Wear Mechanism of Diamond Tools in Ductile Machining of Reaction-bonded Silicon Carbide

Size: px
Start display at page:

Download "Wear Mechanism of Diamond Tools in Ductile Machining of Reaction-bonded Silicon Carbide"

Transcription

1 Wear Mechanism of Diamond Tools in Ductile Machining of Reaction-bonded Silicon Carbide Zhiyu ZHANG, Jiwang YAN*, and Tsunemoto KURIYAGAWA Department of Nanomechanics, Tohoku University Aramaki Aoba , Aoba-ku, Sendai , Japan Abstract: Wear mechanisms of single-crystal diamond tools in ductile machining of reaction-bonded silicon carbide (RB-SiC) were investigated. It was found that tool wear could be generally classified into two types. One is microchippings on the cutting edge, which were induced by micro impacts between the cutting edge and SiC grains. The other is two kinds of gradual wear patterns on flank face caused by different mechanisms: non-periodical scratches caused by scratching effects of the SiC grains, and periodical grooves caused by transcribing effect of tool feed marks on the machined surface. A tool-swinging cutting method was proposed to improve the service life of diamond tools. Key words: Silicon carbide, Ductile machining, Diamond tool wear, Microplasticity. 1. Introduction Silicon carbide (SiC) is an important ceramic material that has been extensively used in various harsh environmental conditions, such as high temperature, high pressure, and severe corrosion. Recently, in optical manufacturing industry, SiC is being used as molding dies for high-precision hot pressing of glass lenses, for its high-temperature hardness, thermal shock resistance and chemical stability [1]. On the other hand, SiC has very poor machinability in ultraprecision machining. Conventionally, SiC was machined by diamond abrasive processes, such as grinding, lapping and polishing [2-5]. These machining methods can produce a nanometric surface finish; however, it is very difficult to precisely fabricate microstructures on SiC, such as micro lens arrays and micro prism arrays, which are increasingly demanded for glass molding press (GMP) technology [6]. As an alternative approach, we expected that precision cutting technology might be usable in fabricating microstructures on SiC. In a previous paper, we reported the material removal mechanisms in diamond turning of reaction-bonded SiC (RB-SiC) [7]. It was found that when using large-radius round-nosed diamond tools, high-efficiency ductile machining of RB-SiC could be realized. However, we found that diamond tools wore severely in diamond turning process, which dramatically degraded the machined surface quality. In this paper, experiments were carried out to study the wear mechanisms of diamond tools in the machining process of RB-SiC. It is expected that we can clarify the fundamental wear mechanisms and find new cutting methods to improve the service life of diamond tools. 2. Experimental The RB-SiC samples used in the experiments were produced by infiltrating silicon melt into a green compact consisting of carbon powder and SiC particles with average size of less than 1 µm. The liquid silicon reacts with carbon powders, forming new SiC particles. The infiltrated silicon does not react with carbon completely and excessive silicon fills the remaining pores in the body so that dense RB-SiC composite is produced [8]. The volume ratio of residual silicon in this work was 12 %. Fig. 1 shows a scanning electron microscope (SEM) micrograph of the fast atom beam (FAB) etched sample surface. The smooth regions correspond to SiC grains, and the micropits correspond to residual silicon. As shown in Fig. 1, most of the SiC grains are directly bonded to each other without the presence of silicon at grain boundaries. Machining experiments were carried out on a three-axis numerically controlled ultraprecision lathe, Nachi-ASP15. The experimental setup is shown in Fig. 2. This machine has a hydrostatic bearing spindle and two perpendicular hydrostatic sliding tables along the X-axis and the Z-axis. A tool holder, which has a three-dimensionally adjustable mechanism, is set on the rotary B-axis table. A CCD camera is equipped above the diamond tool to assist positioning the cutting point. Cutting tools used in experiments are made of single-crystal diamond and have a 10 mm nose-radius, a 20 rake angle and a 10 relief angle. Fig. 3 shows an SEM micrograph of a new diamond tool. The cutting edge is extremely sharp and without visible damages. The rotation rate of the spindle was set to 2000 rpm. The feed rate was set to 2 µm/rev and the depth of cut was set to 2 µm.

2 SiC grains Fig. 1 SEM micrograph of an FAB surface-etched RB-SiC sample. CCD camera Micropits Diamond tool Tool holder Fig.2 Photograph of the experimental setups. Z B Y X 3. Results and discussion 3.1 Tool wear observation Microchipping of cutting edge was a typical wear pattern at the initial stage in the machining process of RB-SiC. Fig. 4 shows an SEM micrograph of the cutting edge after cutting for several meters. A few microfractures can be observed on the cutting edge. The size of these microfractures is below 1 µm. As cutting distance increased, both the number and the size of the microfractures increased. Fig. 5(a) shows an SEM image of a diamond tool after a cutting distance of 20 m. It can be seen that the flank wear land is nearly symmetrical and like a crescent. However, after taking a careful look, we can find that the wear topography of the left side is different from that of the right side. Because tool feeding direction is from the left to the right in the figure, the two sides of the flank face have different contact conditions with the machined surface and the surface being machined. Fig. 5(b) shows a magnified image of the right side (location b in Fig. 5(a)) on the flank wear land. Scratched marks, the direction of which is nearly the same as the cutting direction, are observed. These marks do not show periodicity and are different in depth. The surfaces of these scratched marks are very rough. Moreover, microfractures in the micron level are also observed on the rake face side. Fig. 5(c) shows a magnified image of the left side (location c in Fig. 5(a)) on the flank wear land. Uniform grooves, which are all oriented along the cutting direction, are observed. These grooves are apparently periodical in a pitch of 2 µm, corresponding to the tool feed rate. Moreover, the groove surface is smooth with the same depth and without visible microfractures. Besides the periodical grooves on the flank face, a ~1 micron wide crater wear is also observed on the rake face side. The wear regime of the micro crater is smooth and uniform. Cutting edge Microchipping Fig. 3 SEM micrograph of the cutting edge of a new diamond tool. Fig. 4 SEM micrograph of edge microchippings.

3 a Tool feeding direction c b Flank wear land 100 µm b Microfracture c Crater wear Non-periodical scratches 2 µm Periodical grooves Fig. 5 SEM micrographs of the flank wear land: (a) general view; (b) close-up view of the section with non-periodical scratches; (c) close-up view of the section with periodical grooves with a pitch of 2 µm. 3.2 Tool wear models Fig. 6 shows the schematic model of cutting process when using a round-nosed tool. At the beginning, the cutting edge involved in cutting is only on the right side, from where the wear is initialized. The material removal model is shown in Fig. 7, where the undeformed chip thickness varies along the cutting edge from zero to a maximum value. From the left to the right along the cutting edge, there are four regions, namely, rubbing region, plastic deformation region, plowing region and cutting region [9]. Only in the cutting region, material can be removed. In other regions, diamond tool cannot remove any material, instead, only squeeze on the machined surface. As a result, a high local temperature could be generated and it may provide sufficient kinetic energy to break carbon carbon bonds of diamond and hence may cause severe wear of tool. Due to this effect, the tool tip wore and retreated. Accompanied with the retreatment of the tool tip, the wear land was extended gradually towards the left side and became wider and deeper. Finally, originally round cutting edge would be worn into a partially straight one as shown in Fig. 8(a). The flank wear is also schematically shown in Fig. 8(b), which is a view from the direction perpendicular to flank face, corresponding to the image in Fig. 5(a). Fig. 9 is a schematic presentation of the generation mechanism of the periodical grooves. Because feed direction of the tool is from the left to the right, the feed marks on the newly machined surface, which are also indicated in Fig. 7, would squeeze through the worn region of flank face and imprint the shape onto the flank face. Tool nose radius Cutting edge Fig. 6 Cutting model for a round-nosed tool.

4 Cutting region Plowing region f f Cutting edge Depth of cut Tool nose radius Plastic deformation Rubbing region Feed marks Residual height Feed marks Wear caused by friction Wear caused by cutting Fig. 7 Schematic model for material removal and material deformation in the cutting region of a round-nosed tool. Flank wear land (a) Fig. 9 Schematic model for generation mechanism of the periodical grooves on the flank wear land. (b) Tool nose radius Non-periodical scratches Wear land Flank wear land Periodical grooves Fig. 8 Schematic presentations of the flank wear land: (a) rake-face view; (b) flank-face view. 3.3 Estimation of cutting temperature Since accurately testing the temperature at the cutting point is difficult, finite element method (FEM) analysis was performed to evaluate the temperature distribution around the diamond tool edge. From the microindentation investigation [10], it was known that RB-SiC has very high hardness, high elastic modulus and large elastic recovery rate. Therefore, contact pressure between the machined surface of RB-SiC and the flank face of diamond tool should be very high, which induced a large amount of friction heat. Based on this hypothesis, an FEM model was built to predict the temperature on the basis of experimental conditions. Fig. 10(a) shows the simulation model built with commercial software, COMSOL Multiphysics. The model includes a RB-SiC sample, a diamond tool tip and a tool shank. The convection and conduction module in the multiphysics mode was selected. The boundaries between diamond and RB-SiC were specified as heat flux discontinuity with inward heat flux Q determined by Q = µσv (1) where µ is friction coefficient, σ is contact pressure, and V is cutting speed. All external boundaries were specified as heat transfer with convective film coefficient determined by a function of the cutting speed. The linear system solver, direct UMFPACK, was adopted in the calculation. The FEM analysis result is given in Fig. 10(b). The temperature at the diamond tool tip is over 800 K. It is known that at such a high temperature, diamond could

5 partially lose its hardness, while its fracture toughness and micro plasticity could be improved [11]. Moreover, the distribution of temperature shows that heat is prone to be transported into the diamond tool rather than the RB-SiC workpiece, because diamond has a higher thermal conductivity. The result also indicates that RB-SiC is relatively less affected by temperature rise because it is cooler than diamond. (a) Tool Shank Diamond tool RB-SiC (b) Fig. 10 (a) FEM model and (b) temperature distribution around diamond tool tip. 3.4 Discussion RB-SiC is a composite material that consists of hard SiC grains and relatively softer silicon bond. Hence, the cutting stress at a certain cutting point of the cutting edge is time-varying during the machining process. Thus, the cutting edge is subjected to micro impacts from the SiC grains. When the impact stress at a cutting point exceeds the strength of diamond, microchippings will occur. The microchippings may be the main reason for causing the originally sharp tool edge to a worn blunt one and finally leading to scratch patterns on flank wear. In RB-SiC, the SiC grains embedded in the machined surface may act like the abrasive grits on a grinding wheel surface. It is presumed that the scratching effect of SiC grains leads to the non-periodical scratches on flank wear land of the diamond tool. The periodical grooves on the flank wear land are presumed to be a result of microscopic plastic deformation of diamond. In previous studies, the plastic deformation of diamond under specific experimental conditions was reported [12-16]. Even at room temperature, diamond shows detectable microplasticity [17]. In the wear of polycrystalline diamond tools, clear evidence of plastic deformation was found [18]. That is to say, at suitable conditions, diamond has apparent dislocation ability and could undergo deformation in microscale. It is presumed that in the machining process of RB-SiC, the micro plasticity of diamond might be activated by the high temperature. Because there is a high pressure at the contact/sliding interface between the flank wear land and SiC, and the hardness of SiC is sufficiently high to maintain the high pressure, it is possible for the tool feed marks to be transcribed onto the flank face of diamond tool due to micro plastic deformation of diamond. 4. Tool-swinging cutting method As discussed above, the main reason for severe wear of diamond tool in cutting SiC is the thermal effects. Therefore, cutting methods which can reduce the thermal influences on diamond tools should be adopted. Recently, intermittent precision cutting methods, such as fly cutting [19] and endmilling [20], were reported to be effective for reducing the temperature influences on diamond tool wear. In this paper, the authors proposed a new cutting method called tool-swinging cutting method. The schematic presentation of the proposed method is shown in Fig. 11. A large-radius round-nosed diamond tool is set on a rotary B-axis table. The geometrical center of the cutting edge is adjusted to be in coincidence with the rotation center of the B-axis table. In this way, we can change the cutting point along the cutting edge by swing the diamond tool about the B-axis. In this method, as the cutting point always moves along the cutting edge, cutting time at one cutting point is very short so that the temperature rise at this point could be suppressed. After cutting, the cutting edge can be cooled down effectly by air or coolant. Fig. 12 shows the flank wear of a diamond tool after cutting by this method. The width of the flank wear land is remarkably smaller than that in Fig. 5. The scratch marks on the wear land are slightly curled because the cutting direction was changing in the cutting process. Fig. 13 shows a profile of the surface obtained by the proposed method. The surface finish of 2 nm Ra and 15 nm PV was obtained on RB-SiC. Therefore, by using the proposed tool-swinging method, both tool service life and machining accuracy can be improved at the same time. 5. Conclusions Wear mechanisms of round-nose diamond tools in ductile machining of RB-SiC were studied based on the SEM observations. Diamond tool wear could be generally

6 Center of swing (B-axis) Swing R Fig. 13 Surface roughness profile of machined RB-SiC workpiece. Fig. 11 Schematic presentation of tool-swinging cutting method. Curved scratches Fig. 12 SEM micrograph of tool wear pattern in the tool-swinging cutting method. classified into two types. One is microchippings on the cutting edge, which are induced by micro impacts between the cutting edge and SiC grains. The other is two kinds of gradual wear patterns on flank face caused by different mechanisms: non-periodical scratch marks caused by abrasive scratching of the SiC grains, and periodical grooves caused by imprinting effect of tool feed marks on machined surface. The microstructures on the flank wear land are resulting from the microplasticity of diamond at high temperature and high contact pressure. A new cutting method called tool-swinging cutting method was proposed, by which both the tool service life and machining accuracy were increased. Acknowledgements The authors would like to express their sincere thanks to Miyagi Industrial Technology Institute and Japan Fine Ceramics Co., Ltd. for providing RB-SiC samples and technical supports. References [1] C. Hall, M.Tricard, H. Murakoshi, Y. Yamamoto, K. Kuriyama, and H.Yoko: P. SPIE, 5868, (2005), 58680V. [2] H. Toshiya, I. Ichiro, and S. Junichi: T. Jpn. Soc. Mech. Eng. C, 51, (1985), [3] Y. Dai, H. Ohmori, W. Lin, H. Eto, N. Ebizuka, and K. Tsuno: Key Eng. Mat., , (2005), [4] H. Tam, H. Cheng, and Y. Wang: J. Mater. Process. Tech., , (2007), [5] H. Cheng, Z. Feng, S. Lei, and Y. Wang: Mater. Manuf. Process., 20, 6, (2005), [6] J. Yan, T. Oowada, T. Zhou, and T. Kuriyagawa: J. Mater. Process. Tech., 209, (2009), [7] J. Yan, Z. Zhang, and T. Kuriyagawa: Int. J. Mach. Tool. Manuf.., 49, 5, (2009), [8] S. Suyama, T. Kameda and Y. Itoh: Diam. Relat. Mater., 12 (3-7), [9] X. Li, T. He, and M. Rahman: Wear, 259, (2005), [10] Z. Zhang, J. Yan, and T. Kuriyagawa: Key Eng. Mat., , (2009), [11] M. Cai, P. Li, and M. Rahman: J. Manuf. Sci. Eng., 2007, 129, 2, [12] C. Brookes: Diam. Relat. Mater., 1, (1991), [13] E. Brookes: Diam. Relat. Mater., 8, (1999), [14] E. Brookes: Diam. Relat. Mater., 9, (2000), [15] K. Schiffmann, and A. Hieke: Wear, 254, (2003), [16] V. Blank, M. Popov, N. Lvova, K. Gogolinski, and V. Reshetov: Tech. Phys. Lett. 23, (7), (1997), [17] P. Humble: Nature, 273, 1978, [18] R. Schouwenaars, V. Jacobo, and A. Ortiz: Int. J. Refract. Met. H., 27, (2009), [19] A. Nakagawa, H. Suzuki, Y. Yamamoto, T. Moriwaki, T. Okino and Y. Hijikata: Trans. Japan Soc. Mech. Eng., 2006, (1), (in Japanese). [20] J. Kim, and Y. Kang: Int. J. Mach. Tool. Manuf.. 37, 8, (1997),

Study on tool wear characteristics in diamond turning of reaction-bonded silicon carbide

Study on tool wear characteristics in diamond turning of reaction-bonded silicon carbide Int J Adv Manuf Technol (2011) 57:117 125 DOI 10.1007/s00170-011-3289-3 ORIGINAL ARTICLE Study on tool wear characteristics in diamond turning of reaction-bonded silicon carbide Zhiyu Zhang & Jiwang Yan

More information

Coolant effects on tool wear in machining single-crystal silicon with diamond tools

Coolant effects on tool wear in machining single-crystal silicon with diamond tools Key Engineering Materials Online: 2008-09-26 ISSN: 1662-9795, Vols. 389-390, pp 144-150 doi:10.4028/www.scientific.net/kem.389-390.144 2009 Trans Tech Publications, Switzerland Coolant effects on tool

More information

Some observations on the wear of diamond tools in ultra-precision cutting of single-crystal silicon

Some observations on the wear of diamond tools in ultra-precision cutting of single-crystal silicon Wear 255 (2003) 1380 1387 Case study Some observations on the wear of diamond tools in ultra-precision cutting of single-crystal silicon Jiwang Yan a,, Katsuo Syoji b, Jun ichi Tamaki a a Department of

More information

MECHANICAL MICROMACHINING OF HIGH ASPECT RATIO MICRO-STRUCTURES

MECHANICAL MICROMACHINING OF HIGH ASPECT RATIO MICRO-STRUCTURES MECHANICAL MICROMACHINING OF HIGH ASPECT RATIO MICRO-STRUCTURES Hans H. Gatzen, Caspar Morsbach, Alexey Karyazin Institute for Microtechnology, Hanover University, Germany Key Words: precision machining,

More information

GRINDING AND OTHER ABRASIVE PROCESSES

GRINDING AND OTHER ABRASIVE PROCESSES GRINDING AND OTHER ABRASIVE PROCESSES Grinding Related Abrasive Process Abrasive Machining Material removal by action of hard, abrasive particles usually in the form of a bonded wheel Generally used as

More information

MSEC IMPROVING THE SURFACE ROUGHNESS OF A CVD COATED SILICON CARBIDE DISK BY PERFORMING DUCTILE REGIME SINGLE POINT DIAMOND TURNING

MSEC IMPROVING THE SURFACE ROUGHNESS OF A CVD COATED SILICON CARBIDE DISK BY PERFORMING DUCTILE REGIME SINGLE POINT DIAMOND TURNING Proceedings of the 8 International Manufacturing Science And Engineering Conference MSEC8 October 7-, 8, Evanston, Illinois, USA MSEC8-74 IMPROVING THE SURFACE ROUGHNESS OF A CVD COATED SILICON CARBIDE

More information

PROCESS PARAMETERS IN GRINDING OF Si 3 N 4 CERAMICS WITH VIRTRIFIED BOND DIAMOND GRINDING WHEEL

PROCESS PARAMETERS IN GRINDING OF Si 3 N 4 CERAMICS WITH VIRTRIFIED BOND DIAMOND GRINDING WHEEL Digest Journal of Nanomaterials and Biostructures Vol.13, No.4, October-December 2018, p.1205-1211 PROCESS PARAMETERS IN GRINDING OF Si 3 N 4 CERAMICS WITH VIRTRIFIED BOND DIAMOND GRINDING WHEEL Z. H.

More information

ULTRAPRECISION MICROMACHINING OF MICROFLUIDIC DEVICES BY USE OF A HIGH-SPEED AIRBEARING SPINDLE

ULTRAPRECISION MICROMACHINING OF MICROFLUIDIC DEVICES BY USE OF A HIGH-SPEED AIRBEARING SPINDLE ULTRAPRECISION MICROMACHINING OF MICROFLUIDIC DEVICES BY USE OF A HIGH-SPEED AIRBEARING SPINDLE Chunhe Zhang 1, Allen Y. Yi 1, Lei Li 1, L. James Lee 1, R. Ryan Vallance 2, Eric Marsh 3 1 The Ohio State

More information

Monitoring for Ultra-Precision Cutting Process of Single Crystal Silicon

Monitoring for Ultra-Precision Cutting Process of Single Crystal Silicon International Conference on Leading Edge Manufacturing in 1st Century Oct. 19-, 005, Nagoya, Japan Copyright 005 Monitoring for Ultra-Precision Cutting Process of Single Crystal Silicon Ryuichi IWAMOTO

More information

Characteristics of machined surface controlled by cutting tools and conditions in machining of brittle material

Characteristics of machined surface controlled by cutting tools and conditions in machining of brittle material Characteristics of machined surface controlled by cutting tools and conditions in machining of brittle material Yong-Woo KIM 1, Soo-Chang CHOI 1, Jeung-Woo PARK 2, Deug-Woo LEE 3 1. Department of Nano

More information

Improving the Surface Roughness of a CVD Coated Silicon Carbide Disk By Performing Ductile Regime Single Point Diamond Turning.

Improving the Surface Roughness of a CVD Coated Silicon Carbide Disk By Performing Ductile Regime Single Point Diamond Turning. Improving the Surface Roughness of a CVD Coated Silicon Carbide Disk By Performing Ductile Regime Single Point Diamond Turning Deepak Ravindra (Department of Mechanical & Aeronautical Engineering) & John

More information

Advanced Manufacturing Choices

Advanced Manufacturing Choices Advanced Manufacturing Choices Table of Content Mechanical Removing Techniques Ultrasonic Machining (USM) Sputtering and Focused Ion Beam Milling (FIB) Ultrasonic Machining In ultrasonic machining (USM),

More information

Development of New Grade SUMIBORON BN7000 for Cast Iron and Ferrous Powder Metal Machining

Development of New Grade SUMIBORON BN7000 for Cast Iron and Ferrous Powder Metal Machining SPECIAL ISSUE Development of New SUMIBORON for Cast Iron and Ferrous Powder Metal Machining Yusuke Matsuda*, Katsumi OKaMura, shinya uesaka and tomohiro FuKaYa SUMIBORON P (polycrystalline cubic boron

More information

Fabrication and application of high quality diamond coated. CMP pad conditioners

Fabrication and application of high quality diamond coated. CMP pad conditioners Fabrication and application of high quality diamond coated CMP pad conditioners Hua Wang 1,a, Fanghong Sun 1,b* 1 School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China

More information

Ceramic Processing Research

Ceramic Processing Research Journal of Ceramic Processing Research. Vol. 11, No. 1, pp. 100~106 (2010) J O U R N A L O F Ceramic Processing Research Factors affecting surface roughness of Al 2 O 3 films deposited on Cu substrates

More information

Application of Ultrasonic Assisted Machining Technique for Glass-Ceramic Milling

Application of Ultrasonic Assisted Machining Technique for Glass-Ceramic Milling Application of Ultrasonic Assisted Machining Technique for Glass-Ceramic Milling S. Y. Lin, C. H. Kuan, C. H. She, W. T. Wang Abstract In this study, ultrasonic assisted machining (UAM) technique is applied

More information

Basic study on Ultraprecision machining of Single-crystal Calcium Fluoride

Basic study on Ultraprecision machining of Single-crystal Calcium Fluoride Available online at www.sciencedirect.com Procedia Engineering 19 (211) 264 269 1 st CIRP Conference on Surface Integrity (CSI) Basic study on Ultraprecision machining of Single-crystal Calcium Fluoride

More information

CHAPTER 21. Cutting-Tool Materials and Cutting Fluids. Kalpakjian Schmid Manufacturing Engineering and Technology 2001 Prentice-Hall Page 21-1

CHAPTER 21. Cutting-Tool Materials and Cutting Fluids. Kalpakjian Schmid Manufacturing Engineering and Technology 2001 Prentice-Hall Page 21-1 CHAPTER 21 Cutting-Tool Materials and Cutting Fluids Manufacturing Engineering and Technology 2001 Prentice-Hall Page 21-1 Cutting Tool Material Hardnesses Figure 21.1 The hardness of various cutting-tool

More information

The Effect of Laser Heating on the Ductile to Brittle Transition of Silicon

The Effect of Laser Heating on the Ductile to Brittle Transition of Silicon The Effect of Laser Heating on the Ductile to Brittle Transition of Silicon Deepak Ravindra & Bogac Poyraz Manufacturing Research Center Western Michigan University Dr.John Patten Director -Manufacturing

More information

CHAPTER 4: The wetting behaviour and reaction of the diamond-si system

CHAPTER 4: The wetting behaviour and reaction of the diamond-si system CHAPTER 4: The wetting behaviour and reaction of the diamond-si system In this chapter, the wetting behaviour of diamond by silicon will be presented, followed by the study of the interaction between diamond

More information

On the ductile machining of silicon for micro electro-mechanical systems (MEMS), opto-electronic and optical applications

On the ductile machining of silicon for micro electro-mechanical systems (MEMS), opto-electronic and optical applications Materials Science and Engineering A297 (2001) 230 234 www.elsevier.com/locate/msea On the ductile machining of silicon for micro electro-mechanical systems (MEMS), opto-electronic and optical applications

More information

Journal of Mechanical Science and Technology Journal of Mechanical Science and Technology 22 (2008) 1383~1390

Journal of Mechanical Science and Technology Journal of Mechanical Science and Technology 22 (2008) 1383~1390 Journal of Mechanical Science and Technology Journal of Mechanical Science and Technology 22 (2008) 1383~1390 www.springerlink.com/content/1738-494x Environmentally conscious hard turning of cemented carbide

More information

Effect of High-Pressure Coolant on Machining Performance

Effect of High-Pressure Coolant on Machining Performance Int J Adv Manuf Technol (2002) 20:83 91 Ownership and Copyright 2002 Springer-Verlag London Limited Effect of High-Pressure Coolant on Machining Performance A. Senthil Kumar, M. Rahman and S. L. Ng Department

More information

Manufacturing Processes 1 (MDP 114)

Manufacturing Processes 1 (MDP 114) Manufacturing Processes 1 (MDP 114) First Year, Mechanical Engineering Dept., Faculty of Engineering, Fayoum University Dr. Ahmed Salah Abou Taleb 1 Cutting-Tool Materials and Cutting Fluids 2 Fracture

More information

COMPARISON BETWEEN NUMERICAL SIMULATIONS AND EXPERIMENTS FOR SINGLE POINT DIAMOND TURNING OF SILICON CARBIDE

COMPARISON BETWEEN NUMERICAL SIMULATIONS AND EXPERIMENTS FOR SINGLE POINT DIAMOND TURNING OF SILICON CARBIDE COMPARISON BETWEEN NUMERICAL SIMULATIONS AND EXPERIMENTS FOR SINGLE POINT DIAMOND TURNING OF SILICON CARBIDE John A. Patten, Jerry Jacob and Biswarup Bhattacharya Department of Manufacturing Engineering

More information

Micro-machining of optical glasses A review of diamond-cutting glasses

Micro-machining of optical glasses A review of diamond-cutting glasses Sādhanā Vol. 28, Part 5, October 23, pp. 945 955. Printed in India Micro-machining of optical glasses A review of diamond-cutting glasses F Z FANG, X D LIU and L C LEE Singapore Institute of Manufacturing

More information

Grinding of Aluminium-Based Metal Matrix Composites Reinforced with Al 2 O 3 or SiC Particles

Grinding of Aluminium-Based Metal Matrix Composites Reinforced with Al 2 O 3 or SiC Particles Int J Adv Manuf Technol (2003) 21:79 83 Ownership and Copyright 2003 Springer-Verlag London Limited Grinding of Aluminium-Based Metal Matrix Composites Reinforced with Al 2 O 3 or SiC Particles Z. W. Zhong

More information

ЗАГАЛЬНІ ПИТАННЯ ТЕОРІЇ ТЕРТЯ ТА ЗНОШУВАННЯ A REVIEW OF STUDIES REGARDING DUCTILE REGIME MACHINING OF SEMICONDUCTORS, CERAMICS AND GLASS

ЗАГАЛЬНІ ПИТАННЯ ТЕОРІЇ ТЕРТЯ ТА ЗНОШУВАННЯ A REVIEW OF STUDIES REGARDING DUCTILE REGIME MACHINING OF SEMICONDUCTORS, CERAMICS AND GLASS ЗАГАЛЬНІ ПИТАННЯ ТЕОРІЇ ТЕРТЯ ТА ЗНОШУВАННЯ УДК 621.315.592:621.91:620.181 A. M. Kovalchenko, Candidate of Technical Sciences Senior Researcher A REVIEW OF STUDIES REGARDING DUCTILE REGIME MACHINING OF

More information

Vickers Berkovich Knoop Conical Rockwell Spherical Figure 15 a variety of different indenter's shapes and sizes

Vickers Berkovich Knoop Conical Rockwell Spherical Figure 15 a variety of different indenter's shapes and sizes Hardness Test of Ceramic materials Hardness is a measure of a materials resistance to penetration by a hard indenter of defined geometry and loaded in prescribed manner, it is one of the most frequently

More information

Fabrication of Cemented Carbide Molds with Internal Cooling Channels Using Hybrid Process of Powder Layer Compaction and Milling*

Fabrication of Cemented Carbide Molds with Internal Cooling Channels Using Hybrid Process of Powder Layer Compaction and Milling* Materials Transactions, Vol. 46, No. 11 (25) pp. 2497 to 253 #25 The Japan Institute of Metals Fabrication of Cemented Carbide Molds with Internal Cooling Channels Using Hybrid Process of Powder Layer

More information

Development of a Meso-scale Machine Tool and the Preliminary Cutting Tests of Oxygen-free Copper Using a Polycrystalline Diamond Tool

Development of a Meso-scale Machine Tool and the Preliminary Cutting Tests of Oxygen-free Copper Using a Polycrystalline Diamond Tool 631 Development of a Meso-scale Machine Tool and the Preliminary Cutting Tests of Oxygen-free Copper Using a Polycrystalline Diamond Tool Fang-Jung Shiou 1, Kuang-Chao Fan 2, Kai-Ming Pan 3 and Zhi-Yuan

More information

Grinding of hard-material-coated forming tools on machining centers

Grinding of hard-material-coated forming tools on machining centers Available online at www.sciencedirect.com Procedia CIRP 1 (2012 ) 388 392 5 th CIRP Conference on High Performance Cutting 2012 Grinding of hard-material-coated forming tools on machining centers S. Rausch

More information

Ultrasonic assisted turning of an aluminium-based metal matrix composite reinforced with SiC particles

Ultrasonic assisted turning of an aluminium-based metal matrix composite reinforced with SiC particles Int J Adv Manuf Technol (2006) 27: 1077 1081 DOI 10.1007/s00170-004-2320-3 ORIGINAL ARTICLE Z.W. Zhong G. Lin Ultrasonic assisted turning of an aluminium-based metal matrix composite reinforced with SiC

More information

Cutting Tool Materials and Cutting Fluids. Dr. Mohammad Abuhaiba

Cutting Tool Materials and Cutting Fluids. Dr. Mohammad Abuhaiba Cutting Tool Materials and Cutting Fluids HomeWork #2 22.37 obtain data on the thermal properties of various commonly used cutting fluids. Identify those which are basically effective coolants and those

More information

FORMING OF FULLERENE-DISPERSED ALUMINUM COMPOSITE BY THE COMPRESSION SHEARING METHOD

FORMING OF FULLERENE-DISPERSED ALUMINUM COMPOSITE BY THE COMPRESSION SHEARING METHOD FORMING OF FULLERENE-DISPERSED ALUMINUM COMPOSITE BY THE COMPRESSION SHEARING METHOD Noboru NAKAYAMA Akita Prefectural University, 84-4 Tsuchiya-Ebinokuti, Yurihonjyo, Akita/ 15-55, JAPAN nakayama@akita-pu.ac.jp

More information

Study on shaping spherical Poly Crystalline Diamond tool by Micro-electro-Discharge Machining and micro-grinding with the tool

Study on shaping spherical Poly Crystalline Diamond tool by Micro-electro-Discharge Machining and micro-grinding with the tool 344 Int. J. Surface Science and Engineering, Vol. 1, No. 4, 2007 Study on shaping spherical Poly Crystalline Diamond tool by Micro-electro-Discharge Machining and micro-grinding with the tool Takeshi Masaki*,

More information

APPLICATIONS OF ANOVA IN VALIDATING HYBRID MMC MACHINABILITY DATA

APPLICATIONS OF ANOVA IN VALIDATING HYBRID MMC MACHINABILITY DATA APPLICATIONS OF ANOVA IN VALIDATING HYBRID MMC MACHINABILITY DATA M. Kathirvel 1, S. Purushothaman 2 and R. Subhash Chandra Bose 3 1 Department of Mechanical Engineering, Sun College of Engineering and

More information

Investigation on the Cutting Process of Plasma Sprayed Iron Base Alloys

Investigation on the Cutting Process of Plasma Sprayed Iron Base Alloys Key Engineering Materials Online: 2010-09-06 ISSN: 1662-9795, Vols. 447-448, pp 821-825 doi:10.4028/www.scientific.net/kem.447-448.821 2010 Trans Tech Publications, Switzerland Investigation on the Cutting

More information

SPDT Effects on Surface Quality & Subsurface Damage in Ceramics

SPDT Effects on Surface Quality & Subsurface Damage in Ceramics SPDT Effects on Surface Quality & Subsurface Damage in Ceramics Deepak Ravindra & John Patten (Manufacturing Research Center- Western Michigan University) Jun Qu (Oak Ridge National Laboratory) Presentation

More information

EFFECT OF MACHINING PARAMETERS ON SURFACE ROUGHNESS AND MATERIAL REMOVAL RATE DURING ROTARY ULTRASONIC MACHINING OF SILICON CARBIDE

EFFECT OF MACHINING PARAMETERS ON SURFACE ROUGHNESS AND MATERIAL REMOVAL RATE DURING ROTARY ULTRASONIC MACHINING OF SILICON CARBIDE EFFECT OF MACHINING PARAMETERS ON SURFACE ROUGHNESS AND MATERIAL REMOVAL RATE DURING ROTARY ULTRASONIC MACHINING OF SILICON CARBIDE Cini Babuji 1, Dr. N Santhosh Kumar 2, K Vijayan 3, G NagamalleswaraRao

More information

Effect of crystallographic orientation on wear of diamond tools for nano-scale ductile cutting of silicon

Effect of crystallographic orientation on wear of diamond tools for nano-scale ductile cutting of silicon Wear xxx (24) xxx xxx Effect of crystallographic orientation on wear of diamond tools for nano-scale ductile cutting of silicon M. Sharif Uddin, K.H.W. Seah, X.P. Li, M. Rahman, K. Liu Department of Mechanical

More information

Load effects on the phase transformation of single-crystal silicon during nanoindentation tests

Load effects on the phase transformation of single-crystal silicon during nanoindentation tests Materials Science and Engineering A 423 (2006) 19 23 Load effects on the phase transformation of single-crystal silicon during nanoindentation tests Jiwang Yan a,, Hirokazu Takahashi b, Xiaohui Gai c,

More information

CUTTING TOOL TECHNOLOGY

CUTTING TOOL TECHNOLOGY CUTTING TOOL TECHNOLOGY Tool Life Tool Materials Tool Geometry Cutting Fluids Cutting Tool Technology Two principal aspects: 1. Tool material 2. Tool geometry Three Modes of Tool Failure Fracture failure

More information

PES INSTITUTE OF TECHNOLOGY BANGALORE SOUTH CAMPUS Hosur Road, (1K.M. Before Electronic City), Bangalore DEPARTMENT OF MECHANICAL ENGINEERING

PES INSTITUTE OF TECHNOLOGY BANGALORE SOUTH CAMPUS Hosur Road, (1K.M. Before Electronic City), Bangalore DEPARTMENT OF MECHANICAL ENGINEERING PES INSTITUTE OF TECHNOLOGY BANGALORE SOUTH CAMPUS Hosur Road, (1K.M. Before Electronic City), Bangalore 560 100 DEPARTMENT OF MECHANICAL ENGINEERING SOLUTION 3 rd INTERNAL TEST Subject : Machine Tools

More information

Coated-Carbide Grades AC8015P, AC8025P, and AC8035P for Steel Turning

Coated-Carbide Grades AC8015P, AC8025P, and AC8035P for Steel Turning INDUSTRIAL MATERIALS Coated-Carbide Grades AC8015P, AC8025P, and for Steel Turning Satoshi ONO*, Yasuki KIDO, Susumu OKUNO, Hideaki KANAOKA, Shinya IMAMURA, and Kazuhiro HIROSE ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

More information

Module 3 Machinability. Version 2 ME IIT, Kharagpur

Module 3 Machinability. Version 2 ME IIT, Kharagpur Module 3 Machinability Lesson 14 Failure of cutting tools and tool life Instructional objectives At the end of this lesson, the students will be able to (i) (ii) (iii) (iv) (v) State how the cutting tools

More information

High-Strength Reaction-Sintered Silicon Carbide for Large-Scale Mirrors - Effect of surface oxide layer on bending strength -

High-Strength Reaction-Sintered Silicon Carbide for Large-Scale Mirrors - Effect of surface oxide layer on bending strength - Advances in Science and Technology Vol. 63 (2010) pp 374-382 Online available since 2010/Oct/27 at www.scientific.net (2010) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/ast.63.374

More information

STUDY OF ELECTRICAL DISCHARGE MACHINING FOR TRUING OF DIAMOND GRINDING WHEEL

STUDY OF ELECTRICAL DISCHARGE MACHINING FOR TRUING OF DIAMOND GRINDING WHEEL STUDY OF ELECTRICAL DISCHARGE MACHINING FOR TRUING OF DIAMOND GRINDING WHEEL Apiwat Muttamara Faculty of Engineering, Thammasat University Pathumthani, Thailand Choosak Phumueang Faculty of Engineering,

More information

Development of SUMIBORON BN7500 for Ferrous Powder Metal Finishing

Development of SUMIBORON BN7500 for Ferrous Powder Metal Finishing INDUSTRIAL MATERIALS Development of SUMIBORON for Ferrous Powder Metal Finishing Yusuke MATSUDA*, Katsumi OKAMURA and Satoru KUKINO SUMIBORON tools are widely used in the cutting of hard-to-cut ferrous

More information

American Journal of Nanotechnology 1 (2): 40-44, 2010 ISSN Science Publications

American Journal of Nanotechnology 1 (2): 40-44, 2010 ISSN Science Publications American Journal of Nanotechnology 1 (2): 40-44, 2010 ISSN 1949-0216 2010 Science Publications Fabrication of X-Ray Optics for a Portable Total Reflection X-Ray Fluorescence Spectrometer Using Electrolytic

More information

Ductile streaks in precision grinding of hard and brittle materials

Ductile streaks in precision grinding of hard and brittle materials Sādhan ā Vol. 28, Part 5, October 2003, pp. 915 924. Printed in India Ductile streaks in precision grinding of hard and brittle materials V C VENKATESH, S IZMAN, S SHARIF, T T MON and M KONNEH Department

More information

Characteristics of Shear Bands and Fracture Surfaces of Zr 65 Al 7:5 Ni 10 Pd 17:5 Bulk Metallic Glass

Characteristics of Shear Bands and Fracture Surfaces of Zr 65 Al 7:5 Ni 10 Pd 17:5 Bulk Metallic Glass Materials Transactions, Vol. 46, No. 12 (2005) pp. 2870 to 2874 Special Issue on Materials Science of Bulk Metallic Glasses #2005 The Japan Institute of Metals Characteristics of Shear Bands and Fracture

More information

Nano finish grinding of brittle materials using electrolytic in-process dressing (ELID) technique

Nano finish grinding of brittle materials using electrolytic in-process dressing (ELID) technique Sādhan ā Vol. 28, Part 5, October 2003, pp. 957 974. Printed in India Nano finish grinding of brittle materials using electrolytic in-process dressing (ELID) technique M RAHMAN, A SENTHIL KUMAR, H S LIM

More information

Rotary Dressers. Diamond Tools. Rotary Dressers

Rotary Dressers. Diamond Tools. Rotary Dressers Rotary Dressers Diamond Tools Rotary Dressers Super-fine diamond grit and super-fine ceramics technology result in an innovative A.L.M.T. grinding wheel. Application of both acquired material technology

More information

A NEW ERA? 3M CUBITRON II REVEALS FULL POTENTIAL OF BEVEL-GEAR GRINDING

A NEW ERA? 3M CUBITRON II REVEALS FULL POTENTIAL OF BEVEL-GEAR GRINDING A NEW ERA? 3M CUBITRON II REVEALS FULL POTENTIAL OF BEVEL-GEAR GRINDING Reinventing the world of grinding processes: 3M s geometrically defined sintered corundum technology, Cubitron II, meets the stringent

More information

Influence of Milling Conditions on the Surface Quality in High-Speed Milling of Titanium Alloy

Influence of Milling Conditions on the Surface Quality in High-Speed Milling of Titanium Alloy Influence of Milling Conditions on the Surface Quality in High-Speed Milling of Titanium Alloy Xiaolong Shen, Laixi Zhang, and Chenggao Ren Hunan Industry Polytechnic, Changsha, 410208, China ShenXL64@163.com,

More information

EXPERIMENTAL AND NUMERICAL STUDIES OF DUCTILE REGIME MACHINING OF SILICON CARBIDE AND SILICON NITRIDE

EXPERIMENTAL AND NUMERICAL STUDIES OF DUCTILE REGIME MACHINING OF SILICON CARBIDE AND SILICON NITRIDE EXPERIMENTAL AND NUMERICAL STUDIES OF DUCTILE REGIME MACHINING OF SILICON CARBIDE AND SILICON NITRIDE Ravishankar Mariayyah Department of Mechanical Engineering University of North Carolina at Charlotte

More information

Wear of PVD Coated and CVD+PVD Coated Inserts in Turning

Wear of PVD Coated and CVD+PVD Coated Inserts in Turning Wear of PVD Coated and CVD+PVD Coated Inserts in Turning Paper No.: 65 Session No.: Author Name: Title: Affiliation: Address: Email: 56 (Dynamics and Vibrations in Experimental Mechanics) M.A. Zeb Assistant

More information

Effects of particle shape and temperature on compaction of copper powder at micro scale

Effects of particle shape and temperature on compaction of copper powder at micro scale Effects of particle shape and on compaction of copper powder at micro scale hao-heng hang * and Ming-Ru Wu Department of Mold and Die Engineering, National Kaohsiung University of pplied Sciences, Kaohsiung,

More information

High Thermal Conductivity Silicon Nitride Ceramics

High Thermal Conductivity Silicon Nitride Ceramics Journal of the Korean Ceramic Society Vol. 49, No. 4, pp. 380~384, 2012. http://dx.doi.org/10.4191/kcers.2012.49.4.380 Review High Thermal Conductivity Silicon Nitride Ceramics Kiyoshi Hirao, You Zhou,

More information

Micro Laser Assisted Machining (µ-lam) of Semiconductors and Ceramics. Machining Direction

Micro Laser Assisted Machining (µ-lam) of Semiconductors and Ceramics. Machining Direction Micro Laser Assisted Machining (µ-lam) of Semiconductors and Ceramics John Patten, Director, Manufacturing Research Center Western Michigan University Machining Direction IR laser Machining Direction Work

More information

Evaluation of Mechanical Properties of Hard Coatings

Evaluation of Mechanical Properties of Hard Coatings Evaluation of Mechanical Properties of Hard Coatings Comprehensive mechanical testing of two coated metal samples was performed on the UNMT- 1. The tests clearly distinguished brittle and ductile samples,

More information

Effect of Soft Material Hardness and Hard Material Surface Morphology on Friction and Transfer Layer Formation; Dry Condition

Effect of Soft Material Hardness and Hard Material Surface Morphology on Friction and Transfer Layer Formation; Dry Condition International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-2, Issue-4, September 213 Effect of Soft Material Hardness and Hard Material Surface Morphology on Friction and

More information

Properties of Cold Work Tool Steel Shot Peened by 1200 HV-Class Fe-Cr-B Gas Atomized Powder as Shot Peening Media

Properties of Cold Work Tool Steel Shot Peened by 1200 HV-Class Fe-Cr-B Gas Atomized Powder as Shot Peening Media Materials Transactions, Vol. 51, No. 4 (20) pp. 735 to 739 #20 The Japan Institute of Metals Properties of Cold Work Tool Steel Shot Peened by 1200 HV-Class Fe-Cr-B Gas Atomized Powder as Shot Peening

More information

Available online at ScienceDirect. Procedia CIRP 31 (2015 ) th CIRP Conference on Modelling of Machining Operations

Available online at  ScienceDirect. Procedia CIRP 31 (2015 ) th CIRP Conference on Modelling of Machining Operations Available online at www.sciencedirect.com ScienceDirect Procedia CIRP 31 (2015 ) 24 28 15th CIRP Conference on Modelling of Machining Operations Springback in metal cutting with high cutting speeds N.

More information

Influence of Additives and Hot-Press Sintering on Mechanical and Lipophilic Properties of Silicon Nitride Ceramics*

Influence of Additives and Hot-Press Sintering on Mechanical and Lipophilic Properties of Silicon Nitride Ceramics* Materials Transactions, Vol. 46, No. 9 (25) pp. 241 to 246 #25 The Japan Institute of Metals Influence of Additives and Hot-Press Sintering on Mechanical and Lipophilic Properties of Silicon Nitride Ceramics*

More information

Indentation fatigue in silicon nitride, alumina and silicon carbide ceramics

Indentation fatigue in silicon nitride, alumina and silicon carbide ceramics Bull. Mater. Sci., Vol. 24, No. 2, April 2001, pp. 105 109. Indian Academy of Sciences. Indentation fatigue in silicon nitride, alumina and silicon carbide ceramics A K MUKHOPADHYAY Central Glass and Ceramic

More information

Characteristics of the Fine Grained CVD Diamond Film and its Industrial Applications. K. Kazahaya, A. Yamakawa and T. Fukunisi

Characteristics of the Fine Grained CVD Diamond Film and its Industrial Applications. K. Kazahaya, A. Yamakawa and T. Fukunisi Key Engineering Materials Online: 2004-02-15 ISSN: 1662-9795, Vols. 257-258, pp 553-558 doi:10.4028/www.scientific.net/kem.257-258.553 2004 Trans Tech Publications, Switzerland Characteristics of the Fine

More information

Influence of cutting-edge modifications on the cutting process when machining Inconel 718

Influence of cutting-edge modifications on the cutting process when machining Inconel 718 Surface and Contact Mechanics including Tribology XII 71 Influence of cutting-edge modifications on the cutting process when machining Inconel 718 M. Zetek & I. Zetková Regional Technological Institute,

More information

ABRASIVE WEAR PROPERTIES OF GRAPHITE FILLED PA6 POLYMER COMPOSITES

ABRASIVE WEAR PROPERTIES OF GRAPHITE FILLED PA6 POLYMER COMPOSITES Int. J. Mech. Eng. & Rob. Res. 2012 Ch Lakshmi Srinivas et al., 2012 Research Paper ISSN 2278 0149 www.ijmerr.com Vol. 1, No. 3, October 2012 2012 IJMERR. All Rights Reserved ABRASIVE WEAR PROPERTIES OF

More information

School of Mechanical Engineering, Shandong University, Jinan , China 2

School of Mechanical Engineering, Shandong University, Jinan , China 2 Analysis and Prediction of Tool Flank Wear under Constant Material Removal Volume Condition in Turning of AISI 4140 Steel R. W. Wang 1, 2, a, S. Zhang 1, 2, b *, G. Li 1, 2, c 1, 2, d, J. F. Li 1 School

More information

Optimisation of Inertia Friction Welding Steel to 6061 Aluminium

Optimisation of Inertia Friction Welding Steel to 6061 Aluminium Optimisation of Inertia Friction Welding Steel to 6061 Aluminium J.L. Rutherford, P.B. Prangnell School of Materials, University of Manchester, U.K. 1 Introduction There is a growing need to join aluminum

More information

Polishing-, Ceramic Stones & Accessories

Polishing-, Ceramic Stones & Accessories Polishing-, Ceramic Stones & Accessories 5 a company A COMPANY Content Polishing-, Ceramic Stones & Accessories 5 Polishing-, Ceramic Stones & Accessories Polishing Stones...2 Ceramic Stones...16 Super

More information

PCD Cutting Insert Behavior on Turning (Al-SiC15p) MMC

PCD Cutting Insert Behavior on Turning (Al-SiC15p) MMC PCD Cutting Insert Behavior on Turning (Al-SiC15p) MMC S.Santha Kumar, V.Thenappan and G.Srinath Abstract--The paper presents the results of an experimental investigation on the machinability of Aluminum

More information

Ductile or Partial Ductile Mode Machining of Brittle Materials

Ductile or Partial Ductile Mode Machining of Brittle Materials Int J Adv Manuf Technol (2003) 21:579 585 Ownership and Copyright 2003 Springer-Verlag London Limited Ductile or Partial Ductile Mode Machining of Brittle Materials Z. W. Zhong School of MPE, Nanyang Technological

More information

Development of diamond coated tool and its performance in machining Al 11%Si alloy

Development of diamond coated tool and its performance in machining Al 11%Si alloy Bull. Mater. Sci., Vol. 25, No. 6, November 2002, pp. 487 491. Indian Academy of Sciences. Development of diamond coated tool and its performance in machining Al 11%Si alloy B SAHOO, A K CHATTOPADHYAY*

More information

Effect of Fine Particle Bombarding on Thermal Fatigue Property of Tool Steel for Die Casting

Effect of Fine Particle Bombarding on Thermal Fatigue Property of Tool Steel for Die Casting Effect of Fine Particle Bombarding on Thermal Fatigue Property of Tool Steel for Die Casting Shinichi Takagi, Masao Kumagai, Toshitaka Satsuta and Akihiko Sano 1, Eiji Shimodaira 2 1 Kanagawa Industrial

More information

Advanced pad conditioner design for Oxide/Metal CMP

Advanced pad conditioner design for Oxide/Metal CMP Advanced pad conditioner design for Oxide/Metal CMP Taewook Hwang*, Gary Baldoni, Anand Tanikella, Thomas Puthanangady Saint-Gobain High Performance Materials 9 Goddard Road, Northboro, MA 153, USA E-mail

More information

Journal of Materials Processing Technology

Journal of Materials Processing Technology Journal of Materials Processing Technology 209 (2009) 4484 4489 Contents lists available at ScienceDirect Journal of Materials Processing Technology journal homepage: www.elsevier.com/locate/jmatprotec

More information

A Novel Extrusion Microns Embossing Method of Polymer Film

A Novel Extrusion Microns Embossing Method of Polymer Film Modern Mechanical Engineering, 2012, 2, 35-40 http://dx.doi.org/10.4236/mme.2012.22005 Published Online May 2012 (http://www.scirp.org/journal/mme) A Novel Extrusion Microns Embossing Method of Polymer

More information

1Department of Mechanical Engineering, Sun Moon University, South Korea 2 R&D Institute, DesignMecha Co., Ltd, South Korea

1Department of Mechanical Engineering, Sun Moon University, South Korea 2 R&D Institute, DesignMecha Co., Ltd, South Korea Application of (Ultrasonic Nanocrystal Surface Modification) Technology for Prolonging Service Life of Journal Bearing of Railroad Axle and for Reducing Friction Loss A. Amanov 1, I. H. Cho 2, J.H. Kim

More information

Identification of Tool Life and Wear Characteristics of HSS Tools Used in Turning of Ck45

Identification of Tool Life and Wear Characteristics of HSS Tools Used in Turning of Ck45 Identification of Tool Life and Wear Characteristics of HSS Tools Used in Turning of Ck45 B. Moetakef Imani, S.A. Hosseini 2 and A. Baghal Safa 3 Mechanical Engineering Department, Ferdowsi University,

More information

Design of Integrated Light Guiding Plates Using Silicon-based Micro-Features

Design of Integrated Light Guiding Plates Using Silicon-based Micro-Features Design of Integrated Light Guiding Plates Using Silicon-based Micro-Features Jyh-Cheng Yu*, Shao-Tang Zhangjian, and Zong-Nan Chen Abstract-- This study addresses the design of an integrated light guide

More information

CHAPTER 7 PREDICTION OF TEMPERATURE DISTRIBUTION ON CUTTING TOOL

CHAPTER 7 PREDICTION OF TEMPERATURE DISTRIBUTION ON CUTTING TOOL 142 CHAPTER 7 PREDICTION OF TEMPERATURE DISTRIBUTION ON CUTTING TOOL The main objective of this chapter is to predict the temperature distribution on a turning tool by using the following methods: Build

More information

Polycrystalline diamond blanks and cut shapes for inserts and round tools. TOOLMAKER SOLUTIONS Compax PCD Tool Blanks and Inserts

Polycrystalline diamond blanks and cut shapes for inserts and round tools. TOOLMAKER SOLUTIONS Compax PCD Tool Blanks and Inserts Polycrystalline diamond blanks and cut shapes for inserts and round tools TOOLMAKER SOLUTIONS Compax PCD Tool Blanks and Inserts COMPAX PCD PRODUCT OFFERINGS Hyperion offers a vast selection of superior

More information

Fabricating microgrooves with varied cross-sections by electrodischarge machining

Fabricating microgrooves with varied cross-sections by electrodischarge machining Int J Adv Manuf Technol (2010) 50:991 1002 DOI 10.1007/s00170-010-2563-0 ORIGINAL ARTICLE Fabricating microgrooves with varied cross-sections by electrodischarge machining Jiwang Yan & Takuya Kaneko &

More information

Numerical Analysis of Laser Preheating for Laser Assisted Micro Milling of Inconel 718

Numerical Analysis of Laser Preheating for Laser Assisted Micro Milling of Inconel 718 Numerical Analysis of Laser Preheating for Laser Assisted Micro Milling of Inconel 718 E. A. Rahim 1,a, N. M. Warap 1,b, Z. Mohid 1, c, R. Ibrahim 1, and M. I. S. Ismail 2 1 Advanced Machining Research

More information

Numerical Simulation of Sliding Contact during Sheet Metal Stamping

Numerical Simulation of Sliding Contact during Sheet Metal Stamping Numerical Simulation of Sliding Contact during Sheet Metal Stamping Biglari F. R. * Nikbin K. ** O Dowd N. P. ** Busso E.P. ** * Mechanical Engineering Department, Amirkabir University of Technology, Hafez

More information

RESEARCH AND CLASSIFICATION OF SURFACE AND INTERNAL DEFECTS OF CERAMIC CUTTING TOOL

RESEARCH AND CLASSIFICATION OF SURFACE AND INTERNAL DEFECTS OF CERAMIC CUTTING TOOL RESEARCH AND CLASSIFICATION OF SURFACE AND INTERNAL DEFECTS OF CERAMIC CUTTING TOOL Volosova Marina A. Moscow State University of Technology "STANKIN", Moscow, Russia E-Mail: m.volosova@stankin.ru ABSTRACT

More information

INVESTIGATION ON THE INCONSISTENCIES OF CUTTING FORCE WHEN LASER ASSISTED AND HIGH SPEED MICRO BALL MILLING OF INCONEL 718

INVESTIGATION ON THE INCONSISTENCIES OF CUTTING FORCE WHEN LASER ASSISTED AND HIGH SPEED MICRO BALL MILLING OF INCONEL 718 INVESTIGATION ON THE INCONSISTENCIES OF CUTTING FORCE WHEN LASER ASSISTED AND HIGH SPEED MICRO BALL MILLING OF INCONEL 718 E. A. Rahim, N. M. Warap and Z. Mohid Advanced Machining Research Group, Universiti

More information

Water Droplet Impingement Erosion (WDIE) Water Droplet Impingement Erosion (WDIE) Solid Particle Erosion. Outline

Water Droplet Impingement Erosion (WDIE) Water Droplet Impingement Erosion (WDIE) Solid Particle Erosion. Outline Water Droplet Impingement Erosion (WDIE) Incoming air temperature Outline Mass flow rate Introduction Example Output power Energy Demand Temperature Turbine efficiency 1 F 0.3-0.5% Turbine inlet cooling

More information

Friction and Wear Properties of Copper/Carbon/RB Ceramics Composite Materials under Dry Condition

Friction and Wear Properties of Copper/Carbon/RB Ceramics Composite Materials under Dry Condition Tribology Online, 3, 4 (28) 222-227. ISSN 1881-2198 DOI 1.2474/trol.4.222 riction and Wear Properties of /Carbon/RB Ceramics Composite Materials under Dry Condition Kei Shibata 1)*, Takeshi Yamaguchi 1),

More information

STATUS OF FEM MODELING IN HIGH SPEED CUTTING - A Progress Report -

STATUS OF FEM MODELING IN HIGH SPEED CUTTING - A Progress Report - STATUS OF FEM MODELING IN HIGH SPEED CUTTING - A Progress Report - Dr. Taylan Altan, Professor and Director Partchapol (Jay) Sartkulvanich, Graduate Research Associate Ibrahim Al-Zkeri, Graduate Research

More information

DEVELOPMENT OF IN-SITU MONITORING SYSTEM FOR SINTERING OF CERAMICS USING LASER AE TECHNIQUE

DEVELOPMENT OF IN-SITU MONITORING SYSTEM FOR SINTERING OF CERAMICS USING LASER AE TECHNIQUE DEVELOPMENT OF IN-SITU MONITORING SYSTEM FOR SINTERING OF CERAMICS USING LASER AE TECHNIQUE S. NISHINOIRI and M. ENOKI Department of Materials Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo,

More information

Experimental Research on the Influence of Tool Material and Geometric Parameters on Cutting Surface Quality of Super Alloy

Experimental Research on the Influence of Tool Material and Geometric Parameters on Cutting Surface Quality of Super Alloy International Journal of Smart Home Vol. 10, No. 5 (016), pp. 55-60 http://dx.doi.org/10.1457/ijsh.016.10.5.06 Experimental Research on the Influence of Tool Material and Geometric Parameters on Cutting

More information

Behavior Analysis of Aluminium Alloy with Reinforced Silicon Carbide Particles

Behavior Analysis of Aluminium Alloy with Reinforced Silicon Carbide Particles Behavior Analysis of Aluminium Alloy with Reinforced Silicon Carbide Particles Vijayakumar S S PG Student, M E Computer Aided Design, Mahendra Engineering College, Salem, Tamilnadu, India Annamalai P Department

More information

Tensilel Properties of AA6061-T6/SiC p Surface Metal Matrix Composite Produced By Friction Stir Processing

Tensilel Properties of AA6061-T6/SiC p Surface Metal Matrix Composite Produced By Friction Stir Processing Tensilel Properties of AA6061-T6/SiC p Surface Metal Matrix Composite Produced By Friction Stir Processing Devaraju Aruri, Adepu Kumar & B Kotiveerachary Department of Mechanical Engineering, National

More information

Modeling of Temperature Distribution in Metalcutting using Finite Element Method

Modeling of Temperature Distribution in Metalcutting using Finite Element Method Modeling of Temperature Distribution in Metalcutting using Finite Element Method M.Sivaramakrishnaiah Department of Mechanical Engineering Sri venkateswara college of engineering & Technology (AUTONOMOUS)

More information

WEAR AND BLANKING PERFORMANCE OF AlCrN PVD-COATED PUNCHES

WEAR AND BLANKING PERFORMANCE OF AlCrN PVD-COATED PUNCHES Materials Science, Vol. 48, No. 4, January, 2013 (Ukrainian Original Vol. 48, No. 4, July August, 2012) WEAR AND BLANKING PERFORMANCE OF AlCrN PVD-COATED PUNCHES M. Çöl, 1 D. Kir, 2 and E. Erişir 1,3 Blanking

More information

Surface composites: A new class of engineered materials

Surface composites: A new class of engineered materials Journal of MATERIALS RESEARCH Welcome Comments Help Surface composites: A new class of engineered materials Rajiv Singh and James Fitz-Gerald Department of Materials Science and Engineering, University

More information