CH 7: GAS-TURBINE ENGINES Prepared by Dr. Assim Al-Daraje BRAYTON CYCLE: THE IDEAL CYCLE FOR GAS-TURBINE ENGINES

Size: px
Start display at page:

Download "CH 7: GAS-TURBINE ENGINES Prepared by Dr. Assim Al-Daraje BRAYTON CYCLE: THE IDEAL CYCLE FOR GAS-TURBINE ENGINES"

Transcription

1 CH 7: GAS-TURBINE ENGINES Prepared by Dr. Assim Al-Daraje BRAYTON CYCLE: THE IDEAL CYCLE FOR GAS-TURBINE ENGINES The combustion process is replaced by a constant-pressure heat-addition process from an external source, and the exhaust process is replaced by a constant-pressure heat-rejection process to the ambient air. 1-2 Isentropic compression (in a compressor) 2-3 Constant-pressure heat addition 3-4 Isentropic expansion (in a turbine) 4-1 Constant-pressure heat rejection 1

2 GAS-TURBINE ENGINES 2

3 Parallel turbines 3

4 4

5 Series turbines 5

6 6

7 BRAYTON CYCLE: THE IDEAL CYCLE FOR GAS-TURBINE ENGINES T-s diagrams for the ideal Brayton cycle. P-v diagrams for the ideal Brayton cycle. 7

8 w ideal = ( T T ) c ( T T ) c p 3 4 turbine power output p 2 1 compressor power requirement w actual = ( T T ) c ( T T ) c p 3 4a decreases in real cycle p 2a increases in real cycle 1 8

9 Thermal efficiency of the ideal Brayton cycle as a function of the pressure ratio. 9

10 Deviation of Actual Gas-Turbine Cycles from Idealized Ones The deviation of an actual gas-turbine cycle from the ideal Brayton cycle as a result of irreversibilities. Reasons: Irreversibilties in turbine and compressors, pressure drops, heat losses 10

11 Isentropic efficiencies of the compressor and turbine 11

12 Development of Gas Turbines 1. Increasing the turbine inlet (or firing) temperatures. 2. Increasing the efficiencies of turbomachinery components (turbines, compressors): Adding modifications to the basic cycle (intercooling, regeneration or recuperation, and reheating). 12

13 THE BRAYTON CYCLE WITH REGENERATION In gas-turbine engines, the temperature of the exhaust gas leaving the turbine is often considerably higher than the temperature of the air leaving the compressor. Therefore, the high-pressure air leaving the compressor can be heated by the hot exhaust gases in a counter-flow heat exchanger (a regenerator or a recuperator). The thermal efficiency of the Brayton cycle increases as a result of regeneration since less fuel is used for the same work output. 13

14 A gas-turbine engine with regenerator. 14

15 T-s diagram of a Brayton cycle with regeneration. 15

16 Effectiveness of regenerator Effectiveness under coldair standard assumptions Under cold-air standard assumptions 16

17 THE BRAYTON CYCLE WITH INTERCOOLING, REHEATING, AND REGENERATION For minimizing work input to compressor and maximizing work output from turbine: A gas-turbine engine with two-stage compression with intercooling, two-stage expansion with reheating, and regeneration and its T-s diagram. 17

18 18

19 19

20 EXHAUST HEAT EXCHANGERS Because the gas leaving the turbine is hotter than the gas leaving the compressor, it is possible to heat up the air before it enters the combustion chamber by use of an exhaust gas heat exchanger. This results in less fuel being burned in order to produce the same temperature prior to the turbine and so makes the cycle more efficient. The layout of such a plant is shown on bellow figure. 20

21 21

22 Example (1) A gas turbine expands 6 kg/s of air from 8 bar and 700oC to 1 bar isentropically. Calculate the exhaust temperature and the power output. γ = 1.4 cp = 1005 J/kg K 22

23 Example (2) A gas turbine expands 3 kg/s of air from 10 bar and 920 C to 1 bar adiabatically with an isentropic efficiency of 92%. Calculate the exhaust temperature and the power output. γ = 1.41 cp = 1010 J/kg K 23

24 Worked Example (3) A gas turbine draws in air from atmosphere at 1 bar and 15 C and compresses it to 4.5 bar with an isentropic efficiency of 82%. The air is heated to 1100 K at constant pressure and then expanded through two stages in series back to 1 ba isentropically. Calculate work net and η 24

25 25

26 26

27 27

28 28

29 29

30 30

31 example 6): gas turbine draws in air from atmosphere at 1 bar and 15 C and compresses it to 4.5 bar with an isentropic efficiency of 82%. The air is heated to 1100 K at constant pressure and then expanded through two stages in series back to 1 bar. The high pressure turbine is connected to the compressor and produces just enough power to drive it. The low pressure stage is connected to an external load and produces 100 kw of power. The isentropic efficiency is 85% for both stages. For the compressor γ = 1.4 and for the turbines γ = 1.3. The gas constant R is kj/kg K for both. Neglect the increase in mass due to the addition of fuel for burning. Calculate the mass 31 flow of air, the inter-stage pressure of the

32 turbines and the thermal efficiency of the cycle. 32

33 33

34 34

35 Example (7) (A). A gas turbine plant operates with a pressure ratio of 6 and a turbine inlet temperature of 927 C. The compressor inlet temperature is 27 C. The isentropic efficiency of the compressor is 84% and of the turbine 90%. Making sensible assumptions, calculate the following. (i) The thermal efficiency of the plant. (ii) The work ratio. Treat the gas as air throughout. (B). If a heat exchanger is incorporated in the plant, calculate the maximum possible efficiency which could be achieved assuming no other conditions are changed. Explain why the actual efficiency is less 35 than that predicted.

36 36

37 37

38 38

39 39

40 40

Faculty of Engineering 2 nd year 2016 Mechanical Engineering Dep. Final-exam (code: M 1222)

Faculty of Engineering 2 nd year 2016 Mechanical Engineering Dep. Final-exam (code: M 1222) Benha University Thermodynamics II Faculty of Engineering 2 nd year 2016 Mechanical Engineering Dep. Final-exam (code: M 1222) Time: Three Hours (attempt all questions) (assume any missing data) Question1

More information

Practice Final Exam (A) Six problems. (Open-book, HW solutions, and notes) (Plus /minus 10 % error acceptable for all numerical answers)

Practice Final Exam (A) Six problems. (Open-book, HW solutions, and notes) (Plus /minus 10 % error acceptable for all numerical answers) ME 3610 Practice Final Exam (A) Six problems. (Open-book, HW solutions, and notes) (Plus /minus 10 % error acceptable for all numerical answers) (18 points) 1. A gasoline engine operating on the ideal

More information

Actual Gas-Turbine Cycle

Actual Gas-Turbine Cycle Actual Gas-urbine Cycle Fresh air at ambient conditions is drawn into the compressor, where its temperature and pressure are raised. he highpressure air proceeds into the combustion chamber, where the

More information

Problems in chapter 9 CB Thermodynamics

Problems in chapter 9 CB Thermodynamics Problems in chapter 9 CB Thermodynamics 9-82 Air is used as the working fluid in a simple ideal Brayton cycle that has a pressure ratio of 12, a compressor inlet temperature of 300 K, and a turbine inlet

More information

CHAPTER 1 BASIC CONCEPTS

CHAPTER 1 BASIC CONCEPTS GTU Paper Analysis CHAPTER 1 BASIC CONCEPTS Sr. No. Questions Jan 15 Jun 15 Dec 15 May 16 Jan 17 Jun 17 Nov 17 May 18 Differentiate between the followings; 1) Intensive properties and extensive properties,

More information

MCE535 Thermal Power and Propulsive Systems. Lecture 04: 04/10/2017

MCE535 Thermal Power and Propulsive Systems. Lecture 04: 04/10/2017 MCE535 Thermal Power and Propulsive Systems Lecture 04: 04/10/2017 Dr. Ayokunle O. Balogun (A212) balogun.ayokunle@lmu.edu.ng Class: Thursday (3 5 pm) Etiquettes and MOP Attendance is a requirement. There

More information

LECTURE-15. Ideal Reverse Brayton Cycle. Figure (6) Schematic of a closed reverse Brayton cycle

LECTURE-15. Ideal Reverse Brayton Cycle. Figure (6) Schematic of a closed reverse Brayton cycle Lecturer: -Dr. Esam Mejbil Abid Subject: Air Conditioning and Refrigeration Year: Fourth B.Sc. Babylon University College of Engineering Department of Mechanical Engineering LECTURE-15 Ideal Reverse Brayton

More information

- 2 - SME Q1. (a) Briefly explain how the following methods used in a gas-turbine power plant increase the thermal efficiency:

- 2 - SME Q1. (a) Briefly explain how the following methods used in a gas-turbine power plant increase the thermal efficiency: - 2 - Q1. (a) Briefly explain how the following methods used in a gas-turbine power plant increase the thermal efficiency: i) regenerator ii) intercooling between compressors (6 marks) (b) Air enters a

More information

LECTURE-14. Air Refrigeration Cycles. Coefficient of Performance of a Refrigerator:

LECTURE-14. Air Refrigeration Cycles. Coefficient of Performance of a Refrigerator: Lecturer: -Dr. Esam Mejbil Abid Subject: Air Conditioning and Refrigeration Year: Fourth B.Sc. Babylon University College of Engineering Department of Mechanical Engineering LECTURE-14 Air Refrigeration

More information

Brayton Cycle. Introduction. Definitions. Reading Problems , 9-105, 9-131

Brayton Cycle. Introduction. Definitions. Reading Problems , 9-105, 9-131 Brayton Cycle Reading Problems 9-8 9-10 9-100, 9-105, 9-131 Introduction The gas turbine cycle is referred to as the Brayton Cycle or sometimes the Joule Cycle. The actual gas turbine cycle is an open

More information

IJARI. Nomenclature. 1. Introduction. Volume 2, Issue 2 (2014) ISSN International Journal of Advance Research and Innovation

IJARI. Nomenclature. 1. Introduction. Volume 2, Issue 2 (2014) ISSN International Journal of Advance Research and Innovation Thermodynamic Analysis of Alternative Regeneration Gas Turbine Cycle with Twin Shaft System P. V. Ram Kumar *, a, S. S. Kachhwaha b a Department of Mechanical Engineering, Delhi College of Engineering,

More information

a. The power required to drive the compressor; b. The inlet and output pipe cross-sectional area. [Ans: kw, m 2 ] [3.34, R. K.

a. The power required to drive the compressor; b. The inlet and output pipe cross-sectional area. [Ans: kw, m 2 ] [3.34, R. K. CHAPTER 2 - FIRST LAW OF THERMODYNAMICS 1. At the inlet to a certain nozzle the enthalpy of fluid passing is 2800 kj/kg, and the velocity is 50 m/s. At the discharge end the enthalpy is 2600 kj/kg. The

More information

Supercritical CO2 Brayton Cycles and Their Application as a Bottoming Cycle. Grant Kimzey UTSR Intern Project Summary Webcast September 7, 2012

Supercritical CO2 Brayton Cycles and Their Application as a Bottoming Cycle. Grant Kimzey UTSR Intern Project Summary Webcast September 7, 2012 Supercritical CO2 Brayton Cycles and Their Application as a Bottoming Cycle Grant Kimzey UTSR Intern Project Summary Webcast September 7, 2012 Contents Introduction Assumptions and Design Parameters Benchmarks

More information

Chapter 9: Vapor Power Systems

Chapter 9: Vapor Power Systems Chapter 9: Vapor Power Systems Table of Contents Introduction... 2 Analyzing the Rankine Cycle... 4 Rankine Cycle Performance Parameters... 5 Ideal Rankine Cycle... 6 Example... 7 Rankine Cycle Including

More information

2. The data at inlet and exit of the turbine, running under steady flow, is given below.

2. The data at inlet and exit of the turbine, running under steady flow, is given below. 3 rd week quiz 1. Identify the correct path of fluid flow in a steam power plant. a) Steam turbine-pump-boiler-condenser. b) Economizer- evaporator- superheater. c) Pump-turbine-condenser-evaporator. d)

More information

CHAPTER 1 BASIC CONCEPTS THEORY

CHAPTER 1 BASIC CONCEPTS THEORY CHAPTER 1 BASIC CONCEPTS THEORY 1. Explain briefly the following terms with diagram (wherever necessary): a) Thermodynamic System, Surroundings & Boundary b) Control Volume & Control Surface c) Intensive

More information

Chapter 1 STEAM CYCLES

Chapter 1 STEAM CYCLES Chapter 1 STEAM CYCLES Assoc. Prof. Dr. Mazlan Abdul Wahid Faculty of Mechanical Engineering Universiti Teknologi Malaysia www.fkm.utm.my/~mazlan 1 Chapter 1 STEAM CYCLES 1 Chapter Objectives To carry

More information

Thermal Performance of Reheat, Regenerative, Inter Cooled Gas Turbine Cycle

Thermal Performance of Reheat, Regenerative, Inter Cooled Gas Turbine Cycle IJRMET Vo l. 5, Is s u e 2, Ma y - Oc t 2015 ISSN : 2249-5762 (Online) ISSN : 2249-5770 (Print) Thermal Performance of Reheat, Regenerative, Inter Cooled Gas Turbine Cycle 1 Milind S. Patil, 2 Datta B.

More information

Code No: RR Set No. 1

Code No: RR Set No. 1 Code No: RR310303 Set No. 1 III B.Tech I Semester Regular Examinations, November 2006 THERMAL ENGINEERING-II (Mechanical Engineering) Time: 3 hours Max Marks: 80 Answer any FIVE Questions All Questions

More information

OPTIMIZATION OF PARAMETERS FOR HEAT RECOVERY STEAM GENERATOR (HRSG) IN COMBINED CYCLE PLANTS

OPTIMIZATION OF PARAMETERS FOR HEAT RECOVERY STEAM GENERATOR (HRSG) IN COMBINED CYCLE PLANTS OPTIMIZATION OF PARAMETERS FOR HEAT RECOVERY STEAM GENERATOR (HRSG) IN COMBINED CYCLE PLANTS Muammer Alus, Milan V. Petrovic University of Belgrade-Faculty of Mechanical Engineering, Laboratory of Thermal

More information

ASSIGNMENT 2 Coal and Ash Handling System and Draught Systems

ASSIGNMENT 2 Coal and Ash Handling System and Draught Systems ASSIGNMENT 1 Thermal Power Plant & High Pressure Boiler 1. State the factors to be considered for selection of site for thermal power plant 2. State desirable to control the super heat temperature. Explain

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad -500 043 MECHANICAL ENGINEERING ASSIGNMENT Course Name : THERMAL ENGINEERING II Course Code : A50518 Class : III B. Tech I Semester

More information

Eng Thermodynamics I - Examples 1

Eng Thermodynamics I - Examples 1 Eng3901 - Thermodynamics I - Examples 1 1 pdv Work 1. Air is contained in a vertical frictionless piston-cylinder. The mass of the piston is 500 kg. The area of the piston is 0.005 m 2. The air initially

More information

Chapter 10 POWER CYCLES. Department of Mechanical Engineering

Chapter 10 POWER CYCLES. Department of Mechanical Engineering Chapter 10 VAPOR AND COMBINED POWER CYCLES Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University it 2 Objectives Analyze vapor power cycles in which h the working fluid is alternately

More information

OUTCOME 2 TUTORIAL 2 STEADY FLOW PLANT

OUTCOME 2 TUTORIAL 2 STEADY FLOW PLANT UNIT 47: Engineering Plant Technology Unit code: F/601/1433 QCF level: 5 Credit value: 15 OUTCOME 2 TUTORIAL 2 STEADY FLOW PLANT 2 Be able to apply the steady flow energy equation (SFEE) to plant and equipment

More information

Introduction to Aerospace Propulsion. Prof. Bhaskar Roy. Prof. A. M. Pradeep. Department of Aerospace Engineering

Introduction to Aerospace Propulsion. Prof. Bhaskar Roy. Prof. A. M. Pradeep. Department of Aerospace Engineering Introduction to Aerospace Propulsion Prof. Bhaskar Roy Prof. A. M. Pradeep Department of Aerospace Engineering Indian Institute of technology, Bombay Module No. # 01 Lecture No. # 18 Rankine cycle, Brayton

More information

R13 SET - 1 '' ''' '' ' '''' Code No: RT31035

R13 SET - 1 '' ''' '' ' '''' Code No: RT31035 R13 SET - 1 III B. Tech I Semester Regular/Supplementary Examinations, October/November - 2016 THERMAL ENGINEERING II (Mechanical Engineering) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists

More information

Vapor and Combined Power Cycles

Vapor and Combined Power Cycles 9 CHAPTER Vapor and Combined Power Cycles 9-1 The Simple Ideal Rankine Cycle The 9-2 Rankine Cycle: Actual Vapor Power Deviation and Pump and Turbine Irreversibilities (a) Deviation of actual vapor power

More information

Chapter 10 VAPOR AND COMBINED POWER CYCLES

Chapter 10 VAPOR AND COMBINED POWER CYCLES Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008 Chapter 10 VAPOR AND COMBINED POWER CYCLES Copyright The McGraw-Hill Companies, Inc. Permission

More information

Energy and Exergy Analysis of a Simple Gas Turbine Cycle with Wet Compression

Energy and Exergy Analysis of a Simple Gas Turbine Cycle with Wet Compression Mechanical Engineering Research; Vol. 8 No. 1; 218 ISSN 1927-67 E-ISSN 1927-615 Published by Canadian Center of Science and Education Energy and Exergy Analysis of a Simple Gas Turbine Cycle with Wet Compression

More information

Eng Thermodynamics I - Examples 1

Eng Thermodynamics I - Examples 1 Eng3901 - Thermodynamics I - Examples 1 1 pdv Work 1. Air is contained in a vertical frictionless piston-cylinder. The mass of the piston is 500 kg. The area of the piston is 0.005 m 2. The air initially

More information

DESIGN AND ANALYSIS OF RECUPERATOR IN MINI GAS TURBINE SETUP

DESIGN AND ANALYSIS OF RECUPERATOR IN MINI GAS TURBINE SETUP International Journal of Advance Research In Science And Engineering http://www.ijarse.com DESIGN AND ANALYSIS OF RECUPERATOR IN MINI GAS TURBINE SETUP A.N. Panchal 1, A.P.Shah 2, A.S. Mohite 3 1, 3 Mech.

More information

Industrial Energy Management Gas turbines

Industrial Energy Management Gas turbines Industrial Energy Management Gas turbines Jun.-Prof. Benoit Fond fond@ovgu.de Acknowledgments to Prof B. Van Wachem (Imperial College London) and Prof. E Specht (OvGU Magdeburg) 1 Introduction to Gas Turbines

More information

wb Thermodynamics 2 Lecture 10 Energy Conversion Systems

wb Thermodynamics 2 Lecture 10 Energy Conversion Systems wb1224 - Thermodynamics 2 Lecture 10 Energy Conversion Systems Piero Colonna, Lecturer Prepared with the help of Teus van der Stelt 13-12-2010 Delft University of Technology Challenge the future Content

More information

Air Cycle Refrigeration Systems Nagendra M CBM Engineer, Hindusthan Zink.Ltd The specific objectives of the lesson This lesson discusses various gas cycle refrigeration systems based on air, namely: 1.

More information

SUPERCRITICAL CARBON DIOXIDE CYCLES THERMODYNAMIC ANALYSIS AND COMPARISON

SUPERCRITICAL CARBON DIOXIDE CYCLES THERMODYNAMIC ANALYSIS AND COMPARISON SUPERCRITICAL CARBON DIOXIDE CYCLES THERMODYNAMIC ANALYSIS AND COMPARISON Ing. Martin Kulhánek, Ing. Václav Dostál Ph.D. Ústav mechaniky tekutin a energetiky, České vysoké učení technické v Praze Technická

More information

Lecture No.1. Vapour Power Cycles

Lecture No.1. Vapour Power Cycles Lecture No.1 1.1 INTRODUCTION Thermodynamic cycles can be primarily classified based on their utility such as for power generation, refrigeration etc. Based on this thermodynamic cycles can be categorized

More information

CERTIFICATES OF COMPETENCY IN THE MERCHANT NAVY MARINE ENGINEER OFFICER

CERTIFICATES OF COMPETENCY IN THE MERCHANT NAVY MARINE ENGINEER OFFICER CERTIFICATES OF COMPETENCY IN THE MERCHANT NAVY MARINE ENGINEER OFFICER EXAMINATIONS ADMINISTERED BY THE SCOTTISH QUALIFICATIONS AUTHORITY ON BEHALF OF THE MARITIME AND COASTGUARD AGENCY STCW 95 CHIEF

More information

THE EFFECTS OF THE M-CYCLE ON THE PERFORMANCE OF A GAS TURBINE

THE EFFECTS OF THE M-CYCLE ON THE PERFORMANCE OF A GAS TURBINE HEFAT2012 9 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 16-18 July 2012 Malta THE EFFECTS OF THE M-CYCLE ON THE PERFORMANCE OF A GAS TURBINE Peter E. Jenkins*, University

More information

SHRI RAMSWAROOP MEMORIAL COLLEGE OF ENGG. & MANAGEMENT

SHRI RAMSWAROOP MEMORIAL COLLEGE OF ENGG. & MANAGEMENT SHRI RAMSWAROOP MEMORIAL COLLEGE OF ENGG. & MANAGEMENT B.Tech. [SEM IV (ME-41,42,43,44,45 & 46)] QUIZ TEST-2 (Session: 2012-13) APPLIED THERMODYNAMICS (EME-401) Q.1) In a gas turbine installation air is

More information

R13. (12M) efficiency.

R13. (12M) efficiency. SET - 1 II B. Tech I Semester Regular/Supplementary Examinations, Oct/Nov - 2016 THERMAL AND HYDRO PRIME MOVERS (Electrical and Electronics Engineering) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper

More information

Engineering Thermodynamics

Engineering Thermodynamics Unit 61: Engineering Thermodynamics Unit code: D/601/1410 QCF level: 5 Credit value: 15 Aim This unit will extend learners knowledge of heat and work transfer. It will develop learners understanding of

More information

Chapter 8. Vapor Power Systems

Chapter 8. Vapor Power Systems Chapter 8 Vapor Power Systems Introducing Power Generation To meet our national power needs there are challenges related to Declining economically recoverable supplies of nonrenewable energy resources.

More information

FEE, CTU in Prague Power Engineering 2 (BE5B15EN2) Exercise 3

FEE, CTU in Prague Power Engineering 2 (BE5B15EN2) Exercise 3 Example 1: How is the applied heat for 1 kg of water steam at constant pressure p = 1.47 MPa, if the dryness of wet water is increased from x 1 = 0.8 to x 2 = 0.96? Dryness of wet steam the ratio of steam

More information

Eng Thermodynamics I: Sample Final Exam Questions 1

Eng Thermodynamics I: Sample Final Exam Questions 1 Eng3901 - Thermodynamics I: Sample Final Exam Questions 1 The final exam in Eng3901 - Thermodynamics I consists of four questions: (1) 1st Law analysis of a steam power cycle, or a vapour compression refrigeration

More information

Code No: R31034 R10 Set No: 1

Code No: R31034 R10 Set No: 1 Code No: R31034 R10 Set No: 1 JNT University Kakinada III B.Tech. I Semester Regular/Supplementary Examinations, Dec - 2014/Jan -2015 THERMAL ENGINEERING-II (Com. to Mechanical Engineering and Automobile

More information

R13. II B. Tech I Semester Regular/Supplementary Examinations, Oct/Nov THERMODYNAMICS (Com. to ME, AE, AME) Time: 3 hours Max.

R13. II B. Tech I Semester Regular/Supplementary Examinations, Oct/Nov THERMODYNAMICS (Com. to ME, AE, AME) Time: 3 hours Max. SET - 1 1. a) Discuss about PMM I and PMM II b) Explain about Quasi static process. c) Show that the COP of a heat pump is greater than the COP of a refrigerator by unity. d) What is steam quality? What

More information

Calculation document. Introduction

Calculation document. Introduction Introduction This calculation document supports the engine designs of Engine incorporated by project team 2A2O. Engine incorporated designed three different engines. This document contains an overview

More information

Chapter 10. In Chap. 9 we discussed gas power cycles for which the VAPOR AND COMBINED POWER CYCLES. Objectives

Chapter 10. In Chap. 9 we discussed gas power cycles for which the VAPOR AND COMBINED POWER CYCLES. Objectives Chapter 0 VAPOR AND COMBINED POWER CYCLES In Chap. 9 we discussed gas power cycles for which the working fluid remains a gas throughout the entire cycle. In this chapter, we consider vapor power cycles

More information

ENERGY CONVERSION. Richard Stainsby National Nuclear Laboratory, UK 21 September 2017

ENERGY CONVERSION. Richard Stainsby National Nuclear Laboratory, UK 21 September 2017 ENERGY CONVERSION Richard Stainsby National Nuclear Laboratory, UK 21 September 2017 Meet the presenter Dr. Richard Stainsby is a mechanical engineer with a PhD in computational fluid dynamics and heat

More information

PARAMETRIC STUDY OF GAS TURBINE CYCLE COUPLED WITH VAPOR COMPRESSION REFRIGERATION CYCLE FOR INTAKE AIR COOLING

PARAMETRIC STUDY OF GAS TURBINE CYCLE COUPLED WITH VAPOR COMPRESSION REFRIGERATION CYCLE FOR INTAKE AIR COOLING International Journal of Mechanical Engineering and Technology (IJMET) Volume 9, Issue 9, September 2018, pp. 248 261, Article ID: IJMET_09_09_029 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=9&itype=9

More information

Chapter 10. In Chap. 9 we discussed gas power cycles for which the VAPOR AND COMBINED POWER CYCLES. Objectives

Chapter 10. In Chap. 9 we discussed gas power cycles for which the VAPOR AND COMBINED POWER CYCLES. Objectives Chapter 0 VAPOR AND COMBINED POWER CYCLES In Chap. 9 we discussed gas power cycles for which the working fluid remains a gas throughout the entire cycle. In this chapter, we consider vapor power cycles

More information

Chapter 1 Basic Concepts

Chapter 1 Basic Concepts Jan 15 Jun 15 Chapter 1 Basic Concepts GTU Paper Analysis (New Syllabus) Sr. No. Questions Differentiate between the followings; 1) Intensive properties and extensive properties, 2) Point function and

More information

A Further Step Towards a Graz Cycle Power Plant for CO 2 Capture

A Further Step Towards a Graz Cycle Power Plant for CO 2 Capture Institute for Thermal Turbomaschinery and Machine Dynamics Graz University of Technology Erzherzog-Johann-University A Further Step Towards a Graz Cycle Power Plant for CO 2 Capture Presentation at the

More information

Design Optimisation of the Graz Cycle Prototype Plant

Design Optimisation of the Graz Cycle Prototype Plant Institute for Thermal Turbomaschinery and Machine Dynamics Graz University of Technology Erzherzog-Johann-University Design Optimisation of the Graz Cycle Prototype Plant Presentation at the ASME Turbo

More information

Estimation of Wasted Thermal Energy from Gas Turbine Units in Mosul Power Station

Estimation of Wasted Thermal Energy from Gas Turbine Units in Mosul Power Station 01 ikrit Journal of Engineering Sciences/Vol.19/No.2/June 2012, (10-17) Estimation of Wasted hermal Energy from Gas urbine Units in Mosul Power Station Dr. A. R. Al-Habbo A.Youns Fathi Lecturer Assist.

More information

Chapter 10 Vapor and Combined Power Cycles

Chapter 10 Vapor and Combined Power Cycles Chapter 10 Vapor and Combined Power Cycles Dr. Mohammad Tarawneh Thermodynamics: An Engineering Approach, 5th edition by Yunus A. Çengel and Michael A. Boles We consider power cycles where the working

More information

Reg. No. : Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Second Semester

Reg. No. : Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Second Semester ws15 Reg. No. : Question Paper Code : 27425 B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015. Time : Three hours Second Semester Marine Engineering MV 6201 MARINE ENGINEERING THERMODYNAMICS (Regulations

More information

Thermodynamic (Energy-Exergy) analysis of combined cycle gas turbine power plant (CCGT) for improving its thermal performances

Thermodynamic (Energy-Exergy) analysis of combined cycle gas turbine power plant (CCGT) for improving its thermal performances International Journal of Research in Engineering and Innovation Vol-1, Issue-4 (2017), 9-24 International Journal of Research in Engineering and Innovation (IJREI) journal home page: http://www.ijrei.com

More information

Potential of Allam cycle with natural gas to reduce carbon dioxide emission in India

Potential of Allam cycle with natural gas to reduce carbon dioxide emission in India The 6 th International Symposium-Supercritical CO2 Power Cycles, March 27-29, 2018, Pittsburgh, PA Potential of Allam cycle with natural gas to reduce carbon dioxide emission in India Amit Mulchand Nabros

More information

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING FINAL EXAMINATION, DECEMBER 2008 MIE 411H1 F - THERMAL ENERGY CONVERSION

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING FINAL EXAMINATION, DECEMBER 2008 MIE 411H1 F - THERMAL ENERGY CONVERSION UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING FINAL EXAMINATION, DECEMBER 2008 MIE 411H1 F - THERMAL ENERGY CONVERSION Exam Type: X Examiner: J.S. Wallace You may use your copy of the

More information

Working fluid effects on the performance of hybrid Brayton thermosolar plants

Working fluid effects on the performance of hybrid Brayton thermosolar plants International Conference on Renewable Energies and Power Quality (ICREPQ 18) Salamanca (Spain), 21 th to 23 th March, 2018 Renewable Energy and Power Quality Journal (RE&PQJ) ISS 2172-038 X, o16 April

More information

Thermoelectric Design

Thermoelectric Design INTERAMERICAN UNIVERSITY OF BAYAMON PUERTO RICO Thermoelectric Design Thermodynamic 2 Erik T. Rosado Rolando Santiago 5/15/2012 TABLE OF CONTENTS TABLE OF FIGURE... 2 TABLE OF DATA RESULTS... 2 ABSTRACT...

More information

EFFECT OF AMBIENT TEMPERATURE, GAS TURBINE INLET TEMPERATURE AND COMPRESSOR PRESSURE RATIO ON PERFORMANCE OF COMBINED CYCLE POWER PLANT

EFFECT OF AMBIENT TEMPERATURE, GAS TURBINE INLET TEMPERATURE AND COMPRESSOR PRESSURE RATIO ON PERFORMANCE OF COMBINED CYCLE POWER PLANT EFFECT OF AMBIENT TEMPERATURE, GAS TURBINE INLET TEMPERATURE AND COMPRESSOR PRESSURE RATIO ON PERFORMANCE OF COMBINED CYCLE POWER PLANT Harendra Singh 1, Prashant Kumar Tayal 2 NeeruGoyal 3, Pankaj Mohan

More information

Design Features of Combined Cycle Systems

Design Features of Combined Cycle Systems Design Features of Combined Cycle Systems 1.0 Introduction As we have discussed in class, one of the largest irreversibilities associated with simple gas turbine cycles is the high temperature exhaust.

More information

St.MARTIN S ENGINEERING COLLEGE Dhulapally,Secunderabad,

St.MARTIN S ENGINEERING COLLEGE Dhulapally,Secunderabad, St.MARTIN S ENGINEERING COLLEGE Dhulapally,Secunderabad, 500014. MECHANICAL ENGINEERING TUTORIAL QUESTION BANK Course Name : THERMAL ENGINEERING II Course Code : A50326- Class : III B. Tech I Semester

More information

MECHANICAL ENGINEERING DEPARTMENT, OITM

MECHANICAL ENGINEERING DEPARTMENT, OITM Sem.:4 th Subject: Energy Conversion Paper: ME-201E UNIT-1 Q1. Explain the seismometer with its working principle. (Important Question) (20) Q2. Classify the fuels and define calorific value of fuels.

More information

CHAPTER 2 POWER PLANT THERMODYNAMICS

CHAPTER 2 POWER PLANT THERMODYNAMICS CHAPTER 2 POWER PLANT THERMODYNAMICS 2.1. Thermodynamic Prciples... 2 2.2. Steady Flow Engeerg Devices and Processes... 4 2.3. Heat Enge and Cycles... 8 2.4. Carnot Cycle... 10 2.5. Ranke Cycle... 10 Chapter

More information

EFFECT OF INLET AIR COOLING ON GAS TURBINE PERFORMANCE

EFFECT OF INLET AIR COOLING ON GAS TURBINE PERFORMANCE EFFECT OF INLET AIR COOLING ON GAS TURBINE PERFORMANCE WAIEL KAMAL ELSAIED 1,*, ZAINAL AMBRI BIN ABDUL KARIM 2,* Universiti Teknologi PETRONAS Bandar Seri Iskandar, 31750 Tronoh, Perak, Malaysia UTP_waiel@yahoo.com,

More information

Andy Schroder Mark Turner University of Cincinnati, Cincinnati, OH, 45221, U.S.A. Abstract

Andy Schroder Mark Turner University of Cincinnati, Cincinnati, OH, 45221, U.S.A. Abstract Mapping the Design Space of a Recuperated, Recompression, Precompression Supercritical Carbon Dioxide Power Cycle with Intercooling, Improved Regeneration, and Reheat Andy Schroder Mark Turner University

More information

Thermodynamic analysis of a regenerative gas turbine cogeneration plant

Thermodynamic analysis of a regenerative gas turbine cogeneration plant Journal of KUMAR Scientific et al: & Industrial THERMODYNAMIC Research ANALYSIS OF A REGENERATIVE GAS TURBINE COGENERATION PLANT Vol. 69, March 2010, pp. 225-231 225 Thermodynamic analysis of a regenerative

More information

ISSN: [Ozdemir* et al., 5(12): December, 2016] Impact Factor: 4.116

ISSN: [Ozdemir* et al., 5(12): December, 2016] Impact Factor: 4.116 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY AMBIENT CONDITIONS EFFECTS ON PERFORMANCE OF GAS TURBINE COGENERATION POWER PLANTS Necmi Ozdemir* * Department of Electrical Engineering,

More information

Investigating Effect of Intercooler on Performance and Efficiency of Brayton Cycle in Ideal and Non-ideal Condition

Investigating Effect of Intercooler on Performance and Efficiency of Brayton Cycle in Ideal and Non-ideal Condition Investigating Effect of Intercooler on Performance and Efficiency of Brayton Cycle in Ideal and Non-ideal Condition Tohid Adibi 1, *, Rostam Akbari Kangarluei 2, Saeed Karam Javani Azar 3, Behzad Rossoli

More information

Project 3: Analysis of diverse heat recovery Steam Cycles Artoni Alessandro Bortolotti Alberto Cordisco Giuliano

Project 3: Analysis of diverse heat recovery Steam Cycles Artoni Alessandro Bortolotti Alberto Cordisco Giuliano Project 3: Analysis of diverse heat recovery Steam Cycles Artoni Alessandro Bortolotti Alberto Cordisco Giuliano We consider a combined cycle with the same simple cycle gas turbine described in the 2 nd

More information

Combined cycle with detailed calculation of Cp in the HRSG

Combined cycle with detailed calculation of Cp in the HRSG Combined cycle with detailed calculation of Cp in the HRSG A large, light-oil fired gas turbine with an electrical power output of 171 MW is integrated with a steam cycle, forming a combined cycle. Some

More information

SHRI RAMSWAROOP MEMORIAL COLLEGE OF ENGG. & MANAGEMENT B.Tech. [SEM IV (ME-41, 42,43 & 44)] QUIZ TEST-1 (Session: )

SHRI RAMSWAROOP MEMORIAL COLLEGE OF ENGG. & MANAGEMENT B.Tech. [SEM IV (ME-41, 42,43 & 44)] QUIZ TEST-1 (Session: ) QUIZ TEST-1 Q.1. In a stage of an impulse turbine provided with a single row wheel, the mean diameter of the blade ring is 80cm and the speed of the rotation is 3000rpm. The steam issues from the nozzle

More information

Component Performance - Inlet, Burner and Nozzle

Component Performance - Inlet, Burner and Nozzle Component Performance - Inlet, Burner and Nozzle Introduction Changes in gas properties as it flows through the engine Sources of losses and figures of merit Efficiencies of the inlet, burner and exhaust

More information

A Novel LNG and Oxygen Stoichiometric Combustion Cycle without CO 2 Emission

A Novel LNG and Oxygen Stoichiometric Combustion Cycle without CO 2 Emission Proceedings of the International Gas urbine Congress 2003 okyo November 2-7, 2003 IGC2003okyo S-087 A Novel LNG and Oxygen Stoichiometric Combustion Cycle without CO 2 Emission Wei WANG, Ruixian CAI, Na

More information

Design considerations on a small scale supercritical CO 2 power system for industrial high temperature waste heat to power recovery applications

Design considerations on a small scale supercritical CO 2 power system for industrial high temperature waste heat to power recovery applications Design considerations on a small scale supercritical CO 2 power system for industrial high temperature waste heat to power recovery applications Giuseppe Bianchi a*, Savvas A. Tassou a, Yunting Ge a, Hussam

More information

Reading Problems , 11.36, 11.43, 11.47, 11.52, 11.55, 11.58, 11.74

Reading Problems , 11.36, 11.43, 11.47, 11.52, 11.55, 11.58, 11.74 Rankine Cycle Reading Problems 11.1 11.7 11.29, 11.36, 11.43, 11.47, 11.52, 11.55, 11.58, 11.74 Definitions working fluid is alternately vaporized and condensed as it recirculates in a closed cycle the

More information

ME 331 Thermodynamics II

ME 331 Thermodynamics II ME 331 Thermodynamics II Prerequisite: ME 230 Thermodynamics I Instructor: Chainarong Chaktranond (Dept. of Mechanical Engineering) Lecture: Tue (9.30-11.00) and Wed (13.30 15.00) E-mail: cchainar@engr.tu.ac.th

More information

IJSRD - International Journal for Scientific Research & Development Vol. 1, Issue 9, 2013 ISSN (online):

IJSRD - International Journal for Scientific Research & Development Vol. 1, Issue 9, 2013 ISSN (online): IJSRD - International Journal for Scientific Research & Development Vol. 1, Issue 9, 2013 ISSN (online): 2321-0613 Effect of Compression Ratio on Performance of Combined Cycle Gas Turbine Mehta Parth N.

More information

COMPARISONIN CCGT POWER CYLCE USING NAPTHA AND NATURAL GASUSING MAT LAB CODING

COMPARISONIN CCGT POWER CYLCE USING NAPTHA AND NATURAL GASUSING MAT LAB CODING COMPARISONIN CCGT POWER CYLCE USING NAPTHA AND NATURAL GASUSING MAT LAB CODING Neelam Khandelwal 1, Binit Kumar Jha 2, Nishtha Chaudhary3, PrateekSingh 4, Raghuvendra Singh Som 5 1 Assistant Professor,

More information

Comparison of Different Gas Turbine Inlet Air Cooling Methods

Comparison of Different Gas Turbine Inlet Air Cooling Methods Comparison of Different Gas Turbine Inlet Air Cooling Methods Ana Paula P. dos Santos, Claudia R. Andrade and Edson L. Zaparoli Abstract Gas turbine air inlet cooling is a useful method for increasing

More information

Feedwater Heaters (FWH)

Feedwater Heaters (FWH) Feedwater Heaters (FWH) A practical Regeneration process in steam power plants is accomplished by extracting or bleeding, steam from the turbine at various points. This steam, which could have produced

More information

Sustainable Energy Mod.1: Fuel Cells & Distributed Generation Systems

Sustainable Energy Mod.1: Fuel Cells & Distributed Generation Systems Sustainable Energy Mod.1: Fuel Cells & Distributed Generation Systems Dr. Ing. Mario L. Ferrari Thermochemical Power Group (TPG) - DiMSET University of Genoa, Italy : Gas Turbines Simple cycle (1/4) Simple

More information

Stationary Combustion Systems Chapter 6

Stationary Combustion Systems Chapter 6 Stationary Combustion Systems Chapter 6 Stationary combustion systems presently supply most of the earth s electricity. Conversion will take time, so study of these systems in order to improve them is

More information

Technical and economical feasibility of the Rankine compression gas turbine (RCG)

Technical and economical feasibility of the Rankine compression gas turbine (RCG) Applied Thermal Engineering 26 (2006) 413 420 www.elsevier.com/locate/apthermeng Technical and economical feasibility of the Rankine compression gas turbine (RCG) H. Ouwerkerk *, H.C. de Lange Eindhoven

More information

Chapters 5, 6, and 7. Use T 0 = 20 C and p 0 = 100 kpa and constant specific heats unless otherwise noted. Note also that 1 bar = 100 kpa.

Chapters 5, 6, and 7. Use T 0 = 20 C and p 0 = 100 kpa and constant specific heats unless otherwise noted. Note also that 1 bar = 100 kpa. Chapters 5, 6, and 7 Use T 0 = 20 C and p 0 = 100 kpa and constant specific heats unless otherwise noted. Note also that 1 bar = 100 kpa. 5-1. Steam enters a steady-flow device at 16 MPa and 560 C with

More information

Thermodynamics Performance Evaluation of a Two-Shaft Gas Turbine Power Plant

Thermodynamics Performance Evaluation of a Two-Shaft Gas Turbine Power Plant Thermodynamics Performance Evaluation of a TwoShaft Gas Turbine Power Plant Robert Poku Department of Mech/Marine Engineering,Niger Delta University, Wilberforce Island, Bayelsa State.Nigeria. Abstract

More information

Problems 2-9 are worth 2 points each. Circle T or F as appropriate for problems 6-9.

Problems 2-9 are worth 2 points each. Circle T or F as appropriate for problems 6-9. NAME KEY Allowed: Writing utensil, calculator and the provided formula sheet. Books, notes and collaboration (friends) are not allowed! Clearly indicate your answer and show your work. I do give partial

More information

Exergy in Processes. Flows and Destruction of Exergy

Exergy in Processes. Flows and Destruction of Exergy Exergy in Processes Flows and Destruction of Exergy Exergy of Different Forms of Energy Chemical Energy Heat Energy Pressurised Gas Electricity Kinetic Energy Oxidation of Methane ΔH = -890.1 kj/mol ΔS

More information

Integrated heat exchange for recuperation in gas turbine engines

Integrated heat exchange for recuperation in gas turbine engines Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis and Dissertation Collection 2016-12 Integrated heat exchange for recuperation in gas turbine engines Hussein, Faisa T. Monterey, California:

More information

PARAMETRIC THERMODYNAMIC ANALYSIS OF INTERCOOLED AND INTERCOOLED-RECUPERATED GAS TURBINE BASED CYCLES

PARAMETRIC THERMODYNAMIC ANALYSIS OF INTERCOOLED AND INTERCOOLED-RECUPERATED GAS TURBINE BASED CYCLES PARAMETRIC THERMODYNAMIC ANALYSIS OF INTERCOOLED AND INTERCOOLED-RECUPERATED GAS TURBINE BASED CYCLES 1 MITHILESH KUMAR SAHU, 1 TUSHAR CHAUDHARY, 1 ANUPAM KUMARI, 2 SANJAY 1 Ph.D. Scholar, Mechanical Engg.

More information

DISCLAIMER. Portions of this document may be illegible electronic image products. Images are produced from the best available original document.

DISCLAIMER. Portions of this document may be illegible electronic image products. Images are produced from the best available original document. 3 rn -I 0 ZLS TL-s DISCLAIMER Portions of this document may be illegible electronic image products. Images are produced from the best available original document. INDIRECT-FIRED GAS TURBINE DUAL FUEL CELL

More information

Ph.D. Qualifying Exam. Thermodynamics. Spring 2011

Ph.D. Qualifying Exam. Thermodynamics. Spring 2011 Student Code Number: Ph.D. Qualifying Exam Thermodynamics Spring 2011 Professor Tonghun Lee Professor Abraham Engeda Directions: Open Book (only one book allowed) and closed notes Answer all six questions

More information

Energy Analysis of Gas Engine Biogas Power Plant 835 kw in Kampar - Indonesia

Energy Analysis of Gas Engine Biogas Power Plant 835 kw in Kampar - Indonesia Energy Analysis of Gas Engine Biogas Power Plant 835 kw in Kampar - Indonesia Awaludin Martin a,* Muhammad Syarif, a and Romy, a a) Department of Mechanical Engineering, Faculty of Engineering, Universitas

More information

Dynamic Modeling and Control of Supercritical CO 2 Power Cycle using Waste Heat from Industrial Process

Dynamic Modeling and Control of Supercritical CO 2 Power Cycle using Waste Heat from Industrial Process 12 th ECCRIA (European Conference on Fuel and Energy Research and its Applications) Dynamic Modeling and Control of Supercritical CO 2 Power Cycle using Waste Heat from Industrial Process Olumide Olumayegun,

More information