Palmer June /13/01

Size: px
Start display at page:

Download "Palmer June /13/01"

Transcription

1 7/3/

2 Day 4_Ecosystem Functions_intro + OM processes Ecosystem Function = Ecosystem or Ecological Processes Primary Production Whole Stream metabolism Organic matter processing (Decomposition and use of OM) Nutrient Dynamics (uptake/release/transformations) Shifting the focus to restoration of function (hydrogeomorphic and ecological processes) Sediment supply Hydrologic regime Organic matter processing Nutrient Processing Primary production Processes Flood control Water quality Fish Inverts SERVICES

3 What people want from rivers: Ecosystem goods & services clean water - drinking, irrigation climate control temperature regulation minimize floods - absorb storm energy food - fisheries recreation angling, canoeing, hiking Objectives What needs to be restored: Processes that support ecosystem services nutrient & contaminant processing e.g., denitrification Water availability - diacharge water storage - groundwater recharge heat capacity condensation, evaporation primary & secondary production photosynthesis, growth Organic matter processing nutrient regeneration; decomp What restoration designs can address: Controlling factors Floodplain connectivity Channel morphology & interaction with flow Channel complexity & retentiveness Riparian vegetation Energy inputs organic matter, sunlight Streambed D 5, D 5 /D 84 Sediment transport Flow regime frequency, intensity of floods & baseflows Location Palmer of Source June 6Populations, Cumulative Watershed Impacts Options Why include functional measures? They assess how ecosystems work, recognizing that processes support structure Need for additional tools for water resource managers Belief that function may be a better measure of resilience (e.g., Schindler, D.W. 99. Oikos 57: 5-4) May indicate direction of change after restoration function MUST come back before structure (so may detect change more rapidly due to species redundancy, we may be able to determine that management practices are working more quickly than if we wait for a species to return) More integrative, less variable 3

4 Is there an ideal level of functioning?? No the ideal goal is to get: Biophysical processes within the range of natural variability for least impacted systems so, the river system provides ecosystem services supports native flora and fauna is more self-sustaining Most likely when focus is on restoration of dynamic processes (e.g., river-floodplain reconnection) Activities should minimize physical disturbance and harm to native vegetation Activities should avoid channel designs or hardening that could force river adjustments up- and downstream Acknowledge Palmer June it may 6take time What supports stream Ecosystems? Autotrophic vs. Heterotrophic systems SUN: autochthonous streams = primary production. OM inputs: allochthonous streams = inputs like leaves 4

5 The River Continuum Concept Heterotrophy System is supported by breakdown of OM C 6 H O O 6 H O + 6 CO + energy animals, fungi, plants, most bacteria aerobic or anaerobic decomposition 5

6 Allochthonous streams Organic matter inputs are the primary energy source animals, fungi, plants, most bacteria break the OM down, making energy available for higher trophic levels Sources/Types of OM Coarse-Particulate Organic Matter (CPOM) Fine Particulate Organic Matter (FPOM) Dissolved Organic Matter (DOM) 6

7 Controls on OM Processing Leaf chemistry (species) Invertebrate Activity Microbes Water Chemistry Breakdown of CPOM: start to finish 7

8 Leaf Chemistry & Decomposition C:N high C:N means lower decomposition Secondary Compounds Tannin Tannins Polyphenolics Alkaloids Lignin Nutrients N, P, micronutrients Leaf Chemistry and Decomposition C:N high C:N means lower decomposition Secondary Compounds Tannins, Polyphenolics, Alkaloids, Lignin Nutrients N, P, micronutrients willow birch alder Haapala et al., 8

9 Invertebrate Processing of POM Functional Feeding Groups Grazers and scrapers consume algae and biofilm from stones and other surfaces Shredders consume leaves with their associated microbes Collector-gatherers consume fine particles of OM from the water column (suspension-feeders) and from the stream bed Predators feed on smaller macroinvertebrates Importance of shredders & fungi in OM processing Sponseller & Benfield,, JNABS Hieber & Gessner, 9

10 What happens if you reduce CPOM? Study of litter exclusion in headwater streams in N.C. Wallace et al., 997 Change Quality of CPOM? Less phenols & more lignin at senesce Elevated CO leads to lower quality litter C:N phenols lignin Tuchman et al.,

11 Decomposition as a metric of ecosystem function? integral to food web in stream ecosystems represents the flow of energy through the heterotrophic part of the ecosystem OM processing is linked to downstream consumption and biogeochemistry Quantification of decomposition rates yields an integrative measure of ecosystem function Litter Decomposition Rates in northern Sweden streams Reference = forested watersheds Restored = walls removed, banks regraded, natural wood input allowed Channelized = rock walls and homogenous streambed Lepori et al. 5. Journal of Applied Ecology Volume 4 Page 8

12 Litter Decomposition Rates in northern Sweden streams Näreträskbäcken Vatjokbäcken Storkvarnbäcken Videbäcken Krycklan Vällingträskbäcken Dergabäcken Abmobäcken Staggbäcken Tannbäcken Ramsan Maltan Channelized Restored Reference (degraded) (undegraded) Leaf mass loss (%) 5 Lepori et al. 5. Journal of Applied Ecology Volume 4 Page 8 Shredder richness Channelized Restored Reference Shredder abundance Channelized Restored Reference Litter Decomposition Rates Agricultural vs. Urban Headwaters This work and others show that in general excess nutrients and elevated flows enhance breakdown Decomposition Rate (k) vs. % Ag y =.x +.9 R = Palmer et al. unpub Decomposition rate vs. % Dev (Urban) y =.66x -.6 R = Palmer.8 June 6 Palmer et al. unpub Meyer et al. 5. JNABS, Vol 4

13 Setting aside the detritivorous fish and insects why is OM important in streams? It plays a huge role in biogeochemical processes such as production and nutrient processes! Moving on to production Whole Stream metabolism Autotrophic System is supported by photosynthesis 6 CO + 6 H O + light C 6 H O O Autotrophs: algae, macrophytes, bacteria Heterotrophic System is supported by microbial respiration (breakdown) of organic matter C 6 H O O 6 H O + 6 CO + energy animals, fungi, plants, most bacteria aerobic or anaerobic decomposition 3

14 Biofilm is a gel-like substance and is a mixture of sugars, enzymes, diatoms (attached and loose), bluegreen algae, bacteria, fungus, microinvertebrates i.e., protozoans and early stages of insects. It absorbs Dissolved Organic Matter (DOM) from the water and collects Fine Particulate Matter (FPOM) in the matrix. PRIMARY SITE OF PRODUCTION & HETEROTROPHIC METABOLISM Benthic primary production and whole stream metabolism CONTROLS: Amount of sunlight Nutrients (ratio of N: P: C) Flow Temperature Herbivory Biofilm on rocks Measuring benthic production:. Biomass accural on tiles (measure chlorohpyll). Palmer Measure June 6 diel changes in oxygen by deploying sondes with O probe 4

15 Diel Δ oxygen method for measuring primary production (if we only had photosynthetic organisms) GPP* = NPP + respiration of O produced due to photosynthesis during day (oxygen is released in the light but some also used by respiration which you estimate using night measurements) produce O Algae Macrophytes of all O consumption during night time (oxygen taken up in the dark) use O Algae but Microbes, inverts, fish also use O so we really estimate community respiration 3. Whole stream metabolism method at reach scales NDM* = GPP community respiration Average daytime O production (includes losses due to heterotrophic respiration) 8. Average night-time O use Dissolved O diel curve used to estimate whole stream metabolism* O (mg/l) TIME *Net Daily Metabolism or Whole Stream Metabolism = the net oxygen change per day resulting from biological activity; it takes into account the costs of autotrophic & heterotrophic production 5

16 Method Sondes deployed upstream & downstream to measure dissolved O for 48 hr Determine re-aeration coefficient using a propane evasion experiment Hydrolab mini Sonde (temp, conductivity, ph, O, etc). Now plot oxygen use per unit time and stream length When change in oxygen = then there is no Net Production (respiration = production) Mg/L 7. Mg O L - hr Respiration CR (measured at night) : : 4: Time (hr) GPP 6

17 GPP - highest in biomes with little riparian vegetation; lowest in forested biomes - land-use influences GPP across all biomes, with agriculturally influenced sites having higher rates than urban-influenced or reference sites CR - highly variable within and among biomes but often positively correlated with watercolumn nutrient concentrations and stream transient storageacross all biomes. Prairie stream in Kansas Forested stream in Tennessee Ratio of Pre vs. Post restoration Production and Respiration in Restored (dark bars) vs. Degraded streams* 4 3 PRODUCTION a) winter Control (n = 4) Manipulated (n = 4) * a) winter MS RESPIRATION * GPP A:B ratio b) spring c) summer d) autumn MS * Respiration A:B ratio 3 b) spring 4 c) summer 3 MS 4 3 d) autumn * Control (n = 4) Manipulated (n = 4) *Effects of in-stream restoration on ecosystem metabolism in headwater streams along a gradient of upland soil and vegetation disturbance. Brian Roberts Pat Mulholland, and Jeff Houser * * ** 7

18 Measuring Decomposition (litter bags, leaf packs) W t = W o e -kt Where W t = weight (mass) at time t, W o = initial mass And k is the rate coefficient (units are /time usually days) Log e (mass) days 8

19 How do you know the right direction to push (restore) a stream? window of natural variability Ecosystem Function Restoration Time Space 9

Background Information

Background Information Background Information Linking Trees To Streams (Also available online at www.stroudcenter.org/lpn under the Learning Center. All images and drawings are copyright Stroud Water Research Center unless otherwise

More information

River transport and chemistry

River transport and chemistry OCN 401 Biogeochemical Systems (10.15.15) (Schlesinger & Bernhardt: Chapter 8) River transport and chemistry Lecture Outline 1. Introduction - Overview 2. Soil Hydraulics & Stream Hydrology 3. Stream Load

More information

River transport and chemistry. Lecture Outline

River transport and chemistry. Lecture Outline OCN 401 Biogeochemical Systems (10.12.17) (Schlesinger & Bernhardt: Chapter 8) River transport and chemistry Lecture Outline 1. Introduction Overview 2. Soil Hydraulics & Stream Hydrology 3. Stream Load

More information

Effects of Urbanization on Stream Ecosystems in the Lower Basin of the St. Johns River

Effects of Urbanization on Stream Ecosystems in the Lower Basin of the St. Johns River Effects of Urbanization on Stream Ecosystems in the Lower Basin of the St. Johns River Dean R. Dobberfuhl, Ph.D. Division of Environmental Sciences, St. Johns River Water Management District Collaborators

More information

Principles of Terrestrial Ecosystem Ecology

Principles of Terrestrial Ecosystem Ecology E Stuart Chapin III Pamela A. Matson Harold A. Mooney Principles of Terrestrial Ecosystem Ecology Illustrated by Melissa C. Chapin With 199 Illustrations Teehnische Un.fversitSt Darmstadt FACHBEREIGH 10

More information

Chapter 55: Ecosystems

Chapter 55: Ecosystems Chapter 55: Ecosystems You Must Know: How energy flows through the ecosystem (food chains and food webs) The difference between gross primary productivity and net primary productivity. The carbon and nitrogen

More information

Chapter 55: Ecosystems

Chapter 55: Ecosystems Ch. 55 Warm-Up 1. Draw an energy pyramid and label the following trophic levels: Primary producer Primary consumer Secondary consumer Tertiary consumer 2. What is an example of an organism at each level

More information

WASA Quiz Review. Chapter 2

WASA Quiz Review. Chapter 2 WASA Quiz Review Chapter 2 Question#1 What is surface runoff? part of the water cycle that flows over land as surface water instead of being absorbed into groundwater or evaporating Question #2 What are

More information

Section 3 1 What Is Ecology? (pages 63 65)

Section 3 1 What Is Ecology? (pages 63 65) Chapter 3 The Biosphere Section 3 1 What Is Ecology? (pages 63 65) This section identifies the different levels of organization that ecologists study. It also describes methods used to study ecology. Interactions

More information

Unit 2: Ecology. Chapters 2: Principles of Ecology

Unit 2: Ecology. Chapters 2: Principles of Ecology Unit 2: Ecology Chapters 2: Principles of Ecology Ecology Probe: Answer the questions and turn it in! This is a standard aquarium with a population of fish. There is no filter in this aquarium and no one

More information

Class XII Chapter 14 Ecosystem Biology

Class XII Chapter 14 Ecosystem Biology Question 1: Fill in the blanks. (a) Plants are called as because they fix carbon dioxide. (b) In an ecosystem dominated by trees, the pyramid (of numbers) is type. (c) In aquatic ecosystems, the limiting

More information

Ecosystem Ecology. The biological and physical components of the environment are a single interactive system in the concept of the ecosystem

Ecosystem Ecology. The biological and physical components of the environment are a single interactive system in the concept of the ecosystem Ecosystem Ecology The biological and physical components of the environment are a single interactive system in the concept of the ecosystem A.G. Tansley coined ecosystem in 1935 Ecosystem = Ecosystem =

More information

Riparian Buffers and Stream Restoration

Riparian Buffers and Stream Restoration Riparian Buffers and Stream Restoration Why focus on riparian areas? Link land and water on any given site and link landscapes together in a watershed Riparian corridors protect the circulatory system

More information

Chapter 19. Nutrient Cycling and Retention. Chapter Focus. The hydrological cycle. Global biogeochemical cycles. Nutrient cycling

Chapter 19. Nutrient Cycling and Retention. Chapter Focus. The hydrological cycle. Global biogeochemical cycles. Nutrient cycling Chapter Focus Chapter 19 Nutrient Cycling and Retention Nutrient cycling Phosphorus Nitrogen Carbon Water, Sulfur Decomposition Biotic effect on nutrient distribution and cycling Disturbance Global biogeochemical

More information

Carbon Cycling or. perspective. CE5508 Biogeochemistry

Carbon Cycling or. perspective. CE5508 Biogeochemistry Carbon Cycling or the importance of methods & perspective CE5508 Biogeochemistry Spring 2006 Topics to cover GPP vs. NPP vs. NEP (NCP) Carbon flow paths Allochthonous (exogenous) vs. autochthonous (endogenous)

More information

Finding Common Ground between Ecosystem Services and Environmental Ecosystems

Finding Common Ground between Ecosystem Services and Environmental Ecosystems Finding Common Ground between Ecosystem Services and Environmental Ecosystems Elizabeth H. Smith, Ph.D. Nicole A. Davis, B.S. Center for Coastal Studies Texas A&M University-Corpus Christi Project funding

More information

How Ecosystems Work: Energy Flow and Nutrient Cycles

How Ecosystems Work: Energy Flow and Nutrient Cycles How Ecosystems Work: Energy Flow and Nutrient Cycles Bubble in your ID and the answer to the 25 questions. You can look up the answers to these question on line. 1. The flow of solar energy through an

More information

Ecosystems. Trophic relationships determine the routes of energy flow and chemical cycling in ecosystems.

Ecosystems. Trophic relationships determine the routes of energy flow and chemical cycling in ecosystems. AP BIOLOGY ECOLOGY ACTIVITY #5 Ecosystems NAME DATE HOUR An ecosystem consists of all the organisms living in a community as well as all the abiotic factors with which they interact. The dynamics of an

More information

Substrate-Organism Relationships. Substrate Type & Size

Substrate-Organism Relationships. Substrate Type & Size Substrate-Organism Relationships Substrate = Substratum (Substrata) Fundamental Roles 1) Habitat 2) Food 3) Protection Substrate Type & Size Inorganic mineral particle Exposed Bedrock Particles (from weathered

More information

Functional Differences among Microbial Communities of Three UNDERC. Streams and the Effect on Leaf Decomposition. Brent J. Schleck

Functional Differences among Microbial Communities of Three UNDERC. Streams and the Effect on Leaf Decomposition. Brent J. Schleck 1 Functional Differences among Microbial Communities of Three UNDERC Streams and the Effect on Leaf Decomposition Brent J. Schleck bschleck@purdue.edu Supervised by: Chris Patrick BIO 35502-1 Practicum

More information

Chapter 3 Ecosystem Ecology. Tuesday, September 19, 17

Chapter 3 Ecosystem Ecology. Tuesday, September 19, 17 Chapter 3 Ecosystem Ecology Reversing Deforestation in Haiti Answers the following: Why is deforestation in Haiti so common? What the negative impacts of deforestation? Name three actions intended counteract

More information

Ecosystems and Nutrient Cycles Chapters 3

Ecosystems and Nutrient Cycles Chapters 3 Ecosystems and Nutrient Cycles Chapters 3 Prokaryotic and Eukaryotic cells Figure 3-2 Prokaryotic cells: Have organelles. Bacteria and Archaea are composed of prokaryotic cells. Eukaryotic cells: cells,

More information

We share the Earth. Ecology & Environmental Issues

We share the Earth. Ecology & Environmental Issues We share the Earth Ecology & Environmental Issues 1 with a whole lot of other creatures We don t share very well. 2 Ecology Putting it all together study of interactions between creatures & their environment,

More information

Jackson Lake Analysis

Jackson Lake Analysis Jackson Lake Analysis Lake Zones Lake Zones Limnetic Zone- open water far from shore Light penetrates shallow, allowing photosynthesis Supports phytoplankton (algae, protists, cyanobacteria) which then

More information

1. Understand the calculation of stream order and the physical characteristics of low, middle and high order streams.

1. Understand the calculation of stream order and the physical characteristics of low, middle and high order streams. 1 Ecosystems & Ecophysiology Lecture 2 Rivers Objectives 1. Understand the calculation of stream order and the physical characteristics of low, middle and high order streams. 2. Know morphological and

More information

Name Class Date. 1. What is at the core of every organism s interaction with the environment?

Name Class Date. 1. What is at the core of every organism s interaction with the environment? Name Class Date Section 3-2 Energy Flow (Pages 67-73) Producers 1. What is at the core of every organism s interaction with the environment? 2. What source of energy do organisms use if they don t use

More information

ECOSYSTEMS. Follow along in chapter 54. *Means less important

ECOSYSTEMS. Follow along in chapter 54. *Means less important ECOSYSTEMS Follow along in chapter 54 *Means less important How do ecosystems function? What is an ecosystem? All living things in an area and their abiotic environment Ecosystem function can be easily

More information

RipCycles & Nutrient Travels

RipCycles & Nutrient Travels RipCycles & Nutrient Travels Adapted from: Water Wonders in Project Learning Tree produced by The American Forest Foundation, Washington, D.C., 1996. Nutrient Cycling Grade Level: Part A: Intermediate

More information

The Biosphere Chapter 3. What Is Ecology? Section 3-1

The Biosphere Chapter 3. What Is Ecology? Section 3-1 The Biosphere Chapter 3 What Is Ecology? Section 3-1 Interactions and Interdependence Ecology is the scientific study of interactions among organisms and between organisms and their environment, or surroundings.

More information

The Importance of Riparian Forests

The Importance of Riparian Forests The Importance of Riparian Forests By Jean Llewellyn Monroe County is the second fastest growing county in Pennsylvania. This rapid growth can be problematic because uncontrolled and unregulated growth

More information

Introduction - Overview

Introduction - Overview OCN 401 Biogeochemical Systems (10.9.18) (Schlesinger & Bernhardt: Chapter 8) River transport and chemistry Lecture Outline 1. Introduction Overview 2. Soil Hydraulics & Stream Hydrology 3. Stream Load

More information

Production and Life OCEA 101

Production and Life OCEA 101 Production and Life OCEA 101 Overview Photosynthesis Primary production Phytoplankton biomass Controls on primary production and biomass Food webs Photosynthesis Photosynthesis requires: (i) sunlight (ii)

More information

Ecosystems: What Are They and How Do They Work? Chapter 3

Ecosystems: What Are They and How Do They Work? Chapter 3 Ecosystems: What Are They and How Do They Work? Chapter 3 Core Case Study: Tropical Rain Forests Are Disappearing Cover about 2% of the earth s land surface Contain about 50% of the world s known plant

More information

SUSTAINING ECOSYSTEMS

SUSTAINING ECOSYSTEMS SUSTAINING ECOSYSTEMS Earth's Life Support System Earth's major components Ecosystem System of interaction among all living (biotic) organisms of an area and their interactions with the (abiotic) environment.

More information

Impacts of stream restoration on nutrient and sediment concentrations and fluxes: An overview. Solange Filoso

Impacts of stream restoration on nutrient and sediment concentrations and fluxes: An overview. Solange Filoso Impacts of stream restoration on nutrient and sediment concentrations and fluxes: An overview Solange Filoso SPECIFIC STREAM RESTORATION DESIGNS AND FEATURES Common Designs: Natural channel design (NCD)

More information

Lakes, Primary Production, Budgets and Cycling Schlesinger and Bernhardt (2013): Chapter 8, p

Lakes, Primary Production, Budgets and Cycling Schlesinger and Bernhardt (2013): Chapter 8, p OCN 401-Biogeochemical Systems Lecture #12 (10.8.13) Angelos Hannides, hannides@hawaii.edu Lakes, Primary Production, Budgets and Cycling Schlesinger and Bernhardt (2013): Chapter 8, p. 288-308 1. Physical

More information

C Nutrient Cycling Begin Climate Discussion. Day 29 December 2, Take-Home Test Due Dec 11 5 pm No Final Exam

C Nutrient Cycling Begin Climate Discussion. Day 29 December 2, Take-Home Test Due Dec 11 5 pm No Final Exam NREM 301 Forest Ecology & Soils C Nutrient Cycling Begin Climate Discussion Day 29 December 2, 2008 Take-Home Test Due Dec 11 5 pm No Final Exam Our discussions for the semester have centered on Clipsrot

More information

When Things Heat Up. To relate the physical and chemical properties of water to a water pollution issue.

When Things Heat Up. To relate the physical and chemical properties of water to a water pollution issue. Purpose: Summary: To relate the physical and chemical properties of water to a water pollution issue. In this exercise, students will measure the temperature and dissolved oxygen of a stream (or use their

More information

LIMNOLOGY. Inland Water Ecosystems. JACOB KALFF McGill University. Prentice Hall. Upper Saddle River, New Jersey 07458

LIMNOLOGY. Inland Water Ecosystems. JACOB KALFF McGill University. Prentice Hall. Upper Saddle River, New Jersey 07458 LIMNOLOGY Inland Water Ecosystems JACOB KALFF McGill University Prentice Hall Prentice Hall Upper Saddle River, New Jersey 07458 Contents CHAPTER 1 Inland Waters and Their Catchments: An Introduction and

More information

Bio 112 Ecology: Final Practice Exam Multiple Choice

Bio 112 Ecology: Final Practice Exam Multiple Choice Final Exam Topics: 1) Basic Ecological Principles a) Biomes, ecosystems, communities and populations i) Biomes: know the major ones and where they occur ii) Ecosystem: communities and physical environment

More information

Ecosystems and the Biosphere: Energy Flow Through the Ecosystem and the Recycling of Matter

Ecosystems and the Biosphere: Energy Flow Through the Ecosystem and the Recycling of Matter Name Ecosystems and the Biosphere: Energy Flow Through the Ecosystem and the Recycling of Matter Overview: An ecosystem is: All of the organisms living on Earth need to carry out life processes such as

More information

an ecosystem is a community of different species interacting with one another and with their nonliving environment of matter and energy

an ecosystem is a community of different species interacting with one another and with their nonliving environment of matter and energy 1 Ecocsystems: Energy Flow and Materials Cycling 2 EVPP 111 Lecture Dr. Largen Spring 2004 Energy Flow and Matter Cycling Energy flow s through ecosystems ecosystems global energy budget physical laws

More information

River Transport and Chemistry

River Transport and Chemistry River Transport and Chemistry Biogeochemical Systems -- OCN 401 Reading: Schlesinger Chapter 8 1. Overview Outline 2. Soil hydraulics & stream hydrology Vegetation effects Porosity Stream hydrographs 3.

More information

Phosphorus availability and leaf species affect litter stoichiometry

Phosphorus availability and leaf species affect litter stoichiometry Phosphorus availability and leaf species affect litter stoichiometry Erin Scott, Bryant Baker, Clay Prater, Michelle Evans-White, Thad Scott University of Arkansas Funding: NSF AR Dept. Higher Ed. AR Ag.

More information

Lab 8. AQUATIC MACROINVERTEBRATE COMMUNITY STRUCTURE

Lab 8. AQUATIC MACROINVERTEBRATE COMMUNITY STRUCTURE Aquatic macroinvertebrate community structure 1 Lab 8. AQUATIC MACROINVERTEBRATE COMMUNITY STRUCTURE A. Objectives The objectives for this laboratory are to determine stream inputs and characteristics

More information

Classification of systems. Aquatic Ecosystems. Lakes 9/9/2013. Chapter 25

Classification of systems. Aquatic Ecosystems. Lakes 9/9/2013. Chapter 25 Aquatic Ecosystems Chapter 25 Classification of systems Aquatic systems classified by physical environment Salinity most important Marine divided broadly into coastal and open water Freshwater divided

More information

Good Housekeeping Pollution Prevention

Good Housekeeping Pollution Prevention Good Housekeeping Pollution Prevention Oak Meadow Golf and Banquet September 12, 2008 Richard Hentschel Extension Specialist Green Industry Programming University of Illinois Sensible turf management limits

More information

Ecosystems and Biodiversity: overview of

Ecosystems and Biodiversity: overview of Ecosystems and Biodiversity: overview of mechanistic studies David Chandler, Walter Dodds, Mark Eberle, Michelle Evans-White, Keith Gido, David Hoeinghaus, Tony Joern, Angela Laws, Justin Murdock, Jesse

More information

Ecosystems and the Biosphere Outline

Ecosystems and the Biosphere Outline Ecosystems and the Biosphere Outline Ecosystems Processes in an ecosystem Production, respiration, decomposition How energy and nutrients move through an ecosystem Biosphere Biogeochemical Cycles Gaia

More information

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1 Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1 Life Depends on the Sun Energy from the sun enters an ecosystem when plants use sunlight to make sugar molecules. This happens through

More information

Reinforcement Unit 5 Resource Book

Reinforcement Unit 5 Resource Book 13.1 ECOLOGISTS STUDY RELATIONSHIPS KEY CONCEPT Ecology is the study of the relationships among organisms and their environment. Ecology is the study of interactions among living things, and between living

More information

Ecology Ecosystem Characteristics. Ecosystem Characteristics, Nutrient Cycling and Energy Flow

Ecology Ecosystem Characteristics. Ecosystem Characteristics, Nutrient Cycling and Energy Flow Ecology Ecosystem Characteristics Ecosystem Characteristics, Nutrient Cycling and Energy Flow Let us consider ecosystems We have looked at the biosphere, and the biomes within the biosphere, the populations

More information

4/13/2015. The Biosphere

4/13/2015. The Biosphere The Biosphere Ecology- the scientific study of interactions among organisms and between organisms and their environment. The word ecology was first used in 1866 by Ernst Haeckel. Biosphere- contains the

More information

Ecology and River Restoration

Ecology and River Restoration Ecology and River Restoration Ecology is the study of the relationships between plants and animals and the environment in which they live. Owen, 1980 Martin Janes Managing Director The River Restoration

More information

Producers. living systems need energy to function. autotrophs. Sunlight is the main energy source for life on Earth.

Producers. living systems need energy to function. autotrophs. Sunlight is the main energy source for life on Earth. Producers living systems need energy to function. Sunlight is the main energy source for life on Earth. sources of energy sunlight inorganic chemical compounds. autotrophs. capture energy from sunlight

More information

ENVE203 Environmental Engineering Ecology (Oct 01, 2012)

ENVE203 Environmental Engineering Ecology (Oct 01, 2012) ENVE203 Environmental Engineering Ecology (Oct 01, 2012) Elif Soyer Ecosystems and Energy What is Ecology? Ernst Haeckel (19 th century) two Greek words eco house logy study ecology the study of one s

More information

Riparian Round Up. Adapted from: An original Creek Connections activity. Creek Connections, Allegheny College, Meadville, Pennsylvania, 16335

Riparian Round Up. Adapted from: An original Creek Connections activity. Creek Connections, Allegheny College, Meadville, Pennsylvania, 16335 Riparian Round Up Adapted from: An original Creek Connections activity. Creek Connections, Allegheny College, Meadville, Pennsylvania, 16335 Riparian Functions, Wildlife, and Cycles Grade Level: Basic

More information

Summary. 3 1 What Is Ecology? 3 2 Energy Flow. Name Class Date

Summary. 3 1 What Is Ecology? 3 2 Energy Flow. Name Class Date Chapter 3 Summary The Biosphere 3 1 What Is Ecology? Ecology is the scientific study of interactions among organisms and between organisms and their environment. Earth s organisms live in the biosphere.

More information

The Snapshot CONODOGUINET CREEK WATERSHED SNAPSHOT

The Snapshot CONODOGUINET CREEK WATERSHED SNAPSHOT CONODOGUINET CREEK WATERSHED SNAPSHOT ABOVE: CONODOGUINET CREEK AT RT 74 BRIDGE FACING DOWNSTREAM The Snapshot The Conodoguinet Watershed Snapshot was a collaborative effort to engage local citizens in

More information

Dynamics of Ecosystems. Chapter 57

Dynamics of Ecosystems. Chapter 57 Dynamics of Ecosystems Chapter 57 1 The Water Cycle Nutrient Cycles Trophic Levels Primary Productivity Outline The Energy in Food Chains Ecological Pyramids Interactions Among Trophic Levels Species Richness

More information

ECOLOGY Energy Flow Packet 2 of 4

ECOLOGY Energy Flow Packet 2 of 4 ECOLOGY Energy Flow Packet 2 of 4 3 2 Energy Flow Producers Where does the energy for life processes come from? Producers Producers Without a constant input of energy, living systems cannot function. Sunlight

More information

Ecosystem Ecology. Trophic levels energy flow through ecosystems. Productivity and energy. Autotrophs: primary producers Heterotrophs: consumers

Ecosystem Ecology. Trophic levels energy flow through ecosystems. Productivity and energy. Autotrophs: primary producers Heterotrophs: consumers Ecosystem Ecology 1. Overview of material and energy flows in ecosystems 2. Primary production 3. Secondary production and trophic efficiency 4. Ecological Pyramids Trophic levels energy flow through ecosystems

More information

Nutrient Processing and Floodplain Connectivity Following Restoration in Urban Streams

Nutrient Processing and Floodplain Connectivity Following Restoration in Urban Streams 3/5/0 Nutrient Processing and Floodplain Connectivity Following Restoration in Urban Streams Sara McMillan, Gregory Noe, Alea Tuttle,3, Gregory Jennings University of North Carolina at Charlotte, US Geological

More information

Streamside Management. How the area around your pond effects the water.

Streamside Management. How the area around your pond effects the water. Streamside Management Zones and Water Quality How the area around your pond effects the water. Stream(pond)side Management Zone A streamside management zone (SMZ) is a strip of land immediately adjacent

More information

Artificial Leaf Packs ddd

Artificial Leaf Packs ddd Artificial Leaf Packs ddd Sampling method leaf packs Adapted from: Leaf Pack Experiments, Stream Ecology Kit, Instructor s Manual. LaMotte Company aned Stroud Water Research Center. Grade Level: Basic,

More information

Aquatic Science Unit 2. Water Quality and Water Pollution

Aquatic Science Unit 2. Water Quality and Water Pollution Aquatic Science Unit 2 Water Quality and Water Pollution What is a healthy water body? In your own words, take a moment to describe what you believe are some of the characteristics of a healthy stream

More information

6 TH. Core Case Study: Tropical Rain Forests Are Disappearing. The Earth s Life Support System Has Four Major Components. The Diversity of Life

6 TH. Core Case Study: Tropical Rain Forests Are Disappearing. The Earth s Life Support System Has Four Major Components. The Diversity of Life MILLER/SPOOLMAN ESSENTIALS OF ECOLOGY 6 TH Core Case Study: Tropical Rain Forests Are Disappearing Cover about 2% of the earth s land surface CHAPTER 3 Ecosystems: What Are They and How Do They Work? Contain

More information

This article is provided courtesy of the American Museum of Natural History.

This article is provided courtesy of the American Museum of Natural History. Zebra Mussels and the Hudson River This article is provided courtesy of the American Museum of Natural History. Zebra Mussels and the Hudson River A team of scientists at the Cary Institute of Ecosystem

More information

Earth s Life-Support Atmosphere- gases surrounding earth s surface. Troposphere= air we breathe; weather 78% nitrogen, 21% oxygen, 0.

Earth s Life-Support Atmosphere- gases surrounding earth s surface. Troposphere= air we breathe; weather 78% nitrogen, 21% oxygen, 0. 1 2 3 4 Ecosystems APES CH 3 But First: Cells Complex organic compounds called macromolecules make up the basic molecular units found in cells. Complex carbohydrates Cellulose and starch Proteins- made

More information

13.1 Ecologists Study Relationships. KEY CONCEPT Ecology is the study of the relationships among organisms and their environment.

13.1 Ecologists Study Relationships. KEY CONCEPT Ecology is the study of the relationships among organisms and their environment. 13.1 Ecologists Study Relationships KEY CONCEPT Ecology is the study of the relationships among organisms and their environment. 13.1 Ecologists Study Relationships Ecologists study environments at different

More information

Chapter Introduction. Matter. Ecosystems. Chapter Wrap-Up

Chapter Introduction. Matter. Ecosystems. Chapter Wrap-Up Chapter Introduction Lesson 1 Lesson 2 Lesson 3 Abiotic Factors Cycles of Matter Chapter Wrap-Up Energy in Ecosystems How do living things and the nonliving parts of the environment interact? What do you

More information

Food Webs of the Great Rivers of the Central Basin: Application of Stable Isotopes in Bioassessment

Food Webs of the Great Rivers of the Central Basin: Application of Stable Isotopes in Bioassessment Food Webs of the Great Rivers of the Central Basin: Application of Stable Isotopes in Bioassessment Michael D. Delong Large River Studies Center Winona State University What Do Food Webs Tell Us? Organic

More information

Lake Washington. Water Quality Assessment Report. Copyright 2012 PLM Lake & Land Management Corp.

Lake Washington. Water Quality Assessment Report. Copyright 2012 PLM Lake & Land Management Corp. Lake Washington 2012 Water Quality Assessment Report Copyright 2012 PLM Lake & Land Management Corp. Water Quality Report On May 22nd, June 18th, July 30th, August 29th, and September 27 th, 2012, PLM

More information

Ecosystem Ecology: Part 1. September 22, 2014 Mr. Alvarez

Ecosystem Ecology: Part 1. September 22, 2014 Mr. Alvarez Ecosystem Ecology: Part 1 September 22, 2014 Mr. Alvarez Ecosystems Ecosystem- a particular location on Earth distinguished by its particular mix of interacting biotic and abiotic components. Forest Ecosystem

More information

Nutrient Cycling in an Aquatic Ecosystem

Nutrient Cycling in an Aquatic Ecosystem Nutrient Cycling in an Aquatic Ecosystem 2.1 Productivity 2.2 Oxygen 2.3 Salinity 2.4 Carbon 2.5 Nitrogen 2.6 Phosphorous 2.7 Iron 2.8 Sulphur 2.9 Silica 2.3 Salinity of Inland Waters The salinity of freshwaters

More information

Lakes, Primary Production, Budgets and Cycling

Lakes, Primary Production, Budgets and Cycling OCN 401-Biogeochemical Systems Lecture #10 (9.22.11) Lakes, Primary Production, Budgets and Cycling (Schlesinger: Chapter 7) 1. Primary Production and Nutrient Cycling in Lakes Physical aspects and nomenclature

More information

Riparian Buffers for Water Resource Protection

Riparian Buffers for Water Resource Protection Riparian Buffers for Water Resource Protection Michael R. Burchell II Associate Professor and Extension Specialist Department of Biological and Agricultural Engineering Riparian Areas From Latin ripa -

More information

Warm Up. What process do plants use to make sugar? What is chemosynthesis? What is transpiration?

Warm Up. What process do plants use to make sugar? What is chemosynthesis? What is transpiration? Warm Up What process do plants use to make sugar? What is chemosynthesis? What is transpiration? Check your answers: What process do plants use to make sugar? photosynthesis What is chemosynthesis? Organisms

More information

Qa iss. Q; How do Earth's living and nonliving parts interact and affect the survival of organisms?

Qa iss. Q; How do Earth's living and nonliving parts interact and affect the survival of organisms? Name. mm Qa iss Date 3 The Biosphere Matter of Energy> Interdependence in Nature Q; How do Earth's living and nonliving parts interact and affect the survival of organisms? WHAT I KNOW WHAT i LEARNED 3.1

More information

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1 Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1 Life Depends on the Sun Energy from the sun enters an ecosystem when plants use sunlight to make sugar molecules. This happens through

More information

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1 Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1 Life Depends on the Sun Energy from the sun enters an ecosystem when plants use sunlight to make sugar molecules. This happens through

More information

Ecological Organization Intro to Enviro Expo Part 1

Ecological Organization Intro to Enviro Expo Part 1 Ecological Organization Intro to Enviro Expo Part 1 Key Concepts From way back in Biology: interactions within and among populations nutrient cycling with energy flow through ecosystems; the effects of

More information

Ecosystem = A group of interacting populations and their physical environment.

Ecosystem = A group of interacting populations and their physical environment. Ecosystem = Ecosystem = A group of interacting populations and their physical environment. All interacting by a flow of energy and with their physical and chemical environments. Ecosystems can be Large

More information

Chapter 3 Ecosystem Ecology. Reading Questions

Chapter 3 Ecosystem Ecology. Reading Questions APES Name 22 Module 7 Chapter 3 Ecosystem Ecology Monday Tuesday Wednesday Thursday Friday 17 Module 6 The Movement of Energy 18 Ecosystem Field Walk 19 Module 7 The 23 Module 8 Responses to Disturbances

More information

Chapter 3 Ecosystem Ecology

Chapter 3 Ecosystem Ecology Chapter 3 Ecosystem Ecology Ecosystem Ecology Examines Interactions Between the Living and Non-Living World Ecosystem- A particular location on Earth distinguished by its particular mix of interacting

More information

Ecosystems Full of Matter, Energy, and Entropy

Ecosystems Full of Matter, Energy, and Entropy Living Environment Ecosystems Ecosystems Full of Matter, Energy, and Entropy 2017-07-18 www.njctl.org Table of Contents: Ecosystems Full of Matter, Energy, and Entropy Click on a topic to go to that section

More information

Fish Conservation and Management

Fish Conservation and Management Fish Conservation and Management CONS 486 Trophic pyramids, food webs, and trophic cascades oh my! Ross Chapter 2, Diana Chapter 1 Trophic interactions Limnological classification review Trophic pyramids

More information

Bio 112 Ecology: Final Study Guide

Bio 112 Ecology: Final Study Guide Bio 112 Ecology: Final Study Guide Below is an outline of the topics and concepts covered on the final exam. This packet also includes a practice test, along with answers to questions 1-44. You may submit

More information

Ecosystem Ecology for Wildlife Scientists. Don White, Jr., Ph.D.

Ecosystem Ecology for Wildlife Scientists. Don White, Jr., Ph.D. Ecosystem Ecology for Wildlife Scientists Don White, Jr., Ph.D. Key Concepts: An ecosystem is an association of organisms and their environment Every ecosystem is an open system, in that it has inputs

More information

Energy Flow Through an Ecosystem:

Energy Flow Through an Ecosystem: Energy Flow Through an Ecosystem: The vast majority of life on Earth depends on sunlight as its source of energy. Of all the radiant energy that reaches the earth, some of it penetrates the earth's atmosphere

More information

Ecosystems & Energy. Components Energy Flow

Ecosystems & Energy. Components Energy Flow Ecosystems & Energy Components Energy Flow Life is sustained by: One-way flow of energy Cycling of matter & nutrients Gravity: holds planet s atmosphere Sun s Role Light, warmth, & energy for photosynthesis

More information

Chapter 3 Ecosystem Ecology. Monday, May 16, 16

Chapter 3 Ecosystem Ecology. Monday, May 16, 16 Chapter 3 Ecosystem Ecology Populations, Communities, and Ecosystems Ø Members of a species interact in groups called populations. Ø Populations of different species living and interacting in an area form

More information

Exemplar for Internal Achievement Standard. Biology Level 3

Exemplar for Internal Achievement Standard. Biology Level 3 Exemplar for Internal Achievement Standard Biology Level 3 This exemplar supports assessment against: Achievement Standard 91601 Carry out a practical investigation in a biological context, with guidance

More information

Ecosystem. Ecosystems. Consumers. Simple Ecosystem Model. Trophic Levels. Food Chain marsh hawk

Ecosystem. Ecosystems. Consumers. Simple Ecosystem Model. Trophic Levels. Food Chain marsh hawk Ecosystem Ecosystems Chapter 47 An association of organisms and their physical environment, interconnected by ongoing flow of energy and a cycling of materials Simple Ecosystem Model energy input from

More information

Section 1: Energy Flow in Ecosystems

Section 1: Energy Flow in Ecosystems Section 1: Energy Flow in Ecosystems Preview Classroom Catalyst Objectives Life Depends on the Sun From Producers to Consumers An Exception: Deep-Ocean Ecosystems What Eats What Cellular Respiration: Burning

More information

Resource. ph must be measured in the field. The ph will change if the water is collected and stored, and will not reflect the true value at the site.

Resource. ph must be measured in the field. The ph will change if the water is collected and stored, and will not reflect the true value at the site. Resource ph What is ph? ph is a measurement of how acidic or alkaline (basic) the water is. ph is measured on a scale of 0 to 14, with 0 being the most acidic, and 14 being the most basic. Distilled water,

More information

Renewable Energy Alternatives

Renewable Energy Alternatives Renewable Energy Alternatives Reasons for Alternative Energy Fossil fuels won t last forever Renewable unlikely to run out Decrease air pollution and greenhouse gas emissions Less dependent on other nations

More information

Chapter 4. Ecosystems

Chapter 4. Ecosystems Chapter 4 Ecosystems Chapter 4 Section 1: What Is an Ecosystem Key Vocabulary Terms 7 Adapted from Holt Biology 2008 Community A group of various species that live in the same habitat and interact with

More information

River restoration in Europe - General principles and approaches, restoration measures, effects on river biota

River restoration in Europe - General principles and approaches, restoration measures, effects on river biota Jochem Kail University of Duisburg-Essen River restoration in Europe - General principles and approaches, restoration measures, effects on river biota General principles and approaches Holistic vs. sectoral

More information

1. Energy to do work 2. Raw material to build/repair things (nutrients)

1. Energy to do work 2. Raw material to build/repair things (nutrients) 1. Energy to do work 2. Raw material to build/repair things (nutrients) Living things are built from water Nutrients: carbon, hydrogen, nitrogen, and oxygen 3. Essential nutrients are cycled through environment

More information