrad United States Department of Energy, USA Current Review of DOE s Syngas Technology Development Jai-woh Kim, Dave Lyons and Regis Conrad United States Department of Energy, USA Dr. Jai-woh Kim Program Manager, Advanced Energy Systems Fossil Energy

More information

Figure 4.1 shows the changes in composition as peat progresses to bituminous coal.

Figure 4.1 shows the changes in composition as peat progresses to bituminous coal. 4 Coal 4.1 What is coal? Coal is formed almost entirely from plants and parts of plants, woody material bark leaves etc. and is the product of the effect of pressure, heat and hundreds and millions of

More information

GASIFICATION THE WASTE-TO-ENERGY SOLUTION SYNGAS WASTE STEAM CONSUMER PRODUCTS TRANSPORTATION FUELS HYDROGEN FOR OIL REFINING FERTILIZERS CHEMICALS

GASIFICATION THE WASTE-TO-ENERGY SOLUTION SYNGAS WASTE STEAM CONSUMER PRODUCTS TRANSPORTATION FUELS HYDROGEN FOR OIL REFINING FERTILIZERS CHEMICALS GASIFICATION THE WASTE-TO-ENERGY SOLUTION WASTE SYNGAS STEAM CONSUMER PRODUCTS HYDROGEN FOR OIL REFINING TRANSPORTATION FUELS CHEMICALS FERTILIZERS POWER SUBSTITUTE NATURAL GAS W W W. G A S I F I C A T

More information

Steam Gasification of Low Rank Fuel Biomass, Coal, and Sludge Mixture in A Small Scale Fluidized Bed

Steam Gasification of Low Rank Fuel Biomass, Coal, and Sludge Mixture in A Small Scale Fluidized Bed Steam Gasification of Low Rank Fuel Biomass, Coal, and Sludge Mixture in A Small Scale Fluidized Bed K.H. Ji 1, B.H. Song *1, Y.J. Kim 1, B.S. Kim 1, W. Yang 2, Y.T. Choi 2, S.D. Kim 3 1 Department of

More information

TRONDHEIM CCS CONFERENCE

TRONDHEIM CCS CONFERENCE TRONDHEIM CCS CONFERENCE June 15, 2011 6th Trondheim Conference on CO 2 Capture, Transport and Storage Pedro Casero Cabezón (pcasero@elcogas.es) ELCOGAS S.A (www.elcogas.es) 1 SCOPE IGCC & ELCOGAS, S.A

More information

Gasification of Municipal Solid Waste

Gasification of Municipal Solid Waste Gasification of Municipal Solid Waste Salman Zafar Renewable Energy Advisor INTRODUCTION The enormous increase in the quantum and diversity of waste materials and their potentially harmful effects on the

More information

Biosolids to Energy- Stamford, CT

Biosolids to Energy- Stamford, CT Biosolids to Energy- Stamford, CT Jeanette A. Brown, PE, DEE, D.WRE Alternative Management Options for Municipal Sewage Biosolids Workshop, Burlington, ON June 17, 2010 Contents Background Project Development

More information

Module 4 : Hydrogen gas. Lecture 29 : Hydrogen gas

Module 4 : Hydrogen gas. Lecture 29 : Hydrogen gas 1 P age Module 4 : Hydrogen gas Lecture 29 : Hydrogen gas 2 P age Keywords: Electrolysis, steam reforming, partial oxidation, storage Hydrogen gas is obtained in a very trace amount in atmosphere. It is

More information

Current Trends in Integrated Gasification Combined Cycle Power Plants

Current Trends in Integrated Gasification Combined Cycle Power Plants IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X PP. 50-54 www.iosrjournals.org Current Trends in Integrated Gasification Combined Cycle Power Plants S.Veeramani,

More information

Precombustion capture. Professor Dianne Wiley School of Chemical Engineering, UNSW Australia

Precombustion capture. Professor Dianne Wiley School of Chemical Engineering, UNSW Australia Precombustion capture Professor Dianne Wiley School of Chemical Engineering, UNSW Australia IEAGHG Summer School 2015 University of Western Australia Perth AUSTRALIA 6-12 December 2015 Combustion Burning

More information

W. D. WANG *, C. Y. ZHOU

W. D. WANG *, C. Y. ZHOU Oil Shale, 2009, Vol. 26, No. 2, pp. 108 113 ISSN 0208-189X doi: 10.3176/oil.2009.2.03 2009 Estonian Academy Publishers RETORTING OF PULVERIZED OIL SHALE IN FLUIDIZED-BED PILOT PLANT W. D. WANG *, C. Y.

More information

BITUMINOUS COAL ASH SULFUR RETENTION IN CIR5^ DEPARTMENT OF REGISTRATION AND EDUCATION ILLINOIS STATE GEOLOGICAL SURVEY CIRCULAR

BITUMINOUS COAL ASH SULFUR RETENTION IN CIR5^ DEPARTMENT OF REGISTRATION AND EDUCATION ILLINOIS STATE GEOLOGICAL SURVEY CIRCULAR 14. QS: CIR5^ 'sj STATE OF ILLINOIS DEPARTMENT OF REGISTRATION AND EDUCATION SULFUR RETENTION IN BITUMINOUS COAL ASH O. W. Rees N. F. Shimp C. W. Beeler J. K. Kuhn R. J. Helfinstine ILLINOIS STATE GEOLOGICAL

More information

Syntroleum Coal to Liquids Integrating Gasification, Fischer-Tropsch and Refining Technology. CTL Forum, Beijing China June 15-16, 2006

Syntroleum Coal to Liquids Integrating Gasification, Fischer-Tropsch and Refining Technology. CTL Forum, Beijing China June 15-16, 2006 Syntroleum Coal to Liquids Integrating Gasification, Fischer-Tropsch and Refining Technology CTL Forum, Beijing China June 15-16, 2006 Forward Looking Statements This presentation includes forward-looking

More information

Feature: New Project Development Using Innovative Technology

Feature: New Project Development Using Innovative Technology Feature: New Project Development Using Innovative Technology Challenge towards innovative Clean Coal J-POWER is working to make coal resources a cleaner source of energy that can continue to be utilized

More information

Drying of High-Moisture Coals For Power Production & Gasification

Drying of High-Moisture Coals For Power Production & Gasification 350 SMC Drive Somerset, WI 54025 USA Phone: (715) 247-3433 Fax: (715) 247-3438 Drying of High-Moisture Coals For Power Production & Gasification Given the global abundance of coal and its importance in

More information

2The J-POWER Group is one of the biggest coal users in Japan, consuming approximately 20 million

2The J-POWER Group is one of the biggest coal users in Japan, consuming approximately 20 million 2The J-POWER Group is one of the biggest coal users in Japan, consuming approximately 2 million tons of coal per year at eight coal-fired power stations. With a total capacity of 7.95 GW, these stations

More information

REDUCTION OF CO 2 EMISSION TO METHANE USING HYDROGENATION WITH NICKEL (110) SURFACE CATALYST

REDUCTION OF CO 2 EMISSION TO METHANE USING HYDROGENATION WITH NICKEL (110) SURFACE CATALYST REDUCTION OF CO 2 EMISSION TO METHANE USING HYDROGENATION WITH NICKEL (110) SURFACE CATALYST G. Santoshi 1, Ch. SaiRam 2, M. Chaitanya 3 1,2,3 Civil Engineering,Miracle Educational Society Group of Institutions,

More information

Process Optimization of Hydrogen Production from Coal Gasification

Process Optimization of Hydrogen Production from Coal Gasification Process Optimization of Hydrogen Production from Coal Gasification E. Biagini 1, G. Pannocchia 2, M. Zanobini 2, G. Gigliucci 3, I. Riccardi 3, F. Donatini 3, L. Tognotti 2 1. Consorzio Pisa Ricerche Divisione

More information

CHEMICAL LOOPING COMBUSTION REFERENCE PLANT DESIGNS AND SENSITIVITY STUDIES

CHEMICAL LOOPING COMBUSTION REFERENCE PLANT DESIGNS AND SENSITIVITY STUDIES Driving Innovation Delivering Results CHEMICAL LOOPING COMBUSTION REFERENCE PLANT DESIGNS AND SENSITIVITY STUDIES Robert Stevens, Ph.D. US Dept. of Energy NETL September 1, 2015 Chemical Looping Combustion

More information

Department of Mechanical Engineering, University of Cagliari Piazza d Armi, Cagliari, Italia

Department of Mechanical Engineering, University of Cagliari Piazza d Armi, Cagliari, Italia Department of Mechanical Engineering, University of Cagliari Piazza d Armi, 09123 Cagliari, Italia CCT 2009 Fourth International Conference on Clean Coal Technologies for Our Future 18/21 May 2009 Dresden

More information

RESEARCH GROUP: Future Energy Technology

RESEARCH GROUP: Future Energy Technology RESEARCH GROUP: Email: hermann.hofbauer@tuwien.ac.at Web: http://www.vt.tuwien.ac.at Phone: +43 1 58801 166300 Fax: +43 1 58801 16699 Institute of Chemical Engineering page 1 Project Groups of : Univ.Prof.

More information

REDUCTION OF IRON ORE PELLETS BY STATISTICAL DESIGN OF EXPERIMENTS

REDUCTION OF IRON ORE PELLETS BY STATISTICAL DESIGN OF EXPERIMENTS Int. J. Engg. Res. & Sci. & Tech. 2014 2013 K M K Sinha and T Sharma, 2014 Research Paper ISSN 2319-5991 www.ijerst.com Vol. 3, No. 1, February 2014 2014 IJERST. All Rights Reserved REDUCTION OF IRON ORE

More information

Noell Entrained-Flow Gasification

Noell Entrained-Flow Gasification Noell Entrained-Flow Gasification Industrial and chemical wastes Conventional fuels Industrial and chemical wastes high-salt ash-free ash-free ash-containing ash-containing Reactor with special cooling

More information

Carbon (CO 2 ) Capture

Carbon (CO 2 ) Capture Carbon (CO 2 ) Capture Kelly Thambimuthu, Chief Executive Officer, Centre for Low Emission Technology, Queensland, Australia. & Chairman, International Energy Agency Greenhouse Gas Program (IEA GHG) CSLF

More information

RESEARCH AND DEVELOPMENT OF INDONESIA LOW RANK COAL

RESEARCH AND DEVELOPMENT OF INDONESIA LOW RANK COAL RESEARCH AND DEVELOPMENT OF INDONESIA LOW RANK COAL Head of ARDEMR Ministry of Energy and Mineral Resources Bandung, September 2006 INTRODUCTION Indonesia has been strongly affected by economic crises

More information

Chapter 13. Thermal Conversion Technologies. Fundamentals of Thermal Processing

Chapter 13. Thermal Conversion Technologies. Fundamentals of Thermal Processing Chapter 13 Thermal Conversion Technologies Fundamentals of Thermal Processing Thermal processing is the conversion of solid wastes into gaseous, liquid and solid conversion products with the concurrent

More information

Hydrogen Separation Membrane Applications

Hydrogen Separation Membrane Applications 2009 Hydrogen Separation Membrane Applications Eltron Research & Development Inc. 4600 Nautilus Court South Boulder, CO 80301-3241 Doug Jack VP Technology 303.530.0263 x118 djack@eltronresearch.com Carl

More information

Official Journal of the European Union L 181/65

Official Journal of the European Union L 181/65 12.7.2012 Official Journal of the European Union L 181/65 ANNEX II Tier thresholds for calculation-based methodologies related to installations (Article 12(1)) 1. Definition of tiers for activity data

More information

Focus on Gasification in the Western U.S.

Focus on Gasification in the Western U.S. Focus on Gasification in the Western U.S. GTC Workshop on Gasification Technologies Denver, Colorado March 14, 2007 Richard D. Boardman, Ph.D. INL R&D Lead for Gasification & Alternative Fuels (208) 526-3083;

More information

Fischer Tropsch Catalyst Test on Coal-Derived Synthesis Gas

Fischer Tropsch Catalyst Test on Coal-Derived Synthesis Gas Fischer Tropsch Catalyst Test on Coal-Derived Synthesis Gas Introduction Coal represents a major energy source that can be transformed into transportation fuels and chemical feedstocks. The United States

More information

Process Economics Program

Process Economics Program IHS Chemical Process Economics Program Report 148C Synthesis Gas Production from Coal and Petroleum Coke Gasification By Jamie Lacson IHS Chemical agrees to assign professionally qualified personnel to

More information

Pathways & industrial approaches for utilization of CO 2

Pathways & industrial approaches for utilization of CO 2 Pathways & industrial approaches for utilization of CO 2 - by Dr. S. Sakthivel Background: CO 2 is a greenhouse gas and to reduce greenhouse effect, the CO 2 emissions need to be controlled. Large scale

More information

Production of Electric Power and Chemicals in a Carbon Constrained Environment

Production of Electric Power and Chemicals in a Carbon Constrained Environment Production of Electric Power and Chemicals in a Carbon Constrained Environment Guido Collodi, Luca Mancuso, Federico Fazi Foster Wheeler Italiana SpA Via Caboto 1, 20094 Corsico Milan - Italy The Chemical

More information

In nature nothing is created, nothing is lost, everything changes. Antoine-Laurent de Lavoisier

In nature nothing is created, nothing is lost, everything changes. Antoine-Laurent de Lavoisier GASIFICATION PLANTS In nature nothing is created, nothing is lost, everything changes. Antoine-Laurent de Lavoisier 1 1 BIO&WATT ENERGY FROM BIOMASS We are committed to working for a sustainable development

More information

Mathematical Modelling of Coal Gasification Processes

Mathematical Modelling of Coal Gasification Processes IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS Mathematical Modelling of Coal Gasification Processes To cite this article: T Sundararajan et al 2017 IOP Conf. Ser.: Earth Environ.

More information

MOLECULAR GATE TECHNOLOGY FOR (SMALLER SCALE) LNG PRETREATMENT

MOLECULAR GATE TECHNOLOGY FOR (SMALLER SCALE) LNG PRETREATMENT MOLECULAR GATE TECHNOLOGY FOR (SMALLER SCALE) LNG PRETREATMENT Presented at the 2010 Gas Processors 89 th Annual Convention Austin, TX March, 2010 Michael Mitariten, P.E. Guild Associates, Inc. Dublin,

More information

Lignite oxidative desulphurization. Notice 2: effects of process parameters

Lignite oxidative desulphurization. Notice 2: effects of process parameters Int J Coal Sci Technol (2015) 2(3):196 201 DOI 10.1007/s40789-015-0056-3 Lignite oxidative desulphurization. Notice 2: effects of process parameters Volodymyr Gunka 1 Serhiy Pyshyev 1 Received: 18 July

More information

Pressurised gasification of coal and biomass for the production of H 2 -rich gas

Pressurised gasification of coal and biomass for the production of H 2 -rich gas Department of Energy & Pressurised gasification of coal and biomass for the production of -rich gas J. Fermoso, B. Arias, M.G. Plaza, C. Pevida, M.D. Casal, C.F. Martín, F. Rubiera, J.J. Pis Instituto

More information

Drying, devolatilization & char oxidation of solid fuel

Drying, devolatilization & char oxidation of solid fuel Drying, devolatilization & char oxidation of solid fuel Oskar Karlström Dr. Sc. Åbo Akademi 2017: Chemistry in Combustion Processes Solid fuel combustion Solid fuel combustion fuel In pulverized fuel combustion,

More information

R.K.Yadav/Automobile Engg Dept/New Polytechnic Kolhapur. Page 1

R.K.Yadav/Automobile Engg Dept/New Polytechnic Kolhapur. Page 1 Fuel : A fuel is defined as a substance (containing mostly carbon and hydrogen) which on burning with oxygen in atmospheric air, produces a large amount of heat. fuel. The amount of heat generated is known

More information

The hydrothermal decomposition of biomass and waste to produce bio-oil

The hydrothermal decomposition of biomass and waste to produce bio-oil Waste Management and The Environment VII 445 The hydrothermal decomposition of biomass and waste to produce bio-oil P. De Filippis, B. de Caprariis, M. Scarsella & N. Verdone Chemical Engineering Department,

More information

CO 2 recovery from industrial hydrogen facilities and steel production to comply with future European Emission regulations

CO 2 recovery from industrial hydrogen facilities and steel production to comply with future European Emission regulations Available online at www.sciencedirect.com Energy Procedia 37 (2013 ) 7221 7230 GHGT-11 CO 2 recovery from industrial hydrogen facilities and steel production to comply with future European Emission regulations

More information

Development status of the EAGLE Gasification Pilot Plant

Development status of the EAGLE Gasification Pilot Plant Development status of the EAGLE Gasification Pilot Plant Gasification Technologies 2002 San Francisco, California, USA October 27-30, 2002 Masaki Tajima Energy and Environment Technology Development Dept.

More information

Energy-Efficient Co-production of Hydrogen and Power from Brown Coal Employing Direct Chemical Looping

Energy-Efficient Co-production of Hydrogen and Power from Brown Coal Employing Direct Chemical Looping 721 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 52, 2016 Guest Editors: Petar Sabev Varbanov, Peng-Yen Liew, Jun-Yow Yong, Jiří Jaromír Klemeš, Hon Loong Lam Copyright 2016, AIDIC Servizi S.r.l.,

More information

Plastic to Fuel Technologies

Plastic to Fuel Technologies Plastic to Fuel Technologies Author: Mauro Capocelli, Researcher, University UCBM Rome (Italy) 1. Theme description The growth of economy and consumes, combined with the modern models of production, have

More information

Coal Quality As the Boiler Sees It. Rod Hatt Chief Technical Officer Coal Combustion, Inc.

Coal Quality As the Boiler Sees It. Rod Hatt Chief Technical Officer Coal Combustion, Inc. Coal Quality As the Boiler Sees It Rod Hatt Chief Technical Officer Coal Combustion, Inc. www.coalcombustion.com Short Prox Moisture total moisture in sample Ash inorganic rock like material remaining

More information

CHEMICAL-LOOPING COMBUSTION (CLC) Status of development. Anders Lyngfelt, Chalmers University of Technology, Göteborg

CHEMICAL-LOOPING COMBUSTION (CLC) Status of development. Anders Lyngfelt, Chalmers University of Technology, Göteborg CHEMICAL-LOOPING COMBUSTION (CLC) Status of development Anders Lyngfelt, Chalmers University of Technology, Göteborg 9 th International Conference on Circulating Fluidized Beds, 2008 Content what is chemical-looping

More information

Hydrogen is a particularly

Hydrogen is a particularly Optimised hydrogen production by steam reforming: part I Modelling optimisation of process and design parameters for minimising natural gas consumption in hydrogen production by steam reforming Sanke Rajyalakshmi,

More information

SUSPENDED PARTICULATE MATTER ATTENUATION BY FLUE GAS CONDITIONING

SUSPENDED PARTICULATE MATTER ATTENUATION BY FLUE GAS CONDITIONING DATE OF PUBLICATION: JULY 5, 014 ISSN: 48-4098 OLUME 0 ISSUE 06 JULY 014 SUSPENDED PARTICULATE MATTER ATTENUATION BY FLUE GAS CONDITIONING 1 NITIN G. PUNEKAR, S. Y. KAMDI, R.E.THOMBARE 1 Chandrapur Super

More information

Paolo Chiesa. Politecnico di Milano. Tom Kreutz*, Bob Williams. Princeton University

Paolo Chiesa. Politecnico di Milano. Tom Kreutz*, Bob Williams. Princeton University Analysis of Hydrogen and Co-Product Electricity Production from Coal with Near Zero Pollutant and CO 2 Emissions using an Inorganic Hydrogen Separation Membrane Reactor Paolo Chiesa Politecnico di Milano

More information

Vinasse a Potential Biomass Cofiring in a Fluidised Bed

Vinasse a Potential Biomass Cofiring in a Fluidised Bed Vinasse a Potential Biomass Cofiring in a Fluidised Bed M. Akram 1, CK. Tan 2, SM. Thai 2, R. Garwood 2 1 University of Sheffield 2 University of South Wales 10 th ECCRIA conference 15 17 September 2014

More information

Exhaust gas treatment technologies for pollutant emission abatement from fossil fuel power plants

Exhaust gas treatment technologies for pollutant emission abatement from fossil fuel power plants Sustainable Development and Planning III 923 Exhaust gas treatment technologies for pollutant emission abatement from fossil fuel power plants E. David, V. Stanciu, C. Sandru, A. Armeanu & V. Niculescu

More information

Advanced Analytical Chemistry Lecture 10. Chem 4631

Advanced Analytical Chemistry Lecture 10. Chem 4631 Advanced Analytical Chemistry Lecture 10 Chem 4631 What is a fuel cell? An electro-chemical energy conversion device A factory that takes fuel as input and produces electricity as output. O 2 (g) H 2 (g)

More information

ABE 482 Environmental Engineering in Biosystems. September 29 Lecture 11

ABE 482 Environmental Engineering in Biosystems. September 29 Lecture 11 ABE 482 Environmental Engineering in Biosystems September 29 Lecture 11 Today Gasification & Pyrolysis Waste disposal balance Solid Waste Systems Solid Waste Air Limited air No air Combustion Gasification

More information

R.K.Yadav/Automobile Engg Dept/New Polytechnic Kolhapur. Page 1

R.K.Yadav/Automobile Engg Dept/New Polytechnic Kolhapur. Page 1 6.1 Types of fuels 4 Marks Definition, classification, properties, Calorific value of fuels. Ultimate analysis and proximate analysis of solid fuels. Liquid fuels- Comparative information about composition,

More information

Meyer Steinberg Vice President and Chief Scientist HCE LLC, Melville, NY

Meyer Steinberg Vice President and Chief Scientist HCE LLC, Melville, NY The Highly Efficient Integrated Plasma Fuel Cell (IPFC) Energy Cycle for Conversion of Fossil and Biomass Fuels to Electric Power Generation and Hydrogen and Liquid Transportation Fuel Production with

More information

Study and Design on Small Scale Biomass Gasification for Electricity Generation (Dual Fuel)

Study and Design on Small Scale Biomass Gasification for Electricity Generation (Dual Fuel) Study and Design on Small Scale Biomass Gasification for Electricity Generation (Dual Fuel) Prepared by: Assoc. Prof. Sengratry Kythavone Prof. Dr. Khamphone Nanthavong Mr. Vongsavanh Chanhthaboune. Outline

More information

C R. ombustion esources, Inc. Evaluation of Stratean Inc. Gasifier System. 18 March Consultants in Fuels, Combustion, and the Environment

C R. ombustion esources, Inc. Evaluation of Stratean Inc. Gasifier System. 18 March Consultants in Fuels, Combustion, and the Environment C R ombustion esources, Inc. 1453 W. 820 N. Provo, Utah 84601 Consultants in Fuels, Combustion, and the Environment 18 March 2016 Submitted To: Stratean Inc. 1436 Legend Hills Drive Clearfield, UT 84015

More information

NEW TECHNOLOGIES IN COAL-FIRED THERMAL POWER PLANTS FOR MORE EFFECTIVE WORK WITH LESS POLLUTION

NEW TECHNOLOGIES IN COAL-FIRED THERMAL POWER PLANTS FOR MORE EFFECTIVE WORK WITH LESS POLLUTION UDK 621.311.22:502.174 Dip.el.eng. Igor SEKOVSKI NEW TECHNOLOGIES IN COAL-FIRED THERMAL POWER PLANTS FOR MORE EFFECTIVE WORK WITH LESS POLLUTION Abstract Today people make a lot of analysis, of work of

More information

Simulation of methanol synthesis from syngas obtained through biomass gasification using Aspen Plus

Simulation of methanol synthesis from syngas obtained through biomass gasification using Aspen Plus 6th International Conference on Sustainable Solid Waste Management (NAXOS 2018) Simulation of methanol synthesis from syngas biomass gasification using Aspen Plus M. Puig-Gamero, J. Argudo-Santamaria,

More information

PRECOMBUSTION TECHNOLOGY for Coal Fired Power Plant

PRECOMBUSTION TECHNOLOGY for Coal Fired Power Plant IEA Greenhouse Gas R&D Programme 2013 Summer School. Nottingham, UK PRECOMBUSTION TECHNOLOGY for Coal Fired Power Plant MONICA LUPION Visiting Research Scientist MIT Energy Initiative MITEI's Research

More information

Canadian Clean Power Coalition: Clean Coal-Fired Power Plant Technology To Address Climate Change Concerns

Canadian Clean Power Coalition: Clean Coal-Fired Power Plant Technology To Address Climate Change Concerns Canadian Clean Power Coalition: Clean Coal-Fired Power Plant Technology To Address Climate Change Concerns Presented to Gasification Technologies 2002 San Francisco, CA October 27-30, 2002 Bob Stobbs,

More information

Poultry Litter as a Renewable Resource. Fibrominn Biomass Power Plant

Poultry Litter as a Renewable Resource. Fibrominn Biomass Power Plant Poultry Litter as a Renewable Resource Fibrominn Biomass Power Plant 1 Poultry Litter Undigested Feed Water Bedding Material (wood shavings/sunflower hulls) Barn Flooring Material Tramp Contaminants 2

More information

Potential of Allam cycle with natural gas to reduce carbon dioxide emission in India

Potential of Allam cycle with natural gas to reduce carbon dioxide emission in India The 6 th International Symposium-Supercritical CO2 Power Cycles, March 27-29, 2018, Pittsburgh, PA Potential of Allam cycle with natural gas to reduce carbon dioxide emission in India Amit Mulchand Nabros

More information

Ronald L. Schoff Parsons Corporation George Booras Electric Power Research Institute

Ronald L. Schoff Parsons Corporation George Booras Electric Power Research Institute Pre-Investment of IGCC for CO 2 Capture with the Potential for Hydrogen Co-Production Gasification Technologies 2003 - San Francisco, California - October 12-15, 2003 Michael D. Rutkowski, PE Parsons Corporation

More information

FINEX - AN OLD VISION OF THE IRON AND STEEL INDUSTRY BECOMES REALITY*

FINEX - AN OLD VISION OF THE IRON AND STEEL INDUSTRY BECOMES REALITY* FINEX - AN OLD VISION OF THE IRON AND STEEL INDUSTRY BECOMES REALITY* Shibu John 1 Christian Boehm 2 Wolfgang Sterrer 3 Norbert Rein 4 Yi Sang-ho 5 Shin Sungkee 6 Abstract Rising energy demand and steadily

More information

Technical Notes for Biomass and Air Quality Guidance

Technical Notes for Biomass and Air Quality Guidance Technical Notes for Biomass and Air Quality Guidance Appendix 1 Restricted Commercial AEA/ED45645/Draft 1 Unit conversion tool Introduction In order to assess the impact of a combustion appliance on air

More information

MULTI-WASTE TREATMENT AND VALORISATION BY THERMOCHEMICAL PROCESSES. Francisco Corona Encinas M Sc.

MULTI-WASTE TREATMENT AND VALORISATION BY THERMOCHEMICAL PROCESSES. Francisco Corona Encinas M Sc. MULTI-WASTE TREATMENT AND VALORISATION BY THERMOCHEMICAL PROCESSES Corona, F.; Hidalgo, D.; Díez-Rodríguez, D. and Urueña, A. Francisco Corona Encinas M Sc. PART 1: THERMOCHEMICAL PROCESSES Introduction.

More information

Production and purification of hydrogen-methane mixtures utilized in internal combustion engines

Production and purification of hydrogen-methane mixtures utilized in internal combustion engines Sustainable Development and Planning VII 535 Production and purification of hydrogen-methane mixtures utilized in internal combustion engines M. C. Annesini 1, R. Augelletti 1, M. De Falco 2, S. Frattari

More information

Two-stage Gasification of Untreated and Torrefied Wood

Two-stage Gasification of Untreated and Torrefied Wood 133 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 50, 2016 Guest Editors: Katharina Kohse-Höinghaus, Eliseo Ranzi Copyright 2016, AIDIC Servizi S.r.l., ISBN 978-88-95608-41-9; ISSN 2283-9216

More information

Hydrogen Rich Syngas Production via Underground Coal Gasification (UCG) from Turkish Lignite

Hydrogen Rich Syngas Production via Underground Coal Gasification (UCG) from Turkish Lignite Hydrogen Rich Syngas Production via Underground Coal Gasification (UCG) from Turkish Lignite Presenter: Prof. Dr. Mesut Gür Prof. Dr. Nurdil ESKİN Oğuz BÜYÜKŞİRİN Engin Deniz CANBAZ Istanbul Technical

More information

Effects of Purification on the Hydrogen Production in Biomass Gasification Process

Effects of Purification on the Hydrogen Production in Biomass Gasification Process 1495 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 56, 2017 Guest Editors: Jiří Jaromír Klemeš, Peng Yen Liew, Wai Shin Ho, Jeng Shiun Lim Copyright 2017, AIDIC Servizi S.r.l., ISBN 978-88-95608-47-1;

More information

WESTINGHOUSE PLASMA GASIFICATION

WESTINGHOUSE PLASMA GASIFICATION WESTINGHOUSE PLASMA GASIFICATION 2 clean renewable energy Westinghouse Plasma has over 30 years of experience in research, development, testing, design and commercial use of proven plasma torch technology.

More information

Fluidised bed gasification of high-ash South African coals: An experimental and modelling study

Fluidised bed gasification of high-ash South African coals: An experimental and modelling study Fluidised bed gasification of high-ash South African coals: An experimental and modelling study A.D. Engelbrecht, B.C. North, B.O. Oboirien, R.C. Everson and H.W.P.J. Neomagus MAY 2012 www.csir.co.za CSIR

More information